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Strengthened Belinskii theorem and its

applications
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Abstract. The remarkable theorem of P. Belinskii is a deep underlying
result in the variational calculus for quasiconformal maps. It is valid only
for maps with small sufficiently regular Beltrami coefficients.

We provide a global version of this theorem connected with the clas-
sical results on quasiconformal extensions of conformal maps and new
its applications.
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1. Preamble

1.1. The following remarkable theorem of P. Belinskii is a deep underlying
result in the variational calculus for quasiconformal maps.

Theorem A. [8] Let a function µ(ζ) be defined on the plane C and C1-
smooth, up to jumps on a finite number of closed smooth curves. Let

|µ(ζ)| < ε, |∂ζµ| < ε, |∂ζµ| < ε,

and let either µ(1/ζ) or (ζ/ζ)2µ(1/ζ) satisfy in a neighborhood of the
point ζ = 0 the same assumptions, as the function µ(ζ) in the finite
points. Then, for sufficiently small ε > 0, the function

w(z) = z − z(z − 1)

π

∫∫

|ζ|<∞

µ(ζ)dξdη

ζ(ζ − 1)(ζ − z)
(1)
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provides a quasiconformal homeomorphism of the whole plane Ĉ whose
Beltrami coefficient is µ̃ = µ + O(‖µ‖2∞), and this map differs from the
map with Beltrami coefficient µ(z) and the same normalization up to a
quantity of order ε2 uniformly in any bounded domain.

The original proof of this theorem is complicated and relates on the
deep results from geometric function theory and from the potential the-
ory. It involves only sufficiently smooth Beltrami coefficients µ with small
norm and has been recently strengthened in [23] and applied to complex
and potential geometry of the universal Teichmüller space.

This theorem relates to the problem of I.N. Vekua of 1961 on homeo-
morphy of approximate solutions of the singular two dimensional integral
equation intrinsically connected with the Beltrami equation by construct-
ing quasiconformal maps. Consider in the space Lp(C) with p > 2 the
well-known integral operators

Tρ(z) = − 1

π

∫∫

C

ρ(ζ)dξdη

ζ − z
, Πρ(ζ) = − 1

π

∫∫

C

ρ(ζ)dξdη

(ζ − z)2
= ∂zTρ(z)

assuming for simplicity that ρ has a compact support in C. Then the
second integral exists as a Cauchy principal value, and the derivative
∂zT generically is understanding as distributional.

Each quasiconformal automorphism wµ with ‖µ‖∞ = k < 1 of the
Riemann sphere Ĉ = C

⋃{∞} with ‖µ‖∞ = k < 1 is represented in the
form wµ(z) = z+Tρ(z), where ρ is the solution in Lp (for 2 < p < p0(k))
of the integral equation

ρ = µ+ µΠρ,

given by the series

ρ = µ+ µΠµ+ µΠµ(Πµ) + . . . . (2)

Denote by µn be the n-th partial sum of the series (2), and set

fn(z) = z − 1

π

∫∫

C

µn(ζ)dξdη

ζ − z
.

The question of Vekua was, whether all fn also are homeomorphisms.
A counterexample of T. Iwaniec shows that the smoothness and small-

ness assumptions in the Belinskii theorem cannot be dropped completely.
A simple modification of his construction allows us to define ε ∈ (0, 1)
and a Beltrami coefficient µ, so that the second iteration

f2(z) = z + Tµ(z) + T (µΠµ)(z)
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is not injective in D. The details are exposed in survey [21].

1.2. Decomposing any quasiconformal automorphism wµ of the Riemann
sphere Ĉ = C

⋃
{∞} via wµ = wµ2 ◦wµ1 with the Beltrami coefficients µ1

and µ2 supported, respectively, in the unit disk D = {|z| < 1} and in the
domain D2 = Ĉ \wµ1(D), one naturally arrives to univalent holomorphic
functions having quasiconformal extensions. Such functions play a crucial
role in geometric complex analysis and in Teichmüller space theory.

Let us mention also that if µ(z) ∈ Cm+σ with m ≥ 0, σ > 0, then
Tρ ∈ Cm+1+σ and Πρ ∈ Cm+σ (see, e.g., [38], Ch. 1).

1.3. First we provide a simplified proof of the Belinskii theorem, illus-
trating the idea on the case of Beltrami coefficients vanishing near the
infinity. For µ ∈ Cσ, we have

∂zw = µ, ∂zw = 1−Πµ. (3)

Hence, the Jacobian of the map (1) equals

Jw(z) = |∂zw(z)|2 − |∂zw(z)|2 = 1−O(ε),

which yields, together with the equality w(z) = z+O(1/z) in a neighbor-
hood of the infinite point, that w(z) is locally injective on Ĉ and hence a
global homeomorphism of Ĉ.

To describe its quasiconformal features, we pass to Beltrami coeffi-
cients

µt = tµ/‖µ‖∞,
getting the map

wt(z) = z − tζ(z − 1)

π

∫∫

|ζ|<∞

µ(ζ)dξdη

ζ(ζ − 1)(ζ − z)
,

which determines a holomorphic motion w(z, t) = wt(z) of the Riemann
sphere Ĉ (which means that w(z, t) is injective for a fixed t, the function
t 7→ w(·, t) is holomorphic, and w(z, 0) ≡ z on Ĉ). By the lambda-
lemma for holomorphic motions, each fiber map wt(z) is a quasiconformal
homeomorphism of Ĉ whose Beltrami coefficient

µ(z, t) = ∂zw(z, t)/∂zw(z, t)

is a holomorphic function of t as the element from Liy(C) (see, e.g., [13]).
Hence, for admissible (small) t,

µ(z, t) = µ1(z)t+ µ2(z)t
2 + . . . , (4)
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and by Schwarz’s lemma,

‖µ(·, t) − µ1(·)t‖∞ ≤ const |t|2. (5)

It remains to observe that in view of (3) µ1 = µ/‖µ‖∞, which completes
the proof.

