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Existence of solitary traveling waves in
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Abstract. The article deals with the Fermi–Pasta–Ulam type systems
with saturable nonlinearities that describes an infinite systems of parti-
cles on a two dimensional lattice. The main result concerns the existence
of solitary traveling waves solutions with vanishing relative displacement
profiles. By means of critical point theory, we obtain sufficient conditions
for the existence of such solutions.
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1. Introduction

Recently, considerable attention has been paid to models that are
discrete in the spatial variables. Among the equations that describe
such models, the most famous are the Discrete Nonlinear Shrödinger
type equations, the Discrete Sine–Gordon type equations, the equations
of chains of oscillators and the Fermi–Pasta–Ulam type systems. Such
equations are of interest in view of numerous applications in physics
[2, 16–18, 22]. Among the solutions of such systems, traveling waves
deserve special attention. In papers [6, 8, 9, 14, 19, 20] traveling waves
for infinite systems of linearly and nonlinearly coupled oscillators on 2D–
lattice are studied, while [26] deal with periodic in time solutions for such
systems. Papers [3, 7, 13] is devoted to the existence of homoclinic and
heteroclinic traveling waves for the discrete sine–Gordon type equations
on 2D–lattice. In papers [1,21,23,24] periodic and solitary traveling waves
in Fermi–Pasta–Ulam system on 1D–lattice are studied. While [4,5,10,12]
deal with traveling waves for such systems on 2D–lattice.
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In the present paper we study the Fermi–Pasta–Ulam type systems
that describes the dynamics of an infinite systems of nonlinearly coupled
particles on a two dimensional lattice. Let qn,m = qn,m(t) be a coordi-
nate of the (n,m)-th particle at time t. It is assumed that each particle
interacts nonlinearly with its four nearest neighbors. The equations of
motion of the system considered are of the form

q̈n,m = W ′
1(qn+1,m − qn,m) −W ′

1(qn,m − qn−1,m)+

+W ′
2(qn,m+1 − qn,m) −W ′

2(qn,m − qn,m−1), (n,m) ∈ Z2, (1.1)

where W1 and W2 are the potentials of interaction. Equations (1.1) form
an infinite system of ordinary differential equations.

In contrast to the previous results (see [10] and [12]), in this paper
we study system (1.1) with saturable nonlinearities which means that at
infinity W ′

i (r) growth as const ·r, i.e. Wi(r) are asymptotically quadratic
at infinity (i = 1, 2). Note that in [11] and [23] such nonlinearities are
considered.

2. Statement of a problem

A traveling wave solution of Eq. (1.1) is a function of the form

qn,m(t) = u(n cosφ+m sinφ− ct),

where the profile function u(s) of the wave, or simply profile, satisfies the
equation

c2u′′(s) = W ′
1(u(s+ cosφ) − u(s)) −W ′

1(u(s) − u(s− cosφ))

+W ′
2(u(s+ sinφ) − u(s)) −W ′

2(u(s) − u(s− sinφ)), (2.1)

where s = n cosφ+m sinφ− ct.
In what follows, a solution of Eq. (2.1) is understood as a function

u(s) from the space C2(R;R) satisfying Eq. (2.1) for all s ∈ R.
We consider two types of solutions:
— periodic traveling waves;
— solitary traveling waves.
In the first case profile satisfies the following periodicity condition

u′(s+ 2k) = u′(s), s ∈ R, (2.2)

where k > 0 is a real number. Note that the profile of such wave is
not necessarily periodic. But its relative displacement profiles r±i are
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periodic:

r±1 (s) =

s±cosφ∫
s

u′(τ)dτ, r±2 (s) =

s±sinφ∫
s

u′(τ)dτ.

Therefore, such waves are also called periodic (see [24]).
In the second case profile satisfies the following condition

lim
s→±∞

u′(s) = u′(±∞) = 0, (2.3)

i.e., the relative displacement profiles vanish at infinity.
We always assume that

(i) Wi(r) =
c2i
2 r

2 + fi(r), where ci ∈ R, fi ∈ C1(R), fi(0) = f ′i(0) = 0
and f ′i(r) = o(r) as r → 0, i = 1, 2;

(ii) there exists a finite limit lim
r→±∞

f ′i(r)
r = l, and the functions gi(r) =

f ′i(r) − lr are bounded (i = 1, 2);

(iii) fi(r) ≥ 0 for all r ∈ R and for every r0 > 0 there exists δ0 =
δ0(r0) > 0 such that

1

2
rf ′i(r) − fi(r) ≥ δ0

for |r| ≥ r0 (i = 1, 2).

