

Український математичний вісник Том 19 **(2022)**, № 3, 426 – 433 https://doi.org/10.32782/1810-3200-2022-19-3-8

Linearly ordered coarse spaces

IGOR PROTASOV

Abstract. A coarse space X, endowed with a linear order compatible with the coarse structure of X, is called linearly ordered. We prove that every linearly ordered coarse space X is locally convex and the asymptotic dimension of X is either 0 or 1. If X is metrizable then the family of all right bounded subsets of X has a selector.

1991 MSC. 54C65.

Key words and phrases. Linearly ordered coarse space, asymptotic dimension, selector.

1. Introduction and preliminaries

Let \mathcal{K} be a class of coarse spaces. Given $X \in \mathcal{K}$, how can one detect whether there exists a linear order on X, compatible with the coarse structure of X? We used selectors to answer this question if \mathcal{K} is one of the following classes: discrete coarse spaces [6], [7]; finitary coarse spaces of groups [8]; finitary coarse spaces of graphs [9].

In this paper, we continue the investigations of the structure of a linearly ordered coarse space initiated in [7].

In Section 2, we prove that every linearly ordered coarse space is locally convex, but the coarse structure of X needs not to be interval. Given a linear order \leq on a set X, we characterize the minimal and maximal coarse structures on X, compatible with the interval bornology of (X, \leq) .

In Section 3, we prove that the asymptotic dimension of a linearly ordered coarse space is either 0 or 1.

In Section 4, we construct a selector of the family of right bounded subsets of a metrizable lineary ordered coarse space.

We conclude the paper with Section 5 of comments and open questions.

Received 09.06.2022

We recall some basic definitions. Given a set X, a family \mathcal{E} of subsets of $X \times X$ is called a *coarse structure* on X if

- each $E \in \mathcal{E}$ contains the diagonal $\triangle_X := \{(x, x) : x \in X\}$ of X;
- if $E, E' \in \mathcal{E}$ then $E \circ E' \in \mathcal{E}$ and $E^{-1} \in \mathcal{E}$, where $E \circ E' = \{(x, y) : \exists z \ ((x, z) \in E, \ (z, y) \in E')\}, E^{-1} = \{(y, x) : (x, y) \in E\};$
- if $E \in \mathcal{E}$ and $\triangle_X \subseteq E' \subseteq E$ then $E' \in \mathcal{E}$.

Elements $E \in \mathcal{E}$ of the coarse structure are called *entourages* on X.

For $x \in X$ and $E \in \mathcal{E}$, the set $E[x] := \{y \in X : (x, y) \in \mathcal{E}\}$ is called the *ball of radius* E centered at x. Since $E = \bigcup_{x \in X} (\{x\} \times E[x])$, the entourage E is uniquely determined by the family of balls $\{E[x] : x \in X\}$. A subfamily $\mathcal{E}' \subseteq \mathcal{E}$ is called a *base* of the coarse structure \mathcal{E} if each set $E \in \mathcal{E}$ is contained in some $E' \in \mathcal{E}'$.

The pair (X, \mathcal{E}) is called a *coarse space* [13] or a *ballean* [10, 11].

A coarse spaces (X, \mathcal{E}) is called *connected* if, for any $x, y \in X$, there exists $E \in \mathcal{E}$ such that $y \in E[x]$. A subset $Y \subseteq X$ is called *bounded* if $Y \subseteq E[x]$ for some $E \in \mathcal{E}$, and $x \in X$. If (X, \mathcal{E}) is connected then the family \mathcal{B}_X of all bounded subsets of X is a bornology on X. We recall that a family \mathcal{B} of subsets of a set X is a *bornology* if \mathcal{B} contains the family $[X]^{<\omega}$ of all finite subsets of X and \mathcal{B} is closed under finite unions and taking subsets. A bornology \mathcal{B} on a set X is called *unbounded* if $X \notin \mathcal{B}$. A subfamily \mathcal{B}' of \mathcal{B} is called a base for \mathcal{B} if, for each $B \in \mathcal{B}$, there exists $B' \in \mathcal{B}'$ such that $B \subseteq B'$.

