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upper half plane

Arsen M. Shutovskyi, Vasyl Ye. Sakhnyuk

(Presented by O. Dovgoshey)

Abstract. The fourth order partial differential equation for the bi-
harmonic Poisson integral is presented in the case of the upper half
plane (y > 0). To solve this equation, the two boundary conditions
must be taken into account. The boundary value problem is solved
by a way to transform the presented boundary value problem for the
biharmonic Poisson integral into the two boundary value problems for
the two-dimensional functions A (q, y) and B (q, y). After that, the bi-
harmonic Poisson integral for the upper half plane is obtained. It was
found that the derived Taylor series of biharmonic Poisson integral for
the upper half plane contains the remainder in the integral form.
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1. Introduction

The properties of the biharmonic Poisson integral for the unit disk
were first studied in the paper [1]. The further investigations were per-
formed in the papers [2–10]. It is significant to note that the properties
of the biharmonic Poisson integral can also be studied in the case of the
upper half plane [11, 12].

In our theoretical investigation, we are going to derive the Taylor
series of the biharmonic Poisson integral for the upper half plane. Let a
two-dimensional function U (x, y) be a general solution to the following
boundary value problem:

∇2
(
∇2U

)
= 0, lim

y→0
U (x, y) = f (x) , lim

y→0

∂U (x, y)

∂y
= g (x) . (1.1)
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In the formula (1.1), the functions f (x) and g (x) are the bounded
uniformly continuous functions for x ∈ R. The formula (1.1) contains

the Laplacian ∇2 =
∂2

∂x2
+

∂2

∂y2
in the two-dimensional case. It is also

important to note that y > 0, because we are going to solve the boundary
value problem (1.1) for the upper half plane.

The presented boundary value problem (1.1) can be solved by a way
to introduce the new variables z = x+ iy and z̄ = x − iy. This enables

one to represent the Laplacian ∇2 =
∂2

∂x2
+

∂2

∂y2
via the second order

partial derivative
∂2

∂z̄∂z
[13–15].

In this paper, the problem will be solved by a way to apply the integral
representation

U (x, y) =
1

2π

+∞∫

−∞





+∞∫

−∞

A (q, y) eiq(x−x
′)dq



 f

(
x′
)
dx′ +

+
1

2π

+∞∫

−∞





+∞∫

−∞

B (q, y) eiq(x−x
′)dq



 g

(
x′
)
dx′ (1.2)

that can enable one to transform the boundary value problem (1.1) for a
two-dimensional function U (x, y) into the boundary value problems for
the functions A (q, y) and B (q, y).

The boundary value problem for a function A (q, y) is the following:

∂4A (q, y)

∂y4
− 2q2

∂2A (q, y)

∂y2
+ q4A (q, y) = 0,

lim
y→0

A (q, y) = 1,

lim
y→0

∂A (q, y)

∂y
= 0. (1.3)

The boundary value problem for a function B (q, y) is the following:

∂4B (q, y)

∂y4
− 2q2

∂2B (q, y)

∂y2
+ q4B (q, y) = 0,

lim
y→0

B (q, y) = 0,

lim
y→0

∂B (q, y)

∂y
= 1. (1.4)
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2. Closed form solution

The solutions to the boundary value problems (1.3) and (1.4) are
presented by the following expressions:

A (q, y) = (1 + y |q|) e−y|q|, B (q, y) = ye−y|q|. (2.1)

After that, the obtained solutions (2.1) to the boundary value prob-
lems (1.3) and (1.4) must be used with the aim to evaluate the integrals of
the two functions A (q, y) eiq(x−x

′) and B (q, y) eiq(x−x
′) over the interval

−∞ < q < +∞. Substituting the obtained results into the integral
representation (1.2) of a two-dimensional function U (x, y), we can derive
a closed form solution

U (x, y) =
2y3

π

+∞∫

−∞

f (x′) dx′
{
(x− x′)2 + y2

}2 +
y2

π

+∞∫

−∞

g (x′) dx′

(x− x′)2 + y2
(2.2)

to the boundary value problem (1.1). The obtained result is a sum of the
two integrals that contain the delta-shaped kernels [16–19]. Taking into
account the substitution x′ = t+x, the integral (2.2) can be transformed
into the integral