To simplify notation, we denote

hi(r) := f ′i(r) = lr + gi(r), i = 1, 2,

and

Gi(r) :=

r∫
0

gi(ρ)dρ, i = 1, 2,

and additionally assume that one of two conditions is satisfied:

(iv) Gi(r) → −∞ as r → ±∞ (i = 1, 2);

or

(v) c2
(
πn
k

)2 − 4(c21 + l) sin2
(
πn
2k cosφ

)
− 4(c22 + l) sin2

(
πn
2k sinφ

)
̸= 0 for

all n ∈ N.

Remark 2.1. Assumption (iii) implies, in particular, that the functions
fi(r) are increasing for r ≥ 0 and descending for r ≤ 0, and Gi(r) < 0
for all r ̸= 0, i = 1, 2.

The important role is played by the quantity defined by the equality

c0(φ) :=
√
c21 cos2 φ+ c22 sin2 φ.
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3. Periodic waves

Let Ek be the Hilbert space defined by

Ek =
{
u ∈ H1

loc(R) : u′(s+ 2k) = u′(s), u(0) = 0
}

with the scalar product

(u, v)k =

k∫
−k

u′(s)v′(s)ds

and corresponding norm ∥u∥k = (u, u)
1
2 . In fact, Ek is 1-codimensional

subspace of the Hilbert space

Ẽk = {u ∈ H1
loc(R) : u′(s+ 2k) = u′(s)}

with ∫ k

−k
u′(s)v′(s)ds+ u(0)v(0)

as the scalar product.
On Ẽk we define operators Ẽk → Ẽk :

(Au)(s) := u(s+ cosφ) − u(s) =

∫ s+cosφ

s
u′(τ)dτ,

(Bu)(s) := u(s+ sinφ) − u(s) =

∫ s+sinφ

s
u′(τ)dτ.

We introduce the functional

Jk(u) =

k∫
−k

[
c2

2
(u′(s))2 − c21

2
(Au(s))2 − c22

2
(Bu(s))2−

−f1(Au(s)) − f2(Bu(s))] ds

defined on the space Ek. Any critical point of the functional Jk is a
solution of Eq. (2.1) satisfying (2.2). Thus, to establish the existence of
solutions to Eq. (2.1) satisfying (2.2), it is suffice to prove the existence
of nontrivial critical points of the functional Jk. This requires a special
form of the mountain pass theorem (see [24,25]).

Let I : H → R be a C1-functional on a Hilbert space H with the norm
∥ · ∥. We say that I satisfies the Palais-Smale condition, if the following
condition is satisfied:
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(PS) Let {un} ⊂ H be a such sequence that {I(un)} is bounded and
I ′(un) → 0, n→ ∞. Then {un} contains a convergent subsequence.

If there exist e ∈ H and r > 0 such that ∥e∥ > r and

β := inf
∥u∥=r

I(u) > I(0) ≥ I(e),

then we say that the functional I possesses the mountain pass geometry.
The following theorem of the mountain pass type can be found in [15]

(Theorem 10).

Theorem 3.1. Suppose that the C1-functional I : H → R satisfies the
Palais–Smale condition and possesses the mountain pass geometry. Let
P : H → H be a continuous mapping such that

I(Pu) ≤ I(u)

for all u ∈ H, P (0) = 0 and P (e) = e. Then there exists a critical point
u ∈ PH (the closure of PH) of the functional I with the critical value

I(u) = b := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≥ β,

where Γ := {γ ∈ C([0, 1],H) : γ(0) = 0, γ(1) = e}.

The following theorem is obtained in [5] (Theorem 3.1) with the aid
of the mountain pass theorem.

Theorem 3.2. Assume (i)–(iii) and either (iv2) or (v2). If φ ∈ [πn, π2 +
πn], n ∈ Z, k > 0 and c20 < c2 < c20+l, then Eq. (2.1) has a non-constant
non-decreasing and non-increasing solutions satisfying (2.2).

Note that from a physical point of view, the increasing waves are
expansion waves, and the decreasing waves are compression waves.

The following lemma gives a uniform upper bound for mountain pass
value of the functional Jk (see [23], Lemma 3).

Lemma 3.1. Let assumptions (i)–(iii) are satisfied and c20 < c2 < c20+ l.
Then there exists positive constatnt K such that for the mountain pass
value bk of Jk we have

bk ≤ K (3.1)

for all k > 1.

