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Abstract. Following Bojarski and Vekua, we study the Dirichlet prob-
lem lim

z→ζ
Re f(z) = ϕ(ζ) as z → ζ, z ∈ D, ζ ∈ ∂D, with continuous bound-

ary data ϕ(ζ) in bounded domains D of the complex plane C, where f
satisfies the degenerate Beltrami equation fz̄ = µ(z)fz, |µ(z)| < 1, a.e.
in D. Assuming that D is arbitrary simply connected, we have estab-
lished in terms of µ the BMO and FMO criteria as well as a number
of other integral criteria on the existence and representation of regu-
lar discrete open solutions to the stated above problem. We have also
proven similar theorems on the existence of multi-valued solutions to the
problem with single-valued real parts in an arbitrary bounded domain
D with no boundary component degenerated to a single point. Finally,
we have given similar solvability and representation results concerning
the Dirichlet problem in such domains for the degenerate A - harmonic
equation associated with the Beltrami equation.
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1. Introduction

Let D be a domain in the complex plane C and let µ : D → C be a
measurable function with |µ(z)| < 1 a.e. in D. A Beltrami equation

is an equation of the form

fz̄ = µ(z) fz (1.1)

with the formal complex derivatives fz̄ = ∂f = (fx + ify)/2, fz = ∂f =
(fx − ify)/2, z = x+ iy, where fx and fy are usual partial derivatives of
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f in x and y, correspondingly. The function µ is said to be the complex

coefficient and

Kµ(z) :=
1 + |µ(z)|

1− |µ(z)|
(1.2)

the dilatation quotient of the equation (1.1). The Beltrami equation
is called degenerate if ess supKµ(z) = ∞.

It is known that if Kµ is bounded, then the Beltrami equation has
homeomorphic solutions, see e.g. monographs [1, 5] and [26]. Recently,
a series of effective criteria for existence of homeomorphic solutions have
been also established for degenerate Beltrami equations, see e.g. his-
toric comments with relevant references in monographs [3, 15] and [27],
in BMO-article [37] and in surveys [16] and [46].

These criteria were formulated both in terms of Kµ and the more
refined quantity that takes into account not only the modulus of the
complex coefficient µ but also its argument

KT
µ (z, z0) :=

∣∣∣1− z−z0
z−z0

µ(z)
∣∣∣
2

1− |µ(z)|2
(1.3)

that is called the tangent dilatation quotient of the Beltrami equation
with respect to a point z0 ∈ C, see e.g. [2, 6, 7, 13, 25] and [37–42]. Note
that

K−1
µ (z) 6 KT

µ (z, z0) 6 Kµ(z) ∀ z ∈ D , z0 ∈ C . (1.4)

The geometrical sense of KT
µ can be found e.g. in monographs [15] and

[27].
Following [4] and [49], the Dirichlet problem for the Beltrami equa-

tion (1.1) in a domain D ⊂ C is the problem on the existence of a con-
tinuous function f : D → C with generalized derivatives by Sobolev of
the first order, satisfying (1.1) a.e., such that

lim
z→ζ

Re f(z) = ϕ(ζ) ∀ ζ ∈ ∂D (1.5)

for each prescribed continuous function ϕ : ∂D → R.

If D is the unit disk, some criteria for the solvability of the Dirichlet
problem for the degenerate Beltrami equation can be found in mono-
graph [15], see also survey [16]. The case of domains bounded by a finite
collection of Jordan curves has been studied in [23] and [36]. With the
help of the concept of the prime end by Caratheodory, we have extended
the above criteria to more general domains in [8] and [17]. However, from
the point of view of applications, such an approach is quite complicated.
That is why, in this paper we continue to study the Dirichlet problem in
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the classic setting (1.5) for the degenerate Beltrami equation in arbitrary
bounded domains D ⊂ C.

The paper is organized as follows. In Section 2 we give Lemma 1 on
the existence of regular homeomorphic solutions f with hydrodynamic
normalization f(z) = z + o(1) as z → ∞ to the degenerate Beltrami
equations in C whose complex coefficient µ has compact support. Sec-
tion 3 contains criteria for existence and representation of regular discrete
open solutions for the Dirichlet problem with continuous data to deg
enerate Beltrami equations in arbitrary simply connected bounded do-
mains D in C. In Section 4 we obtain similar criteria for the existence of
multi-valued solutions f with single–valued real parts in the spirit of the
theory of multi-valued analytic functions in arbitrary bounded domains
D ⊂ C with no boundary component degenerated to a single point. Note
that the real part u of such a solution f is the A−harmonic function,
i.e., a single-valued continuous solution of degenerate elliptic equation
div (A∇u) = 0 with a matrix-valued coefficient A associated with µ. Sec-
tion 5 contains a number of solvability criteria to the Dirichlet problem
for the A−harmonic equation.

2. More definitions and preliminary remarks

Let D be a domain in the complex plane C. A function f : D → C

in the Sobolev class W 1,1
loc is called a regular solution of the Beltrami

equation (1.1) if f satisfies (1.1) a.e. and its Jacobian Jf (z) > 0 a.e.

Lemma 1. Let a function µ : C → C be with compact support S,
|µ(z)| < 1 a.e. and Kµ ∈ L1(S). Suppose that, for every z0 ∈ S, there
is a family of measurable functions ψz0,ε : (0, ε0) → (0,∞), ε ∈ (0, ε0),
ε0 = ε(z0) > 0, such that

Iz0(ε) : =

ε0∫

ε

ψz0,ε(t) dt < ∞ ∀ ε ∈ (0, ε0) (2.1)

and∫

ε<|z−z0|<ε0

KT
µ (z, z0) ·ψ

2
z0,ε(|z− z0|) dm(z) = o(I2z0(ε)) as ε→ 0 ∀z0 ∈ S.

(2.2)
Then the Beltrami equation (1.1) has a regular homeomorphic solution
fµ with the hydrodynamic normalization fµ(z) = z + o(1) as z → ∞.

Here and further dm(z) corresponds to the Lebesgue measure in C.
This lemma was first proved as Lemma 2.1 in our paper [14]. In view of
its importance, we give here its alternative proof.
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Proof. By Lemma 3 and Remark 2 in [41] the Beltrami equation (1.1)
has a regular homeomorphic solution f in C under the hypotheses on µ
given above. Note that f is holomorphic and univalent (one-to-one), i.e.
conformal, and with no zeros outside of a closed disk

{z ∈ C : |z| ≤ R}, R > 0 ,

because the support S of µ is compact.

Let us consider the function F (ζ) := f(1/ζ), ζ ∈ C0 := C \ {0},
C = C ∪ {∞}, that is conformal in a punctured disk Dr \ {0}, where
Dr = {ζ ∈ C : |ζ| < r}, r = 1/R, and 0 is its isolated singular point.
In view of the Casorati-Weierstrass theorem, see e.g. Proposition II.6.3
in [11], 0 cannot be essential singular point because the mapping F is
homeomorphic.