2. Main theorem

2.1. As was mentioned above, the aim of this paper is to weaken as
possible the rigid assumption that the L∞-norms of µ and of its first
derivatives must be small and provide a global version of this theorem.

Consider the canonical class Σ(0) of univalent functions f(z) = z +
b0+b1z

−1+ . . . in the disk D∗ = {z ∈ Ĉ : |z| > 1} having quasiconformal
extension across the unit circle S1 onto the unit disk D = {|z| < 1}. Their
Beltrami coefficients run over the unit ball

Belt(D)1 = {µ ∈ L∞(C) : µ(z)|D∗ = 0, ‖µ‖∞ < 1}.

In accordance with such a normalization, we shall deal with integral

w(z) = z − 1

π

∫∫

|ζ|<1

µ(ζ)
( 1

ζ − z
− 1

ζ

)
dξdη. (6)

Let µ(z, t) belong to Belt(D)1 and for any fixed t be C1+σ-smooth in
z as a function D × D → C (σ > 0), and let µ be holomorphic in t for a
fixed z and µ(z, 0) ≡ 0.

Then the well-known property of elements in the functional spaces
with sup norms implies that the function

t 7→ µ(z, t) : D → Belt(D)1

is holomorphic in t also in L∞-norm. This property is based on the
following lemma of Earle [11].

Lemma 1. Let E,T be open subsets of complex Banach spaces X,Y
and B(E) be a Banach space of holomorphic functions on E with sup
norm. If φ(x, t) is a bounded map E × T → B(E) such that t 7→ φ(x, t)
is holomorphic for each x ∈ E, then the map φ is holomorphic.

Holomorphy of φ(x, t) in t for fixed x implies the existence of complex
directional derivatives

φ′t(x, t) = lim
ζ→0

φ(x, t+ ζv)− φ(x, t)

ζ
=

1

2πi

∫

|ξ|=1

φ(x, t+ ξv)

ξ2
dξ,
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while the boundedness of φ in sup norm provides the uniform estimate

‖φ(x, t + cζv)− φ(x, t)− φ′t(x, t)cv‖B(E) ≤M |c|2,

for sufficiently small |c| and ‖v‖Y .
Therefore, we have similar to (4) the expansion

µ(z, t) = µ1(z)t+ µ2(z)t
2 + . . . , (z ∈ D∗, t ∈ D), (7)

and the uniform estimates for all |t| < 1,

‖µ(·, t)‖∞ ≤ |t|, ‖µ(·, t)− µ1‖∞ ≤ const |t|2.

For µ ∈ Belt(D)1 and ϕ ∈ L1(D), we define the pairing

〈µ,ϕ〉D = − 1

π

∫∫

D

µ(ζ)ϕ(ζ)dξdη (ζ = ξ + iη)

and call µ infinitesimally trivial, if

〈µ,ϕ〉D = 0 for all ϕ ∈ A1(D),

where A1(D) denotes the subspace of L1(D) formed by integrable holo-
morphic functions.

We prove the following general theorem giving a global extension of
Theorem A.

Theorem 1. Let µ(z, t) ∈ Belt(D)1 be C1+σ-smooth in z from a broader
disk Dd, d > 1, and holomorphic in t and let µ(z, 0) ≡ 0. Suppose that
the linear term µ1(z)t in expansion (7) for µ(z, t) is not infinitesimally
trivial. Then:

(a) For any t, for which,

(|z|2 − 1)
1

π

∣∣∣z
∫∫

D

µ(ζ, t)dξdη

(ζ − z)3

∣∣∣ ≤
∣∣∣1 + 1

π

∫∫

D

µ(ζ, t)dξdη

(ζ − z)2

∣∣∣, (8)

or equivalently, denoting by wt(z) the integral (6) with µ = µ(z, t),

(|z|2 − 1)|z||w′′
t (z)| ≤ |w′

t(z)| for all ζ ∈ D∗,

the integral (6) for µ(z, t) provides a homeomorphism of the sphere Ĉ,
conformal on D∗.

(b) Under a stronger assumption

(|z|2 − 1)|z||w′′
t (z)| ≤ k|w′

t(z)|, z ∈ D∗, (9)



S. L. Krushkal 181

with some k < 1, the function wµ(·,t)|D∗ given by (6) admits k-quasicon-
formal extension across S1 onto the unit disk with Beltrami coefficient

µ̃(z, t) =
( 1

|z|2 − 1
)1
z

w′′
t (1/z)

w′
t(1/z)

, |z| < 1. (10)

This coefficient depends holomorphically on µ and t.

2.2. The following theorem is a special case of Theorem 1, but it has an
independent interest, in view of applications.

Theorem 2. Suppose that µ ∈ Belt(D)1 is C1+σ-smooth (in L∞ norm)
and is not infinitesimally trivial. Then the integral

wtµ(z) = z − t

π

∫∫

D

µ(ζ)
( 1

ζ − z
− 1

ζ

)
dξdη (11)

provides k-quasiconformal map of Ĉ, conformal on D∗, for all |t| > 0
satisfying

(|z|2 − 1)
t

π

∣∣∣z
∫∫

D

µ(ζ)dξdη

(ζ − z)3

∣∣∣ ≤
∣∣∣1 + t

π

∫∫

D

µ(ζ, t)dξdη

(ζ − z)2

∣∣∣.

Note that generically the quasiconformal extensions given by either
of these theorems (with the Beltrami coefficients of the form (10)) are
not extremal (i.e., do not have the minimal dilatation among the posible
extensions of wtµ to D) for all admissible t.

3. Some integral bounds

We start with the following lemma from [18]:

Lemma 2. Let D be a domain in Ĉ having at least two boundary points.
Then for any univalent, holomorphic in D, function f(z) (Ĉ-holomorphic
if D ∋ ∞) in all the finite points z ∈ D there holds the inequalities

∣∣∣f
(n)(z)

f ′(z)

∣∣∣ ≤ n n!

rD(z)n−1
, n = 2, 3, . . . , (12)

where rD(z) = dist(z, ∂D) is the Euclidean from the point z ∈ D to the
boundary ∂D.
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This yields, in particular, the following uniform bound for the integral
(6):

|w′′(z)/w′(z)| ≤ O(1/(|z| − 1)) for all |z| > 1,

which allows us to apply the assumptions of Theorems 1 and 2.