Each subset $Y \subseteq X$ defines a subspace $(Y, \mathcal{E}|_Y)$ of (X, \mathcal{E}) , where $\mathcal{E}|_Y = \{E \cap (Y \times Y) : E \in \mathcal{E}\}$. A subspace $(Y, \mathcal{E}|_Y)$ is called *large* if there exists $E \in \mathcal{E}$ such that X = E[Y], where $E[Y] = \bigcup_{y \in Y} E[y]$.

Let (X, \mathcal{E}) , (X', \mathcal{E}') be coarse spaces. A mapping $f : X \to X'$ is called *macro-uniform* if for every $E \in \mathcal{E}$ there exists $E' \in \mathcal{E}'$ such that $f(E(x)) \subseteq E'(f(x))$ for each $x \in X$. If f is a bijection such that f and f^{-1} are macro-uniform, then f is called an *asymorphism*. If (X, \mathcal{E}) and (X', \mathcal{E}') contain large asymorphic subspaces, then they are called *coarsely* equivalent.

For a coarse space (X, \mathcal{E}) , we denote by exp X the family of all nonempty subsets of X and by $exp \mathcal{E}$ the coarse structure on exp X with the base $\{exp \ E : E \in \mathcal{E}\}$, where

$$(A, B) \in exp \ E \Leftrightarrow A \subseteq E[B], \ B \subseteq E[A],$$

and say that $(exp \ X, exp \ \mathcal{E})$ is the hyperballean of (X, \mathcal{E}) .

Let \mathcal{F} be a non-empty subspace of $exp \ X$. We say that a macrouniform mapping $f : \mathcal{F} \longrightarrow X$ is an \mathcal{F} -selector of (X, \mathcal{E}) if $f(A) \in A$ for each $A \in \mathcal{F}$. In the case $\mathcal{F} \in [X]^2$, $\mathcal{F} = \mathcal{B}_X$ and $\mathcal{F} = exp \ X$, an \mathcal{F} selector is called a 2-selector, a bornologous selector and a global selector respectively.

We recall that a connected coarse space (X, \mathcal{E}) is *discrete* if, for each $E \in \mathcal{E}$, there exists a bounded subset B of (X, \mathcal{E}) such that $E[x] = \{x\}$ for each $x \in X \setminus B$. Every bornology \mathcal{B} on a set X defines the discrete coarse space $X_{\mathcal{B}} = (X, \mathcal{E}_{\mathcal{B}})$, where $\mathcal{E}_{\mathcal{B}}$ is a coarse structure with the base $\{E_B : B \in \mathcal{B}\}, E_B[x] = B$ if $x \in B$ and $E_B[x] = \{x\}$ if $x \in X \setminus B$. On the other hand, every discrete coarse space (X, \mathcal{E}) coincides with $X_{\mathcal{B}}$, where \mathcal{B} is the bornology of bounded subsets of (X, \mathcal{E}) .

2. Local convexity and interval bases

Let (X, \mathcal{E}) be a coarse space. Following [7], we say that a linear order \leq or X is *compatible* with the coarse structure \mathcal{E} if one of the following equivalent conditions holds

- for every $E \in \mathcal{E}$, there exists $F \in \mathcal{E}$ such that if x < y and $y \in X \setminus F[x]$ then x' < y for each $x' \in E[x]$;
- for every $E \in \mathcal{E}$, there exists $H \in \mathcal{E}$ such that if y < x and $y \in X \setminus H[x]$ then y < x' for each $x' \in E[x]$;
- for every $E \in \mathcal{E}$, there exists $K \in \mathcal{E}$ such that if x < y and $y \in X \setminus K[x]$ then x' < y' for all $x' \in E[x], y' \in E[y]$.