Moreover, 0 cannot be a removable singular point of F . Indeed, let
us assume that F has a finite limit lim

ζ→0
F (ζ) = c. Then the extended

mapping F̃ is a homeomorphism of C into C. However, by stereographic
projection C is homeomorphic to the sphere S2 and, consequently, by the
Brouwer theorem on the invariance of domain the set C := F̃ (C) is open
in C, see e.g. Theorem 4.8.16 in [45]. In addition, the set C is compact
as a continuous image of the compact space C. Hence the set C \ C 6= ∅
is also open in C. The latter contradicts the connectivity of C, see e.g.
Proposition I.1.1 in [11].

Thus, 0 is a (unique) pole of the function F in the disk Dr. Hence the
function Φ(ζ) := 1/F (ζ) has a removable singularity at 0 and Φ(0) = 0.
By the Riemann extension theorem, see e.g. Proposition II.3.7 in [11],
the extended function Φ̃ is conformal in Dr. By the Rouche theorem
Φ̃′(0) 6= 0, see e.g. Theorem 63 in [48], and, consequently, the function Φ̃
has the expansion of the form c1ζ+ c2ζ

2+ . . . in the disk Dr with c1 6= 0.
Consequently, along the set {z ∈ C : |z| > R}

f(z) =
1

Φ(1z )
=

1

c1z−1 + c2z−2 + . . .
=

z

c1

(
1 +

c2
c1
z−1 + . . .

)−1

= c−1
1 z − c−2

1 c2 + o(1) ,

i.e. the function fµ(z) := c1f(z) + c2/c1 gives the desired regular home-
omorphic solution of the Beltrami equation with the hydrodynamic nor-
malization fµ(z) = z + o(1) as z → ∞.

In particular, by relations (1.4) we obtain from Lemma 1 the following
consequence.
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Corollary 1. Let a function µ : C → C be with compact support S,
|µ(z)| < 1 a.e. and Kµ ∈ L1(S) and let ψ : (0, ε0) → (0,∞) for some
ε0 > 0 be a measurable function such that

ε0∫

0

ψ(t) dt = ∞ ,

ε0∫

ε

ψ(t) dt < ∞ ∀ ε ∈ (0, ε0) . (2.3)

Suppose that

∫

ε<|z−z0|<ε0

Kµ(z)·ψ
2(|z−z0|) dm(z) ≤ O




ε0∫

ε

ψ(t)dt


 as ε→ 0 ∀ z0 ∈ S.

(2.4)
Then the Beltrami equation (1.1) has a regular homeomorphic solution
f with the hydrodynamic normalization f(z) = z + o(1) as z → ∞.

Recall that a real-valued function u in a domain D in C is said to be
of bounded mean oscillation in D, abbr. u ∈ BMO(D), if u ∈ L1

loc(D)
and

‖u‖∗ := sup
B

1

|B|

∫

B

|u(z) − uB| dm(z) <∞ , (2.5)

where the supremum is taken over all discs B in D and

uB =
1

|B|

∫

B

u(z) dm(z) .

We write u ∈ BMOloc(D) if u ∈ BMO(U) for every relatively compact
subdomain U of D (we also write BMO or BMOloc if it is clear from the
context what D is).

The class BMO was introduced by John and Nirenberg (1961) in the
paper [21] and soon became an important concept in harmonic analysis,
partial differential equations and related areas, see e.g. [18] and [34].

A function ϕ in BMO is said to have vanishing mean oscillation,
abbr. ϕ ∈ VMO, if the supremum in (2.5) taken over all balls B in
D with |B| < ε converges to 0 as ε → 0. VMO has been introduced
by Sarason in [44]. There are a number of papers devoted to the study
of partial differential equations with coefficients of the class VMO, see
e.g. [10, 20, 28, 30, 31] and [32].

Remark 1. Note that W 1,2 (D) ⊂ VMO (D) , see e.g. [9].

Following [19], we say that a function ϕ : D → R has finite mean

oscillation at a point z0 ∈ D, abbr. ϕ ∈ FMO(z0), if

lim
ε→0

−

∫

B(z0,ε)
|ϕ(z) − ϕ̃ε(z0)| dm(z) <∞ , (2.6)
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where

ϕ̃ε(z0) = −

∫

B(z0,ε)
ϕ(z) dm(z) (2.7)

is the mean value of the function ϕ(z) over the disk B(z0, ε) := {z ∈
C : |z − z0| < ε}. Note that the condition (2.6) includes the assumption
that ϕ is integrable in some neighborhood of the point z0. We say also
that a function ϕ : D → R is of finite mean oscillation in D, abbr.
ϕ ∈ FMO(D) or simply ϕ ∈ FMO, if ϕ ∈ FMO(z0) for all points z0 ∈ D.
We write ϕ ∈ FMO(D) if ϕ is given in a domain G in C such that D ⊂ G
and ϕ ∈ FMO(G).

The following statement is obvious by the triangle inequality.

Proposition 1. If, for a collection of numbers ϕε ∈ R, ε ∈ (0, ε0],

lim
ε→0

−

∫

B(z0,ε)
|ϕ(z) − ϕε| dm(z) <∞ , (2.8)

then ϕ is of finite mean oscillation at z0.

In particular, choosing here ϕε ≡ 0, ε ∈ (0, ε0] in Proposition 1, we
obtain the following.

Corollary 2. If, for a point z0 ∈ D,

lim
ε→0

−

∫

B(z0,ε)
|ϕ(z)| dm(z) <∞ , (2.9)

then ϕ has finite mean oscillation at z0.

Recall that a point z0 ∈ D is called a Lebesgue point of a function
ϕ : D → R if ϕ is integrable in a neighborhood of z0 and

lim
ε→0

−

∫

B(z0,ε)
|ϕ(z) − ϕ(z0)| dm(z) = 0 . (2.10)

It is known that, almost every point in D is a Lebesgue point for every
function ϕ ∈ L1(D). Thus, we have by Proposition 1 the next corollary.

Corollary 3. Every locally integrable function ϕ : D → R has a
finite mean oscillation at almost every point in D.

Remark 2. Note that the function ϕ(z) = log (1/|z|) belongs to
BMO in the unit disk ∆, see, e.g., [34], p. 5, and hence also to FMO.
However, ϕ̃ε(0) → ∞ as ε → 0, showing that condition (2.9) is only
sufficient but not necessary for a function ϕ to be of finite mean oscillation
at z0. Clearly, BMO(D) ⊂ BMOloc(D) ⊂ FMO(D) and as well-known
BMOloc ⊂ Lploc for all p ∈ [1,∞), see, e.g., [21] or [34]. However, FMO
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is not a subclass of Lploc for any p > 1 but only of L1
loc. Thus, the class

FMO is much more wider than BMOloc.