We also shall use the well-known identity (see, e.g., [3])
∫∫

D

dξdη

|1− ζZ|4
=

π

(1− |Z|2)2

which can be rewritten after the change Z 7→ z = 1/Z ∈ D∗ in the form

1

π

∫∫

D

dξdη

|ζ − z|4 =
1

(|z|2 − 1)2
.

This identity simply provides (after integration or differentation of both
sides in r = |z|) the estimate

1

π

∫∫

D

dξdη

|ζ − z|m = O(1/(|z|2 − 1)m−2). (13)

4. Proof of Theorem 1

First observe that, in view of assumptions of the theorem, the value
t = 0 is noncritical for µ.

We shall use Becker’s model of the universal Teichmüller space T

(see [7]). In this model, T is a bounded domain b(T) in the Banach
space B1(D

∗) of holomorphic functions ψ on the disk D∗ (containing the
origin ψ = 0) with the norm

‖ψ‖ = sup
D∗

(|z|2 − 1)|zψ(z)|.

This domain is filled by the functions bf = f ′′/f ′ corresponding to f ∈
Σ(0).

Every µ ∈ Belt(D)1 defines a unique quasiconformal automorphism
wµ of Ĉ as the homeomorphic solution of the Beltrami equation ∂zw =
µ(z)∂zw on C, whose conformal restriction to D∗ belongs to Σ(0).

The space T is obtained from the ball Belt(D)1, letting µ1, µ2 ∈
Belt(D)1 be equivalent, if the corresponding homeomorphisms wµ1 and
wµ1 coincide on the unit circle S1 (and hence, on D∗). The quotient map

φT(µ) = bwµ : Belt(D)1 → T ⊂ B1(D
∗) (14)
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is holomorphic.
All this implies that the image of the given Beltrami coefficients µ(z, t)

in T under the map (14) is a non-degenerate holomorphic disk

D(µ) = {tµ : |t| < 1}

filled by the points bwµ(·,t). Its non-degenerance is a consequence of The-
orem A, which provides that for small |t| the points bwµ(·,t) are different,
and of the uniqueness theorem for holomorphic functions. So, the map
t 7→ bwµ(·,t) can have only a countable set of zeros tn, which determine
the cuspidal singularities of the disk D(µ).

The following important lemma is a special case of the Ahlfors and
Becker results on univalence and quasiconformal extension (see [4, 7]).

Lemma 3. Let f(z) = z + b0 + b1z
−1 + . . . be holomorphic on D∗, and

let k ≤ 1. If

(|z|2 − 1)
∣∣∣z f

′′(z)

f ′(z)

∣∣∣ ≤ k for all |z| > 1, (15)

then f(z) is univalent on D∗ and for k < 1 admits k-quasiconformal
extension to Ĉ with complex dilatation

µ(z) =
( 1

|z|2 − 1
)∣∣∣1
z

f ′′(1/z)

f ′(1/z)

∣∣∣, |z| < 1.

We may now prove the assertions of the theorem. In view of assump-
tions on the linear term tµ1, we may apply Theorem A, which yields that
for a sufficiently small |t| > 0 the integral

wµ(·,t)(z) = z − 1

π

∫∫

|ζ|<1

µ(ζ, t)
( 1

ζ − z
− 1

ζ

)
dξdη

provides quasiconfomal (hence, injective) automorphism of the sphere Ĉ,
conformal on the disk D∗, whose Beltramu coefficient µ̃(z, t) in D satisfies

µ̃(z, t) = µ(z, t) +O(|t|2),

and the remainder is uniform for |t| < t0. Together with nontriviality of
the linear term tµ1, this yields that the image D(µ) of this µ under the
projection (14) does not degenerate to a point (i.e., the function bwµ(·,t)

does not be equal identically to zero); it is a holomorphic disk in T with
possible discrete singularities.
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For µ(z, ·) ∈ C1+σ, we have the growth

∫∫

D

µ(ζ, t)(ζ − z)−3dξdη = O((1− r)σ−1) as r → 1.

Hence, if µ(z, t) satisfies the inequality (9), then the corresponding in-
tegral (6) satisfies for z ∈ D∗ and the indicated t the inequality (15) of
Lemma 3. Then this lemma implies that the holomorphic function wt(z)
given by this integral has k-quasiconformal extension wµ̃(·,t) onto the disk
D.

It remains to show that the coefficient µ̃(z, t) of the extension wµ̃|D∗

to Ĉ depends holomorphically on the original coefficient µ(z, t) and on
the complex parameter t ∈ D defining µ(z, t).

Holomorphy in µ follows trivially from (10), while holomorphy in t is
a consequence of holomorphy of both maps t 7→ µ(z, t) and the quotient
projection (14).

The case of assumption (8) is investigated in a similar way. Now the
application of Lemma 3 only provides that the map given by integral (6)
is a homeomorphism of Ĉ. This completes the proof of Theorem 1.

5. Applications

5.1. Preliminaries. We provide here the applications of Theorem 1 to
the Grunsky inequalities and Fredholm eigenvalues. Let us first we recall
briefly some needed results in order to formulate the theorems.