4. Solitary waves

In a sense, the case of solitary waves is a limit case of the periodic
waves. Therefore, solitary waves will be constructed by considering crit-
ical points of the functional Jk and then passing to the limit as k → ∞.
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4.1. Variational setting

Let E be the Hilbert space defined by

E = {u ∈ H1
loc(R) : u′ ∈  L2(R), u(0) = 0}

with the scalar product

(u, v) =

∫ +∞

−∞
u′(s)v′(s)ds

and corresponding norm ∥u∥ = (u, u)
1
2 . Note that the condition u′ ∈

 L2(R) in the definition of E corresponds to the condition (2.3) and the
condition u(0) = 0 is meaningful because every element of H1

loc(R) is a
continuous function. By ∥ · ∥∗ we denote the dual norm on E∗, the dual
space to E. Actually, E is 1-codimensional subspace of the Hilbert space

Ẽ = {u ∈ H1
loc(R) : u′ ∈  L2(R)}

with ∫ +∞

−∞
u′(s)v′(s)ds+ u(0)v(0)

as the scalar product.
On Ẽ we define operators Ẽ → Ẽ :

(Au)(s) := u(s+ cosφ) − u(s) =

∫ s+cosφ

s
u′(τ)dτ,

(Bu)(s) := u(s+ sinφ) − u(s) =

∫ s+sinφ

s
u′(τ)dτ.

We introduce the functional

J(u) :=

∫ +∞

−∞
{c

2

2
|u′(s)|2 − U(Au(s)) − U(Bu(s))}ds

defined on the space E.
The proof of the following simple lemma can be found in [10] (Lem-

ma 2 and Lemma 3).

Lemma 4.1. Under assumption (i) the functional J is C1 on E and

⟨J ′(u), h⟩ =

+∞∫
−∞

[
c2u′(s)h′(s) − c21Au(s)Ah(s) − c22Bu(s)Bh(s)

−f ′1(Au(s))Ah(s) − f ′2(Bu(s))Bh(s)
]
ds

for u, h ∈ E. Moreover, any critical point of the functional J is a solution
of Eq. (2.1) satisfying (2.3).
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4.2. Main result

The functional J satisfies a part of conditions of the mountain pass
theorem. However, the Palais-Smale condition for this functional is not
satisfied. Therefore, in this case, critical points of J will be constructed
in a different way, namely, by passing to the limit as k → ∞ in the critical
points of Jk.

To get the main result we need the following concentration compact-
ness lemma (see [24], Lemma 3.6).

Lemma 4.2. Let {un} ⊂ Ekn, kn → ∞, be a sequence such that ∥un∥kn
is bounded. Then one of the two following possibilities holds:

(a) (non-vanishing) for any σ > 0 there exist η > 0, a subsequence of
{un} (still denoted by {un}) and {ζn} ⊂ R such that

ζn+σ∫
ζn−σ

(
|Aun(s)|2 + |Bun(s)|2

)
ds ≥ η; (4.1)

or

(b) (vanishing) ∥Aun∥Lp(−kn,kn) + ∥Bun∥Lp(−kn,kn) → 0 for all p > 2.

Suppose in addition that assumption (i) is satisfied, c > c0 and
∥Jkn(un)∥kn,∗ → 0, then in case (b) we have ∥un∥kn → 0.

The main result of the paper is the following theorem.

Theorem 4.1. Assume (i)–(iii). If φ ∈ [πn, π2 + πn], n ∈ Z, and
c20 < c2 < c20 + l, then Eq. (2.1) has a non-constant non-decreasing and
non-increasing solutions satisfying (2.3).

Proof. First, we fix any sequence {kn}, kn → ∞, and choose {cn}, cn →
c such that Theorem 3.2 guaranties the existence of a non-decreasing
solution un ∈ Ekn with the speed cn (cn = c in case of (iv)). We denote
by J̃kn the functional Jkn with c replaced by cn.

Step 1. By contradiction we show that the sequence {∥un∥kn} is
bounded. Suppose the opposite. Then, passing to a subsequence of {un}
(still denoted by {un}), we can assume that ∥un∥kn → ∞. By Lemma 4.2,
for vn = un

∥un∥kn
we have one of two possibilities: non-vanishing or van-

ishing.
Case (a). Suppose that non-vanishing holds. Due to the translation

invariance of the problem, we can assume that in (4.1): ζn = 0. Since
∥vn∥kn = 1, after passing to a subsequence, we can assume that vn → v
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weakly inH1
loc(R) and uniformly on every finite interval. Moreover, v ∈ E

and ∥v∥ ≤ 1, and from (a) we obtain that v is non-constant.
Let h ∈ C∞

0 (R). Then for all n large enough: 2kn-periodization hn
of h is well-defined and belongs to Ekn , and

0 =
1

∥un∥kn
⟨J̃ ′
k(un), hn⟩

=

+∞∫
−∞

[
c2nv

′
n(s)h′(s) − (c21 + l)Avn(s)Ah(s) − (c22 + l)Bvn(s)Bh(s)

]
ds

− 1

∥un∥kn

+∞∫
−∞

[g1(Aun(s)) + g2(Bun(s))] ds.

Since the functions gi are bounded, the second integral in the right hand
part above tends to zero. Therefore, passing to the limit as n → ∞, we
obtain

+∞∫
−∞

[
c2v′(s)h′(s) − (c21 + l)Av(s)Ah(s) − (c22 + l)Bv(s)Bh(s)

]
ds = 0.