U (x, y) =
2y3

π

+∞∫

−∞

f (t+ x) dt

(t2 + y2)2
+
y2

π

+∞∫

−∞

g (t+ x) dt

t2 + y2
. (2.3)

The integral (2.3) is called the biharmonic Poisson integral for the
upper half plane. It is also important to note that the integral (2.3) can
be transformed into the integral

U (x, y) =
2y3

π

+∞∫

0

f (x+ t) + f (x− t)

(t2 + y2)2
dt +

+
y2

π

+∞∫

0

g (x+ t) + g (x− t)

t2 + y2
dt (2.4)

that contains the integrals on the semiaxis t > 0.

3. Taylor’s theorem

Let us now prove that the biharmonic Poisson integral (2.4) can be
considered to be a Taylor series with the remainder in the integral form.
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Theorem 3.1. Let a function f (x) be a triple differentiable function
at the point x ∈ R. Let a function g (x) be a differentiable function at
the point x ∈ R. If the derivatives of the functions f (x) and g (x) are
the bounded uniformly continuous functions at the point x ∈ R, then
the biharmonic Poisson integral (2.4) for the upper half plane can be
transformed into the Taylor series expansion

U (x, y) = f (x) + g (x) y +
d2f (x)

dx2
y2

2
+

+

+∞∫

x

{
K (τ − x, y)

d3f (τ)

dτ3
+ L (τ − x, y)

dg (τ)

dτ

}
dτ −

−

x∫

−∞

{
K (x− τ, y)

d3f (τ)

dτ3
+ L (x− τ, y)

dg (τ)

dτ

}
dτ (3.1)

with the integral form of the remainder that contains the notations for
the integral kernels

K (λ, y) =
y3

π

+∞∫

λ

(t− λ)2

(t2 + y2)2
dt =

=
1

2π

{(
λ2 + y2

)(π
2
− arctan

λ

y

)
− λy

}
(3.2)

and

L (λ, y) =
y2

π

+∞∫

λ

dt

t2 + y2
=
y

π

(
π

2
− arctan

λ

y

)
. (3.3)

Proof. The theorem can be proved by a way to apply the following Taylor
series expansions:

f (x+ t) = f (x) + f ′ (x) t+ f ′′ (x)
t2

2
+

x+t∫

x

(x+ t− τ)2 f ′′′ (τ)
dτ

2
,

g (x+ t) = g (x) +

x+t∫

x

dg (τ)

dτ
dτ,

f (x− t) = f (x)− f ′ (x) t+ f ′′ (x)
t2

2
−

x∫

x−t

(x− t− τ)2 f ′′′ (τ)
dτ

2
,

g (x− t) = g (x)−

x∫

x−t

dg (τ)

dτ
dτ. (3.4)
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The Taylor series expansions (3.4) must be substituted into the bi-
harmonic Poisson integral (2.4) for the upper half plane. As a result, we
need to evaluate the integrals

+∞∫

0

f (x+ t) + f (x− t)

(t2 + y2)2
dt =

πf (x)

2y3
+
πf ′′ (x)

4y
+

+
1

2

+∞∫

0

dt

(t2 + y2)2

x+t∫

x

(x+ t− τ)2 f ′′′ (τ) dτ −

−
1

2

+∞∫

0

dt

(t2 + y2)2

x∫

x−t

(x− t− τ)2 f ′′′ (τ) dτ (3.5)

and
+∞∫

0

g (x+ t) + g (x− t)

t2 + y2
dt =

πg (x)

y
+

+∞∫

0

dt

t2 + y2

x+t∫

x

dg (τ)

dτ
dτ −

−

+∞∫

0

dt

t2 + y2

x∫

x−t

dg (τ)

dτ
dτ. (3.6)

The double integrals of the formulas (3.5) and (3.6) must be transfor-
med by a way to change the order of integration. So, we can obtain the
results

+∞∫

0

f (x+ t) + f (x− t)

(t2 + y2)2
dt =

πf (x)

2y3
+
πf ′′ (x)