A coarse space (X, \mathcal{E}) , endowed with a linear order \leq compatible with \mathcal{E} is called *linearly ordered*. In this case, by [7, Proposition 2], the mapping $f : [X]^2 \longrightarrow X$, defined by $f(A) = \min A$ is a 2-selector of (X, \mathcal{E}) and if (X, \mathcal{E}) is connected then each interval [a, b], where [a, b] = $\{x \in X : a \leq x \leq b\}$ is bounded. In what follows, all linearly ordered coarse spaces are suppose to be connected.

We recall that a subset Y of a linearly ordered set (X, \leq) is called *convex* if $[a, b] \subseteq Y$ for all $a, b \in Y$, and observe that Y is convex if and only if there exists $x \in Y$ such that $[x, y] \subseteq Y$ for each $y \in X$.

Theorem 1. For a coarse space (X, \mathcal{E}) and a linear order \leq on X, the following statements are equivalent

- (i) (X, \mathcal{E}, \leq) is linearly ordered;
- (ii) \mathcal{E} has a base \mathcal{E}' such that E'[x] is convex for all $x \in X$, $E' \in \mathcal{E}'$.

Proof. $(i) \Rightarrow (ii)$. For each $E \in \mathcal{E}$, we denote $E' = \bigcup \{ [x, y] : x, y \in E \}$. Since E' is convex, it suffices to show that $E' \in \mathcal{E}$. Since \leq is compatible with \mathcal{E} , there exists $F \in \mathcal{E}$ such that $E \subseteq F$ and if x < z (z < x) and $z \in X \setminus F[x]$ then y < z (z < y) for each $y \in E[x]$. It follows that $E'[x] \subseteq F[x]$ and $E' \in \mathcal{E}$.

 $(ii) \Rightarrow (i)$. Given $E \in \mathcal{E}$, we choose $E' \in \mathcal{E}$ such that $E \in E'$ and E'[x] is convex for each $x \in X$. If $z \in X \setminus E'[x]$ then either z < x' for each $x' \in E[x]$ or x' < z for each $x' \in E[x]$. Hence, \leq is compatible with \mathcal{E} .

We say that a base E' of \mathcal{E} , satisfying (ii) is locally convex.

Let \mathcal{B} be a bornology on a set X. Following [1], we say that a coarse structure \mathcal{E} on X is *compatible* with \mathcal{B} if \mathcal{B} is the bornology of bounded subsets of the coarse space (X, \mathcal{E}) .

For a linear order \leq on a set X, \mathcal{B}_{\leq} denotes the interval bornology on X with the base $\{[a, b] : a, b \in X\}$. In the following two examples, we describe the smallest locally convex coarse structure $\downarrow \mathcal{E}_{\leq}$ and the strongest locally convex coarse structure $\uparrow \mathcal{E}_{\leq}$ compatible with \mathcal{B}_{\leq} .

Example 1. Let \leq be a linear order on a set X. Then $\downarrow \mathcal{B}_{\leq}$ is the discrete coarse structure on X defined by the bornology \mathcal{B}_{\leq} .

Example 2. Let \leq be a linear order on a set X, C_{\leq} denotes the family of all bounded convex subsets of (X, \leq) . We consider the family Φ of all mappings $\varphi : X \to C$ such that, for all $a, b \in X$, we have

$$\bigcup \left\{ \varphi(x) : x \in [a, b] \right\} \in \mathcal{B}_{\leq}, \quad \left\{ x \in X : \varphi(x) \ \bigcap [a, b] \neq \emptyset \right\} \in \mathcal{B}_{\leq}.$$

Then the family $\{E_{\varphi}: \varphi \in \Phi\}$, where $E_{\varphi} = \{(x, y): y \in \varphi(x)\}$, is a base for $\uparrow \mathcal{E}_{\leq}$.