The classical Grunsky theorem yields that a holomorphic function
f(z) = z + const+O(z−1) in a neighborhood of z = ∞ can be extended
to a univalent holomorphic function on the D∗ if and only

∣∣∣
∞∑

m,n=1

√
mn αmnxmxn

∣∣∣ ≤ 1,

where the numbers αmn, called the Grunsky coeffcients of f , are defined
from the series

log
f(z)− f(ζ)

z − ζ
= −

∞∑

m,n=1

αmnz
−mζ−n, (z, ζ) ∈ (D∗)2,

the sequence x = (xn) runs over the unit sphere S(l2) of the Hilbert space

l2 with norm ‖x‖2 =
∞∑
1
|xn|2, and the principal branch of the logarithmic
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function is chosen (cf. [15, 31]). The quantity

κ(f) = sup
{∣∣∣

∞∑

m,n=1

√
mn αmnxmxn

∣∣∣ : x = (xn) ∈ S(l2)
}
≤ 1

is called the Grunsky norm of f .
For the functions with k-quasiconformal extensions (k < 1), we have

a stronger bound

∣∣∣
∞∑

m,n=1

√
mn αmnxmxn

∣∣∣ ≤ k for any x = (xn) ∈ S(l2), (16)

established first in [28] (see also [25]). Then κ(f) ≤ k(f), where k(f)
denotes the Teichmüller norm of f which is equal to the infimum of
dilatations k(wµ) = ‖µ‖∞ of quasiconformal extensions wµ of f to Ĉ. For
most functions f , we have the strong inequality κ(f) < k(f) (moreover,
the functions satisfying this inequality form a dense subset of Σ; see,
[23, 27]), while the functions with the equal norms play a crucial role in
many applications.

The Grunsky coefficients αmn(fµ) of the functions fµ ∈ Σ(0) generate
for each x = (xn) ∈ l2 with ‖x‖ = 1 the holomorphic maps

hx(Sf ) =

∞∑

m,n=1

√
mn αmn(Sf ) xmxn : T → D (17)

with fixed x = (xn) ∈ l2 with ‖x‖ = 1 so that supx∈S(l2) hx(Sf ) = κ(f).
Here Sf denote the Schwarzian derivatives

Sf (z) =
(f ′′(z)
f ′(z)

)′
− 1

2

(f ′′(z)
f ′(z)

)2
z ∈ D∗,

which form the canonical model of the space T.
The holomorphy of these maps follows from the holomorphy of coef-

ficients αmn with respect to Beltrami coefficients µ ∈ Belt(D)1 and to
Schrazians mentioned above using the estimate

∣∣∣
M∑

m=j

N∑

n=l

αmnxmxn

∣∣∣
2
≤

M∑

m=j

|xm|2
N∑

n=l

|xn|2

which holds for any finite M,N and 1 ≤ j ≤ M, 1 ≤ l ≤ N (cf. [33], p.
61).

The Grunsky inequalities are intrinsically connected with quasicon-
formal reflections across quasicircles, Fredholm eigenvalues of the Jordan
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curves and other quasiinvariants of curves; see, e.g., [23, 25, 30]. These
inequalities have been generalized in several directions, even to bordered
Riemann surfaces X with a finite number of boundary components.

Consider in the space A1(D) of integrable holomorphic quadratic dif-
ferentials on D its subset

A2
1 = {ψ ∈ A1(D) : ψ = ω2, ω holomorphic}

which consists of abelian quadratic differentials having in D only zeros of
even order, and put

〈µ,ψ〉D =

∫∫

D
µ(z)ψ(z)dxdy, µ ∈ L∞(D), ψ ∈ L1(D) (z = x+ iy).

Given a function f ∈ Σ(0), we take its extremal quasiconformal ex-
tension fµ0 to D with Beltrami coefficient µ0 ∈ L∞(D) (hence, k(f) =
‖µ0‖∞) and assign to this function the quantity

αD = sup{|〈µ0, ψ〉|D : ψ ∈ A2
1(D), ‖ψ‖A1(D) = 1}.

Due to [19,25], the Grunsky norm κ(f) of every function f ∈ Σ(0) is
estimated by its Teichmüller norm k = k(f) and the quantity α(D) via

κ(f) ≤ k
k + αD(f)

1 + αD(f)k
,

and κ(f) < k unless αD(f) = ‖µ0‖∞. The last equality occurs if and
only if κ(f) = k(f).

The following important result from [20,24] implies that the Grunsky
norm and its generalization to univalent functions on quasidisks is lower
semicontinuous in the weak topology (of locally uniform convergence) on
Σ(0), and it is locally Lipschitz continuious with respect to Teichmüller
metric.

Lemma 4. (i) If a sequence {fn} ⊂ Σ(0) is convergent locally uniformly
on D∗ to f0, then

κ(f0) ≤ lim inf
n→∞

κ(fn).

(ii) The functional κ(ϕ) regarded as a function of points ϕ = Sf
from the universal Teichmüller space T is locally Lipschitz continuous
and logarithmically plurisubharmonic on T.

The Teichmüller norm has similar properties. Its continuity and
plurisubharmonicity is a consequence, for example, of the following result
strengthening of the fundamental Royden–Gardiner theorem.
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Lemma 5. [20] The differential (infinitesimal) Kobayashi metric KT(ϕ, v)
on the tangent bundle T (T) of the universal Teichmüller space T is log-
arithmically plurisubharmonic in ϕ ∈ T, equals the canonical Finsler
structure FT(ϕ, v) on T (T) generating the Teichmüller metric of T and
has constant holomorphic sectional curvature κK(ϕ, v) = −4 on T (T).

The proof of these lemmas essentially involves the holomorphy of
functions (17) generated by the Grunsky coefficients.

Subharmonicity allows one to apply the maximum principle for esti-
mating the distortion of functionals depending on the Teichmüller and
Grunsky norms.

The generalized Gaussian curvature κλ of an upper semicontin-
uous Finsler metric ds = λ(t)|dt| in a domain Ω ⊂ C is defined by

κλ(t) = −∆ log λ(t)

λ(t)2
, (18)

where ∆ is the generalized Laplacian

∆λ(t) = 4 lim inf
r→0

1

r2

{ 1

2π

∫ 2π

0
λ(t+ reiθ)dθ − λ(t)

}

(provided that −∞ ≤ λ(t) < ∞). Similar to C2 functions, for which ∆
coincides with the usual Laplacian, one obtains that λ is subharmonic on
Ω if and only if ∆λ(t) ≥ 0; hence, at the points t0 of local maximuma of
λ with λ(t0) > −∞, we have ∆λ(t0) ≤ 0.

