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Two coefficient conjectures for nonvanishing

Hardy functions, I

Samuel L. Krushkal

Abstract. There are two eminent still open conjectures for nonvanish-
ing holomorphic Hardy functions f(z) on the unit disk. The Hummel–
Scheinberg–Zalcman conjecture posed in 1977 extends Krzyz’s conjec-
ture of 1968 to Hp spaces with finite p > 1 and states that Taylor’s
coefficients of nonvanishing holomorphic functions f ∈ Hp with norm
‖f‖p ≤ 1 are sharply estimated by |cn| ≤ (2/e)1−1/p, with appropriate
extremal functions.

Both conjectures have been investigated by many authors; however
still remain open. The desired Krzyz’s estimate |cn| ≤ 2/e for f ∈ H∞

with ‖f‖∞ ≤ 1 was established only for the initial coefficients cn with
n ≤ 5 The only known results for the Hummel–Scheinberg–Zalcman
conjecture are that it is true for n = 1 and n = 2 as well as some results
for special subclasses of Hp.

We prove here that the Hummel–Scheinberg–Zalcman conjecture is
true for all spaces H2m with m ∈ N. In the limit as m → ∞, this also
provides the proof of Krzyz’s conjecture.

Our approach involves deep results from Teichmüller space theory,
especially the Bers isomorphism theorem for Teichmüller spaces of punc-
tured Riemann surfaces, and special quasiconformal deformations of
H2m functions.
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1. Introductory remarks and main results

1.1. There are two eminent still open conjectures for nonvanishing
holomorphic functions f(z) on the unit disk D = {z : |z| < 1} from the
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Hardy spaces Hp with 1 < p ≤ ∞. Recall that the norm in these spaces
is defined by

‖f‖p = sup
r<1

( 1

2π

2π∫

0

|f(reiθ)|pdθ
)1/p

for p <∞ and ‖f‖∞ coincides with L∞- norm of this function.

The Krzyz conjecture [18] of 1968 states that Taylor’s coefficients of

nonvanishing holomorphic functions f(z) =
∞∑
0
cnz

n ∈ H∞ with ‖f‖∞ ≤

1 are sharply estimated by |cn| ≤ 2/e, with equality only for the function
κ∞(zn), where

κ∞(z) = exp
(z − 1

z + 1

)
=

1

e
+

2

e
z −

2

3e
z3 + ...

(and its compositions with rotations about the origin).

Its deep generalization to spaces Hp with p > 1 is given by the
Hummel–Scheinberg–Zalcman conjecture posed in 1977, which states for
all nonvanishing f ∈ Hp with ‖f‖p ≤ 1 the sharp estimate

|cn| ≤ (2/e)1−1/p, (1)

and this bound is realized only by the functions ǫ2κn,p(ǫ1z), where |ǫ1| =
|ǫ2| = 1 and

κn,p(z) =
[(1 + zn)2

2

]1/p [
exp

zn − 1

zn + 1

]1−1/p
. (2)

Both conjectures have been investigated by many authors; however,
as was mentioned, still remain open. The desired Krzyz’s estimate |cn| ≤
2/e was established only for the initial coefficients cn with n ≤ 5 (see,
e.g., [12, 19, 21, 23, 25, 26] and the references cited there).

The only known results for the second conjecture are that the conjec-
ture is true for n = 1 (proved by Brown) and n = 2 (proved by Suffridge)
as well as some results for special subclasses of Hp, see [6, 7, 24]. Brown
also showed that (1) is true for arbitrary n ≥ 2, provided cm = 0 for all
m, 1 ≤ m < (n+ 1)/2.

The paper [3] provides some estimates for coefficients cn of Hp func-
tions, 1 ≤ p ≤ ∞, with ‖f‖p ≤ 1, whose values at the origin are fixed.

In the present paper, we consider the spaces Hp with p ≥ 2 and
establish that the Hummel–Scheinberg–Zalcman conjecture is true for all
even natural values of p.
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Theorem 1. The estimate (1) is valid for all spaces H2m, m ∈ N; that
is, for any nonvanishing function f ∈ H2m and any n > 1,

|cn| ≤ |κ′1,2m(0)| = (2/e)1−1/2m . (3)

The equality in (3) is attained only on the function f(z) = κn,2m(z) given
by (2) and its compositions with pre and post rotations about the origin.

On going to the limit as m → ∞ one obtains, as a consequence of
Theorem 1, that the coefficients of all nonvanishing functions f(z) =∑∞

0 cnz
n ∈ H∞ on the unit disk, with ‖f‖∞ ≤ 1 satisfy the inequality

|cn| ≤ inf{|cn(f)| : f ∈
⋂

m≥1

B0
1(H

2m)}

= inf{|cn(f)| : f ∈
⋂

p≥1

B0
1(H

p)} = 2/e
(4)

for all n > 1; here B0
1(H

2m) denotes the collection of nonvanishing func-
tions from the unit ball in H2m.

This estimate max |cn| = 2/e for f ∈ B0
1(H

∞) is sharp being realized
by the function κ∞(zn) and its compositions with rotations. Note that
the function κ∞(z) is the universal holomorphic covering map of the
punctured disk D \ {0} by D.

This proves the Krzyz conjecture. Some generalizations of this con-
jecture also can be proved in this way.

In fact the estimate (4) is valid on much broader set of functions,
because there exist unbounded nonvanishing holomorphic functions f(z)
on the unit disk which belong to all spaces Hp, p > 0. For example, one
can take the functions

fa(z) = log
a

1− z
with |a− 1| ≥ 2

(it is a slight modification of a known function which belongs to all Hp

with p > 0, see [20]).

1.2. To prove Theorem 1, we use a new approach to extremal coefficient
problems in geometric complex analysis recently applied by the author
in [16, 17] to univalent functions and their Schwarzian derivatives. This
approach involves a deep result from Teichmüller space theory given by
Bers’s isomorphism theorem for Teichmüller spaces of punctured Rie-
mann surfaces [5].

The aim of this paper is to extend this approach to holomorphic
functions of different types related to nonvanishing Hardy functions. We
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embed the balls Bρ(H
p) from Hp with center at the origin and sufficiently

small radii ρ ≤ ρp into the universal Teichmüller space, and regard the
functions f ∈ Bρ(H

p) as the Schwarzian derivatives of univalent functions
in the unit disk.

Another basic tool applied in the proof is given by special quasicon-
formal deformations of H2m functions preserving their L2m norm up to
a small distortion.

2. Digression to Teichmüller spaces

We briefly recall some needed results from Teichmüller space theory
in order to prove our Theorem; the details can be found, for example,
in [5, 10].

2.1. The universal Teichmüller space T = Teich(D) is the space of qua-
sisymmetric homeomorphisms of the unit circle S

1 factorized by Möbius
maps; all Teichmüller spaces have their isometric copies in T.

The canonical complex Banach structure on T is defined by factor-
ization of the ball of the Beltrami coefficients (or complex dilatations)

Belt(D)1 = {µ ∈ L∞(C) : µ|D∗ = 0, ‖µ‖ < 1},

vanishing on the complementary disk D
∗ = {z ∈ Ĉ = C∪{∞} : |z| > 1}.

The coefficients µ1, µ2 ∈ Belt(D)1 are called equivalent if the corre-
sponding quasiconformal maps wµ1 , wµ2 (solutions to the Beltrami equa-
tion ∂zw = µ∂zw with µ = µ1, µ2) coincide on the unit circle S

1 = ∂D∗

(hence, on D∗). Such µ and the corresponding maps wµ are called T-
equivalent. The equivalence classes [wµ]T are in one-to-one correspon-
dence with the Schwarzian derivatives

Sw(z) =

(
w′′(z)

w′(z)

)′

−
1

2

(
w′′(z)

w′(z)

)2

(w = wµ(z), z ∈ D
∗).

The chain rule for the Schwarzian derivatives yields

Sf1◦f (z) = (Sf1 ◦ f)f
′(z)2 + Sf (z);

in particular, for the Möbius (fractional linear) maps w = γ(z),

Sf1◦γ(z) = (Sf1 ◦ γ)γ
′(z)2, Sγ◦f (z) = Sf (z).