Following [7], we say that a coarse structure \mathcal{E} on (X, \leq) is *interval* if there is a base \mathcal{E}' of \mathcal{E} such that, for all $E', x \in X, E'[x]$ is an interval in (X, \leq) . Clearly, \mathcal{E} is locally convex and, by Theorem 1, \leq is compatible with \mathcal{E} . On the other hand, let (X, \mathcal{E}, \leq) be a linearly ordered coarse space. Is \mathcal{E} an interval coarse structure? We give the negative answer to this question.

The following example also shows that a subspace of a coarse space with interval base may not have an interval base.

Example 3. We denote by X the subset $\bigcup \{ (2^n - 1, 2^n + 1) : n > 1 \}$ of \mathbb{R} , put $E_0 = \{ (x, y) \in X \times X : |x - y| < 2 \}.$

$$E_n = \{(x, y) \in X \times X : x, y \in (3, 2^{n+1})\}, n > 1,$$

endow X with a coarse structure \mathcal{E} with the base $\{E_n \cup E_0 : n > 1\}$. Then \mathcal{E} is locally convex. To see that \mathcal{E} does not have an interval base, we observe that if $H \subseteq X \times X$, H[x] is an interval for each $x \in X$ and $E_0 \subseteq H$ then $2^{n+1} \in H[2^n]$ for each n > 1. Hence, $H \notin \mathcal{E}$.

3. Asymptotic dimension

Let (X, \mathcal{E}) be a coarse space, $E \in \mathcal{E}$. A family Im of subsets of X is called *E*-bounded (*E*-disjoint) if, for each $A \in \text{Im}$, there exists $x \in X$ such that $A \subseteq E[x]$ ($E[A] \cap B = \emptyset$ for all distinct $A, B \in \text{Im}$).

By the definition [13, Chapter 10], $asdim(X, \mathcal{E}) \leq n$ if, for each $E \in \mathcal{E}$, there exist $F \in \mathcal{E}$ and F-bounded covering \mathcal{M} of X which can be partitioned $\mathcal{M} = \mathcal{M}_0 \cup \cdots \cup \mathcal{M}_n$ so that each family \mathcal{M}_i is E-disjoint. If there is the minimal natural number n with this property then $asdim(X, \mathcal{E}) = n$, otherwise $asdim(X, \mathcal{E}) = \infty$.

Theorem 2. Let (X, \mathcal{E}, \leq) be a linearly ordered coarse space. Then $asdim(X, \mathcal{E}) \in \{0, 1\}.$

Proof. Let $E \in \mathcal{E}$, $E = E^{-1}$ and E[x] is convex for each $x \in X$, see Theorem 1. We fix $x \in X$, observe that $E^n[x]$ is convex for each $n \in \mathbb{N}$ and put $E^{\omega}[x] = \bigcup \{E^n[x] : x \in \mathbb{N}\}$. We show that there exist E^2 -bounded covering $\mathcal{M}(x)$ of $E^{\omega}[x]$ and a partition $\mathcal{M}(x) = \mathcal{M}_0(x) \bigcup \mathcal{M}_1(x)$ such that $\mathcal{M}_0(x)$, $\mathcal{M}_1(x)$ are E-disjoint.

For each $n \in \mathbb{N}$, we denote $R_n = (E^{n+1}[x] \setminus E^n[x]) \cap \{y \in X : x \leq y\}$, $L_n = (E^{n+1}[x] \setminus E^n[x]) \cap \{y \in X : y < x\}$ and observe that $E[R_i] \cap L_j = \emptyset$ for all $i, j \in \mathbb{N}$ and $E[R_i] \cap R_j = \emptyset$, $E[L_i] \cap L_j = \emptyset$ for all $i, j \in \mathbb{N}$ such that |i - j| > 1. Clearly, R_n and L_n are convex for each $n \in \mathbb{N}$. If $R_n = \emptyset$ ($L_n = \emptyset$) then $R_i = \emptyset$ ($L_i = \emptyset$) for every i > n.