Versions of the next lemma has been first proved for the class BMO
in [37]. For the FMO case, see the papers [1,19,39,40] and the monographs
[15] and [27].

Lemma 2. Let D be a domain in C and let ϕ : D → R be a non-
negative function of the class FMO(z0) for some z0 ∈ D. Then

∫

ε<|z−z0|<ε0

ϕ(z) dm(z)
(
|z − z0| log

1
|z−z0|

)2 = O

(
log log

1

ε

)
as ε→ 0 (2.11)

for some ε0 ∈ (0, δ0) where δ0 = min(e−e, d0), d0 = sup
z∈D

|z − z0|.

The following statement will be also useful later on, see e.g. Theorem
3.2 in [42].

Proposition 2. Let Q : D → [0,∞] be a measurable function such
that ∫

D

Φ(Q(z)) dm(z) <∞ (2.12)

where Φ : [0,∞] → [0,∞] is a non-decreasing convex function such that

∞∫

δ

dτ

τΦ−1(τ)
= ∞ (2.13)

for some δ > Φ(+0). Then

1∫

0

dr

rq(r)
= ∞ (2.14)

where q(r) is the average of the function Q(z) over the circle |z| = r.

Here we use the following notions of the inverse function for monotone
functions. Namely, for every non-decreasing function Φ : [0,∞] → [0,∞]
the inverse function Φ−1 : [0,∞] → [0,∞] can be well-defined by setting

Φ−1(τ) := inf
Φ(t)≥τ

t (2.15)

Here inf is equal to ∞ if the set of t ∈ [0,∞] such that Φ(t) ≥ τ is empty.
Note that the function Φ−1 is non-decreasing, too.
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It is also evident immediately by the definition that Φ−1(Φ(t)) ≤ t
for all t ∈ [0,∞] with the equality except intervals of constancy of the
function Φ(t).

Recall connections between integral conditions, see e.g. Theorem 2.5
in [42].

Remark 3. Let Φ : [0,∞] → [0,∞] be a non-decreasing function
and set

H(t) = log Φ(t) . (2.16)

Then the equality
∞∫

∆

H ′(t)
dt

t
= ∞, (2.17)

implies the equality
∞∫

∆

dH(t)

t
= ∞ , (2.18)

and (2.18) is equivalent to

∞∫

∆

H(t)
dt

t2
= ∞ (2.19)

for some ∆ > 0, and (2.19) is equivalent to each of the equalities

δ∗∫

0

H

(
1

t

)
dt = ∞ (2.20)

for some δ∗ > 0,
∞∫

∆∗

dη

H−1(η)
= ∞ (2.21)

for some ∆∗ > H(+0) and to (2.13) for some δ > Φ(+0).

Moreover, (2.17) is equivalent to (2.18) and to hence (2.17)–(2.21) as
well as to (2.13) are equivalent to each other if Φ is in addition absolutely
continuous. In particular, all the given conditions are equivalent if Φ is
convex and non-decreasing.

Note that the integral in (2.18) is understood as the Lebesgue–Stieltjes
integral and the integrals in (2.17) and (2.19)–(2.21) as the ordinary
Lebesgue integrals. It is necessary to give one more explanation. From
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the right hand sides in the conditions (2.17)–(2.21) we have in mind +∞.
If Φ(t) = 0 for t ∈ [0, t∗, then H(t) = −∞ for t ∈ [0, t∗] and we complete
the definition H ′(t) = 0 for t ∈ [0, t∗]. Note, the conditions (2.18) and
(2.19) exclude that t∗ belongs to the interval of integrability because in
the contrary case the left hand sides in (2.18) and (2.19) are either equal
to −∞ or indeterminate. Hence we may assume in (2.17)–(2.20) that
δ > t0, correspondingly, ∆ < 1/t0 where t0 := sup

Φ(t)=0
t, and set t0 = 0 if

Φ(0) > 0. The most interesting condition (2.19) can be written in the
form:

∞∫

∆

log Φ(t)
dt

t2
= +∞ for some ∆ > 0 . (2.22)

3. The Dirichlet problem in simply connected domains

Recall that a mapping f : D → C is called discrete if the preimage
f−1(y) consists of isolated points for every y ∈ C, and open if f maps
every open set U ⊆ D onto an open set in C. If ϕ(ζ) 6≡ const, then
the regular solution of the Dirichlet problem (1.5) for the Beltrami
equation (1.1) is a continuous, discrete and open mapping f : D → C of
the Sobolev class W 1,1

loc with its Jacobian Jf (z) = |fz|
2 − |fz̄|

2 6= 0 a.e.
satisfying (1.1) a.e. and the condition (1.5). The regular solution of such
a problem with ϕ(ζ) ≡ c, ζ ∈ ∂D, for the Beltrami equation (1.1) is the
function f(z) ≡ c, z ∈ D.

In this section, we prove the existence of a regular solution to the
Dirichlet problem (1.5) for every continuous function ϕ : ∂D → R un-
der some appropriate conditions on µ(z) in an arbitrary bounded simply
connected domain D. Moreover, we show that every such solution can be
represented as a composition of a regular homeomorphic solution of the
Beltrami equation (1.1) with hydrodynamic normalization at the infinity
and a holomorphic solution of the corresponding Dirichlet problem asso-
ciated with it. The main criteria are formulated in terms of the tangent
dilatation KT

µ (z, z0).

We assume further that the dilatations KT
µ (z, z0) and Kµ(z) are ex-

tended by 1 outside of the domain D.

Lemma 4. Let D be a bounded simply connected domain in C. Sup-
pose that µ : D → C is a measurable function with |µ(z)| < 1 a.e.,
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Kµ ∈ L1(D) and

∫

ε<|z−z0|<ε0

KT
µ (z, z0) ·ψ

2
z0,ε(|z− z0|) dm(z) = o(I2z0(ε)) as ε→ 0 ∀ z0 ∈ D

(3.1)
for some ε0 = ε(z0) > 0 and a family of measurable functions ψz0,ε :
(0, ε0) → (0,∞) with

Iz0(ε) : =

ε0∫

ε

ψz0,ε(t) dt <∞ ∀ ε ∈ (0, ε0) . (3.2)

Then the Beltrami equation (1.1) has a regular solution f of the Dirichlet
problem (1.5) in D for each continuous function ϕ : ∂D → R.