Note also that every solution w(z) of the Schwarzian equation Sw(z) =
ϕ(z) with a given holomorphic ϕ is the ratio η2/η1 of two independent
solutions of the linear equation

2η′′(z) + ϕ(z)η(z) = 0
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and vice versa.

For each univalent function w(z) on a simply connected hyperbolic
domain D ⊂ Ĉ, its Schwarzian derivative belongs to the complex Banach
space B(D) of hyperbolically bounded holomorphic functions on D with
the norm

‖ϕ‖B = sup
D
λ−2
D (z)|ϕ(z)|,

where λD(z)|dz| is the hyperbolic metric on D of Gaussian curvature −4;
hence ϕ(z) = O(z−4) as z → ∞ if ∞ ∈ D. In particular, for the unit
disk,

λD(z) = 1/(1 − |z|2).

The space B(D) is dual to the Bergman space A1(D), a subspace
of L1(D) formed by integrable holomorphic functions (quadratic differ-
entials ϕ(z)dz2 on D), since every linear functional l(ϕ) on A1(D) is
represented in the form

l(ϕ) = 〈ψ,ϕ〉D =

∫∫

D

λ−2
D (z)ψ(z)ϕ(z)dxdy (5)

with a uniquely determined ψ ∈ B(D).

The Schwarzians Swµ(z) with µ ∈ Belt(D)1 range over a bounded
domain in the space B = B(D∗). This domain models the space T. It
lies in the ball {‖ϕ‖B < 6} and contains the ball {‖ϕ‖B < 2}. In this
model, the Teichmüller spaces of all hyperbolic Riemann surfaces are
contained in T as its complex submanifolds.

The factorizing projection

φT(µ) = Swµ : Belt(D)1 → T

is a holomorphic map from L∞(D) to B, and in view of holomorphy,

‖Swµ1 − Swµ2‖B ≤ const ‖µ1 − µ2‖∞.

This map is a split submersion, which means that φT has local holomor-
phic sections (see, e.g., [10]).

Both equations Sw = ϕ and ∂zw = µ∂zw (on D
∗ and D, respectively)

determine their solutions up to a Möbius transformation of Ĉ. So ap-
propriate normalization of solution wµ(z) (for example, fixing the points
1, i,−1 or other three points on the unit circle), provides uniqueness of
solution of either equation, and moreover, then the values wµ(z0) at any
point z0 ∈ C \ {1, i,−1} and the Taylor coefficients b1, b2, . . . of wµ ∈ Σθ
depend holomorphically on µ ∈ Belt(D)1 and on Swµ ∈ T. Later we
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shall use another normalization which also insures the needed uniqueness
and holomorphy.

2.2. The points of Teichmüller space T1 = Teich(D∗) of the punctured
disk D∗ = D \ {0} are the classes [µ]T1 of T1-equivalent Beltrami co-
efficients µ ∈ Belt(D)1 so that the corresponding quasiconformal auto-
morphisms wµ of the unit disk coincide on both boundary components
(unit circle S

1 = {|z| = 1} and the puncture z = 0) and are homotopic on
D\{0}. This space can be endowed with a canonical complex structure of
a complex Banach manifold and embedded into T using uniformization.

Namely, the disk D∗ is conformally equivalent to the factor D/Γ, where
Γ is a cyclic parabolic Fuchsian group acting discontinuously on D and
D
∗. The functions µ ∈ L∞(D) are lifted to D as the Beltrami (−1, 1)-

measurable forms µ̃dz/dz in D with respect to Γ, i.e., via (µ̃ ◦ γ)γ′/γ′ =
µ̃, γ ∈ Γ, forming the Banach space L∞(D,Γ).

We extend these µ̃ by zero to D
∗ and consider the unit ball Belt(D,Γ)1

of L∞(D,Γ). Then the corresponding Schwarzians Swµ̃|D∗ belong to T.
Moreover, T1 is canonically isomorphic to the subspace T(Γ) = T∩B(Γ),
where B(Γ) consists of elements ϕ ∈ B satisfying (ϕ ◦ γ)(γ′)2 = ϕ in D

∗

for all γ ∈ Γ.
Due to the Bers isomorphism theorem, the space T1 is biholomorphi-

cally isomorphic to the Bers fiber space

F(T) = {(φT(µ), z) ∈ T× C : µ ∈ Belt(D)1, z ∈ wµ(D)}

over the universal space T with holomorphic projection π(ψ, z) = ψ
(see [5]).

This fiber space is a bounded hyperbolic domain in B × C and rep-
resents the collection of domains Dµ = wµ(D) as a holomorphic family
over the space T. For every z ∈ D, its orbit wµ(z) in T1 is a holomorphic
curve over T.

The indicated isomorphism between T1 and F(T) is induced by the
inclusion map j : D∗ →֒ D forgetting the puncture at the origin via

µ 7→ (Swµ1 , w
µ1(0)) with µ1 = j∗µ := (µ ◦ j0)j′0/j

′
0, (6)

where j0 is the lift of j to D.
By Koebe’s one-quarter theorem, for any univalent function W (z) =

z+b0+b1z
−1+. . . in D

∗, the boundary of domain W (D∗) is located in the
disk {|w−b0| ≤ 2}. If W (z) 6= 0 in D

∗, its inversion w(z) = z+a2z
2+ . . .

is univalent in D, and b0 = −a2 satisfies |b0| ≤ 2. Using the maps W
with quasiconformal extensions, one gets by the Bers theorem that the
indicated domains Dµ are filled by the admissible values of W µ(0); all
these domains are located in the disk {|W | ≤ 4}.
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In the line with our goals, we slightly modified the Bers construction,
applying quasiconformal maps Fµ of D∗ admitting conformal extension
to D

∗ (and accordingly using the Beltrami coefficients µ supported in the
disk) (cf. [15]). These changes are not essential and do not affect the
underlying features of the Bers isomorphism (giving the same space up
to a biholomorphic isomorphism).

The Bers theorem is valid for Teichmüller spaces T(X0 \ {x0}) of
all punctured hyperbolic Riemann surfaces X0 \ {x0} and implies that
T(X0 \ {x0}) is biholomorphically isomorphic to the Bers fiber space
F(T(X0)) over T(X0).

Note that B(Γ0) has the same elements as the space A1(D
∗,Γ0) of

integrable holomorphic forms of degree −4 with norm ‖ϕ‖A1(D∗,Γ0) =∫∫
D∗/Γ0

|ϕ(z)|dxdy; and similar to (5), every linear functional l(ϕ) on

A1(D
∗,Γ0) is represented in the form

l(ϕ) = 〈ψ,ϕ〉D/Γ0
:=

∫∫

D∗/Γ0

(1− |z|2)2 ψ(z)ϕ(z)dxdy

with uniquely determined ψ ∈ B(Γ0).

Every Teichmüller space T(X) is a complete metric space with intrin-
sic Teichmüller metric τT(·, ·) defined by quasiconformal maps. By the
Royden–Gardiner theorem, this metric is equal the hyperbolic Kobayashi
metric dT(·, ·) determined by the complex structure on this space (see,
e.g., [9,10,22]). In other words, the Kobayashi–Teichmüller metric is the
maximal invariant metric on T(X).

3. Proof of Theorem 1

We carry out the proof it in several stages and deduce the assertion
of the theorem as a consequence of lemmas. With one exception, these
stages are valid for all spaces Hp with p ≥ 2.

Step 1: Four underlying lemmas. Denote the unit ball of Hp by
B1(H

p) and its subset of nonvanishing functions by B0
1(H

p). It will be
convenient to regard the free coefficients c0(f) also as elements of B0

1(H
p),

which are constant on the disk D. Let

B̂0
1(H

p) = B0
1(H

p) ∪ {f0},

where f0(z) ≡ 0. The corresponding sets for the disks Dr = {|z| < r}
will be denoted by B0

1(H
p(Dr)) and B̂0

1(H
p(Dr)).
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We shall essentially use Brown’s result quoted above and present it
as

Lemma 1. [6] For any f(z) = c0 + c1z + c2z
2 + · · · ∈ B0

1(H
p), we have

|c1| ≤ (2/e)1−1/p,

with equality only for the rotations of function κ1,p(z) given by (2).