4y
+

+
1

2

+∞∫

x

d3f (τ)

dτ3
dτ

+∞∫

τ−x

(t+ x− τ)2

(t2 + y2)2
dt−

−
1

2

x∫

−∞

d3f (τ)

dτ3
dτ

+∞∫

x−τ

(t+ τ − x)2

(t2 + y2)2
dt (3.7)

and
+∞∫

0

g (x+ t) + g (x− t)

t2 + y2
dt =

πg (x)

y
+

+∞∫

x

dg (τ)

dτ
dτ

+∞∫

τ−x

dt

t2 + y2
−

−

x∫

−∞

dg (τ)

dτ
dτ

+∞∫

x−τ

dt

t2 + y2
. (3.8)
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After that, we need to substitute the obtained results for the integrals
(3.7) and (3.8) into the biharmonic Poisson integral (2.4) for the upper
half plane. Taking into account the notations (3.2) and (3.3), we obtain
the Taylor series expansion (3.1). The theorem is proved.
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Figure 1: The dependencies of the integral kernels on λ for various values
of the parameter y.

The contributions of the integral terms to the values of the biharmo-
nic Poisson integral U (x, y) are significantly determined by the integral
kernels K (λ, y) and L (λ, y). The dependencies of these kernels on the
variables λ and y are presented on the figures (1) and (2). The analysis of
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Figure 2: The dependencies of the integral kernels on y for various values
of the parameter λ.

the figure (2) shows that the dependencies of the integral kernels on the
variable y for the constant values of the parameter λ are the increasing
functions. This means that the dependencies of the integral terms in the
formula (3.1) are also increasing functions. Moreover, the increasing rate
of the integral kernels K (λ, y) and L (λ, y) depends on λ: the integral
kernels increase more slowly for the larger values of the parameter λ. It
is also important to note that the increase of the integral kernel K is one
order of magnitude faster than the increase of the integral kernel L. It is
significant to note that the asymptotic results in the case λ = 0 can also

be presented: K (0, y) =
y2

4
and L (0, y) =

y

2
.

It is significant to note that an interesting conclusion can be made
considering the figure (1) that presents the dependencies of the integral
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kernels on the variable λ = |x− τ |. In fact, the variable λ characterizes
the proximity of the variable x to the variable τ . We can see that the
values of the integral kernels decrease rapidly for the larger values of
the parameter λ. This means that the main contribution to the integral
terms in the formula (3.1) can be obtained for the values of the integration
variable τ that are close to x. Moreover, this is more tangible for small
values of the parameter y. The value range of the integration variable τ
with a prominent contribution to the integral terms is more extensive for
the larger values of the parameter y.

Conclusion

In our theoretical investigation, the boundary value problem (1.1) is
solved for the upper half plane (y > 0). It was found that a general so-
lution of the boundary value problem (1.1) can be represented by the
double integral (1.2). As a result, the presented boundary value prob-
lem (1.1) is replaced by the boundary value problems (1.3) and (1.4)
for the two-dimensional functions A (q, y) and B (q, y). The solutions of
the above-mentioned boundary value problems are presented by the for-
mula (2.1). The two-dimensional functions (2.1) are substituted into the
double integral (1.2). As a result, the closed form solution (2.3) to the
boundary value problem (1.1) is obtained.

To derive the Taylor series of biharmonic Poisson integral for the
upper half plane, the closed form solution (2.3) is replaced by the closed
form solution (2.4) that contains the integrals on the semiaxis t > 0.
It was found that the Taylor series expansions (3.4) can enable one to
transform the closed form solution (2.4) into the Taylor series (3.1) that
contains the remainder in the integral form.
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harmonic Poisson Integrals on Hölder Classes. Ukrainian Mathematical Journal,
69 (7), 1075–1084.

[7] Hrabova, U. Z., Kal’chuk, I. V., Stepanyuk, T. A. (2018). On the Approximation
of the Classes W r

βH
α by Biharmonic Poisson Integrals. Ukrainian Mathematical

Journal, 70 (5), 719–729.

[8] Kharkevych, Yu. I. (2019). Approximative Properties of the Generalized Poissin
Integrals on the Classes of Functions Determined by a Modulus of Continuity.
Journal of Automation and Information Sciences, 51 (4), 43–54.

[9] Zhyhallo, K. M., Zhyhallo, T. V. (2019). On The Approximation of Functions
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