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from a class Hp(p ≥ 1)
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Abstract. In this paper, the structural properties of a function are
characterized by modules of continuity. The classical Hardy–Littlewood
theorem describes the connection between the smoothness of the ana-
lytic function boundary values at the boundary of its analyticity and
the growth rate of the modulus of its derivatives of higher orders. In
this paper, we obtain an analogue of the Hardy–Littlewood theorem for
functions from class Hp and modules of continuity of higher orders.
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Introduction

The classes Hp(0 < p <∞), consisting of those functions f which are
analytic in the interior D of the unit circle and for which

Mp
r (|f |) =

2π∫

0

∣∣∣f
(
reiθ

)∣∣∣
p
dθ

is bounded for 0 < r < l, were introduced into analysis by G. H. Hardy.
The principal facts concerning the behaviour of these functions at the
boundary were established by F. Riesz with the aid of the factorization
theorem. A.J. Macintyre, W.W. Rogosinski, and H.S. Shapiro have
treated linear extremum problems (for p ≤ l) in great detail. S.S. Wal-
ters has discussed the structure of the linear spaceHp for 0 < p < 1.
R.M. Kovalchuk and Y.I. Volkov studied the properties of the bounded
functions depending on Lp-norms of the derivatives for the analytical
functions. In this paper we generalize Theorem 1 of the paper [10] for
n = 2, 3 . . . and for the modulus of continuity ωn (f, t), ∀n ∈ N .
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1. Main result

Denote byHp, p ≥ 1 the class of analytic in the circle D = {z : |z| < 1}
functions f(z) such that the integral

π∫
−π

∣∣f
(
rei θ

)∣∣pdθ is bounded as 0 <

r < 1. At this case (see the monograph [2, p. 389]) the function f(z)
has almost everywhere on γ = { z : | z | = 1} some boundary values for
non-tangent paths, that form boundary function f(ei θ) ∈ Lp (−π, π) . By
definition, put

∥∥f
(
eiϕ
)∥∥
Lp

=





π∫

−π

∣∣f
(
eiϕ
)∣∣p dϕ





1
p

,

and
ωn (f, t) = ωn (t) = sup

|h|≤t
‖∆n

h (f, θ)‖Lp
;

here ∆n
hf(e

i θ) =
n∑
j=0

(
n
j

)
(−1)n−j f

(
ei (θ+jh)

)
is a difference of the

order n, n ∈ N , of the function f(ei θ) by the arc coordinate. Suppose
that a real function ω(t) is defined for some segment [0,l]. Then the
function ω(t) belongs to the class Ωn if the following conditions hold:

1) ω(0)=0 , ω(t)>0 as t∈ (0, l];
2) ω(t) is a non-decreasing function;
3) ω(t) is а continuous function over [0, l] ;
4) for any λ > 0

ω (λt) ≤ A1 (1 + λ)n ω (t) ,

where the constant А1>0 is independent of t and λ.
Define the tensile indicators of a function ω (t) ∈ Ωn as

αω = lim
k→0

ln sω (k)

ln k
, βω = lim

k→∞

ln sω (k)

ln k
,

where sω (k) = sup
t>0

ω(kt)
ω(t) .

The numbers αω and βω are called (see the monograph [11]) upper
and lower tensile indicators of a function ω(t), t > 0. In the general case
the following conditions hold:

0 < αω ≤ βω <∞.

Then, since ω(t) is continuous, by the monograph [11] it follows that

0 ≤ αω ≤ βω ≤ 1. (1.1)
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Suppose r > 0 and ω (t) ∈ Ωn , sω (k) < ∞ for any k > 0. Then by
the papers [1, 11] it follows that:

1) αω>0 if and only if

t∫

0

ω (s)

s
ds ≤ A2ω (t) , ∀t > 0; (1.2)

2) βω<r if and only if

∞∫

t

ω (s)

sr+1
ds ≤ A3

ω (t)

tr
, ∀t > 0, (1.3)

where A2>0, A3 > 0 are constants.

Theorem 1.1. Suppose the following conditions hold:

1) f(z) ∈ Hp, p ≥ 1,

2) the integral modulus of continuity

ωn (f, t) ≤ ω (t) , (1.4)

where ω (t) ∈ Ωn.

Then fo all 0<r<1 and n ∈ N, n ≥ 2

∥∥∥ f (n)
(
reiϕ

)∥∥∥
Lp

≤ A4
ω (1− r)

(1− r)n
, (1.5)

where A4>0 is independent from r constant.