Moreover, such a solution f can be represented as the composition

f = h ◦ g , g(z) = z + o(1) as z → ∞ , (3.3)

where g : C → C is a regular homeomorphic solution of the Beltrami
equation (1.1) in C with µ extended by zero outside of D and h : D∗ → C,
D∗ := g(D), is a holomorphic solution of the Dirichlet problem

lim
ξ→ζ

Reh(ξ) = ϕ∗(ζ) ∀ ζ ∈ ∂D∗ , where ϕ∗ := ϕ ◦ g−1. (3.4)

Proof. Indeed, by Lemma 1 there is a regular homeomorphic solution
with hydrodynamic normalization g(z) := z + o(1) as z → ∞ of the
Beltrami equation (1.1) in C with µ extended by zero outside of D.
Note that D∗ := g(D) is also a simply connected domain in C with no
boundary component degenerated to a single point because of g : C → C

is a homeomorphism. Consequently, by Theorem 4.2.1 and Corollary
4.1.8 in [33] there is a unique harmonic function u : D∗ → R that satisfies
the Dirichlet boundary condition

lim
ξ→ζ

u(ξ) := ϕ∗(ζ) ∀ ζ ∈ ∂D∗ , where ϕ∗ := ϕ ◦ g−1. (3.5)

On the other hand, there is a conjugate harmonic function v : D∗ → R

such that h := u+ iv : D∗ → C forms a holomorphic function because of
the domain D∗ is simply connected, see e.g. arguments in the beginning
of the book [22]. Thus, the function f := h ◦ g gives the desired solution
of the Dirichlet problem (1.5) in D for the Beltrami equation (1.1).
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Remark 4. Note that if the family of the functions ψz0,ε(t) ≡ ψz0(t)
is independent on the parameter ε, then the condition (3.1) implies that
Iz0(ε) → ∞ as ε → 0. This follows immediately from arguments by
contradiction, apply for it (1.4) and the condition Kµ ∈ L1(D). Note
also that (3.1) holds, in particular, if, for some ε0 = ε(z0),

∫

|z−z0|<ε0

KT
µ (z, z0) · ψ

2
z0(|z − z0|) dm(z) <∞ ∀ z0 ∈ D (3.6)

and Iz0(ε) → ∞ as ε→ 0. In other words, for the solvability of the Dirich-
let problem (1.5) in D for the Beltrami equation (1.1) for all continuous
boundary functions ϕ, it is sufficient that the integral in (3.6) converges
for some nonnegative function ψz0(t) that is locally integrable over (0, ε0]
but has a nonintegrable singularity at 0. The functions logλ(e/|z − z0|),
λ ∈ (0, 1), z ∈ D, z0 ∈ D, and ψ(t) = 1/(t log(e/t)), t ∈ (0, 1), show
that the condition (3.6) is compatible with the condition Iz0(ε) → ∞
as ε → 0. Furthermore, the condition (3.1) shows that it is sufficient
for the solvability of the Dirichlet problem even if the integral in (3.6) is
divergent in a controlled way.

Choosing ψ(t) = 1/ (t log (1/t)) in Lemma 4, we obtain by Lemma 2
the following result.

Theorem 1. Let D be a bounded simply connected domain in C

and µ : D → C be a measurable function with |µ(z)| < 1 a.e. and
Kµ ∈ L1(D). Suppose that KT

µ (z, z0) 6 Qz0(z) a.e. in Uz0 for every

point z0 ∈ D, a neighborhood Uz0 of z0 and a function Qz0 : Uz0 → [0,∞]
in the class FMO(z0). Then the Beltrami equation (1.1) has a regular
solution of the Dirichlet problem (1.5) in D with the representation (3.3)
for each continuous function ϕ : ∂D → R.

In particular, by Proposition 1 the conclusion of Theorem 1 holds if
every point z0 ∈ D is the Lebesgue point of the function Qz0 .

By Corollary 2 we obtain the following nice consequence of Theorem
1, too.

Corollary 4. Let D be a bounded simply connected domain in C and
µ : D → C be a measurable function with |µ(z)| < 1 a.e., Kµ ∈ L1(D)
and

lim
ε→0

−

∫

B(z0,ε)
KT
µ (z, z0) dm(z) <∞ ∀ z0 ∈ D . (3.7)

Then the Beltrami equation (1.1) has a regular solution of the Dirichlet
problem (1.5) in D with the representation (3.3) for each continuous
function ϕ : ∂D → R.
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Since KT
µ (z, z0) 6 Kµ(z) for all z and z0 ∈ C, we also obtain the

following consequences of Theorem 1.

Corollary 5. Let D be a bounded simply connected domain in C and
µ : D → C be a measurable function with |µ(z)| < 1 a.e. and Kµ ∈ L1(D)
have a majorant Q : C → [1,∞) in the class BMOloc. Then the Beltrami
equation (1.1) has a regular solution of the Dirichlet problem (1.5) in D
with the representation (3.3) for each continuous function ϕ : ∂D → R.

Remark 5. In particular, the conclusion of Corollary 5 holds if
Q ∈ W1,2

loc because W 1,2
loc ⊂ VMOloc, see e.g. [9].

Corollary 6. Let D be a bounded simply connected domain in C and
µ : D → C be a measurable function with |µ(z)| < 1 and Kµ(z) 6 Q(z)
a.e. in D with a function Q in the class FMO(D). Then the Beltrami
equation (1.1) has a regular solution of the Dirichlet problem (1.5) in D
with the representation (3.3) for each continuous function ϕ : ∂D → R.

Similarly, choosing in Lemma 4 the function ψ(t) = 1/t, we come to
the next statement.

Theorem 2. Let D be a bounded simply connected domain in C

and µ : D → C be a measurable function with |µ(z)| < 1 a.e. and
Kµ ∈ L1(D). Suppose that

∫

ε<|z−z0|<ε0

KT
µ (z, z0)

dm(z)

|z − z0|2
= o

([
log

1

ε

]2)
as ε→ 0 ∀ z0 ∈ D (3.8)

for some ε0 = ε(z0) > 0. Then Beltrami equation (1.1) has a regular
solution of the Dirichlet problem (1.5) in D with the representation (3.3)
for each continuous function ϕ : ∂D → R.

Remark 6. Choosing in Lemma 4 the function ψ(t) = 1/(t log 1/t)
instead of ψ(t) = 1/t, we are able to replace (3.8) by

∫

ε<|z−z0|<ε0

KT
µ (z, z0) dm(z)

(
|z − z0| log

1
|z−z0|

)2 = o

([
log log

1

ε

]2)
(3.9)

In general, we are able to give here the whole scale of the corresponding
conditions in log using functions ψ(t) of the form 1/(t log 1/t · log log 1/t ·
. . . · log . . . log 1/t).

Choosing in Lemma 4 the functional parameter ψz0,ε(t) ≡ ψz0(t) : =
1/[tkTµ (z0, t)], where kTµ (z0, r) is the integral mean of KT

µ (z, z0) over the
circle S(z0, r) := {z ∈ C : |z − z0| = r}, we obtain one more important
conclusion.
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Theorem 3. Let D be a bounded simply connected domain in C

and µ : D → C be a measurable function with |µ(z)| < 1 a.e. and
Kµ ∈ L1(D). Suppose that

ε0∫

0

dr

rkTµ (z0, r)
= ∞ ∀ z0 ∈ D (3.10)

for some ε0 = ε(z0) > 0. Then Beltrami equation (1.1) has a regular
solution of the Dirichlet problem (1.5) in D with the representation (3.3)
for each continuous function ϕ : ∂D → R.