The sectional holomorphic curvature of a Finsler metric on a com-
plex Banach manifold X is defined in a similar way as the supremum
of the curvatures (18) over appropriate collections of holomorphic maps
from the disk into X for a given tangent direction in the image. The
holomorphic curvature of the Kobayashi metric KX(x, v) of any complete
hyperbolic manifold X satisfies κK ≥ −4 at all points (x, v) of the tan-
gent bundle T (X) of X (while for the Carathéodory metric CX we have
κC(x, v) ≤ −4 (cf., e.g., [1, 10, 16]).

It was established in [12] that the metric KT(ϕ, v) = FT(ϕ, v) (the
basic Finsler structure on T) is Lipschitz continuous on T (in its Bers’
embedding).

Recall also that a conformal metric λ0(t)|dt| is called supporting

for λ(t)|dt| at a point t0 if λκ(t0) = λ0(t0) and λ0(t) < λκ(t) for all
t ∈ U(t0) \ {t0} from a neighborhood U(t0) of t0.

5.2. A general theorem. The following theorem shows that any regu-
lar with respect to complex parameter t perturbation ν(z, t) ∈ Belt(D)1
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with ν(z, t) = O(t2) does not disturb the equality of the Teichmüller and
Grunsky norms; in other words, the holomorphic disks in T tangent to
an extremal disk inherit this equality.

Theorem 3. Let µ0 ∈ Belt(D)1 be extremal in its equivalence class [µ0],
that means among µ for which wµ(z)|S1 = wµ0(z)|S1 , and let

κ(wµ0) = k(wµ0).

Take any ν(z, t) ∈ Belt(D)1 holomorphic in t ∈ D and such that

ν(z, t) = µm(z)t
m + µm+1(z)t

m+1 + . . . , m ≥ 2,

and set

µt(z) = tµ0(z)/‖µ0‖∞ + ν(z, t).

Then for all t ∈ D, we have the equality κ(wµt) = k(wµt).

In particular, for small |t|,

κ(wµt) = k(wµt) = |t|+O(|t|2). (19)

Theorem 1 provides additionally that sufficiently regular maps wµt

are presented by integral (11). Some special results of such type are
obtained in [26].

Proof. Since the integral (11) determines a quasiconformal (homeomor-
phic) map for all t running over some simply connected subdomain Dk ⊂
D for which the inequality (9) is valid, we can use the Grunsky coefficients
of the restrictions wµ(·,t)|D∗ and construct for these maps the correspond-
ing holomorphic functions (17). This yields a collection of holomorphic
maps

hx(t) =

∞∑

m,n=1

αmn(Swϕ(·;t)) xmxn

from the indicated domain Dk into the unit disk D parametrized by points
x = (xn) ∈ S(l2).

Using these maps, we pull back the hyperbolic metric λD(t)|dt| =
|dt|/(1− |t|2) of the disk D onto domain Dk , getting on this domain the
conformal metrics λhx(t)|dt| with

λhx(t) = |h′x(t)|/(1 − |hx(t)|2)
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of Gaussian curvature −4 at noncrical points. We take the upper envelope
of these metrics

λ̃κ(t) = sup{λhx(t) : x ∈ S(l2)}

and its upper semicontinuous regularization λκ(t) = lim supt′→t λ̃κ(t
′),

which provides a logarithmically subharmonic metric on the indicated
domain Dk.

Lemma 6. The metric λκ has at any its noncritical point t0, a
supporting subharmonic metric λ0 of Gaussian curvature at most −4,
hence κλκ ≤ −4.

Proof. Since the space B(D∗) is dual to A1(D
∗), the sequences λhx

are convergent, by the Alaoglu–Bourbaki theorem, in weak* topology
to holomorphic functions T → D. This yields that the metric λκ(t) has a
supporting metric λ0(t) in a neighborhood of any noncritical point t0 ∈ G,
which means that λκ(t0) = λ0(t0) and λ0(t) < λκ(t) for t 6= t0 close to
t0. Hence, for sufficiently small r > 0,

1

2π

2π∫

0

log λκ(t0 + reiθ)dθ − λκ(t0) ≥
1

2π

2π∫

0

log λ0(t0 + reiθ)dθ − λ0(t0),

which implies ∆ log λκ(t0) ≥ ∆ log λ0(t0), and since λκ(t0) = λ0(t0),

−∆ log λκ(t0)

λκ(t0)2
≤ −∆ log λ0(t0)

λ0(t0)2
≤ −4,

completing the proof of the lemma.
The inequality κλ ≤ −4 is equivalent to

∆ log λ ≥ 4λ2,

or ∆u ≥ 4e2u letting u = log λ (here ∆ again means the generalized
Laplacian).

Note that the constructed metric λκ is a restriction to the domain
Dk (naturally embedded into T) of a plurisubharmonic Finsler metric on
this space generated by the Grunsky coefficients (see [24]).This structure
is dominated by the infinitesimal Kobayashi-Teichmüller metric λK(ϕ, v)
of the space T.

Our goal now is to establish that on the domain Dk these metrics
must coincide, i.e.,

λκ(t) = λK(Swϕ(·;t), v), t ∈ Dk. (20)
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This is obtained by applying Minda’s maximum principle given by

Lemma 7. [32] If a function u : Ω → [−∞,+∞) is upper semicon-
tinuous in a domain Ω ⊂ C and its generalized Laplacian satisfies the
inequality ∆u(z) ≥ Ku(z) with some positive constant K at any point
z ∈ Ω, where u(z) > −∞, and if

lim sup
z→ζ

u(z) ≤ 0 for all ζ ∈ ∂Ω,

then either u(z) < 0 for all z ∈ Ω or else u(z) = 0 for all z ∈ Ω.

For a sufficiently small neighborhood U0 of the origin t = 0 in Dr0 put

M = {supλK(t) : t ∈ U0};

then in this neighborhood, λK(t) + λκ(t) ≤ 2M . Consider the function

u = log
λκ
λK

.