Proof. Suppose f(z)=u(z)+iv(z). Since we have condition (1.4) on γ, it
follows for u(z) and v(z) that

ωn (u, t) ≤ ω (t) , ωn (v, t) ≤ ω (t) . (1.6)

Since

|∆n
hf | = |∆n

hu+ i∆n
hv| =

√(
∆n
hu
)2

+
(
∆n
hv
)2 ≥ |∆n

hu| ,

we get

sup
|h|≤t

‖∆n
hf‖Lp

≥ sup
|h|≤t

‖∆n
hu‖Lp

.

Therefore ωn (u, t) ≤ ω (t). Continuing in the same way, we can prove
second inequality from (1.6).
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Consider z = rei ϕ ∈ D. Then

f (n) (z) =

∂nf(rei ϕ)
∂ϕn +B1 (n)

∂n−1f(rei ϕ)
∂ϕn−1 + · · ·+Bn−1 (n)

∂f(rei ϕ)
∂ϕ

zn
,

(1.7)
where B1 (n) , ..., Bn−1 (n) are some numerical coefficients. Furthermore
for k = 1, n

∂kf
(
rei ϕ

)

∂ϕk
=
∂ku

(
rei ϕ

)

∂ϕk
+ i

∂kv
(
rei ϕ

)

∂ϕk
. (1.8)

The function u
(
rei ϕ

)
is harmonic on D and both integrals

π∫
−π

∣∣u
(
rei ϕ

)∣∣pdϕ,
π∫

−π

∣∣v
(
rei ϕ

)∣∣pdϕ are bounded for 0 ≤ r < 1. Then

the value u
(
rei ϕ

)
can be represented by the Poisson integral (see the

papers [4, 7]) at every point z = rei ϕ ∈ D. Define (see the paper [8, 12])
the ∆-like kernel in the Poisson integral as

P (r, θ) =
1− r2

1− 2r cos θ + r2
.

Therefore

u
(
rei ϕ

)
=

1

2π

π∫

−π

u
(
eiθ
)
P (r, θ − ϕ) dθ. (1.9)

There are two possible cases:
1) k is odd; 2) k is even.
Consider the first one. Using (1.9) for k = 1, n and using the methods

of the paper [9] we get

∂ku
(
rei ϕ

)

∂ϕk
=

1

2π

π∫

−π

u
(
eiθ
) ∂kP (r, θ − ϕ)

∂ϕk
dθ

=
1

2π

π∫

0

[
u
(
ei(ϕ−θ)

)
− u

(
ei(ϕ+θ)

)] ∂kP (r, θ)

∂θk
dθ. (1.10)

Using generalized Minkowski inequality (see the monograph [11]) and
(1.10) we get

∥∥∥∥∥
∂ku

(
rei ϕ

)

∂ϕk

∥∥∥∥∥
Lp

=

∥∥∥∥∥∥
1

2π

π∫

0

[
u
(
ei(ϕ−θ)

)
− u

(
ei(ϕ+θ)

)] ∂kP (r, θ)

∂θk
dθ

∥∥∥∥∥∥
Lp

≤
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≤ 1

2π

π∫

0

∥∥∥u
(
ei(ϕ−θ)

)
− u

(
ei(ϕ+θ)

)∥∥∥
Lp

∣∣∣∣
∂kP (r, θ)

∂θk

∣∣∣∣ dθ

≤ 1

2π

π∫

0

ω1 (u, θ)

∣∣∣∣
∂kP (r, θ)

∂θk

∣∣∣∣ dθ. (1.11)

An estimate is known from the paper [3]

∣∣∣∣
∂kP (r, θ)

∂θk

∣∣∣∣ ≤
C

(1 − 2r cos θ + r2)
k+1
2

.

Since 1 − 2r cos θ + r2 ≥ (1− r)2 + 4r
π2 θ

2, we obtain

∣∣∣∣
∂kP (r, θ)

∂θk

∣∣∣∣ ≤
C

(
(1− r)2 + 4r

π2 θ2
)k+1

2

. (1.12)

From (1.11) we get

∥∥∥∥∥
∂ku

(
rei ϕ

)

∂ϕk

∥∥∥∥∥
Lp

≤ 1

2π




1−r∫

0

+

π∫

1−r


ω1 (u, θ)

∣∣∣∣
∂kP (r, θ)

∂θk

∣∣∣∣ dθ = I1 + I2.

(1.13)
Combining Marchaud inequality (see the monograph [6]), (1.1)–(1.3),

(1.6) and (1.12), we obtain

I1 =
1

2π

1−r∫

0

ω1 (u, θ)

∣∣∣∣
∂kP (r, θ)

∂θk

∣∣∣∣ dθ ≤ A5
ω1 (1− r) (1− r)

(1− r)k+1

≤ A6
1

(1− r)k
(1− r)

π∫

1−r

ωn (u, t)

t2
dt ≤ A7

ω (1− r)

(1− r)k
≤ A7

ω (1− r)

(1− r)n
.

