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Linearly ordered coarse spaces

Icor ProTASOV

Abstract. A coarse space X, endowed with a linear order compatible
with the coarse structure of X, is called linearly ordered. We prove
that every linearly ordered coarse space X is locally convex and the
asymptotic dimension of X is either 0 or 1. If X is metrizable then the
family of all right bounded subsets of X has a selector.
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1. Introduction and preliminaries

Let I be a class of coarse spaces. Given X € I, how can one detect
whether there exists a linear order on X, compatible with the coarse
structure of X? We used selectors to answer this question if K is one of
the following classes: discrete coarse spaces [6], [7]; finitary coarse spaces
of groups [8]; finitary coarse spaces of graphs [9].

In this paper, we continue the investigations of the structure of a
linearly ordered coarse space initiated in [7].

In Section 2, we prove that every linearly ordered coarse space is
locally convex, but the coarse structure of X needs not to be interval.
Given a linear order < on a set X, we characterize the minimal and
maximal coarse structures on X, compatible with the interval bornology
of (X, <).

In Section 3, we prove that the asymptotic dimension of a linearly
ordered coarse space is either 0 or 1.

In Section 4, we construct a selector of the family of right bounded
subsets of a metrizable lineary ordered coarse space.

We conclude the paper with Section 5 of comments and open ques-
tions.
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We recall some basic definitions. Given a set X, a family £ of subsets
of X x X is called a coarse structure on X if

e cach F € &£ contains the diagonal Ax := {(z,z) : x € X} of X;

e if B, ' € £then EoE' € £ and E~! € £, where Eo E' = {(z,y) :
3z ((z,2) € B, (2,9) € B}, =" ={(y,2) : (z,9) € E};

e if Fe&and Axy C E'C E then E' € &.

Elements E € £ of the coarse structure are called entourages on X.

For x € X and F € &, the set E[z] := {y € X : (z,y) € £} is called
the ball of radius E centered at x. Since E = |J,cx({z} x E[z]), the
entourage E is uniquely determined by the family of balls {E[z]| : z € X }.
A subfamily £ C & is called a base of the coarse structure £ if each set
E € £ is contained in some E’' € &'

The pair (X, €) is called a coarse space [13] or a ballean [10,11].

A coarse spaces (X, &) is called connected if, for any =,y € X, there
exists £ € &€ such that y € E[z]. A subset Y C X is called bounded if
Y C Efz] for some E € £, and x € X. If (X,€) is connected then the
family Bx of all bounded subsets of X is a bornology on X. We recall
that a family B of subsets of a set X is a bornology if B contains the
family [X]<“ of all finite subsets of X and B is closed under finite unions
and taking subsets. A bornology B on a set X is called unbounded if
X ¢ B. A subfamily B’ of B is called a base for B if, for each B € B,
there exists B’ € B’ such that B C B’.

Each subset Y C X defines a subspace (Y, Ely) of (X, E), where €]y =
{EN(Y xY): Ee&}. Asubspace (Y,Ey) is called large if there exists
E € & such that X = E[Y], where E[Y] = U,y Elyl.

Let (X,&), (X',&) be coarse spaces. A mapping f : X — X' is
called macro-uniform if for every E € £ there exists E' € £ such that
f(E(x)) C E'(f(x)) for each z € X. If f is a bijection such that f and
f~! are macro-uniform, then f is called an asymorphism. If (X,€) and
(X', &) contain large asymorphic subspaces, then they are called coarsely
equivalent.

For a coarse space (X, &), we denote by exp X the family of all non-
empty subsets of X and by exp £ the coarse structure on exp X with the
base {exp E : E € £}, where

(A,B) cexp E< ACE[B], BCE[A]

and say that (exp X,exp &) is the hyperballean of (X, E).
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Let F be a non-empty subspace of exp X. We say that a macro-
uniform mapping f : F — X is an F-selector of (X, &) if f(A) € A for
each A € F. In the case F € [X]?, F = Bx and F = exp X, an F-
selector is called a 2-selector, a bornologous selector and a global selector
respectively.

We recall that a connected coarse space (X, ) is discrete if, for each
E € &, there exists a bounded subset B of (X, €) such that E[z] = {z}
for each z € X \ B. Every bornology B on a set X defines the discrete
coarse space Xp = (X, &), where g is a coarse structure with the base
{Ep : B € B}, Eglz] = Bif x € B and Ep[z] = {2z} if v € X \ B.
On the other hand, every discrete coarse space (X, ) coincides with Xp,
where B is the bornology of bounded subsets of (X, E).