Then (cf. [10, 32]) for t ∈ U0,

∆u(t) = ∆ log λκ(t)−∆ log λK(t) = 4(λ2κ − λ2K) ≥ 8M(λκ − λK).

The elementary estimate

M log(t/s) ≥ t− s for 0 < s ≤ t < M

(with equality only for t = s) implies that

M log
λg0(t)

λd(t)
≥ λg0(t)− λd(t),

and hence,
∆u(t) ≥ 4M2u(t).

Now note that the infinitesimal forms of both Grunsky and Teichmüller
norms are equal on the Teichmüller disk D(ψ) = {t|ψ|/ψ} and that this
disk is tangent at the origin to the image of domain Dk in the space T,
because

‖wµt − wtµ0/‖µ0‖‖∞ = O(|t|2),

and hence the corresponding Schwarzians satisfy

‖Swµt − Swtµ0/‖µ0‖‖B = O(|t|2) → 0 as t→ 0.
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We also need the estimate

λκ(t)|D(ψ) − λκ(t)|Dk
= O(t2), t→ 0 (21)

(the similar equality of the metric λK follows from its continuity on the
space T). The estimate (21) follows from the representation

wµt(z) = z − 1

π

∫∫

DL

µt(ζ)dξdη

ζ − z
+ µt Πµt + . . .

= z − t

π

∫∫

DL

µ0(ζ)/‖µ0‖iydξdη
ζ − z

+O(t2)

and holomorphy of functions (17).
In view of this equality, Lemma 7 implies that both metrics λκ and

λK must be equal on the whole domain Dk, which proves (20).

Now the desired equality (19) for the integrated forms of λκ and λK
is obtained by applying the following reconstruction lemma for Grunsky
norm and the similar property of Teichmüller metric (which involves the
indicated local Lipschitz continuity).

Lemma 8. [25] On any extremal Teichmüller disk D(µ0) = {tµ0/‖µ0‖∞} ⊂
T, we have the equality

tanh−1[κ(f rµ0/‖µ0‖∞)] =

r∫

0

λκ(t)dt.

Applying this lemma, one completes the proof of Theorem 3.

5.3. Examples and related results.

1. The simplest example is given by

µt(z) = t
|z|2
z2

+ t2
|z|m
zm

, |z| < 1, m 6= 2

(extended by zero to D∗). Theorems A and 1 insure quasiconformality of
integral (6) with this µt for appropriate |t| > 0.

2. The following interesting example arises in connection with the prob-
lem of starlikness of Teichmüller spaces and represents explicitly the func-
tions which violate this property in the case of the universal Teichmüller
space.



192 Strengthened Belinskii theorem and its applications

Pick unbounded convex rectilinear polygon Pn with finite vertices
A1, . . . , An−1 and An = ∞. Denote the exterior angles at Aj by παj
so that π < αj < 2π, j = 1, . . . , n − 1. The conformal map fn of the
lower half-plane H∗ = {z : Im z < 0} onto the complementary polygon
P ∗
n = Ĉ \ Pn is represented by the Schwarz–Christoffel integral

fn(z) = d1

z∫

0

(ξ − a1)
α1−1(ξ − a2)

α2−1...(ξ − an−1)
αn−1−1dξ + d0, (22)

with aj = f−1
n (Aj) ∈ R and complex constants d0, d1; here f−1

n (∞) = ∞.
Its Schwarzian derivative is given by

Sfn(z) = b′
fn(z)−

1

2
b2fn(z) =

n−1∑

1

Cj
(z − aj)2

−
n−1∑

j,l=1

Cjl
(z − aj)(z − al)

,

where bf = f ′′/f ′ and

Cj = −(αj − 1)− (αj − 1)2/2 < 0, Cjl = (αj − 1)(αl − 1) > 0.

It defines a point of the universal Teichmüller space T modelled as a
bounded domain in the space B(H∗) of hyperbolically bounded holomor-
phic functions on H∗ with norm

‖ϕ‖B(H∗) = sup
H∗

|z − z|2|ϕ(z)|.

By the Ahlfors–Weill theorem [5], every ϕ ∈ B(H∗) with ‖ϕ‖B(H∗) <
1/2 is the Schwarzian derivative of a univalent function f in H∗, and this
function has quasiconformal extension onto the upper half-plane H =
{z : Im z > 0} with Beltrami coefficient of the form

µϕ(z) = −2y2ϕ(z), ϕ = Sf (z = x+ iy ∈ H∗) (23)

called harmonic.
Denote by r0 the positive root of the equation

1

2

[n−1∑

1

(αj − 1)2 +

n−1∑

j,l=1

(αj − 1)(αl − 1)
]
r2 −

n−1∑

1

(αj − 1) r − 2 = 0,

and put Sfn,t = tb′fn − b2fn/2, t > 0. Then for appropriate αj , we have

Theorem B. [24] For any convex polygon Pn, the Schwarzians rSfn,r0
define for any 0 < r < r0 a univalent function wr : H∗ → C whose
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harmonic Beltrami coefficient νr(z) = −(r/2)y2Sfn,r0(z) in H is extremal
in its equivalence class, and

k(wr) = κ(wr) =
r

2
‖Sfn,r0‖B(H∗). (24)

This theorem yields that any wr with r < r0 does not admit ex-

tremal quasiconformal extensions of Teichmüller type (which is
defined by a holomorphic quadratic differential on D).

In view of extremality of harmonic coefficients µSwr
the Schwarzians

Swr for some r between r0 and 1 must lie outside of the space T; so this
space is not a starlike domain in B(H∗) (another model of this space,
which was applied in the proof of Theorem 1, also does not be starlike).

Theorem 3 provides that the equality of the Grunsky and Teichmüller
norms is preserved under appropriate perturbations of the Beltrami co-
efficient (23). These perturbations lead to conformal maps w̃r of the
disk (half-plane) onto the (generically nonregular) curvelinear polygons
P̃n whose sides are quasiconformal arcs. In contrast to Theorem B, we
do not have an explicit expression of k(w̃r) = κ(w̃r). For small r, this
common value is given by the right-hand side of (24) up to a quantity
O(r2).