We put

$$\mathcal{M}_0(x) = \{ E[x], \ R_{2n}, L_{2n} : n \in \mathbb{N} \},\$$
$$\mathcal{M}_1(x) = \{ R_{2n-1}, L_{2n-1} : n \in \mathbb{N} \}$$

and note that $\mathcal{M}_0(x)$, $\mathcal{M}_1(x)$ are *E*-disjoint.

We show that each R_n is E^2 -bounded, the case L_n is analogous. For n = 1, we have $R_1 \subseteq E^2[x]$. Let n > 1 and $R_n \neq \emptyset$. We take $y \in R_{n-1}$ such that $E[y] \cap R_n \neq \emptyset$ and show that $R_n \subseteq E^2[y]$. Given $z \in R_n$, we choose $t \in R_{n-1}$ such that $z \in E[t]$. Since R_{n-1} is convex and $E[y] \cap R_n \neq \emptyset$, we have $t \in E[y]$ so $z \in E^2[y]$.

To conclude the proof, we choose a subset Z of X such that $\bigcup \{E^{\omega}[z] : z \in Z\} = X$ and $E^{\omega}[z] \cap E^{\omega}[z'] = \emptyset$ for all distinct $z, z' \in Z$. For each $z \in Z$ and $E^{\omega}[z]$, we use above construction to choose $\mathcal{M}_0(z)$ and $\mathcal{M}_1(z)$.

We put $\mathcal{M}_0 = \bigcup \{ \mathcal{M}_0(z) : z \in Z \}$, $\mathcal{M}_1 = \bigcup \{ \mathcal{M}_1(z) : z \in Z \}$. Then \mathcal{M}_0 , \mathcal{M}_1 are E^2 -bounded, \mathcal{M}_0 , \mathcal{M}_1 are E-disjoint.

For every discrete coarse structure $\downarrow \mathcal{E}_{\leq}$ on a linearly ordered set (X, \leq) , we have $asdim(X, \mathcal{E}_{\leq}, \leq) = 0$.

Let \leq be the natural well ordering on ω . Then $\uparrow \mathcal{E}_{\leq}$ coincides with the universal locally finite coarse structure and, by [5, Theorem 1], $asdim(\omega, \uparrow \mathcal{E}_{\leq}, \leq) = 1$.

4. Selectors

Let (X, \mathcal{E}, \leq) be linearly ordered coarse space, $A \subseteq X, E \in \mathcal{E}$. We say that $a \in A$ is a *right (left)* E-end of A if x < a (a < x) for each $x \in A \setminus E[x]$. If a is the maximal (minimal) element of A then a is a right (left) E-end for each $E \in \mathcal{E}$.

Example 4. Let (X, \mathcal{E}, \leq) be linearly ordered coarse space, metrizable by a metric d on X, for metrizability of coarse spaces see [11, Chapter 2]. We take an arbitrary $\varepsilon > 0$ and show that every right bounded subset A of X has a right ε -end. To this end, we take $a_0 \in A$. If a_0 is not a right ε -end then we choose $a_1 \in A$ such that $a_0 < a_1, \quad d(a_0, a_1) > \varepsilon$. Repeating this procedure, after finite number of steps, we get a right ε -end a_n of A.

Example 5. Let (X, \mathcal{E}, \leq) be a discrete coarse space, defined by the interval bornology \mathcal{B}_{\leq} on (X, \leq) . Let $A \subseteq X$, $B \in \mathcal{B}_{\leq}$ and let there exists $a \in A$ such that b < a for each $b \in \mathcal{B}$. Then A has a right E_B -end if and only if A has the maximal element.

Theorem 3. Let (X, \mathcal{E}, \leq) be a linearly ordered coarse space, $E \in \mathcal{E}$, Im be a family of subsets of X. If every subsets $A \in$ Im has a right E-end then Im has a selector.

Proof. For each $A \in \text{Im}$, we take some right *E*-end f(A) of *A* and show that the mapping $f : \text{Im} \to X$ is macro-uniform.