The following lemma concerns the topological features of sets of non-
vanishing holomorphic functions. Consider the subsets Br of B0

1(H
p)

defined by

Br={f ∈ B1(H
p(Dr)) : f(z) 6= 0 on the disk Dr = {|z| < r}}, 1<r <∞;

then Br′ ⋐ Br if r′ > r. Put

B∗(H
p) =

⋃

r>1

Br

with topology of the inductive limit. All functions from B∗(H
p) are zero

free in D.
It will be convenient to regard the free coefficients c0(f) also as ele-

ments of Hp, which are constant on each disk Dr.

Any point f0 ∈ B∗(H
p) belongs to all sets Br with r ≥ r0. Consider

the intersection of B∗(H
p) with the balls {f ∈ Hp(Br0) : ‖f − f0‖p < ǫ}

and denote their connected components containing f0 by U(f0, ǫ).

Lemma 2. Each point f ∈ B∗(H
p) has a neighborhood U(f, ǫ) in B∗(H

p)
filled by the functions which are zero free in the disk D. Take the maximal
neighborhoods U(f, ǫ) with such property. Then their union

Up =
⋃

f∈B∗(Hp)

U(f, ǫ)

is an open path-wise connective set, hence a domain, in the space B∗(H
p).

Proof. (a) Openness. It suffices to show that for each r > 1 and 1 ≤ r′ <
r, every f ∈ Br has a neighborhood U(f, ǫ) in B∗(H

p), which contains
only the functions that are zero free on the disk D.

This is trivial for r > r′ > 1. Let r′ = 1, and assume the contrary.
Then for some r > 1 there exist a function f0 ∈ Br, a sequence of functions
fn ∈ B0

1(H
p(Drn)) convergent to f0 as rn ր r so that

lim
n→∞

‖fn − f0‖Hp(Drn )
= 0, (7)
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and a sequence of points zn ∈ Drn convergent to z0 with |z0| ≤ 1 such
that fn(zn) = 0 (n = 1, 2, . . . ).

In the case |z0| < 1 we immediately reach a contradiction, because
then the uniform convergence of fn on compact sets in D implies f0(z0) =
0, which is impossible.

The case |z0| = 1 requires other arguments. Since f0 is holomorphic
and does not vanish in the disk Dr with r > 1,

min
|z|≤1

|f0(z)| = a > 0.

Hence, for each zn,

|fn(zn)− f0(zn)| = |f0(zn)| ≥ a,

and by continuity, there exists a neighborhood ∆(zn, δn) = {|z−zn| < δn}
of zn in D, in which

|fn(z)− f0(z)| ≥ a/2 for all z.

This immediately implies

‖fn − f0‖Hp(Drn )
≥ ‖fn − f0‖Hp ≥ Cp(a), (8)

where Cp(a) is a positive constant depending only on a (for given p), and
the inequality (8) must hold for all n. But this contradicts to (7).

(b) Connectedness. We establish that the set Up is path-wise connective.
Pick two points

f1(z) = c10 + c11z + . . . , f2(z) = c20 + c21z + . . .

from Up, which lie in the balls U(f01 , ǫ1) and U(f02 , ǫ2), respectively; these
points can be connected with the centers f01 , f

0
2 by radial segments. Then

take the homotopies

f0j (z, t) = f0j (tz) = c0,j0 + c0,j1 tz + . . . , 0 ≤ t ≤ 1 (j = 1, 2)

connecting these centers with the points cj0; clearly, f0j (tz) 6= 0 in D. The
general properties of integrals depending on parameters yield that these
homotopies are extended to the complex holomorphic isotopies D×D →
B1(H

p); hence the corresponding curves t 7→ f0j (·, t) are continuous.

Finally, the points c0,10 and c0,20 can be joint by a continuous curve in
B0

1(H
p) filled by the constant functions c0(f). The lemma follows.
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The distinguished domain Up ⊂ B∗(H
p) is dense weakly (in the topol-

ogy of locally uniform convergence on D) in B0
1(H

p); hence,

sup
Up

|cn| = sup
B0

1(H
p)

|cn|.

Now, let Pn be the linear space of polynomials of degree less than or
equal to n, and

P =
⋃

n

Pn.

Lemma 3. The intersection Up
⋂
P is dense in Up, which means that

any f from the distinguished domain Up is approximated in Hp by non-
vanishing polynomials.

Proof. Each f ∈ Up can be approximated in Hp by holomorphic nonva-
nishing functions fn on the closed disk Dr with r = r(fn) > 1. Their
Taylor partial sums are convergent to fn uniformly on Dr, hence do not
vanish on D. This implies the conclusion of the lemma.

The following lemma ensures the existence of univalent functions in
the disk with quasiconformal extension satisfying the prescribed normal-
ization and some other conditions. It concerns the solutions wµ of the
Beltrami equation ∂zw = µ(z)∂zw on C with coefficients µ supported in
the disk D, i.e., from the ball

Belt(D∗)1 = {µ ∈ L∞(C) : µ|D = 0, ‖µ‖ < 1}

(and hence the solutions of the corresponding Schwarzian equation Sw(z) =
ϕ in D with given ϕ ∈ B).

We shall consider the compositions of homeomorphisms wµ with the
Möbius maps

γa(z) = (1− az)/(z − a), a ∈ D
∗, (9)

and their inverse γ−1
a (z) = (1 + az)/(z + a) preserving either from disks

D and D
∗.

The composed maps wµ ◦γa and γ−1
α ◦wµ ◦γa have the same Beltrami

coefficient

γa,∗µ := µw◦γa(z) = µ ◦ γa(z)γ
′
a(z)/γ

′
a(z)

and also are conformal in the unit disk.

Lemma 4. For any Beltrami coefficient µ ∈ Belt(D∗)1 and any θ0 ∈
[0, 2π], there exists a point z0 = eiα located on S

1 so that |eiθ0 − eiα| < 1
and such that for any θ satisfying |eiθ − eiα| < 1 the equation ∂zw =
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µ(z)∂zw has a unique homeomorphic solution w = wµ(z), which is holo-
morphic on the unit disk D and satisfies

w(0) = 0, w′(0) = eiθ, w(z0) = z0. (10)

Hence, wµ(z) is conformal and does not have a pole in D (so wµ(z∗) = ∞
at some point z∗ with |z∗| ≥ 1).

Proof. First we establish the assertion of the lemma for θ0 = 0 corre-
sponding to z = 1 and start with the coefficients µ vanishing in a broader
disk Dr = {|z| < r}, r > 1 (so wµ is conformal on Dr ⋑ D), and assume
that µ 6= 0 (the origin of Belt(D∗)1).

Fix a ∈ (1, r); then 1/a ∈ D. The generalized Riemann mapping
theorem for the Beltrami equation ∂zw = µ(z)∂zw on Ĉ implies for a
given θ ∈ [0, 2π] a homeomorphic solution ŵ to this equation satisfying

ŵ(1/a) = 1/a, ŵ′(1/a) = eiθ , ŵ(∞) = ∞. (11)

Since, by the classical Schwarz lemma, for any holomorphic map g :
D → D and any point z0 ∈ D,

|g′(z0)| ≤ (1− |g(z0)|
2)/(1 − |z0|

2)

with equality only for appropriate Möbius automorphism of D, the above
normalization (10) and the assumption on µ yield for the constructed
map ŵ(z) that the image ŵ(D) does not cover D, and thus either ŵ(D)
is a proper subdomain of D or it also contains the points z with |z| > 1
outer for D.

Applying this to suitable rotated map ŵα(z) = e−iαŵ(eiαz) having
Beltrami coefficient µα(z) = µ(eiαz)e2iα, one obtains that domain ŵα(D)
does not contain simultaneously both distinguished points a and 1/a, at
least sufficiently close to 1 (and the same is valid for the points a′ ∈ D

∗

close to a). Now consider the map

wa,α(z) = γ−1
a ◦ ŵα ◦ γa(z),

having the same Beltrami coefficient γa,∗µ. Since, by (9),

γa(∞) = −a, γa(a) = ∞, γa(0) = −1/a, γa(1/a) = 0

and accordingly,

γ−1
a (∞) = a, γ−1

a (−a) = ∞, γ−1
a (0) = 1/a, γ−1

a (−1/a) = 0,

the map wa,α satisfies

wa,α(0) = 0, w′
a,α(0) = ŵ′

α(1/a) = eiθ, wa,α(a) = γ−1
a ◦ŵα◦γa(a) = a.