The conformal map Wn of the unit disk onto the polygon Pn has the
same form (22) with the preimages aj ∈ S1. Composing, if needed Wn

with translations and the similarity maps z 7→ rz, one can assume that
this polygon contains inside the origin z = 0 and Wn(ζ) = ζ+α2ζ

2+· · · ∈
S. Since Pn is convex, each stretching function

Wn,r(z) =
1

r
Wn(rz) = ζ + α2rz

2 + . . . , 0 < r < 1,

also maps the unit disk onto a convex domain, and by [25], k(Wn,r) =
κ(Wn,r).

Note also that being analytic on the boundary every map Wn,r admits
a extremal quasiconformal extension of Teichmüller type. For small r > 0,
the corresponding integral (6) represents a a quasiconformal map with
dilatation t+O(t2) and equal Grunsky and Teichmüller norms.

5.4. Connection with the Ahfors question. Theorem 3 also relates
quantitatively to Ahlfors’ question stated, for example, in [4]):

How to characterize the conformal maps of the disk (or half-plane) onto
the domains with quasiconformal boundaries ?
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Ahlfors conjectured that the characterization should be in analytic
properties of the logarithmic derivative log f ′ = f ′′/f ′, and indeed, many
results on quasiconformal extensions of holomorphic maps have been
established using this quantity and other invariants (see, e.g., the sur-
vey [22]).

The equality (23) implies that in the case of indicated convex polygons
Pn the exact quantitative answer is presented in terms of the Schwarzians
Swr .

The indicated question naturally relates to another still not solved
problem in geometric complex analysis:

To what extent does the Riemann mapping function f of a Jordan domain
D ⊂ Ĉ determine the geometric and conformal invariants (characteris-
tics) of complementary domain D∗ = Ĉ \D ?

There are two quasiinvariant curvelinear functionals naturally associ-
ated with the quasicircles: the reflection coefficient and the first nontrivial
Fredholm eigenvalue.

Recall that the quasiconformal relections (or quasireflections) are
the orientation reversing quasiconformal homeomorphisms of the sphere
Ĉ which preserve point-wise some (oriented) quasicircle L ⊂ Ĉ and inter-
change its interior and exterior domains. In other words, quasireflections
are the topological involutions of the sphere Ĉ whose fixed Jordan curve
is a quasicircle. Its reflection coefficient is determined by

qL = inf k(f) = inf ‖∂zf/∂zf‖∞,

taking the infimum over all quasireflections across L. On the properties
of quasireflections and obtained results see, e.g., [3, 23, 30].

In particular, the reflection coefficient qL of a curve L = f(|z| = 1)
determined by a univalent function in the unit disk relates to the Grunsky
and Teichmüller norms of this function via

1 + qL
1− qL

=

(
1 + κ(f)

1− κ(f)

)2

. (25)

The Fredholm eigenvalues ρn of an oriented smooth closed Jordan
curve L ⊂ Ĉ are the eigenvalues of its double-layer potential.

The least positive eigenvalue ρL = ρ1 is naturally connected with con-
formal and quasiconformal maps and naturally arises in various problems.
It can be defined for any oriented closed Jordan curve L by

1

ρL
= sup

|DG(u)−DG∗(u)|
DG(u) +DG∗(u)

,
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where G and G∗ are, respectively, the interior and exterior of L; D de-
notes the Dirichlet integral, and the supremum is taken over all functions
u continuous on Ĉ and harmonic on G ∪G∗. In particular, ρL = ∞ only
for the circle.

Using (25) and the Kühnau-Schiffer theorem on reciprocity of ρL to
the Grunsky norm of the Riemann mapping function of the outer domain
of L [29, 36], one explicitly represents the values q∂Pn and ρ∂Pn in terms
of Schwarzians Swr .

Another result of such type obtained in [21] states that for any closed
oriented unbounded curve L with the convex interior which is C1+δ

smooth at all finite points and has at infinity the asymptotes approaching
the interior angle πα < 0, we have the equalities

qL = 1/ρL = 1− |α|.

Here only z = ∞ is a substantial point for the boundary values of con-
formal map D∗ → G∗.

All the above curves are not asymptotically conformal so not enough
regular to insure univalence of the corresponding integrals (11).

Note also that since the Schwarzians Swµ of functions wµ ∈ Σ(0)
admitting the Teichmüller extremal extensions are dense in the space
T, any wµ ∈ Σ(0) with small dilatation ‖µ‖∞ can be approximated
locally uniformly on C by maps represented by integrals of type (6) with
compactly supported µ.

6. Connection with the Schwarzian derivatives and invari-

ant differential operators of higher order

We provide here other extensions of Theorems 1 and 3 concerning the
quasiconformal extension of conformal maps of quasidisks.

6.1. General smooth quasicircles. Let L ⊂ C be a bounded quasicir-
cle from the class C1,σ1 separating the points 0 and ∞. Denote its interior
and exterior domains by DL and D∗

L, (so that D∗
L ∋ ∞), and consider

the functions µ ∈ Cσ(DL) extended by zero to D∗
L (here both σ, σ1 are

positive). Without loss of generality, one can assume that |µ(z)| ≤ 1.
The corresponding quasiconformal maps wµ of the extended complex

plane Ĉ are conformal in the domain D∗
L and their Schwarzian derivatives

belong to the complex Banach space B(D∗
L) with norm

‖ϕ‖B(D∗
L) = sup

B(D∗
L)
λD∗

L
(z)−2|ϕ(z)|,
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where λD∗
L
(z) is the hyperbolic metric of domain D∗

L of Gaussian curva-
ture −4. We normalize these maps again by

wµ(z) − z = O(1/z) as z → ∞; wµ(0) = 0.

Theorem 4. Let µ ∈ L∞(DL) satisfy the indicated smoothness assump-
tions and ‖µ‖∞ = ε. Then, for sufficiently small ε > 0:

(a) The Schwarzian derivative of the map

wµ(z) = z − t

π

∫∫

DL

µ(ζ)
( 1

ζ − z
− 1

ζ

)
dξdη (26)

is given by

Swµ(z) =
1

π

∫∫

D

µ(ζ)dξdη

(ζ − z)4
+O(ε2), (27)

where the remainder is estimated in B(D∗
L)-norm.

