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Abstract. In the paper, we formulate direct approximation theorems
for continuous in the neighbourhood of some point x, −∞ < x < ∞,
functions. Namely, the upper bounds were obtained for approximation
of functions by their Gauss-Weierstrass singular operators in terms of a
majorant function for the modules of continuity of the first and second
orders of the respective functions.
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1. Introduction

Let us consider a boundary value problem in the unit circle (see,
e.g., [3]) for the equation

∂2U

∂ρ2
+

1

ρ

∂U

∂ρ
+

(−1)l+1

ρ2
∂2lU

∂x2l
= 0 (1.1)

(here l is a natural number, 0 ≤ ρ < 1, −π ≤ x ≤ π) in case that the
function U(ρ, x) is bounded in the unit circle

Ω = (0 ≤ ρ < 1; −π ≤ x ≤ π)

and
U(ρ, x)

∣∣
ρ=1

= φ(x), (1.2)

where φ(x) is a summable 2π-periodic function, and the equality holds
in the sense of convergence in p-mean, 1 ≤ p ≤ ∞.
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According to [3], a solution of the boundary value problem (1.1)–(1.2)
is given by the function

Uρ,l(φ;x) =
1

π

∫ π

−π
φ(x+ t)

{
1

2
+

∞∑
k=1

ρk
l
cos kt

}
dt, (1.3)

where 0 ≤ ρ < 1, l ∈ N, which is usually called the Abel–Poisson-type
operator [2] or the generalized Abel–Poisson operator [6, 10–13].

If l = 1, from the relation (1.3) we get an expression for the Poisson
operator Uρ,1(φ;x) := Pρ(φ;x) (see [2, 4, 8]). In the case l = 2, the
formula (1.3) yields

Uρ,2(φ;x) := Wρ(φ;x) =
1

π

∫ π

−π
φ(x+ t)

{
1

2
+

∞∑
k=1

ρk
2
cos kt

}
dt, (1.4)

which is called the Gauss–Weierstrass singular operator [2, 4].
Then, analogically to that in the paper [1], we put δ = (ln 1

ρ)
−1 in the

formula (1.4). The Gauss–Weierstrass singular operator takes the form

Wδ(φ;x) =
1

π

∫ π

−π
φ(x+ t)

{
1

2
+

∞∑
k=1

e−
k2

δ cos kt

}
dt. (1.5)

Using the methods of the paper [2], we can show that the equality
(1.5) can be written as follows

Wδ(φ;x) =
1

2

√
δ

π

∫ ∞

−∞
φ(x+ t)e−

t2

4
δdt. (1.6)

In what follows, by C := C(−∞;∞) we denote the space of continu-
ous on (−∞;∞) functions with the finite norm

∥f∥C := max
x∈(−∞;∞)

|f(x)|,

and by Lp := Lp(−∞;∞), 1 ≤ p ≤ ∞, the spaces of, respectively, sum-
mable with pth power on (−∞;∞) functions equipped with the norm

∥f∥Lp :=
(∫ ∞

−∞
|f(x)|pdx

) 1
p

, 1 ≤ p < ∞,

and of measurable and essentially bounded on (−∞;∞) functions, where
the norm is given by

∥f∥L∞ := ess sup
x∈(−∞;∞)

|f(x)|.
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For continuous functions, ∥f∥L∞ ≡ ∥f∥C .
It is known [17, § 1.18-1.20], that if e−cx2

φ(x) ∈ L1 for some constant
c > 0, then in each point x0 of continuity of the function φ(x) there exists
a limit

lim
x→x0
δ→∞

Wδ(φ;x) = φ(x0), (1.7)

that does not depend on the way of tending x → x0, δ → ∞ [14, Ch. III,
§ 3]. The relation (1.7) can be interpreted as a convergence in the metric
of the corresponding space

lim
δ→∞

∥Wδ(φ;x)− φ(x)∥Lp = 0. (1.8)

One of the questions that we deal with in this paper is the rate of
deviation of the operator (1.6) as δ → ∞ from the function φ(x), on
which it is, actually, constructed. This will specify the equality (1.8).

2. Main results

In the above notation, the following theorem holds.

Theorem 2.1. If the function φ(x) is continuous in the neighbourhood
of point x, −∞ < x < ∞, and the modulus of continuity of the second
order ω2(φ; t) ≤ ω(t), where ω(t), t > 0, is a function of the type of the
second order modulus of continuity, then at each point x, −∞ < x < ∞,
the estimate holds

|Wδ(φ;x)− φ(x)| ≤
(
3

2
+

2√
π

)
ω

(
1√
δ

)
, as δ → ∞. (2.1)

Proof. Performing the respective transformations in the right-hand side
of (1.6), we write the Gauss–Weierstrass operator in the form

Wδ(φ;x) =
1

2

√
δ

π

∫ ∞

−∞
φ(t)e−

(x−t)2
4

δdt. (2.2)