(12)
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In view of our assumptions on the map ŵα, the point ŵ−1
α (a) does not

lie in the unit disk D, which provides that the function wa,α is holomorphic
in this disk.

Now we investigate the limit process as a → 1. Any from the con-
structed maps wa,a is represented as a composition of a fixed solution ŵ
to the equation ∂zw = µ(z)∂zw subject to (11) and some Möbius maps
γ̂a. The first two conditions in (11) imply that the restrictions of these
γ̂a to ŵ(Dr) form a (sequentially) compact set of γ̂a in the topology of
convergence in the spherical metric on Ĉ. Letting a → 1, one obtains
in the limit the map γ̂1(z) = lim

a→1
γ̂a(z), which also is a non-degenerate

(nonconstant) Möbius map. Accordingly,

lim
a→1

wa,α(z) = γ̂1 ◦ ŵα ◦ γ1(z) =: ŵ1(z),

and this map satisfies (12) with a = 1, which is equivalent to (11).
Note that the relations (11) do not depend on r and that the normal-

ization (12) (or (11)) also holds for the inverse rotation eiαŵ1(e
−iαz) of

the limit function. Letting

w(z) = eiαŵ1(e
−iαz), z0 = eiα,

one obtains a weakened assertion of Lemma 4 for all Beltrami coefficients
µ 6= 0 supported in the disk D

∗
r = {|z| > r} with r > 1 (without a

restriction for |eiθ − z0|).

To extend the obtained result to arbitrary µ ∈ Belt(D∗)1 (µ 6= 0),
we pass to the truncated coefficients

µr(z) = µ(rz), |z| > 1,

which are equal to zero on the disk {|z| < r}. The compactness properties
of the k-quasiconformal families (i.e., with ‖µ‖∞ ≤ k < 1) imply the
convergence of maps wµr (z) normalized by (10) to wµ(z) as r → 1 in the
spherical metric on Ĉ (and hence everywhere on Ĉ). Accordingly, one
must now take z0 = lim

r→1
wµr(eiα).

It remains to estimate the lower bond for |eiθ − z0| and consider the
case µ(z) ≡ 0 omitted above. We consider for this the homotopy functions

wt(z)w
µt(z) = c(t)w(tz) : C× (0, 1) → C

with µt(z) = µ(tz), 0 < t < 1. The factor c(t) is determined by normal-
ization (10) and is a fractional linear function of t.

For any t, the points wt(a) and wt(1/a) as well as 0 and ∞ are sep-
arated by the quasicircle wt(S

1). Thus, arguing similar to above, one
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obtains for any of these wt the same point z0 = eiα, and this also holds
for t = 0.

It remains to observe that if µ → 0 in L∞ norm (or even µ(z) → 0
almost everywhere in D

∗), then the corresponding limit map w(z) satis-
fying (10) must be an elliptic fractional linear transformation with fixed
points 0 and z0; hence,

w − z0
w

= e−iθ
z − z0
z

,

which implies

w =
eiθz

(1− e−iθ)z−1
0 z + 1

. (13)

The value w(z∗) = ∞ occurs when

(1− e−iθ)z−1
0 z∗ + 1 = 0.

Then |z∗| = 1/|eiθ − 1|, and hence, |z∗| < 1 if |eiθ − 1| > 1, what is
excluded by assumption.

This implies the assertion of Lemma 4 for θ0 = 0 and Beltrami coeffi-
cient µα. To get it for µ, one must conjugate wµα by rotation z 7→ e−iαz,
replacing the fixed point z0 = 1 by eiα.

Similarly, the case of arbitrary θ0 satisfying |eiθ0 − eiα| < 1 is reduced
to the previous one by compositions of w with pre and post rotations
z 7→ eiθ0z, completing the proof of the lemma. 1

It follows from Lemma 4 and from its proof that for any fixed θ0 ∈
[−π, π] there is a point z0 = eiα0 ∈ S

1 such that for all θ with |eiθ−z0| < 1
any two Beltrami coefficients µ1, µ2 ∈ Belt(D∗)1 generate quasiconformal
maps wµ1 and wµ2 normalized by (10) (hence, having the same fixed
point z0), unless these maps are conjugated by a rotation, or equivalently,
µ2(z) = µ1(e

iαz)e−2iα with some α ∈ [−π, π].

Step 2: Holomorphic embedding of nonvanishing Hp functions

into Teichmüller spaces. Consider the space B = B(D) of hyper-
bolically bounded holomorphic functions f(z) (regarded as holomorphic
quadratic differentials f(z)dz2) on the unit disk, with norm

‖f‖B = sup
D

(1− |z|2)2|f(z)|

As was mentioned above, every f ∈ B is the Schwarzian derivative Sw
of a locally univalent function w(z) in the disk D determined (up to a
Moebius map of the sphere Ĉ) from the nonlinear differential equation

w′′′/w′ − 3(w′′/w′)2/2 = f

1This lemma corrects the corresponding assertion in [17].
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(or equivalently, as the ratio w = η2/η1 of two linearly independent solu-
tions of the linear equation 2η′′ + fη = 0 in D). This space is dual to the
space A(D) of integrable holomorphic functions on D with L1 norm.

Accordingly, the Schwarzians of functions w univalent in the whole
disk D and having quasiconformal extensions to Ĉ fill a path-wise bounded
domain in B, which models the universal Teichmüller space T.

We consider also the Bergman spaces Ap(D), p > 2, of holomorphic
functions in D with norm

‖f‖Ap =
( 1
π

∫∫

D

|f(z)|dxdy
)1/p

(z = x+ iy).

The Hölder inequality yields that for any f ∈ Ap with p > 2,

‖f‖A1 =
1

π

∫∫

D

|f(z)|dxdy ≤ ‖f‖Ap ;

so all such Ap are the subspaces of A(D) = A1.
Further, if f ∈ Hp, then its norm in Ap is estimated by

‖f‖pAp =
1

π

∫∫

D

|f(z)|pdxdy =
1

π

1∫

0

( 2π∫

0

|f(reiθ)|pdθ
)
rdr ≤

1

2
‖f‖pHp .

(14)
Combining this with the well-known relations A(D) ⊂ B

‖f‖B ≤ ‖f‖A(D) if f ∈ A(D) (15)

(see, e.g., [4]), one concludes that all functions f ∈ Hp belong to the space
B, and hence these functions (more precisely, the corresponding quadratic
differentials f(z)dz2) can be regarded as the Schwarzian derivatives of
locally univalent functions in D. 2

Now, noting that by the well-known Ahlfors–Weill theorem [2], any
g ∈ B with norm ‖g‖B = k < 2 is the Schwarzian derivative Sw = g of a
function w which is univalent on the disk D and admits k-quasiconformal
extension across the unit circle {|z| = 1} to Ĉ with Beltrami coefficient

νSw(ζ) = ∂ζw/∂ζw = −
1

2
(|ζ|2 − 1)2

ζ2

ζ
2Sw

(1
ζ

)
,

2One need to deal with quadratic differentials ϕ = f(z)dz2 to insure the needed be-
haviour of these Schwarzian derivatives ϕ(h(z))h′(z)2 = ϕ(z) under conformal changes
h of variables.

The Hp functions are moved to their equivalence classes so that f and f1 are equiv-
alent if f1(z) = ǫ1f(ǫ2z) for some constants ǫ1, ǫ2 with modulus 1. Such equivalence
preserves Hp norm and moduli of coefficients.
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one obtains from (14) and (15) that all functions f from the ball

Bρ(H
p) = {f ∈ Hp : ‖f‖ < ρ}

with radius

ρ = 1/21/p

belong to the space B, and hence can be regarded as the Schwarzian
derivatives of univalent functions in D with quasiconformal extension,
i.e., as the points of the universal Teichmüller space T.

This implies a holomorphic embedding ι of the ball Bρ(H
p) and of its

open subset
1

21/p
Up = {

1

21/p
f : f ∈ Up}

into the space T.