2. Local convexity and interval bases

Let (X, &) be a coarse space. Following [7], we say that a linear order
< or X is compatible with the coarse structure &£ if one of the following
equivalent conditions holds

o for every E € &, there exists F' € £ such that if v < y and y €
X \ Flz] then 2’ < y for each 2’/ € E[x] ;

o for every E € &, there exists H € & such that if y < z and y €
X \ H|z] then y < 2’ for each 2’ € E[x] ;

o for every E € &, there exists K € & such that if x < y and y €
X \ Klz] then 2/ </ for all 2’ € E[z], ' € E[y].

A coarse space (X,&), endowed with a linear order < compatible
with & is called linearly ordered. In this case, by [7, Proposition 2|, the
mapping f : [X]? — X, defined by f(A) = min A is a 2-selector of
(X,€) and if (X, &) is connected then each interval [a,b], where [a,b] =
{r € X : a <z < b} is bounded. In what follows, all linearly ordered
coarse spaces are suppose to be connected.

We recall that a subset Y of a linearly ordered set (X, <) is called
convez if [a,b] C Y for all a,b € Y, and observe that Y is convex if and
only if there exists z € Y such that [z,y] C Y for each y € X.

Theorem 1. For a coarse space (X,E) and a linear order < on X,
the following statements are equivalent

(1) (X,E&,<) is linearly ordered;

(i1) & has a base & such that E'[x] is convex for allz € X, E' € £'.
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Proof. (i) = (ii) . For each E € £, we denote E' = |J {[z,y] : z,y €
E}. Since E' is convex, it suffices to show that E/ € £. Since < is
compatible with &£, there exists F' € £ such that £ C F and if x < 2
(z <z)and z € X \ F[z] then y < z (z < y) for each y € E[z]. It
follows that E'[z] C Flz] and E' € £.

(#1) = (i). Given E € &, we choose E’ € &£ such that £ € E’ and
E'[z] is convex for each z € X. If z € X \ E'[z] then either z < 2’ for
each ' € E[x] or 2/ < z for each 2’ € E[z]. Hence, < is compatible with
E. O

We say that a base E’ of &, satisfying (ii) is locally convex.

Let B be a bornology on a set X. Following [1], we say that a coarse
structure £ on X is compatible with B if B is the bornology of bounded
subsets of the coarse space (X, &).

For a linear order < on a set X, B< denotes the interval bornology
on X with the base {[a,b] : a,b € X}. In the following two examples,
we describe the smallest locally convex coarse structure | £< and the
strongest locally convex coarse structure T £< compatible with B<.

Example 1. Let < be a linear order on a set X. Then | B< is the
discrete coarse structure on X defined by the bornology B<.

Example 2. Let < be a linear order on a set X, C< denotes the
family of all bounded convex subsets of (X, <). We consider the family
® of all mappings ¢ : X — C such that, for all a,b € X, we have

U {e@) 2 ela,b]} € B<, {z€X: ) ()b #o} € B

Then the family {E, : ¢ € ®}, where E, = {(z,y) : y € ¢(2)}, is a
base for 1 <.

Following [7], we say that a coarse structure € on (X, <) is interval if
there is a base &’ of £ such that, for all £/, x € X, E'[z] is an interval in
(X, <). Clearly, £ is locally convex and, by Theorem 1, < is compatible
with €. On the other hand, let (X,&, <) be a linearly ordered coarse
space. Is £ an interval coarse structure? We give the negative answer to
this question.

The following example also shows that a subspace of a coarse space
with interval base may not have an interval base.

Example 3. We denote by X the subset (J{(2"—1, 2"+1) : n > 1}
of R, put By = {(z,y) € X x X : |z —y| <2}.

E,={(z,y) e X x X : 2,y € (3, 2"}, n > 1,



430 LINEARLY ORDERED COARSE SPACES

endow X with a coarse structure £ with the base {E, U Ey : n > 1}.
Then & is locally convex. To see that £ does not have an interval base,
we observe that if H C X x X, H[z] is an interval for each z € X and
Eo C H then 2"t € H[2"] for each n > 1. Hence, H ¢ €.

3. Asymptotic dimension

Let (X,&) be a coarse space, £ € £. A family Im of subsets of X
is called E-bounded (E-disjoint) if, for each A € Im, there exists © € X
such that A C E[z] (E[A]N B = { for all distinct A, B € Im).

By the definition [13, Chapter 10|, asdim(X,E) < nif, foreach E € &,
there exist ' € £ and F-bounded covering M of X which can be parti-
tioned M = MyU- - -UM,, so that each family M, is E-disjoint. If there is
the minimal natural number n with this property then asdim(X, &) = n,
otherwise asdim(X, &) = oc.

Theorem 2. Let (X,E&,<) be a linearly ordered coarse space. Then
asdim(X, &) € {0,1}.

Proof. Let E € £, E = E~! and E[z] is convex for each x € X, see The-
orem 1. We fix x € X, observe that E"[x] is convex for each n € N and
put E¥[z] = [J{E"[x] : # € N}. We show that there exist E2-bounded
covering M(zx) of E¥[z] and a partition M(z) = My(z)|J Mi(z) such
that Mo(z), Mi(x) are E-disjoint.