Further, we make a change of variables

x− t

2

√
δ = z, t = x− 2z√

δ
, dt = − 2√

δ
dz, (2.3)

in the right-hand side of (2.2), and get

Wδ(φ;x) =
1√
π

∫ ∞

−∞
φ

(
x− 2z√

δ

)
e−z2dz

=
1√
π

∫ 0

−∞
φ

(
x− 2z√

δ

)
e−z2dz +

1√
π

∫ ∞

0
φ

(
x− 2z√

δ

)
e−z2dz

=
1√
π

∫ ∞

0

(
φ

(
x+

2z√
δ

)
+ φ

(
x− 2z√

δ

))
e−z2dz. (2.4)
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It is known [5, formula 3.321(3)], that

1√
π

∫ ∞

0
e−z2dz =

1

2
. (2.5)

Hence, combining the relations (2.4) and (2.5) we derive to an integral
representation of the quantity Wδ(φ;x)− φ(x), namely,

Wδ(φ;x)− φ(x)

=
1√
π

∫ ∞

0

(
φ

(
x+

2z√
δ

)
− 2φ(x) + φ

(
x− 2z√

δ

))
e−z2dz. (2.6)

With respect to the notation (2.3), we have

x = t+
2z√
δ
, x+

2z√
δ
= t+

4z√
δ
, x− 2z√

δ
= t, dz = −

√
δ

2
dt,

and therefore (2.6) yields

|Wδ(φ;x)− φ(x)|

≤ 1

2

√
δ

π

∫ x

−∞

∣∣∣∣φ(t+ 4z√
δ

)
− 2φ

(
t+

2z√
δ

)
+ φ(t)

∣∣∣∣ e− (x−t)2
4

δdt. (2.7)

By the definition and the properties of the second order modulus of
continuity (see, e.g., [16, p. 17]), it holds∣∣∣∣φ(t+ 4z√

δ

)
− 2φ

(
t+

2z√
δ

)
+ φ(t)

∣∣∣∣
≤ ω

(
2√
δ
z

)
≤ (1 + 2|z|)2ω

(
1√
δ

)
. (2.8)

Applying (2.8) to the right-hand side of (2.7) and taking into account
(2.3), we obtain

|Wδ(φ;x)− φ(x)|

≤ 1

2

√
δ

π

∫ x

−∞
(1 + |x− t|

√
δ)2ω

(
1√
δ

)
e−

(x−t)2
4

δdt

= ω

(
1√
δ

)
·

(
1

2

√
δ

π

∫ x

−∞
e−

(x−t)2
4

δdt+
δ√
π

∫ x

−∞
|x− t|e−

(x−t)2
4

δdt

+
1

2

δ
√
δ√
π

∫ x

−∞
(x− t)2e−

(x−t)2
4

δdt

)
. (2.9)
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To calculate the first integral from the right-hand side of (2.9), we
use the notation (2.3) and the formula (2.5), and hence get

1

2

√
δ

π

∫ x

−∞
e−

(x−t)2
4

δdt =
1√
π

∫ ∞

0
e−z2dz =

1

2
. (2.10)

Similarly, for the second integral from the right-hand side of (2.9), we
obtain

δ√
π

∫ x

−∞
|x− t|e−

(x−t)2
4

δdt =
δ√
π
· 2√

δ

∫ ∞

0

2z√
δ
e−z2dz

=
4√
π

∫ ∞

0
ze−z2dz =

2√
π

∫ 0

−∞
eτdτ =

2√
π
. (2.11)

Finally, we move to the third integral from the right-hand side of (2.9),
where after integrating by parts and taking into account the relation
(2.5) get

1

2

δ
√
δ√
π

∫ x

−∞
(x− t)2e−

(x−t)2
4

δdt

=

√
δ

π

(
(x− t)e−

(x−t)2
4

δ

∣∣∣∣t=x

t=−∞
+

∫ x

−∞
e−

(x−t)2
4

δdt

)

=

√
δ

π

(
0− lim

t→−∞
(x− t)e−

(x−t)2
4

δ +

√
π

δ

)
= 1. (2.12)

Putting (2.10), (2.11) and (2.12) in the corresponding parts of the right-
hand side of (2.9), we prove the formula (2.1). This yields the statement
of Theorem 2.1.

Analogical to Theorem 2.1 result holds also in terms of a majorant
function for the modulus of continuity of the first order.

