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Linearly ordered coarse spaces

Igor Protasov

Abstract. A coarse space X, endowed with a linear order compatible
with the coarse structure of X, is called linearly ordered. We prove
that every linearly ordered coarse space X is locally convex and the
asymptotic dimension of X is either 0 or 1. If X is metrizable then the
family of all right bounded subsets of X has a selector.
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1. Introduction and preliminaries

Let K be a class of coarse spaces. Given X ∈ K, how can one detect
whether there exists a linear order on X, compatible with the coarse
structure of X? We used selectors to answer this question if K is one of
the following classes: discrete coarse spaces [6], [7]; finitary coarse spaces
of groups [8]; finitary coarse spaces of graphs [9].

In this paper, we continue the investigations of the structure of a
linearly ordered coarse space initiated in [7].

In Section 2, we prove that every linearly ordered coarse space is
locally convex, but the coarse structure of X needs not to be interval.
Given a linear order ≤ on a set X, we characterize the minimal and
maximal coarse structures on X, compatible with the interval bornology
of (X,≤).

In Section 3, we prove that the asymptotic dimension of a linearly
ordered coarse space is either 0 or 1.

In Section 4, we construct a selector of the family of right bounded
subsets of a metrizable lineary ordered coarse space.

We conclude the paper with Section 5 of comments and open ques-
tions.
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We recall some basic definitions. Given a set X, a family E of subsets
of X ×X is called a coarse structure on X if

• each E ∈ E contains the diagonal △X := {(x, x) : x ∈ X} of X;

• if E, E′ ∈ E then E ◦E′ ∈ E and E−1 ∈ E , where E ◦E′ = {(x, y) :
∃z ((x, z) ∈ E, (z, y) ∈ E′)}, E−1 = {(y, x) : (x, y) ∈ E};

• if E ∈ E and △X ⊆ E′ ⊆ E then E′ ∈ E .

Elements E ∈ E of the coarse structure are called entourages on X.
For x ∈ X and E ∈ E , the set E[x] := {y ∈ X : (x, y) ∈ E} is called

the ball of radius E centered at x. Since E =
⋃
x∈X({x} × E[x]), the

entourage E is uniquely determined by the family of balls {E[x] : x ∈ X}.
A subfamily E ′ ⊆ E is called a base of the coarse structure E if each set
E ∈ E is contained in some E′ ∈ E ′.

The pair (X, E) is called a coarse space [13] or a ballean [10, 11].
A coarse spaces (X, E) is called connected if, for any x, y ∈ X, there

exists E ∈ E such that y ∈ E[x]. A subset Y ⊆ X is called bounded if
Y ⊆ E[x] for some E ∈ E , and x ∈ X. If (X, E) is connected then the
family BX of all bounded subsets of X is a bornology on X. We recall
that a family B of subsets of a set X is a bornology if B contains the
family [X]<ω of all finite subsets of X and B is closed under finite unions
and taking subsets. A bornology B on a set X is called unbounded if
X /∈ B. A subfamily B′ of B is called a base for B if, for each B ∈ B,
there exists B′ ∈ B′ such that B ⊆ B′.

Each subset Y ⊆ X defines a subspace (Y, E|Y ) of (X, E), where E|Y =
{E ∩ (Y × Y ) : E ∈ E}. A subspace (Y, E|Y ) is called large if there exists
E ∈ E such that X = E[Y ], where E[Y ] =

⋃
y∈Y E[y].

Let (X, E), (X ′, E ′) be coarse spaces. A mapping f : X → X ′ is
called macro-uniform if for every E ∈ E there exists E′ ∈ E ′ such that
f(E(x)) ⊆ E′(f(x)) for each x ∈ X. If f is a bijection such that f and
f−1 are macro-uniform, then f is called an asymorphism. If (X, E) and
(X ′, E ′) contain large asymorphic subspaces, then they are called coarsely
equivalent.