(1.14)
In the same way we get

I2 =
1

2π

π∫

1−r

ω1 (u, θ)

∣∣∣∣
∂kP (r, θ)

∂θk

∣∣∣∣ dθ ≤ A8

π∫

1−r

ω1

(
u, θ

1−r (1− r)
)

(
(1− r)2 + 4r

π2 θ2
)k+1

2

dθ ≤
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≤ A9

π∫

1−r

ω1 (1− r)
(

θ
1−r + 1

)

θk+1
dθ ≤ A9

ω1 (1− r)

(1− r)

π∫

1−r

θ + (1− r)

θk+1
dθ

≤ A10
ω1 (1− r)

1− r

π∫

1−r

θ

θk+1
dθ ≤ A11

ω1 (1− r)

(1− r)k
≤ A12

ω (1− r)

(1− r)n
. (1.15)

Combining (1.14) and (1.15) from (1.13) we have

∥∥∥∥∥
∂ku

(
rei ϕ

)

∂ϕk

∥∥∥∥∥
Lp

≤ A13
ω (1− r)

(1− r)n
. (1.16)

Consider the case if k is even. Since
π∫
0

∂kP (r,θ)
∂θk

dθ = 0 for k = 2m and

using the methods of Ryazanov (see the paper [13]) it follows that

∂ku
(
rei ϕ

)

∂ϕk
=

1

2π

π∫

−π

u
(
ei θ
) ∂kP (r, θ − ϕ)

∂ϕk
dθ

=
1

2π

π∫

−π

u
(
ei θ
) ∂kP (r, θ − ϕ)

∂θk
dθ =

1

2π

π∫

−π

u
(
ei (ϕ+θ)

) ∂kP (r, θ)

∂θk
dθ

=
1

2π




π∫

0

u
(
ei (ϕ+θ)

) ∂kP (r, θ)

∂θk
dθ −

−π∫

0

u
(
ei (ϕ+θ)

) ∂kP (r, θ)

∂θk
dθ




=
1

2π

π∫

0

[
u
(
ei(ϕ+θ)

)
+ u

(
ei(ϕ−θ)

)] ∂kP (r, θ)

∂θk
dθ

=
1

2π

π∫

0

[
u
(
ei(ϕ+θ)

)
− 2u

(
ei ϕ
)
+ u

(
ei(ϕ−θ)

)] ∂kP (r, θ)

∂θk
dθ.

Now if we recall generalized Minkowski inequality, we get an
inequality of type (1.11)
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∥∥∥∥∥
∂ku

(
rei ϕ

)

∂ϕk

∥∥∥∥∥
Lp

≤ 1

2π

π∫

0

ω2 (u, θ)

∣∣∣∣
∂kP (r, θ)

∂θk

∣∣∣∣ dθ

≤ 1

π

π∫

0

ω1 (u, θ)

∣∣∣∣
∂kP (r, θ)

∂θk

∣∣∣∣ dθ.

Therefore from (1.16) we get

∥∥∥∥∥
∂ku

(
rei ϕ

)

∂ϕk

∥∥∥∥∥
Lp

≤ A14
ω (1− r)

(1− r)n
. (1.17)

Combining (1.16) and (1.17) for any k = 1, n we obtain

∥∥∥∥∥
∂ku

(
rei ϕ

)

∂ϕk

∥∥∥∥∥
Lp

≤ A15
ω (1− r)

(1− r)n
. (1.18)

As above for v
(
rei ϕ

)
we have

∥∥∥∥∥
∂kv

(
rei ϕ

)

∂ϕk

∥∥∥∥∥
Lp

≤ A16
ω (1− r)

(1− r)n
. (1.19)

Combining (1.8), (1.18) and (1.19), for k = 1, n we get

∥∥∥∥∥
∂kf

(
rei ϕ

)

∂ϕk

∥∥∥∥∥
Lp

≤ A17
ω (1− r)

(1− r)n
. (1.20)

Using (1.7) and (1.20) for all 1
2 ≤ r < 1 finally, we obtain

∥∥∥f (n) (z)
∥∥∥
Lp

≤ A18
ω (1− r)

(1− r)n
. (1.21)

Since f (n) (z) is analytical function for |z| ≤ 1
2 , it follows that (1.21)

also holds for |z| ≤ 1
2 , i.e. for all 0 ≤ r < 1. This completes the proof.

Remark 1.1. In his paper [10], R.M. Kovalchuk proved Theorem 1
for n = 2. For analytical functions on domains with a quasi-conformal
boundary (and hence for the harmonic functions on such domain)
M.Z. Dveirin (see the paper [5]) obtained the estimate (1.5) for a uni-
form metric in the terms of Tamrazof’s (see the monograph [14]) uniform
modulus of smoothness.
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