In view of linearity of the functional Jn(f) = cn on Hp, we have to
establish that for all nonvanishing functions f ∈ B1/21/p(H

p),

|cn| ≤
1

21/p

(2
e

)1−1/p
, (16)

with the corresponding extremal functions (recall that we are concerned
with p = 2m).

Step 3: Lifting the functional Jn(f) = cn into the universal Te-

ichmüller space. Consider the family Ŝ(1) of quasiconformally extend-
able to Ĉ holomorphic univalent functions

w(z) = a1z + a2z
2 + . . . , z ∈ D,

with |a1| = 1 and w(z0) = z0 for some point z0 ∈ S
1 (depending on

w), completed in the topology of locally uniform convergence on C. This
collection is a disjunct union

Ŝ(1) =
⋃

−π≤θ,α<π

Sθ,α,

where Sθ,α consists of univalent functions w(z) = eiθz + a2z
2 + . . . with

quasiconformal extensions to Ĉ satisfying w(1) = 1 and their rotations
wα,α(z)(also completed in the indicated weak topology).

The assertion of Lemma 4 is also valid for the limit functions of se-
quences {wn} of functions wn ∈ Ŝ(1) with quasiconformal extension, but
in the general case the equality w(z0) = z0 must be understand in terms
of the Carathéodory prime ends. As was indicated above, any function
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from Ŝ(1) with θ chosen following Lemma 4 is holomorphic on the disk
D (has there no pole).

This family Ŝ(1) is closely related to the canonical class S of univalent
functions w(z) on D normalized by w(0) = 0, w′(0) = 1. Every w ∈ S
has its representative ŵ in Ŝ(1) (not necessarily unique) obtained by pre
and post compositions of w with rotations z 7→ eiαz about the origin,
related by

wτ,θ(z) = e−iθw(eiτ z) with τ = arg z0, (17)

where z0 is a point for which w(z0) = eiθ is a common point of the unit
circle and the boundary of domain w(D).

This is trivial for the identical map w(z) ≡ z (then one can take
θ = τ = 0). For any another w(z) the existence of such a point z0 follows
from the Schwarz lemma.

This connection implies, in particular, that the functions conformal
in the closed disk D are dense in each class Sθ,α.

The relation (17) allows us to model the universal Teichmüller space
T by the Schwarzians Sw = ϕ of functions w(z) from Sθ, α taking the
admissible values of θ for a each eiα ∈ S

1 with a fixed θ for all α (choosing
θ in accordance with Lemma 4). In this case the base point ϕ = 0 of T
corresponds to the function (13) with z0 = eiα.

The prescribed normalizing conditions w(0) = 0, w′(0) = eiθ, w(eiα) =
eiα are compatible with existence and uniqueness of the corresponding
conformal and quasiconformal maps and the Teichmüller space theory,
ensure holomorphy of their Taylor coefficients, etc. Actually we deal
with the classical model of Teichmüller spaces via domains in the Banach
spaces of Schwarzian dervatives Sw in D (or in the disk D

∗) of univalent
holomorphic functions normalized either by fixing three boundary points
on the unit circle S1 or via w(0) = 0, w′(0) = 1, w(z0) = z0, where z0
on S

1. Often the disk is replaced by the half-plane.

The relation (17) and Lemma 4 imply that for each fixed θ the Schwar-
zians Sw of functions w ∈ Sθ,α run over the same domain in B modeling
the space T.

It is more convenient technically to deal with univalent functions in
the complementary disk D

∗. Lemma 4 allows us to model the space T

by the Schwarzians SW of the inverted functions W (z) = 1/w(1/z) for
w ∈ Sθ,α.

These functions form the corresponding classes Σθ,α of nonvanishing
univalent functions on the disk D

∗ with expansions

W (z) = e−iθz + b0 + b1z
−1 + b2z

−2 + . . . , W (1/α) = 1/α,
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and Σ̂(1) =
⋃
θ,αΣθ,α.

Simple computations yield that the coefficients an of f ∈ Sθ,α and the
corresponding coefficients bj of W (z) = 1/f(1/z) ∈ Σθ,α are related by

b0 + e2iθa2 = 0, bn +

n∑

j=1

ǫn,jbn−jaj+1 + ǫn+2,0an+2 = 0, n = 1, 2, ... ,

where ǫn,j are the entire powers of eiθ. This successively implies the
representations of an by bj via

an = (−1)n−1ǫn−1,0b
n−1
0 − (−1)n−1(n− 2)ǫ1,n−3b1b

n−3
0

+ lower terms with respect to b0.
(18)

By abuse of notation, we shall denote the holomorphic embedding of
Hp into the space T modelled by Schwarzians in D

∗ by the same letter
ι. The image ιHp is a non-complete linear subspace in B, and the image
of the distinguished domain 1

2pU
p is a complex submanifold in T.

Note that the coefficients αn of Schwarzians

Sw(z) =

∞∑

0

αnz
n

are represented as polynomials of n + 2 initial coefficients of w ∈ Sθ,α
and, in view of (18), as polynomials of n + 1 initial coefficients of the
corresponding W ∈ Σθ,α (provided that θ and α are given and fixed and
the number eiθ is considered to be a constant).

We denote these polynomials by Jn(w) and J̃n(W ), respectively, and
will deal with these polynomial functionals only on the union of admissible
classes Sθ,α or Σθ,α.

Holomorphic dependence of normalized quasiconformal maps on com-
plex parameters (first established by Ahlfors and Bers in [1] for maps with
three fixed points on Ĉ) is an underlying fact for the Teichmüller space
theory and for many other applications.

Another somewhat equivalent proof of holomorphy involves the vari-
ational technique for quasiconformal maps. For the maps w from Sθ,α,
this holomorphy is a consequence of the following lemma from [14], Ch.
5 combined with appropriate Möbius maps.

Lemma 5. Let w(z) be a quasiconformal map of the plane Ĉ with Bel-
trami coefficient µ(z) which satisfies ‖µ‖∞ < ε0 < 1 and vanishes in
the disk {|z| < r}. Suppose that w(0) = 0, w′(0) = 1, and w(1) = 1.
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Then, for sufficiently small ε0 and for |z| ≤ R < r0(ε0, r) we have the
variational formula

w(z) = z −
z2(z − 1)

π

∫∫

|ζ|>r

µ(ζ)dξdη

ζ2(ζ − 1)(ζ − z)
+ Ωµ(z),

where ζ = ξ + iη; max|z|≤R |Ωµ(z) ≤ C(ε0, r, R)‖µ‖
2
∞; r0(ε0, r) is a well

defined function of ε0 and r such that limε0→0 r0(ε0, r) = ∞, and the
constant C(ε0, r, R) depends only on ε0, r and R.

Step 4: Lifting to covering space T1 and estimating the re-

stricted plurisubharmonic functional. Our next step is to lift both
polynomial functionals Jn(w) and J̃n(W ) (equivalently cn) onto the Te-
ichmüller space T1, which covers T. Letting

Ĵn(µ) = J̃n(W
µ), (19)

we lift these functionals from the sets Sθ,α and Σθ,α onto the ball Belt(D)1.
Then, under the indicated T1-equivalence, i.e., by the quotient map

φT1 : Belt(D)1 → T1, µ→ [µ]T1 ,

the functional J̃n(W
µ) is pushed down to a bounded holomorphic func-

tional Jn on the space T1 with the same range domain.
Equivalently, one can apply the quotient map Belt(D)1 → T (i.e., T-

equivalence) and compose the descended functional on T with the natural
holomorphic map ι1 : T1 → T generated by the inclusion D∗ →֒ D

forgetting the puncture.
Note that since the coefficients b0, b1, . . . of W µ ∈ Σθ,α are uniquely

determined by its Schwarzian SWµ , the values of Jn in the pointsX1, X2 ∈
T1 with ι1(X1) = ι1(X2) are equal.

Now, using the Bers isomorphism theorem, we regard the points of
the space T1 as the pairs XWµ = (SWµ ,W µ(0)), where µ ∈ Belt(D)1
obey T1-equivalence (hence, also T-equivalence). Denote (for simplicity
of notations) the composition of Jn with biholomorphism T1

∼= F(T)
again by Jn. In view of (6) and (19), it is presented on the fiber space
F(T) by

Jn(XWµ) = Jn(SWµ , t), t =W µ(0). (20)

This yields a logarithmically plurisubharmonic functional |Jn(SWµ , t)| on
F(T).