For a coarse space (X, E), we denote by exp X the family of all non-
empty subsets of X and by exp E the coarse structure on exp X with the
base {exp E : E ∈ E}, where

(A,B) ∈ exp E ⇔ A ⊆ E[B], B ⊆ E[A],

and say that (exp X, exp E) is the hyperballean of (X, E).
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Let F be a non-empty subspace of exp X. We say that a macro-
uniform mapping f : F −→ X is an F-selector of (X, E) if f(A) ∈ A for
each A ∈ F . In the case F ∈ [X]2, F = BX and F = exp X, an F-
selector is called a 2-selector, a bornologous selector and a global selector
respectively.

We recall that a connected coarse space (X, E) is discrete if, for each
E ∈ E , there exists a bounded subset B of (X, E) such that E[x] = {x}
for each x ∈ X \ B. Every bornology B on a set X defines the discrete
coarse space XB = (X, EB), where EB is a coarse structure with the base
{EB : B ∈ B}, EB [x] = B if x ∈ B and EB [x] = {x} if x ∈ X \ B.
On the other hand, every discrete coarse space (X, E) coincides with XB,
where B is the bornology of bounded subsets of (X, E).

2. Local convexity and interval bases

Let (X, E) be a coarse space. Following [7], we say that a linear order
≤ or X is compatible with the coarse structure E if one of the following
equivalent conditions holds

• for every E ∈ E , there exists F ∈ E such that if x < y and y ∈
X \ F [x] then x′ < y for each x′ ∈ E[x] ;

• for every E ∈ E , there exists H ∈ E such that if y < x and y ∈
X \H[x] then y < x′ for each x′ ∈ E[x] ;

• for every E ∈ E , there exists K ∈ E such that if x < y and y ∈
X \K[x] then x′ < y′ for all x′ ∈ E[x], y′ ∈ E[y].

A coarse space (X, E), endowed with a linear order ≤ compatible
with E is called linearly ordered. In this case, by [7, Proposition 2], the
mapping f : [X]2 −→ X, defined by f(A) = min A is a 2-selector of
(X, E) and if (X, E) is connected then each interval [a, b], where [a, b] =
{x ∈ X : a ≤ x ≤ b} is bounded. In what follows, all linearly ordered
coarse spaces are suppose to be connected.

We recall that a subset Y of a linearly ordered set (X,≤) is called
convex if [a, b] ⊆ Y for all a, b ∈ Y , and observe that Y is convex if and
only if there exists x ∈ Y such that [x, y] ⊆ Y for each y ∈ X.

Theorem 1. For a coarse space (X, E) and a linear order ≤ on X,
the following statements are equivalent

(i) (X, E ,≤) is linearly ordered;
(ii) E has a base E ′ such that E′[x] is convex for all x ∈ X, E′ ∈ E ′.
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Proof. (i) ⇒ (ii) . For each E ∈ E , we denote E′ =
⋃

{[x, y] : x, y ∈
E}. Since E′ is convex, it suffices to show that E′ ∈ E . Since ≤ is
compatible with E , there exists F ∈ E such that E ⊆ F and if x < z
(z < x) and z ∈ X \ F [x] then y < z (z < y) for each y ∈ E[x]. It
follows that E′[x] ⊆ F [x] and E′ ∈ E .

(ii) ⇒ (i). Given E ∈ E , we choose E′ ∈ E such that E ∈ E′ and
E′[x] is convex for each x ∈ X. If z ∈ X \ E′[x] then either z < x′ for
each x′ ∈ E[x] or x′ < z for each x′ ∈ E[x]. Hence, ≤ is compatible with
E .

We say that a base E′ of E , satisfying (ii) is locally convex.

Let B be a bornology on a set X. Following [1], we say that a coarse
structure E on X is compatible with B if B is the bornology of bounded
subsets of the coarse space (X, E).

For a linear order ≤ on a set X, B≤ denotes the interval bornology
on X with the base {[a, b] : a, b ∈ X}. In the following two examples,
we describe the smallest locally convex coarse structure ↓ E≤ and the
strongest locally convex coarse structure ↑ E≤ compatible with B≤.

Example 1. Let ≤ be a linear order on a set X. Then ↓ B≤ is the
discrete coarse structure on X defined by the bornology B≤.