Corollary 7. Let D be a bounded simply connected domain in C and
µ : D → C be a measurable function with |µ(z)| < 1 a.e., Kµ ∈ L1(D)
and

kTµ (z0, ε) = O

(
log

1

ε

)
as ε→ 0 ∀ z0 ∈ D . (3.11)

Then the Beltrami equation (1.1) has a regular solution of the Dirichlet
problem (1.5) in D with the representation (3.3) for each continuous
function ϕ : ∂D → R.

Remark 7. In particular, the conclusion of Corollary 7 holds if

KT
µ (z, z0) = O

(
log

1

|z − z0|

)
as z → z0 ∀ z0 ∈ D . (3.12)

Moreover, the condition (3.11) can be replaced by the whole series of
more weak conditions

kTµ (z0, ε) = O

([
log

1

ε
· log log

1

ε
· . . . · log . . . log

1

ε

])
∀ z0 ∈ D .

(3.13)

Combining Theorems 3, Proposition 2 and Remark 3, we obtain the
following result.

Theorem 4. Let D be a bounded simply connected domain in C

and µ : D → C be a measurable function with |µ(z)| < 1 a.e. and
Kµ ∈ L1(D). Suppose that

∫

Uz0

Φz0
(
KT
µ (z, z0)

)
dm(z) <∞ ∀ z0 ∈ D (3.14)
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for a neighborhood Uz0 of z0 and a convex non-decreasing function Φz0 :
[0,∞] → [0,∞] with

∞∫

∆(z0)

log Φz0(t)
dt

t2
= +∞ (3.15)

for some ∆(z0) > 0. Then Beltrami equation (1.1) has a regular solution
of the Dirichlet problem (1.5) in D with the representation (3.3) for each
continuous function ϕ : ∂D → R.

Corollary 8. Let D be a bounded simply connected domain in C and
µ : D → C be a measurable function with |µ(z)| < 1 a.e., Kµ ∈ L1(D)
and ∫

Uz0

eα(z0)K
T
µ (z,z0) dm(z) <∞ ∀ z0 ∈ D (3.16)

for some α(z0) > 0 and a neighborhood Uz0 of the point z0. Then the
Beltrami equation (1.1) has a regular solution of the Dirichlet problem
(1.5) in D with the representation (3.3) for each continuous function
ϕ : ∂D → R.

Since KT
µ (z, z0) 6 Kµ(z) for z and z0 ∈ C and z ∈ D, we also obtain

the following consequences of Theorem 4.

Corollary 9. Let D be a bounded simply connected domain in C

and µ : D → C be a measurable function with |µ(z)| < 1 a.e. and
Kµ ∈ L1(D). Suppose that

∫

D

Φ (Kµ(z)) dm(z) <∞ (3.17)

for a convex non-decreasing function Φ : [0,∞] → [0,∞] with

∞∫

δ

log Φ(t)
dt

t2
= +∞ (3.18)

for some δ > 0. Then Beltrami equation (1.1) has a regular solution of
the Dirichlet problem (1.5) in D with the representation (3.3) for each
continuous function ϕ : ∂D → R.

Corollary 10. Let D be a bounded simply connected domain in C

and µ : D → C be a measurable function with |µ(z)| < 1 a.e. and, for
some α > 0, ∫

D

eαKµ(z) dm(z) < ∞ . (3.19)
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Then the Beltrami equation (1.1) has a regular solution of the Dirichlet
problem (1.5) in D with the representation (3.3) for each continuous
function ϕ : ∂D → R.

Remark 8. By the Stoilow theorem, see e.g. [47], a regular solution
f of the Dirichlet problem (1.5) in D for the Beltrami equation (1.1)
with Kµ ∈ L1

loc(D) can be represented in the form f = h ◦ F where h
is a holomorphic function and F is a homeomorphic regular solution of
(1.1) in the class W 1,1

loc . Thus, by Theorem 5.1 in [42] the condition (3.18)
is not only sufficient but also necessary to have a regular solution of the
Dirichlet problem (1.5) in D for arbitrary Beltrami equations (1.1) with
the integral constraints (3.17) for all continuous functions ϕ : ∂D → R,
see also Remark 3.

4. On the Dirichlet problem in general domains

In this section we obtain criteria for the existence of multi-valued
solutions f of the Dirichlet problem to the Beltrami equations in the spirit
of the theory of multi-valued analytic functions in arbitrary bounded
domains D in C with no boundary component degenerated to a single
point. Simple examples show that such domains form the most wide class
of domains for which the problem is always solvable for any continuous
boundary functions.

We say that a discrete open mapping f : B(z0, ε0) → C, where
B(z0, ε0) ⊆ D, is a local regular solution of the equation (1.1)
if f ∈ W 1,1

loc , Jf (z) 6= 0 and f satisfies (1.1) a.e. in B(z0, ε0). The local
regular solutions f0 : B(z0, ε0) → C and f∗ : B(z∗, ε∗) → C of the equa-
tion (1.1) will be called extension of each to other if there is a finite chain
of such solutions fi : B(zi, εi) → C, i = 1, . . . ,m, such that f1 = f0,
fm = f∗ and fi(z) ≡ fi+1(z) for z ∈ Ei := B(zi, εi) ∩ B(zi+1, εi+1) 6= ∅,
i = 1, . . . ,m− 1.

A collection of local regular solutions fj : B(zj , εj) → C, j ∈ J , will
be called a multi-valued solution of the equation (1.1) in D if the disks
B(zj, εj) cover the whole domain D and fj are extensions of each to other
through the collection and the collection is maximal by inclusion.

A multi-valued solution of the equation (1.1) will be called a multi-

valued solution of the Dirichlet problem (1.5) in D if u(z) =
Re f(z) = Re fj(z), z ∈ B(zj , εj), j ∈ J , is a single-valued function
in D satisfying the condition lim

z∈ζ
u(z) = ϕ(ζ) for all ζ → ∂D.

As it was before, we assume further that the dilatations KT
µ (z, z0)

and Kµ(z) are extended by 1 outside of the domain D.
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Lemma 5. Let D be a bounded domain in C with no boundary
component degenerated to a single point, µ : D → C be a measurable
function with |µ(z)| < 1 a.e., Kµ ∈ L1(D) and

∫

ε<|z−z0|<ε0

KT
µ (z, z0) ·ψ

2
z0,ε(|z− z0|) dm(z) = o(I2z0(ε)) as ε→ 0 ∀ z0 ∈ D

(4.1)
for some ε0 = ε(z0) > 0 and a family of measurable functions ψz0,ε :
(0, ε0) → (0,∞) with

Iz0(ε) : =

ε0∫

ε

ψz0,ε(t) dt <∞ ∀ ε ∈ (0, ε0) . (4.2)

Then the Beltrami equation (1.1) has a multi-valued solution f of the
Dirichlet problem (1.5) in D in D for each continuous function ϕ : ∂D →
R.