Note that since the coefficients b0, b1, . . . of W µ ∈ Σθ are uniquely
determined by its Schwarzian SWµ, the values of J in the pointsX1, X2 ∈
T1 with ι1(X1) = ι1(X2) are equal.



400 Two coefficient conjectures for nonvanishing Hardy...

We have to estimate a smaller plurisubharmonic functional arising
after restriction of Jn(SFµ , t) onto the images in these spaces of the
distinguished above domain

ι
( 1

21/p
Up
)
,

i.e., the restriction of functional (19) onto the corresponding set of pairs

(SWµ ,W µ(0)) consisting of SWµ ∈ ι
(

1
21/p

Up
)

and of the values W µ(0)

filling some subdomain in the disk {|t| < 4}. We denote this subdomain
by Dρ,θ and this restricted functional by Jn,0(SWµ , W µ(0)).

Now define on Dρ,θ the function

uθ(t) = sup
SWµ

|Jn,0(SWµ , t)|, (21)

where the supremum is taken over all SFµ ∈ ι
(

1
21/p

Up
)

admissible for a

given t =W µ(0) ∈ Dρ,θ, that means over the pairs (SWµ , t) ∈ F(T) with

SFµ ∈ ι
(

1
21/p

Up
)

and a fixed t.

Our goal is to establish that this function inherits subharmonicity of
J . This is given by the following basic lemma.

Lemma 6. The function uθ(t) is subharmonic on the set ι
(

1
21/p

Up
)

(which is open and connected in the induced topology).

Proof. Consider in ι
(

1
21/p

Up
)

its s-dimensional analytic subsets

Vs = ι
( 1

21/p
Up ∩ Ps

)
.

For any f ∈ ι
(

1
21/p

Up
)
, define the function

F (z) = f(1/z)/z4,

holomorphic on the complementary disk D
∗, and take a univalent solution

W ∈ Σθ of the Schwarzian equation SW (z) = F (z) in D
∗. Let W µ be

one of its quasiconformal extensions onto the unit disk D.

Using Lemma 3, we approximate f by polynomials ps, and let Ws

and W µs
s be the corresponding functions defined similarly by these poly-

nomials. As s → ∞, the domains Ws(D
∗) and W µm

m (D) approximate
W (D∗) and W µ(D) uniformly (in the spherical metric on Ĉ), and the
points W µs

s (0) are close to W µ(0).
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One can replace the extensions W µs
s by ωs ◦W

µs
s , where ωs is the

extremal quasiconformal automorphism of domain W µs
s (D) moving the

point W µs
m (0) into W µ(0) and identical on the boundary of W µs

s (D) (cf.
[27]). This provides for a prescribed t =W µ(0) the points SWµs

s
∈ F(T)

corresponding to given ps ∈ Vs.
Now, maximizing the function log |Jn,0(SWµs

s
, t)| over the manifold

Vs, i.e., over the collection of the Schwarzians SWµs
s

(with appropriate s),
one obtains a logarithmically plurisubharmonic function

us(t) = sup
Vs

|Jn,0(SWµs
s
, t)|, t =W µ(0), (22)

in the domain Dρ,θ indicated above. We take the upper semicontinuous
regularization of this function, given by

us(t) = lim sup
t′→t

us(t
′)

(by abuse of notation, we denote the regularization by the same letter as
the original function).

The general properties of subharmonic functions in the Euclidean
spaces imply that such a regularization also is logarithmically subhar-
monic in each connected component of Vs.

In the limit, as s → ∞, the sets Vs approximate the distinguished

subset ι
(

1
2pU

p
)
, and similar to above, taking the limit function

u(t) = lim sup
s→∞

us(t) (23)

followed by its upper semicontinuous regularization, one obtains a loga-

rithmically subharmonic function on the ι
(

1
2pU

p
)

(which coincides with

function (21)). The proof of Lemma 6 is completed. 2

Step 5: Range domain of W µ(0). The next step in maximization of
the functional Jn (equivalently, of the function (21)) is to establish the

value domain of W µ(0) for W µ running over ι
(

1
21/p

Up
)
. This requires

the corresponding covering estimate.
Let G be a domain in a complex Banach space X = {x} and let χ

be a holomorphic map from G into the universal Teichmüller space T

modeled as a bounded subdomain of B and suppose that the image set
χ(G) admits the circular symmetry, which means that for every point
ϕ ∈ χ(G) the circle eiθϕ belongs entirely to this set. Consider in the unit
disk the corresponding Schwarzian differential equations

Sw(z) = χ(x) (24)
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and pick their holomorphic univalent solutions w(z) in D satisfying w(0) =
0, w′(0) = 1 (hence w(z) = z +

∑∞
2 anz

n). Put

|a02| = sup{|a2| : Sw ∈ χ(G)}, (25)

and let w0(z) = z + a02z
2 + . . . be one of the maximizing functions (its

existence follows from compactness of the family of these w(z) in topology
of locally uniform convergence in D).

Lemma 7. (a) For every indicated solution w(z) = z + a2z
2 + . . . of

the differential equation (24), the image domain w(D) covers entirely the
disk {|w| < 1/(2|a02|)}.

The radius value 1/(2|a02|) is sharp for this collection of functions,
and the circle {|w| = 1/(2|a02|)} contains points not belonging to w(D) if
and only if |a2| = |a02| (i.e., when w is one of the maximizing functions).

(b) The inverted functions

W (ζ) = 1/w(1/ζ) = ζ − a2 + b1ζ
−1 + b2ζ

−2 + . . .

maps the disk D
∗ onto a domain whose boundary is entirely contained in

the disk {|W + a2| ≤ |a02|}.

Note that the collection of solutions w(z) with the indicated normal-
ization preserves the rotational symmetry.

The proof of this lemma follows the classical lines of Koebe’s 1/4 theorem
(cf. [11]).

(a) Suppose that the point w = c does not belong to the image of D
under the map w(z) defined above. Then c 6= 0, and the function

w1(z) = cw(z)/(c −w(z)) = z + (a2 + 1/c)z2 + . . .

also belongs to this class, and hence by (25), |a2 + 1/c| ≤ |a02|, which
implies

|c| ≥ 1/(2|a02|)

(hence, 1/|c| ≤ 2|a02|). Noting also that the values a2 and c both admit
the rotational symmetries, one concludes that the equality holds only
when

|a2 + 1/c| = |1/c| − |a2| = |a02| and |a2| = |a02|.

(b) If a point ζ = c does not belong to the image W (D∗), then the
function

W1(z) = 1/[W (1/z) − c] = z + (c+ a2)z
2 + . . .
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is holomorphic and univalent in the disk D, and therefore, |c+a2| ≤ |a02|.
The lemma follows.

In particular, the domain ι
(

1
21/p

Up
)

admits the required rotational

symmetry (it is created by rotations (17)). Applying Lemma 7, one
derives that the range domain of admissible values of W µ(0) is contained
in the disk

D2|a02|
= {W : |W | < 2|a02|}, (26)

and the boundary of this domain for W µ(0) touches from inside the circle
{|W | = 2|a02|} at the points corresponding to extremal functions maxi-

mizing |a2| on the closure of domain ι
(

1
21/p

Up
)
.

Step 6: Symmetrization and quasiconformal deformations of

H2m functions. One of the crucial points in the proof of Theorem 1 is to
establish that in the case of nonvanishing H2m functions this radius 2|a02|
is naturally connected with the extremal function κ1,2m(z) maximizing
the coefficient |c1|. This will be done only for p = 2m.

First, we apply the following generalization of the above construction
(valid for all p ≥ 2). We select a dense countable subset

Θ = {θ1, θ2, . . . , θs, . . . } ⊂ [−π, π],

and find by Lemma 4 a corresponding dense subset

A = {α1, α2, . . . , αs, . . . }

(also in [−π, π]). Similar to Step 3, we consider for each pair (θj , αj)
and the admissible rotation angles θ the corresponding collections Σθ,αj
of nonvanishing univalent holomorphic functions

Wθ,j(z) = e−iθz + b0,j + b1,jz
−1 + · · · : D

∗ → Ĉ

whose quasiconformal extensions W
µj
θ,j to Ĉ satisfy W

µj
θ (1/αj) = 1/αj .