Example 2. Let ≤ be a linear order on a set X, C≤ denotes the
family of all bounded convex subsets of (X,≤). We consider the family
Φ of all mappings ϕ : X → C such that, for all a, b ∈ X, we have

⋃
{ϕ(x) : x ∈ [a, b]} ∈ B≤, {x ∈ X : ϕ(x)

⋂
[a, b] 6= ∅} ∈ B≤.

Then the family {Eϕ : ϕ ∈ Φ}, where Eϕ = {(x, y) : y ∈ ϕ(x)}, is a
base for ↑ E≤.

Following [7], we say that a coarse structure E on (X,≤) is interval if
there is a base E ′ of E such that, for all E′, x ∈ X, E′[x] is an interval in
(X,≤). Clearly, E is locally convex and, by Theorem 1, ≤ is compatible
with E . On the other hand, let (X, E ,≤) be a linearly ordered coarse
space. Is E an interval coarse structure? We give the negative answer to
this question.

The following example also shows that a subspace of a coarse space
with interval base may not have an interval base.

Example 3. We denote by X the subset
⋃
{(2n−1, 2n+1) : n > 1}

of R, put E0 = {(x, y) ∈ X ×X : |x− y| < 2}.

En = {(x, y) ∈ X ×X : x, y ∈ (3, 2n+1)}, n > 1,
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endow X with a coarse structure E with the base {En ∪ E0 : n > 1}.
Then E is locally convex. To see that E does not have an interval base,
we observe that if H ⊆ X ×X, H[x] is an interval for each x ∈ X and
E0 ⊆ H then 2n+1 ∈ H[2n] for each n > 1. Hence, H /∈ E .

3. Asymptotic dimension

Let (X, E) be a coarse space, E ∈ E . A family Im of subsets of X
is called E-bounded (E-disjoint) if, for each A ∈ Im, there exists x ∈ X
such that A ⊆ E[x] (E[A] ∩B = ∅ for all distinct A,B ∈ Im).

By the definition [13, Chapter 10], asdim(X, E) ≤ n if, for each E ∈ E ,
there exist F ∈ E and F -bounded covering M of X which can be parti-
tioned M = M0∪· · ·∪Mn so that each family Mi is E-disjoint. If there is
the minimal natural number n with this property then asdim(X, E) = n,
otherwise asdim(X, E) = ∞.

Theorem 2. Let (X, E ,≤) be a linearly ordered coarse space. Then
asdim(X, E) ∈ {0, 1}.

Proof. Let E ∈ E , E = E−1 and E[x] is convex for each x ∈ X, see The-
orem 1. We fix x ∈ X, observe that En[x] is convex for each n ∈ N and
put Eω[x] =

⋃
{En[x] : x ∈ N}. We show that there exist E2-bounded

covering M(x) of Eω[x] and a partition M(x) = M0(x)
⋃

M1(x) such
that M0(x), M1(x) are E-disjoint.

For each n ∈ N, we denote Rn = (En+1[x] \ En[x])
⋂

{y ∈ X :
x ≤ y}, Ln = (En+1[x] \ En[x])

⋂
{y ∈ X : y < x} and observe that

E[Ri]
⋂
Lj = ∅ for all i, j ∈ N and E[Ri]

⋂
Rj = ∅, E[Li]

⋂
Lj = ∅ for

all i, j ∈ N such that |i− j| > 1. Clearly, Rn and Ln are convex for
each n ∈ N. If Rn = ∅ ( Ln = ∅ ) then Ri = ∅ ( Li = ∅ ) for every
i > n.

We put
M0(x) = {E[x], R2n, L2n : n ∈ N},

M1(x) = {R2n−1, L2n−1 : n ∈ N}

and note that M0(x), M1(x) are E-disjoint.
We show that each Rn is E2-bounded, the case Ln is analogous. For

n = 1, we have R1 ⊆ E2[x]. Let n > 1 and Rn 6= ∅. We take y ∈ Rn−1

such that E[y] ∩ Rn 6= ∅ and show that Rn ⊆ E2[y]. Given z ∈ Rn,
we choose t ∈ Rn−1 such that z ∈ E[t]. Since Rn−1 is convex and
E[y] ∩Rn 6= ∅, we have t ∈ E[y] so z ∈ E2[y].