Moreover, such a solution f can be represented as the composition

f = A ◦ g , g(z) = z + o(1) as z → ∞ , (4.3)

where g : C → C is a regular homeomorphic solution of the Beltrami
equation (1.1) in C with µ extended by zero outside of D and A : D∗ →
C, D∗ := g(D), is a multi-valued analytic function with a single-valued
harmonic function ReA satisfying the Dirichlet condition

lim
ξ→ζ

ReA(ξ) = ϕ∗(ζ) ∀ ζ ∈ ∂D∗ , where ϕ∗ := ϕ ◦ g−1. (4.4)

Proof. Indeed, by Lemma 1 there is a regular homeomorphic solution
with hydrodynamic normalization g(z) := z + o(1) as z → ∞ of the
Beltrami equation (1.1) in C with µ extended by zero outside of D.
Note that D∗ := g(D) is also a simply connected domain in C with no
boundary component degenerated to a single point because of g : C → C

is a homeomorphism. Consequently, by Theorem 4.2.2 and Corollary
4.1.8 in [33] there is a unique harmonic function u : D∗ → R that satisfies
the Dirichlet boundary condition

lim
ξ→ζ

u(ξ) := ϕ∗(ζ) ∀ ζ ∈ ∂D∗ , where ϕ∗ := ϕ ◦ g−1. (4.5)

Let B0 = B(z0, r0) is a disk in the domain D. Then B0 = g(B0) is
a simply connected subdomain of the domain D∗ := g(D) where there is
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a conjugate function v determined up to an additive constant such that
h = u+ iv is a single–valued analytic function. Let us denote through h0
the holomorphic function corresponding to the choice of such a harmonic
function v0 in B0 with the normalization v0(g(z0)) = 0. Thereby we have
determined the initial element of a multi-valued analytic function. The
function h0 can be extended to, generally speaking multi-valued, analytic
function A along any path in D∗ because u is given in the whole domain
D∗. Thus, f = A ◦ g is a desired multi-valued solution of the Dirichlet
problem (1.5) in D for Beltrami equation (1.1).

Remark 9. Arguing perfectly as in the last section, one can obtain
the corresponding similar criteria in terms of the dilatations Kµ and KT

µ

that, however, we do not formulate in the explicit form because they are
the same.

5. Applications to the potential theory

The results of the last section seem too abstract, and therefore al-
legedly useless. However, we give here some their applications to one of
the main equations of the mathematical physics in strongly anisotropic
and inhomogeneous media associated with the degenerate Beltrami equa-
tion.

Namely, in this section we obtain criteria for the existence and repre-
sentation of solutions u of the Dirichlet problem to the elliptic equations
of the form

divA∇u = 0 (5.1)

with measurable matrix-valued function A(z) = {aij(z)} in arbitrary
bounded domains D in C with no boundary component degenerated to
a single point. Our example in the end of the paper shows that such
domains form the most wide class of domains for which the Dirichlet
problem will be always solvable for each continuous boundary date ϕ :
∂D → R at least for harmonic functions.

A continuous function u : D → R is called A−harmonic function,
see e.g. [18], if u satisfies (5.1) in the sense of distributions, i.e., if u ∈
W 1,1

loc (D) and

∫

D
〈A(z)∇u(z),∇ψ(z)〉 dm(z) = 0 ∀ ψ ∈ C∞

0 (D) , (5.2)

where C∞
0 (D) denotes the collection of all infinitely differentiable func-

tions ψ : D → R with compact support in D, 〈a, b〉 means the scalar
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product of vectors a and b in R
2, and dm(z) corresponds to the Lebesgue

measure in the plane C.
In this connection, let us describe the relevance of the Beltrami equa-

tions (1.1) and the equations (5.1). First of all, recall that the Hodge

operator H is the counterclockwise rotation by the angle π/2 in R
2:

H =

[
0 −1
1 0

]
: R

2 → R
2 , H

2 = − I , (5.3)

where I denotes the unit 2 × 2 matrix. Thus, the matrix H plays the
role of an imaginary unit in the space of two-dimensional square matrices
with real-valued elements.

By Theorem 16.1.6 in [3], if f is a W 1,1
loc solution of the Beltrami

equation (1.1), then the functions u := Ref and v := Imf satisfy the
equation:

∇ v(z) = HA(z)∇u(z) , (5.4)

where the matrix-valued function A(z) is calculated through µ(z) in the
following way:

A =

[
a11 a12
a21 a22

]
:=

[
|1−µ|2

1−|µ|2
−2Imµ
1−|µ|2

−2Imµ
1−|µ|2

|1+µ|2

1−|µ|2

]
. (5.5)

The function v is called the A−harmonic conjugate of u or sometimes
a stream function of the potential u. Note that by (5.3) the equation
(5.4) is equivalent to the equation

A(z)∇u(z) = −H∇ v(z) . (5.6)

As known, the curl of any gradient field is zero in the sense of distributions
and the Hodge operator H transforms curl-free fields into divergence-free
fields, and vice versa, see e.g. 16.1.3 in [3]. Hence (5.6) implies (5.1).

We see from (5.5) that the matrix A is symmetric and it is clear
by elementary calculations that detA = 1. Moreover, since |µ(z)| < 1
a.e., from ellipticity of this matrix A follows that det (I + A) > 0 a.e.,
which in terms of its elements means that (1 + a11)(1 + a22) > a12a21
a.e. Further S

2×2 denotes the collection of all such matrices. Thus, by
Theorem 16.1.6 in [3], the Beltrami equation is the complex form of one
of the main equations of mathematical physics, the potential equation
(5.1) with the matrix-valued coefficient A in the class S

2×2.
Note that the matrix identities in (5.5) can be converted a.e. to

express the coefficient µ(z) of the Beltrami equation (1.1) through the
elements of the matrices A(z):

µ = µA := −
a11 − a22 + i(a12 + a21)

2 + a11 + a22
. (5.7)
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Thus, we obtain the latter expression as a criterion for the solvability of
the Dirichlet problem

lim
z→ζ

u(z) = ϕ(ζ) ∀ ζ ∈ ∂D (5.8)

to the potential equation (5.1). Namely, by the above arguments in this
section as well as Lemma 5 we come to the following general criteria.