(b) The function wµ(z)|D∗
L admits quasiconformal extension to DL

with Beltrami coefficient µ̃ depending holomorphically on µ and Swµ.

Proof. Similar to 1.3, the properties of operators T and Π on C1,σ func-
tions imply that for sufficiently small ε, the Jacobian

Jwµ(z) = |∂zwµ(z)|2 − |∂zwµ(z)|2 = 1−O(ε) > 0

for all z ∈ C; hence, the map wµ is homeomorphic on Ĉ being conformal
on D∗

L. Its Schwarzian derivative is represented for any fixed z ∈ D∗
L by

(27).
Since the quasicircle L is bounded, it is located in a disk {|z| <

R}, R < ∞. Applying (12) and the properties of the hyperbolic metric,
one obtains for z ∈ D∗

L the estimate

∫∫

DL

dξdη

|ζ − z|4 <
∫∫

|ζ|<R

dξdη

|ζ − z|4 =
R2

(R2 − |z|2)2 ≤ λD∗
L
(z)2,

which yields that the integral in (26) is a function from the space B(D∗
L).

By Lemma 1, the function Swµ is holomorphic in µ also in the norm of
B(D∗

L).
1

1This holomorphy also follows from the lambda-lemma for holomorphic motions
applied to w(z, t) = wtµ̃ with µ̃ = µ/‖µ‖∞ and t ∈ D.
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The existence of quasiconformal extensions of univalent functions
wµ|D∗

L, whose Beltrami coefficients depend on µ and Swµ holomorphi-
cally, is a consequence of the Bers extension theorem [9]. We need its
special case presented by the following lemma.

Lemma 9. Let L be a quasicircle on Ĉ with the interior DL and exterior
D∗
L. Then, for some ε > 0, there exists an anti-holomorphic homeomor-

phism τ (with τ(0) = 0) of the ball Vε = {ϕ ∈ B(D∗
L) : ‖ϕ‖} < ε

into B(DL) such that every ϕ in Vε is the Schwarzian derivative of some
univalent function f which is the restriction to D∗

L of a quasiconformal

automorphism f̂ of Riemann sphere Ĉ. This f̂ can be chosen in such a
way that its Beltrami coefficient is harmonic on DL, i.e., of the form

µ
f̂
(z) = λ−2

D (z)ψ(z), ψ = τ(ϕ).

Applying this lemma completes the proof of the theorem.

6.2. Remarks.
1. Due to [9], the variation formula (27) for the Schwarzian derivatives
Swµ ∈ B(D∗

L) is valid for arbitrary µ ∈ L∞(C) vanishing on D∗
L and suffi-

ciently small ‖µ‖∞. The assertion of Theorem 4 that also the Schwarzian
of the integral (26) belongs to B(D∗

L) and is represented by (27) essen-
tially requires the indicated smoothness of µ.
2. Using Lemma 9, one can derive from Theorem 3 that the Teichmüller
and Grunsky norms remain equal also after infinitesimally trivial de-
formations: if ϕ ∈ A2

1 and the Schwarzians S = Swt|ϕ|/ϕ + Swν with
infinitesimally trivial ν, then for all such w, κ(w) = k(w).

6.3. In the case, when L is the unit circle, we have a stronger result.

Theorem 5. If µ ∈ C1,σ(D) and

∣∣∣
∫∫

D

µ(ζ)dξdη

(ζ − z)4

∣∣∣ ≤ a(|z|2 − 1)2, a < 2,

then the restriction of the integral (26) to D∗ admits quasiconformal ex-
tension to the unit disk with harmonic Beltrami coefficient

µ̂(z) = − 1

2π
(1− |z|2)2(z/z)

∫∫

D

µ(ζ)(ζ − 1/z)−4dξdη.

The proof of this theorem is similar to the part (b) of Theorem 1, apply-
ing the Ahlfors–Weill theorem on quasiconformal extension of univalent
functions w(z) in D∗ with ‖Sw‖B < 2.
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6.4. It would be interesting to establish the extent to which the above the-
orems can be generalized to the invariant differential operators of higher
order acting on univalent functions.

Using a result of [18], one obtains the following theorem involving the
operators of a different type.

Consider the complex Banach space B̃n(D) of holomorphic functions
in the unit disk with the norm

‖ϕ‖
B̃n(D)

= sup
D

(1− |z|)n−1|ϕ(z)|,

and let B̃n(D)c denotes its ball of radius c > 0 centered at the origin. Let
there be given on the disk D a differential operator

Rn(f) =
f (n)

f ′
+ Fn

(f ′′
f ′

)
, n = 2, 3,

where Fn is holomorphic in some domain in C containing the origin and
for univalent f(z) in D the values Fn(f ′′/f ′) ∈ B̃n(D).

Accordingly, instead of (26), we now consider the integral

wµ(z) = z − t

π

∫∫

D∗

µ(ζ)
( 1

ζ − z
− 1

ζ

)
dξdη,

for which we have:

Theorem 6. There exists a number c = c(Pn) > 0 such that if the
function w = wµ(z) satisfies to one of the conditions:

max
D∗

(|z|2 − 1)|w′′(z)/w′(z)| < c, if n = 2,

‖Sw‖B(D) < c, if n = 3;

then this function is univalent on the disk D and admits quasiconformal
extension to Ĉ with the Beltrami coefficient

µ̃(z) = (|z|2 − 1)2τn(φn(µ)), z ∈ D∗,

where τn(ϕ) ∈ B(D∗), and n = 2 for the first condition, n = 3 for the
second one, and τn is the cross-section of the holomorphic map

φn(µ) = Rn(w
µ) : Belt(D∗)1 → B̃n(D)

on the ball B̃n(D)c.

The proof of this theorem follows the above lines with applying The-
orem 3 from [18].
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