Using these functions, we construct in the similar fashion the increas-
ing unions of the quotient spaces

Ts =
s⋃

j=1

Σθj ,αj/ ∼ =
s⋃

j=1

{(SWθj ,αj
,W µ

θ (0))} ≃ T1 ∪ · · · ∪T1, (27)

where the equivalence relation ∼ means T1-equivalence on the union
Σ̂(1) of all collections Σθ,1/αj consisting of the indicated functions Wθ,j

and their rotations e−iαWθ,j(e
iαz), α ∈ [−π, π]; accordingly,

W
µ
θ (0) := (W µ1

θ,1(0), . . . ,W
µs
θ,s(0)).
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The Beltrami coefficients µj ∈ Belt(D)1 are chosen here independently.
The corresponding collection

β = (β1, . . . , βs)

of the Bers isomorphisms

βj : {(SWθ,j
,W

µj
θ,j(0))} → F(T)

determines a holomorphic surjection of the space Ts onto F(T).

Taking out in each union (27) the corresponding collection ιs

(
1

21/p
Up
)

covering
(

1
21/p

Up
)
, one obtains similar to the above the maximal function

u(t) = sup
Θ
uθs(t) = sup

{
|Jn,0(SWµ , t)| : SWµ ∈

⋃

s

ιs

( 1

21/p
Up
)}
, (28)

which is defined and subharmonic in domain

Dρ =
⋃

Θ

Dρ,θs .

The density of both sets Θ and A in [−π, π] implies that the union of all
spaces (27) and the limit subharmonic function (28) both admit the cir-
cular symmetry (invariance under rotations upon any angle θ ∈ [−π, π]).
Therefore, the domain Dρ must coincide with the disk (26) determined
by Lemma 7.

From now on, we take p = 2m with naturalm ∈ N. Our first goal is
to show that in this case the range domain of W µ(0) is determined by the
following basic lemma, which reveals the specific features of nonvanishing
H2m functions.

Consider the collection N2m of all nonvanishing H2m functions located
in the ball {‖ϕ‖ < 2} in B and denote the minimal radius of the balls in
H2m containing these functions by r(m); that is

r(m) = sup{‖f‖2m : f ∈ B0
1(H

2m), ‖f‖B ≤ 2}.

For any such f , the solutions w(z) of the equation Sw = f are univalent
holomorphic functions on the disk D. The set 1

21/(2m)U
2m applied earlier

is a proper subset of N2m.
An essential point is that the extremal covering function w0(z) of this

maximal collection is intrinsically connected with the function (2).

Lemma 8. For any space H2m and its subset N2m, we have the equality

Sw0(z) = r(m) κ1,2m(z), (29)
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where κ1,2m is given by (2) for n = 1, p = 2m. This means that the
Schwarzian of the extremal univalent function w0(z) maximizing the sec-
ond coefficient a2 on the set N2m equals the extremal function for c1.

Proof. It is enough to establish that

S′
w0
(0) = c01 6= 0,

This yields that the zero set of the functional J1(f) = c1 on Ŝ(1) is sepa-
rated from the set of rotations (17) of the function w0, and therefore the
corresponding function (28), constructed by maximization of functional
|J1(f)| = |c1|, is defined and logarithmically subharmonic on the whole
disk D2|a02|

(determined by w0), attaining its maximum on the boundary

circle. Then the equality (29) follows from Lemma 1 giving the explicit
representation of the extremal of J1(f) and its uniqueness (the linearity
of coefficient c1 on H2m extends the assertion of Lemma 1 to any ball
centered at the origin of H2m).

We apply the special quasiconformal deformations of functions f ∈
N2m preserving their L2m norm and with some prescribed properties.
The existence of such deformations was established in [15] for p = 2m;
its origin goes back to the local existence theorems in [14] for Riemann
surfaces with finitely generated fundamental groups.

Consider the functions f(z) ∈ H2m ∩ L∞(D), with

sup
D

|f(z)| =M > ‖f‖2m.

Let E be a ring domain bounded by a closed curve L ⊂ D containing
inside the origin and by the unit circle S1 = ∂D. The degenerated cases
E = D \ {0} and E = S1 correspond to the Bergman space Bp and to
the Hardy space Hp.

Let, in addition,

d0 = (0, 1, 0, ... , 0) =: (d0k) ∈ R
n+1,

and |x| denote the Euclidean norm in R
l.

Lemma 9. For any holomorphic function f(z) =
∞∑
k=j

c0kz
k ∈ L2m(E) ∩

L∞(E) (with c0j 6= 0, 0 ≤ j < n and m ∈ N), which is not a polynomial
of degree n1 ≤ n, there exists a positive number ε0 such that for every
point

d′ = (d′j+1, . . . , , d
′
n) ∈ C

n−j

and every a ∈ R satisfying the inequalities

|d′| ≤ ε, |a| ≤ ε, ε < ε0,
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there exists a quasiconformal automorphism h of the complex plane Ĉ,
which is conformal in the disk

D0 = {w : |w − c00| < sup
D

|f0(z)|+ |c00|+ 1}

(hence also outside of E) and satisfies the conditions:
(i) h(k)(c00) = k!dk = k!(d0k + d′k), k = j + 1, . . . , n (i.e., d1 = 1 + d′1

and dk = d′k for k ≥ 2);
(ii) ‖h ◦ f‖2m2m = ‖f‖2m2m + a.

The proof of this lemma in [15] essentially involves the assumption
m = p/2 ∈ N and does not extend to arbitrary p ≥ 2.

Using the appropriately thin rings E adjacent to the unit circle, one
derives that for any bounded in D function f ∈ H2m there exists a O(ε)-
quasiconformal automorphism h of Ĉ satisfying the conditions (i) and

‖h ◦ f‖2m2m = ‖f‖2m2m +O(ε).

We proceed to the proof of Lemma 8 and consider the restrictions of
the functional J1,0 corresponding to J1(f) onto the intersections

B0
1,M(H2m) = B0

1(H
2m) ∩ {f ∈ L∞(D) : ‖f‖∞ < M} (M <∞).

This implies, similar to (21) and (28), for each M the subharmonic func-
tion

uM (t) = sup{|J1,0(SWµ , t)| : SWµ ∈ (N2m ∩ P) ∩B0
1,M(H2m)},

on the corresponding disk D2|a02,M |. The above construction also yields

that the collections of functions uM (t) and of radii 2|a02,M | both are mono-
tone increasing with M , i.e., for M ′ > M ,

uM ′(t) ≥ uM (t), |a02,M ′ | ≥ |a02,M |.

Note also that all |a02,M | < |a02|.
The corresponding collection {fM} of the points fM = Sw0,M

, max-
imizing |a2,M | on these sets, is weakly compact in H2m (in the weak
topology on H2m defined by linear functionals) as well as in the topol-
ogy of locally uniform convergence of continuous functions on the unit
disk. Hence, as M → ∞, the maximal values c01,M and a02,M on (N2m ∩

P) ∩ B0
1,M(H2m) approach the corresponding maximal values |c01| and

|a02| of the coefficients c1 and a2 on N2m. The limit subharmonic function
u(t) = limM→∞ uM (t) must coincide with (28).
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Now fix a sufficiently small ε = ε(M) > 0 and choose for the extremal
on N2m ∩B0

1,M (H2m) function

f0,M (z) = Sw0,M
(z) = c0M + c01z + . . .

a large M > ‖f0,M‖2m, so that

|c01,M | ≥ |c01| − ε, |a02,M | ≥ |a02| − ε.

Since the image f0,M (D) is a proper subset of the disk DM = {|w| < M},
one can vary arbitrarily the extremal value |c01,M | by applying Lemma 9,

which provides O(ε)-quasiconformal automorphisms hε of Ĉ conformal
in the domain f0,M(D) and such that ‖Shε◦f0,M ‖2m = ‖Sf0,M ‖2m +O(ε),
and

|a2(hε ◦ w0,M)| = |a2(w0,M )|, |c1(hε ◦ f0,M )| = |c01,M |+O(ε) > |c01,M |.