We take an arbitrary $H \in \mathcal{E}$, $H = H^{-1}$ such that H[x] is convex for each $x \in X$. Let $Y, Z \in \text{Im}$, $(Y, Z) \in expH$ and $f(Y) \leq f(Z)$. We take $y \in Y$ such that $y \in H[f(Z)]$. If y < f(Y) then, by the convexity of H[f(Z)] and $f(Y) \leq f(Z)$, we have $f(Y) \in H[f(Z)]$. If $y \geq f(Y)$ then $y \in E[f(Y)]$. Hence, $H[f(Z)] \cap E[f(Y)] \neq \emptyset$ and $f(Z) \in HE[f(Y)]$.

Applying Theorem 3 to Example 4, we conclude that the family of all right bounded subsets of a lineary ordered metric space has a selector.

5. Comments and open questions

1. Coarse spaces can be considered as asymptotic counterparts of uniform topological spaces, see [11, Chapter 1]. Selectors and orderings of topological spaces, studied in a plenty of papers, take an important place in *Topology*, see surveys [2], [3], [4], [12].

2. Example 3 answers negatively Question 1 from [7], Question 4 was answered negatively in [8], Questions 2, 3, 5 from [7] remain open.

3. In light of Theorem 3, we ask the following question.

Question 1. Does the family of all right bounded subsets of a linearly ordered coarse space have a selector?

4. It is well-knows that every linearly ordered topological space is normal. For normality of coarse spaces, see [11, Chapter 4].

Question 2. Is every linearly ordered coarse space normal?

5. We conclude with the following question.

Question 3. Is every linearly ordered coarse space asymorphic to a subspace of a linearly ordered coarse space with an interval base?

References

- Banakh, T., Protasov, I. (2018). Constructing balleans, Ukrain. Mat. Bull., 15, 321–331.
- [2] Bennett, H., Lutzer, D. (2002). Resent Development in the Topology of Ordered Sets., In: Recent progress in general topology, II, 83–114, North-Holland, Amsterdam.
- [3] Myhailova, E., Nedev, S. (2011). Selections and selectors. *Topology Appl.*, 158, 134–140.
- [4] Nachbin, L. (1965). Topology and Order. Van. Nostrand Mathematical Studies, 4, D. Van Nostrand Co., Inc., Princeton, N.J. - Toronto, Ont. - London.
- [5] Protasov, I. (2020). On a question of Dikranjan and Zava. Topology Appl., 273, 105–107.
- [6] Protasov, I. Selectors of discrete coarse spaces. Comment. Math. Univ. Carolin. (to appear), preprint, arXiv: 2101.07199.
- [7] Protasov, I. (2021). Selectors and orderings of coarse spaces. Ukrain. Mat. Bull., 18, 70–78.
- [8] Protasov, I. Coarse selectors of groups, preprint, arXiv: 2102.03790.
- [9] Protasov, I. Coarse selectors of graphs, preprint, arXiv: 2104.10654.
- [10] Protasov, I., Banakh, T. (2003). Ball Structures and Colorings of Groups and Graphs. Math. Stud. Monogr. Ser., vol. 11, VNTL, Lviv.
- [11] Protasov, I., Zarichnyi, M. (2007). General Asymptology, Math. Stud. Monogr. Ser., vol. 12, VNTL, Lviv.

- [12] Purisch, S. (1998). A History and Results on Orderability and Suborderability. In: Aull C.E., Lowen R (eds), Handbook of the History of General Topology, vol. 2, Springer, Dordrecht.
- [13] Roe, J. (2003). Lectures on Coarse Geometry, Univ. Lecture Ser., vol. 31, American Mathematical Society, Providence RI.

CONTACT INFORMATION

Igor ProtasovTaras Shevchenko National University of
Kyiv, Department of Computer Science and
Cybernetics, Kyiv, Ukraine
E-Mail: i.v.protasov@gmail.com