Lemma 6. Let D be a bounded domain in C with no boundary
component degenerated to a single point, A : D → S

2×2 be a measurable
function in D with KµA ∈ L1(D) and

∫

ε<|z−z0|<ε0

KT
µA(z, z0) ·ψ

2
z0,ε(|z−z0|) dm(z) = o(I2z0(ε)) as ε→ 0 ∀ z0 ∈ D

(5.9)
for some ε0 = ε(z0) > 0 and a family of measurable functions ψz0,ε :
(0, ε0) → (0,∞) with

Iz0(ε) : =

ε0∫

ε

ψz0,ε(t) dt <∞ ∀ ε ∈ (0, ε0) . (5.10)

Then the potential equation (5.1) has A−harmonic solutions u of the
Dirichlet problem (5.8) in D for each continuous function ϕ : ∂D → R.

Moreover, such a solution u can be represented as the composition

u = H ◦ g , g(z) = z + o(1) as z → ∞ , (5.11)

where g : C → C is a regular homeomorphic solution of the Beltrami
equation (1.1) in C with µA extended by zero outside of D and H : D∗ →
C, D∗ := g(D), is a unique harmonic function satisfying the Dirichlet
condition

lim
ξ→ζ

H(ξ) = ϕ∗(ζ) ∀ ζ ∈ ∂D∗ , where ϕ∗ := ϕ ◦ g−1. (5.12)

As it was before, we assume here that the dilatations KT
µA(z, z0) and

KµA(z) are extended by 1 outside of the domain D.

Remark 10. Note that if the family of the functions ψz0,ε(t) ≡ ψz0(t)
is independent on the parameter ε, then the condition (5.9) implies that
Iz0(ε) → ∞ as ε → 0. This follows immediately from arguments by
contradiction, apply for it (1.4) and the condition KµA ∈ L1(D). Note
also that (5.9) holds, in particular, if, for some ε0 = ε(z0),

∫

|z−z0|<ε0

KT
µA

(z, z0) · ψ
2
z0(|z − z0|) dm(z) <∞ ∀ z0 ∈ D (5.13)
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and Iz0(ε) → ∞ as ε → 0. In other words, for the existence of A−har-
monic solutions of the Dirichlet problem (5.8) in D to the potential equa-
tion (5.1) with each continuous boundary functions ϕ, it is sufficient
that the integral in (5.13) converges for some nonnegative function ψz0(t)
that is locally integrable over (0, ε0] but has a nonintegrable singular-
ity at 0. The functions logλ(e/|z − z0|), λ ∈ (0, 1), z ∈ D, z0 ∈ D,
and ψ(t) = 1/(t log(e/t)), t ∈ (0, 1), show that the condition (5.13) is
compatible with the condition Iz0(ε) → ∞ as ε → 0. Furthermore, the
condition (5.9) in Lemma 6 shows that it is sufficient for the existence of
A−harmonic solutions of the Dirichlet problem (5.8) in D to the poten-
tial equation (5.1) even that the integral in (5.13) to be divergent in a
controlled way.

Arguing similarly to Section 3, we derive from Lemma 6 the next
series of results.

For instance, choosing ψ(t) = 1/ (t log (1/t)) in Lemma 6, we obtain
by Lemma 2 the following.

Theorem 5. Let D be a bounded domain in C with no boundary com-
ponent degenerated to a single point and A : D → S

2×2 be a measurable
function in D with KµA ∈ L1(D). Suppose that KT

µA
(z, z0) 6 Qz0(z) a.e.

in Uz0 for every point z0 ∈ D, a neighborhood Uz0 of z0 and a function
Qz0 : Uz0 → [0,∞] in the class FMO(z0). Then the potential equation
(5.1) has A−harmonic solutions of the Dirichlet problem (5.8) in D with
the representation (5.11) for each continuous function ϕ : ∂D → R.

In particular, by Proposition 1 the conclusion of Theorem 5 holds if
every point z0 ∈ D is the Lebesgue point of a suitable dominant Qz0 .

By Corollary 2 we obtain the following nice consequence of Theorem
5, too.

Corollary 11. Let D be a bounded domain in C with no bound-
ary component degenerated to a single point and A : D → S

2×2 be a
measurable function in D with KµA ∈ L1(D) and

lim
ε→0

−

∫

B(z0,ε)
KT
µA

(z, z0) dm(z) <∞ ∀ z0 ∈ D . (5.14)

Then the potential equation (5.1) has A−harmonic solutions of the Diri-
chlet problem (5.8) in D with the representation (5.11) for each contin-
uous function ϕ : ∂D → R.

Since KT
µA(z, z0) 6 KµA(z) for all z and z0 ∈ C, we also obtain the

following consequences of Theorem 5.
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Corollary 12. Let D be a bounded domain in C with no boundary
component degenerated to a single point, A : D → S

2×2 be a measurable
function in D and KµA have a dominant Q : C → [1,∞) in the class
BMOloc. Then the potential equation (5.1) has A−harmonic solutions of
the Dirichlet problem (5.8) in D with the representation (5.11) for each
continuous function ϕ : ∂D → R.

Remark 11. In particular, the conclusion of Corollary 12 holds if
Q ∈ W1,2

loc because W 1,2
loc ⊂ VMOloc, see [9].

Corollary 13. Let D be a bounded domain in C with no boundary
component degenerated to a single point, A : D → S

2×2 be a measurable
function in D and KµA(z) 6 Q(z) a.e. in D with a function Q in the
class FMO(D). Then the potential equation (5.1) has A−harmonic so-
lutions of the Dirichlet problem (5.8) in D with the representation (5.11)
for each continuous function ϕ : ∂D → R.

Similarly, choosing in Lemma 6 the function ψ(t) = 1/t, we come to
the next statement.

Theorem 6. Let D be a bounded domain in C with no boundary
component degenerated to a single point, A : D → S

2×2 be a measurable
function in D with KµA ∈ L1(D). Suppose that

∫

ε<|z−z0|<ε0

KT
µA(z, z0)

dm(z)

|z − z0|2
= o

([
log

1

ε

]2)
as ε→ 0 ∀ z0 ∈ D

(5.15)
for some ε0 = ε(z0) > 0. Then the potential equation (5.1) has A−har-
monic solutions of the Dirichlet problem (5.8) in D with representation
(5.11) for each continuous function ϕ : ∂D → R.

Remark 12. Choosing in Lemma 6 the function ψ(t) = 1/(t log 1/t)
instead of ψ(t) = 1/t, we are able to replace (5.15) by

∫

ε<|z−z0|<ε0

KT
µA(z, z0) dm(z)

(
|z − z0| log

1
|z−z0|

)2 = o

([
log log

1

ε

]2)
(5.16)

In general, we are able to give here the whole scale of the corresponding
conditions in log using functions ψ(t) of the form 1/(t log 1/t · log log 1/t ·
. . . · log . . . log 1/t).