For each n € N, we denote R, = (E""[z] \ E"[x]) N {y € X :
r <y}, L,=(E""z]\ E"[z]) N {y € X :y <z} and observe that
E[R]NL; =0 for all i,j € N and E[R]\R; = 0, E[LJNL; =0 for
all 4,7 € N such that [i —j| > 1. Clearly, R, and L, are convex for
each ne N.If R, =0 (L,=0)then R, =0 (L; =0) for every
1> n.

We put

Mo(x) = {Ez], Ron, Loy :n € N},

Mi(z) = {Ran—1, Lan—1:n € N}

and note that Mo(z), M;(z) are E-disjoint.

We show that each R, is E?>-bounded, the case L, is analogous. For
n =1, we have Ry C E?[z]. Let n > 1 and R,, # (). We take y € R,,_1
such that E[y] N R, # 0 and show that R, C E?[y]. Given z € R,,
we choose t € R,_1 such that z € E[t]. Since R,_1 is convex and
Ely]N R, # 0, we have t € E[y] so z € E?[y].

To conclude the proof, we choose a subset Z of X such that | J{E“[z] :
z € Z} = X and E¥[z](E¥[Z'] = 0 for all distinct z,2’ € Z. For each
z € Z and E¥[z], we use above construction to choose My(z) and M (z).
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We put My = [ J{Mo(z) : z € Z}, My = U{Mi(z) : z € Z}. Then
Mgy, My are E>bounded, Mg, M; are E-disjoint. O

For every discrete coarse structure | £< on a linearly ordered set
(X, <), we have asdim(X, €<, <) = 0.

Let < be the natural well ordering on w. Then 1 &< coincides
with the universal locally finite coarse structure and, by [5, Theorem
1], asdim(w, 1T &<, <) = 1.

4. Selectors

Let (X, &, <) be linearly ordered coarse space, A C X, F € £. We
say that a € A is a right (left) E-end of A if x < a (a < z) for each
x € A\ E[z]. If a is the maximal (minimal) element of A then a is a right
(left) E-end for each E € €£.

Example 4. Let (X, &, <) be linearly ordered coarse space,
metrizable by a metric d on X, for metrizability of coarse spaces see
[11, Chapter 2|. We take an arbitrary ¢ > 0 and show that every
right bounded subset A of X has a right e-end. To this end, we take
ag € A. If ag is not a right e-end then we choose a; € A such that
ag < a1, d(ag,a1) > €. Repeating this procedure, after finite number of
steps, we get a right e-end a,, of A.

Example 5. Let (X, &€, <) be a discrete coarse space, defined by
the interval bornology B< on (X, <). Let A C X, B € B< and let there
exists a € A such that b < a for each b € B. Then A has a right Fg-end
if and only if A has the maximal element.

Theorem 3. Let (X, &, <) be a linearly ordered coarse space,
E € &, Im be a family of subsets of X. If every subsets A € Im has a
right E-end then Im has a selector.

Proof. For each A € Im, we take some right F-end f(A) of A and show
that the mapping f : Im — X is macro-uniform.

We take an arbitrary H € & H = H~! such that H[z] is convex
for each x € X. Let Y,Z € Im, (Y,Z) € expH and f(Y) < f(Z).
We take y € Y such that y € H[f(Z)]. If y < f(Y) then, by the
convexity of H[f(Z)] and f(Y) < f(Z), we have f(Y) € H[f(Z)]. If
y > f(¥) then'y € E[f(V)]. Hence, H[f(2)] N ELf(Y)] # 0 and
1(2) € HE[f(Y)) O

Applying Theorem 3 to Example 4, we conclude that the family of all
right bounded subsets of a lineary ordered metric space has a selector.
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5. Comments and open questions

1. Coarse spaces can be considered as asymptotic counterparts of
uniform topological spaces, see [11, Chapter 1]|. Selectors and orderings
of topological spaces, studied in a plenty of papers, take an important
place in Topology, see surveys (2], [3], [4], [12].

2. Example 3 answers negatively Question 1 from [7], Question 4 was
answered negatively in [8], Questions 2, 3, 5 from [7] remain open.

3. In light of Theorem 3, we ask the following question.

Question 1. Does the family of all right bounded subsets of a
linearly ordered coarse space have a selector?

4. Tt is well-knows that every linearly ordered topological space is
normal. For normality of coarse spaces, see [11, Chapter 4].

Question 2. Is every linearly ordered coarse space normal?
5. We conclude with the following question.

Question 3. Is every linearly ordered coarse space asymorphic to
a subspace of a linearly ordered coarse space with an interval base?
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