Therefore, as M → ∞, the circles {|t| = 2|a02,M | + O(ε)} approach

from inside the circle {|t| = 2|a02|}. Hence, the corresponding maximal
function (28) for the functional |J1(f)| = |c1| also is defined and subhar-
monic on the disk D2|a02|

determined by w0(z).

The uniqueness of the extremal function for J1(f) on B0
1(H

2m) stated
by Lemma 1 implies the desired relation (29). The proof of Lemma 8 is
completed. 2

Step 7: Finishing the proof. Now we can finish the proof of the
theorem.

Let f(z) ∈ H2m. Take n = 2 and, letting f2(z) = f(z2), consider on
B0

1(H
2m) the functional

I2(f) = max (|J2(f)|, |J2(f2)|) = max (|c2(f)|, |c2(f2)|). (30)

Since the correspondence f(z) 7→ f2(z) is linear, it is holomorphic in H2m

norm; thus this functional is plurisubharmonic.

One can repeat for this functional the above construction, lifting both
functionals J2(f) and J2(f2) onto the space T1 similar to above, and ob-
tain in the same way the corresponding nonconstant radial subharmonic
function of type (28) on the disk (26). Again, this function is logarithmi-
cally convex, hence monotone increasing, and attains its maximal value
at |t| = 2|a02|.

Now observe that by Parseval’s equality for the boundary functions

f(eiθ) = lim
r→1

f(reiθ), f ∈ H2m,
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we have

1 ≥
1

2π

π∫

π

|f(eiθ)|2dθ =
∞∑

1

|cn|
2.

Applying it to the function

f(z) = κ1,m(z) =

∞∑

0

c0nz
n

and noting that by (2),

|c01|
2 = (2/e)2(1−1/(2m)) = 0.5041...1−1/(2m) > 0.5041... ,

one obtains that for this function,

∞∑

2

|c0n|
2 < 0.5 < |c01|

2. (31)

This implies (in view of the indicated by Lemma 8 connection of the
radius 2|a02| with extremal function κ1,2m for J1(f)) that the maximal
value of the functional (30) on B0

1(H
2m) also is attained on the circle

{|t| = 2|a02|}. Therefore, only the functions

κ1,2m(z), κ1,2m;2(z) := κ1,2m(z
2)

and their rotations can be extremal functions for I2(f).
Since (31) yields |c02| < |c01|, we have

max
B0

1(H
2m)

I2(f) = max (|c01|, |c
0
2|) = |c01| = (2/e)1−1/2m .

This implies the desired estimate (2) for n = 2, and the extremal function
is unique, up to pre and post rotations of κ1,2m.

Now take n = 3 and, letting f3(z) = f(z3), consider the functional

I3(f) = max (|J3(f)|, |J3(f3)|) = max(|c3(f)|, |c3(f3)|).

Similar to the previous cases of J1(f) and I2(f), we lift the functional
I3(f3) together with J3(f3) onto the Teichmüller space T1 and applying
the above lemmas, construct for I3 the corresponding dominant circularly
symmetric subharmonic function (28) defined on the same disk D2|a02|

.
This implies the bound

max
B0

1(H
2m)

I3(f) = max (|c01|, |c
0
3|),
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which estimates the functional I3(f) by coefficients of the function (2)
with n = 3. The inequality (31) yields that |c03| < |c01|; therefore,

max (|c01|, |c
0
3|) = |c01| = (2/e)1−1/2m ,

which provides the desired estimate (3) for n = 3, with a similar descrip-
tion of the extremal functions.

Taking subsequently the functions f4(z) = f(z4), f5(z) = f(z5), . . .
and the corresponding functionals

I4(f) = max (|J4(f)|, |J4(f4)|) = max(|c4(f)|, |c4(f4)|),

I5(f) = max (|J5(f)|, |J5(f5)|) = max(|c5(f)|, |c5(f5)|), . . . ,

one obtains by the same arguments that the estimate (3) is valid for all
n ∈ N. This completes the proof of Theorem 1. 2

4. Additional remark

4.1. Another proof of Theorem 1. Actually there is not necessary
to use Lemma 4 in the above proof. It can by replaced by applying the
relation (17) (cf. [16]).

Indeed, the universal Teichmüller space T can be modeled by the
Schwarzian derivatives Sf of univalent holomorphic functions f(z) = z+
a2z

2 + . . . in D with quasiconformal extensions preserving some fixed
inner point z0 ∈ D

∗ (take z0 = ∞ for all f(z)); equivalently, one can use
nonvanishing univalent functions F (z) = z + b0 + b1z

−1 + · · · : D
∗ → Ĉ

with F (1/z0) = 1/z0. These derivatives fill a bounded domain in the
space B containing the origin ϕ = 0.

The equality (17) shows that in the case of functions from the classes
Sθ,α (with admissible θ), one has to deal with the Schwarzians Sw(e

iτ )e2iτ

which fill the same domain in B. The following symmetrization similar
to Step 6 and passing to the union of all spaces (27) provide the same
result as in the above proof.

In fact, the needed circular symmetry to get the disk (26) and C-
holomorphy of appropriate univalent functions wτ,θ in D also are assured
by (17).

4.2. Beyond Theorem 1. Theorem 1 relates to some results of [17]
which are relevant to the distortion functionals of classical geometric func-
tion theory.

4.3. Connection with over-normalized maps. The classes Sθ,α
applied in the proof of Theorem 1 naturally relate to over-normalized
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univalent functions on the unit disk D with quasiconformal extension
satisfying, for example,

w(0) = 0; w′(0) = eiα, w(z0) = z0 (|z0| = 1); w(∞) = ∞ (32)

which arise in the distortion theory and other questions. This reveals the
intrinsic features of quasiconformality.

The existence of such nontrivial maps w(z) is insured by a local ex-
istence theorem from [14]. Its special case for simply connected planar
domains states:

Lemma 10. Let D be a simply connected domain on the Riemann sphere
Ĉ. Assume that there are a set E of positive two-dimensional Lebesgue
measure and a finite number of points z1, z2, ..., zm distinguished in D.
Let α1, α2, ..., αm be non-negative integers assigned to z1, z2, ..., zm, re-
spectively, so that αj = 0 if zj ∈ E.

Then, for a sufficiently small ε0 > 0 and ε ∈ (0, ε0), and for any given
collection of numbers wsj, s = 0, 1, ..., αj , j = 1, 2, ...,m which satisfy the
conditions w0j ∈ D,

|w0j − zj| ≤ ε, |w1j − 1| ≤ ε, |wsj| ≤ ε (s = 0, 1, . . . αj, j = 1, ...,m),

there exists a quasiconformal self-map h of D which is conformal on D\E
and satisfies

h(s)(zj) = wsj for all s = 0, 1, ..., αj , j = 1, ...,m.

Moreover, the Beltrami coefficient µh(z) = ∂z̄h/∂zh of h on E satisfies
‖µh‖∞ ≤ Mε. The constants ε0 and M depend only upon the sets D,E
and the vectors (z1, ..., zm) and (α1, ..., αm).

If the boundary ∂D is Jordan or is C l+δ-smooth, where 0 < δ < 1
and l ≥ 1, we can also take zj ∈ ∂D with αj = 0 or αj ≤ l, respectively.

The finite compositions of such maps wµs ◦wµs−1 ◦· · ·◦wµ1 (conformal,
respectively, on domains wµ1(D), wµ2 ◦ wµ1(D), . . . ) provide the maps
wµ with arbitrary ‖µ‖∞ < 1 satisfying (32).

Such maps can be regarded as the limit case of quasiconformal auto-
morphisms of the sphere Ĉ conformal on D (or on a more general qua-
sidisk) moving the ordered quadruples (0, z∗, z0, ∞) onto (0, eiαz∗, z0, ∞)
as z∗ → z0.

More generally, one obtains on this way a function w(z) mapping con-
formally the disk D onto a domain D ⊂ C with quasiconformal boundary
L and containing the origin, so that w(0) = 0, w′(0) = eiα, w(∞) = ∞
and w(zj) = zj on a given common finite set of points {z1, . . . , zs} ⊂
S
1 ∩ L.
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The requirement w(∞) = ∞ can be omitted without breaking holo-
morphy of w on D (applying, for example, Teichmüller’s Verschiebungssatz
[27]).
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