Theorem 2.2. If the function φ(x) is continuous in the neighbourhood
of point x, −∞ < x < ∞, and the modulus of continuity ω1(φ; t) ≤ ω̃(t),
where ω̃(t), t > 0, is a function of the type of modulus of continuity, then
at each point x, −∞ < x < ∞, the estimate holds

|Wδ(φ;x)− φ(x)| ≤
(
1 +

2√
π

)
ω̃

(
1√
δ

)
, as δ → ∞. (2.13)

Proof. We will speculate analogically to that in proving Theorem 2.1,
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and hence from (2.2), (2.3) and (2.5) get

Wδ(φ;x)− φ(x)

=
1√
π

∫ ∞

−∞

(
φ

(
x− 2z√

δ

)
− φ(x)

)
e−z2dz

=
1

2

√
δ

π

∫ ∞

−∞

(
φ(t)− φ

(
t+

2z√
δ

))
e−

(x−t)2
4

δdt. (2.14)

By the properties of the first order modulus of continuity, from (2.14) we
can write

|Wδ(φ;x)− φ(x)| ≤ 1

2

√
δ

π

∫ ∞

−∞
ω̃

(
2z√
δ

)
e−

(x−t)2
4

δdt

≤ 1

2

√
δ

π
ω̃

(
1√
δ

)∫ ∞

−∞
(1 + |x− t|

√
δ)e−

(x−t)2
4

δdt

≤ 1

2

√
δ

π
ω̃

(
1√
δ

)(∫ ∞

−∞
e−

(x−t)2
4

δdt+
√
δ

∫ ∞

−∞
|x− t|e−

(x−t)2
4

δdt

)
.

(2.15)

Further, taking into account (2.3) and (2.5), the relation (2.15) yields

|Wδ(φ;x)− φ(x)|

≤ 1

2

√
δ

π
ω̃

(
1√
δ

)(
2√
δ

∫ ∞

−∞
e−z2dz + 2

√
δ

∫ x

−∞
(x− t)e−

(x−t)2
4

δdt

)
=

1

2

√
δ

π
ω̃

(
1√
δ

)(
2√
δ

√
π + 2

√
δ · 2

δ
e−

(x−t)2
4

δ

∣∣∣∣t=x

t=−∞

)

=
1

2

√
δ

π
ω̃

(
1√
δ

)(
2

√
π

δ
+

4√
δ
(1− 0)

)
=

(
1 +

2√
π

)
ω̃

(
1√
δ

)
,

that proves Theorem 2.2.

Remark 2.1. Similar to (2.1) and (2.13) estimates could be written for
the metric of the space Lp, p ≥ 1.

Remark 2.2. In the paper [9], the direct approximation theorems were
obtained for functions φ(x), −∞ < x < ∞, by the Gauss–Weierstrass
singular operators in the spaces C and L1 under sufficiently big restric-
tions on the class of functions to which φ(x) belongs. Namely, the men-
tioned above class of functions φ(x) was defined [9] by a certain function
τ(u), u > 0, such that
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1) τ(u), u > 0, is positive and increasing and τ(u)
u is monotonically

decreasing;

2) |φ(x+ u)− φ(x)| = O(τ(u));

3) τ(x · y) = τ(x) · τ(y);

4) for some fixed value u0 it holds
(

u0√
z

)2
e
−
(
u0√
z

)2

τ(u0)
τ(
√
z)

= O(1);

5) d
du(u

2τ(u)) = O(uτ(u)).

Under the conditions 1)–5) on the function τ(u), u > 0, for φ(x) ∈ L1

such that ∫ u

0
(φ(x+ t)− 2φ(x) + φ(x− t))dt = O(u2τ(u)),

the following estimate was obtained in [9, Theorem 2.1]:

|Wδ(φ;x)− φ(x)| = O

(√
1

δ
τ

(√
1

δ

))
, as δ → ∞. (2.16)

When estimating the respective L1-norm, authors assume [9, Theo-
rem 2.2] that φ(x) ∈ L1 satisfies the relation∫ u

0

∫ ∞

−∞
|φ(x+ t)− 2φ(x) + φ(x− t)|dxdt = O(u2τ(u)),

and then for τ(u), u > 0, satisfying the conditions 1)–5) from above, it
holds

∥Wδ(φ;x)− φ(x)∥L1
= O

(√
1

δ
τ

(√
1

δ

))
, as δ → ∞. (2.17)

We note, that the functional equation 3), which was considered earlier
by A.L. Cauchy, has a unique solution on the classes of continuous (and
continuously differentiable) functions, namely τ(x) = xα, where α > 0
is some constant. Such a function τ(x) for 0 < α ≤ 1 is a sufficiently
partial, but very important modulus of continuity, that is used to define
the classes Lipα or Lip(α, ρ), ρ > 1 (see [7]). For the classes of functions
Lipα, the estimates (2.16) and (2.17) give a nice degree of approximation

of the order δ−
1+α
2 .

The following statement generalizes the result from [9] for the space
Lp, p > 1.



O. Shvai, K. Pozharska 567

Theorem 2.3. Let φ(x) ∈ Lp, p > 1, and the function τ(u), u > 0, is
such that the conditions 1)-5) hold and∫ u

0
Φ(t)dt = O(u2τ(u)),

where

Φ(t) =

(∫ ∞

−∞
|φ(x+ t)− 2φ(x) + φ(x− t)|p dx

) 1
p

.

Then the estimate

∥Wδ(φ;x)− φ(x)∥Lp = O

(√
1

δ
τ

(√
1

δ

))
holds as δ → ∞.

To prove Theorem 2.3, we use the methods from paper [9] and the
generalized Minkowski inequality [15, p. 592], taking into account pecu-
liarities of the integral metric.
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