To conclude the proof, we choose a subset Z of X such that
⋃
{Eω[z] :

z ∈ Z} = X and Eω[z]
⋂
Eω[z′] = ∅ for all distinct z, z′ ∈ Z. For each

z ∈ Z and Eω[z], we use above construction to chooseM0(z) andM1(z).
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We put M0 =
⋃
{M0(z) : z ∈ Z}, M1 =

⋃
{M1(z) : z ∈ Z}. Then

M0, M1 are E2-bounded, M0, M1 are E-disjoint.

For every discrete coarse structure ↓ E≤ on a linearly ordered set
(X,≤), we have asdim(X, E≤, ≤) = 0.

Let ≤ be the natural well ordering on ω. Then ↑ E≤ coincides
with the universal locally finite coarse structure and, by [5, Theorem
1], asdim(ω, ↑ E≤, ≤) = 1.

4. Selectors

Let (X, E , ≤) be linearly ordered coarse space, A ⊆ X, E ∈ E . We
say that a ∈ A is a right (left) E-end of A if x < a (a < x) for each
x ∈ A\E[x]. If a is the maximal (minimal) element of A then a is a right
(left) E-end for each E ∈ E .

Example 4. Let (X, E , ≤) be linearly ordered coarse space,
metrizable by a metric d on X, for metrizability of coarse spaces see
[11, Chapter 2]. We take an arbitrary ε > 0 and show that every
right bounded subset A of X has a right ε-end. To this end, we take
a0 ∈ A. If a0 is not a right ε-end then we choose a1 ∈ A such that
a0 < a1, d(a0, a1) > ε. Repeating this procedure, after finite number of
steps, we get a right ε-end an of A.

Example 5. Let (X, E , ≤) be a discrete coarse space, defined by
the interval bornology B≤ on (X,≤). Let A ⊆ X, B ∈ B≤ and let there
exists a ∈ A such that b < a for each b ∈ B. Then A has a right EB-end
if and only if A has the maximal element.

Theorem 3. Let (X, E , ≤) be a linearly ordered coarse space,
E ∈ E, Im be a family of subsets of X. If every subsets A ∈ Im has a
right E-end then Im has a selector.

Proof. For each A ∈ Im, we take some right E-end f(A) of A and show
that the mapping f : Im → X is macro-uniform.

We take an arbitrary H ∈ E , H = H−1 such that H[x] is convex
for each x ∈ X. Let Y,Z ∈ Im, (Y,Z) ∈ expH and f(Y ) ≤ f(Z).
We take y ∈ Y such that y ∈ H[f(Z)]. If y < f(Y ) then, by the
convexity of H[f(Z)] and f(Y ) ≤ f(Z), we have f(Y ) ∈ H[f(Z)]. If
y > f(Y ) then y ∈ E[f(Y )]. Hence, H[f(Z)]

⋂
E[f(Y )] 6= ∅ and

f(Z) ∈ HE[f(Y )].

Applying Theorem 3 to Example 4, we conclude that the family of all
right bounded subsets of a lineary ordered metric space has a selector.
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5. Comments and open questions

1. Coarse spaces can be considered as asymptotic counterparts of
uniform topological spaces, see [11, Chapter 1]. Selectors and orderings
of topological spaces, studied in a plenty of papers, take an important
place in Topology, see surveys [2], [3], [4], [12].

2. Example 3 answers negatively Question 1 from [7], Question 4 was
answered negatively in [8], Questions 2, 3, 5 from [7] remain open.

3. In light of Theorem 3, we ask the following question.

Question 1. Does the family of all right bounded subsets of a
linearly ordered coarse space have a selector?

4. It is well-knows that every linearly ordered topological space is
normal. For normality of coarse spaces, see [11, Chapter 4].

Question 2. Is every linearly ordered coarse space normal?

5. We conclude with the following question.

Question 3. Is every linearly ordered coarse space asymorphic to
a subspace of a linearly ordered coarse space with an interval base?
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