Choosing in Lemma 6 the functional parameter ψz0,ε(t) ≡ ψz0(t) : =
1/[tkTµA(z0, t)], where kTµA(z0, r) is the integral mean of KT

µA(z, z0) over
the circle S(z0, r) := {z ∈ C : |z − z0| = r}, we obtain one more
important conclusion.
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Theorem 7. Let D be a bounded domain in C with no boundary
component degenerated to a single point, A : D → S

2×2 be a measurable
function in D with KµA ∈ L1(D). Suppose that

ε0∫

0

dr

rkTµA(z0, r)
= ∞ ∀ z0 ∈ D (5.17)

for some ε0 = ε(z0) > 0. Then the potential equation (5.1) has A−har-
monic solutions of the Dirichlet problem (5.8) in D with representation
(5.11) for each continuous function ϕ : ∂D → R.

Corollary 14. Let D be a bounded domain in C with no boundary
component degenerated to a single point, A : D → S

2×2 be a measurable
function in D with KµA ∈ L1(D) and

kTµA(z0, ε) = O

(
log

1

ε

)
as ε→ 0 ∀ z0 ∈ D . (5.18)

Then the potential equation (5.1) has A−harmonic solutions of the Diri-
chlet problem (5.8) in D with the representation (5.11) for each contin-
uous function ϕ : ∂D → R.

Remark 13. In particular, the conclusion of Corollary 14 holds if

KT
µA(z, z0) = O

(
log

1

|z − z0|

)
as z → z0 ∀ z0 ∈ D . (5.19)

Moreover, the condition (5.18) can be replaced by the whole series of
more weak conditions

kTµA(z0, ε) = O

([
log

1

ε
· log log

1

ε
· . . . · log . . . log

1

ε

])
∀ z0 ∈ D .

(5.20)

Combining Theorems 7, Proposition 2 and Remark 3, we obtain the
following result.

Theorem 8. Let D be a bounded domain in C with no boundary
component degenerated to a single point, A : D → S

2×2 be a measurable
function in D with KµA ∈ L1(D). Suppose that

∫

Uz0

Φz0
(
KT
µA(z, z0)

)
dm(z) <∞ ∀ z0 ∈ D (5.21)
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for a neighborhood Uz0 of z0 and a convex non-decreasing function Φz0 :
[0,∞] → [0,∞] with

∞∫

∆(z0)

log Φz0(t)
dt

t2
= +∞ (5.22)

for some ∆(z0) > 0. Then the potential equation (5.1) has A−harmonic
solutions of the Dirichlet problem (5.8) in D with representation (5.11)
for each continuous function ϕ : ∂D → R.

Corollary 15. Let D be a bounded domain in C with no boundary
component degenerated to a single point, A : D → S

2×2 be a measurable
function in D with KµA ∈ L1(D) and

∫

Uz0

eα(z0)K
T
µA

(z,z0) dm(z) <∞ ∀ z0 ∈ D (5.23)

for some α(z0) > 0 and a neighborhood Uz0 of the point z0. Then the po-
tential equation (5.1) has A−harmonic solutions of the Dirichlet problem
(5.8) in D with the representation (5.11) for each continuous function
ϕ : ∂D → R.

Since KT
µA(z, z0) 6 KµA(z) for z and z0 ∈ C and z ∈ D, we also

obtain the following consequences of Theorem 8.

Corollary 16. Let D be a bounded domain in C with no boundary
component degenerated to a single point, A : D → S

2×2 be a measurable
function in D with KµA ∈ L1(D). Suppose that

∫

D

Φ (KµA(z)) dm(z) <∞ (5.24)

for a convex non-decreasing function Φ : [0,∞] → [0,∞] with

∞∫

δ

log Φ(t)
dt

t2
= +∞ (5.25)

for some δ > 0. Then the potential equation (5.1) has A−harmonic so-
lutions of the Dirichlet problem (5.8) in D with the representation (5.11)
for each continuous function ϕ : ∂D → R.

Remark 14. By the Stoilow theorem, see e.g. [47], a multi-valued
solution f = u+ iv of the Dirichlet problem (5.8) in D for the Beltrami
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equation (1.1) withKµA ∈ L1
loc(D) can be represented in the form f = A◦

F where A is a multi-valued analytic function and F is a homeomorphic
solution of (1.1) with µ := µA in the class W 1,1

loc . Thus, by Theorem
5.1 in [42], see also Theorem 16.1.6 in [3], the condition (5.25) is not
only sufficient but also necessary to have A−harmonic solutions u of the
Dirichlet problem (5.8) in D to the potential equation (5.1) with the
integral constraints (5.24) for all continuous functions ϕ : ∂D → R, see
also Remark 3.

Corollary 17. Let D be a bounded domain in C with no boundary
component degenerated to a single point, A : D → S

2×2 be a measurable
function in D such that, for some α > 0,

∫

D

eαKµA (z) dm(z) < ∞ . (5.26)

Then the potential equation (5.1) has A−harmonic solutions of the Diri-
chlet problem (5.8) in D with the representation (5.11) for each contin-
uous function ϕ : ∂D → R.

Thus, we have a number of effective criteria for solvability of the
Dirichlet problem to the main equation (5.1) of the hydromechanics (fluid
mechanics) in strongly anisotropic and inhomogeneous media.

Let us emphasize, the request on domains to have no boundary com-
ponent degenerated to a single point is necessary. Indeed, consider the
punctured unit disk D0 := D\{0}. Setting ϕ(ζ) ≡ 1 on ∂D and ϕ(0) = 0,
we see that ϕ is continuous on ∂D0 = ∂D ∪ {0}. Let us assume that
there is a harmonic function u satisfying (5.8) with the given ϕ. Then
u is bounded by the maximum principle for harmonic functions and by
the classic Cauchy–Riemann theorem, see also Theorem V.4.2 in [29],
the extended u is harmonic in D. Thus, by contradiction with the Mean-
Value-Property we disprove the above assumption, see e.g. Theorem 0.2.4
in [43].

In this connection, recall that a point p ∈ ∂D for a domain D in
R
n, n ≥ 2, is called a regular point if each solution of the Dirichlet

problem for the Laplace equation in D, whose Dirichlet boundary date
is continuous at p, is also continuous at p. The famous Wiener criterion
for regularity of a boundary point, see [50], that has been formulated in
terms of so-called barrier functions, generally speaking, has no satisfac-
tory geometric interpretation. However, there is a very simple geometric
criterion of regular points in the case of C. Namely, a point p ∈ ∂D is reg-
ular if p belongs to a component of ∂D that is not degenerated to a single
point, see Theorem 4.2.2 in [33]. The example in the last item shows that
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this condition is not only sufficient but also necessary for regularity of a
boundary point.

Thus, the results on the Dirichlet problem given in Section 5 were ob-
tained for A−harmonic functions in the most general admissible domains
D in C.
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