This implies that

(Lv)(s) := −c2v′′(s) + (c21 + l)(v(s+ cosφ) + v(s− cosφ) − 2v(s))

+(c22 + l)(v(s+ sinφ) + v(s− sinφ) − 2v(s)) = 0.

The operator L is a pseudo differential operator with the symbol

σ(ξ) := c2ξ2 − 4(c21 + l) sin2

(
ξ

2
cosφ

)
− 4(c22 + l) sin2

(
ξ

2
sinφ

)
.

Obviously that Lv′ = 0 and v′ ∈ L2(R)\{0}. On the other hand, passing
to the Fourier transform, we obtain that σ(ξ)v̂′(ξ) = 0 and, hence, v′ = 0.
We got a contradiction that excludes non-vanishing.

Case (b). Now we suppose that vanishing holds. In this case we have
that ∥Avn∥Lp(−kn,kn) + ∥Bvn∥Lp(−kn,kn) → 0 (n → ∞) for all p > 2. We
fix any such p. We have that

0 =
1

∥un∥2kn
⟨J̃ ′
k(un), un⟩

=

kn∫
−kn

[
c2n(v′n(s)2 − c21(Avn(s))2 − c22(Bvn(s))2

]
ds−
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−
kn∫

−kn

[
h1(Aun(s))

Aun(s)
(Avn(s))2 +

h2(Bun(s))

Bun(s)
(Bvn(s))2

]
ds.

Since cn → c, we have that 2α0 := inf(cn − c0) > 0 and, hence,

2α0 = 2α0∥vn∥2kn

≤
kn∫

−kn

[
h1(Aun(s))

Aun(s)
(Avn(s))2 +

h2(Bun(s))

Bun(s)
(Bvn(s))2

]
ds. (4.2)

By assumption (i), there is r0 > 0 such that hi(r)
r ≤ α0 as |r| ≤ r0.

Let Dn = {s ∈ [−kn, kn] : max{|Aun(s)|, |Bun(s)|} ≤ r0} and CDn =
[−kn, kn] \Dn. Then∫

Dn

[
h1(Aun(s))

Aun(s)
(Avn(s))2 +

h2(Bun(s))

Bun(s)
(Bvn(s))2

]
ds

≤ α0

∫
Dn

[
(Avn(s))2 + (Bvn(s))2

]
ds

≤
[
∥Avn∥2L2(−kn,kn) + ∥Bvn∥2L2(−kn,kn)

]
≤ α0∥vn∥2kn = α0.

Then, by Eq. (4.2), we have that

lim inf
n→∞

∫
CDn

[
h1(Aun(s))

Aun(s)
(Avn(s))2 +

h2(Bun(s))

Bun(s)
(Bvn(s))2

]
ds ≥ α0.

(4.3)
On the other hand, by assumption (ii), there exists α1 > 0 such that
|hi(r)| ≤ α1|r| for all r. Thus, by the Hölder inequality, we have∫

CDn

[
h1(Aun(s))

Aun(s)
(Avn(s))2 +

h2(Bun(s))

Bun(s)
(Bvn(s))2

]
ds

≤ α1(meas(CDn))
p−2
p

(
|Avn∥

2
p

Lp(−kn,kn) + |Bvn∥
2
p

Lp(−kn,kn)

)
, (4.4)

where meas stands for the Lebesgue measure. From Eq. (4.3) and Eq.
(4.2) we obtain that meas(CDn) → ∞. Then, due to assumption (iii),
we have

bkn = J̃kn(un) = J̃kn(un) − 1

2
⟨J̃ ′
k(un), un⟩
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=

kn∫
−kn

[
1

2
h1(Aun(s))Aun(s) − f1(Aun(s))

]
ds

+

kn∫
−kn

[
1

2
h2(Bun(s))Bun(s) − f2(Bun(s))

]
ds

=

∫
CDn

[
1

2
h1(Aun(s))Aun(s) − f1(Aun(s))

]
ds

+

∫
CDn

[
1

2
h2(Bun(s))Bun(s) − f2(Bun(s))

]
ds ≥ 2δ0meas(CDn) → ∞.

But, by Lemma 3.1, bk is bounded from above. And we got a contra-
diction again. Hence, vanishing also impossible, which means that the
sequence {∥un∥kn} is bounded.

Step 2. The boundedness of {∥un∥kn} implies that, passing to a
subsequence of {un} (still denoted by {un}), there exist ζn ∈ R and
u ̸= 0 such that un(· + ζn) → u weakly in H1

loc(R) and uniformly on
every finite interval. Moreover, the boundedness of {∥un∥kn} implies
that ∥u∥ is finite and, hence, u ∈ E. It is easy to see that u is a non-
decreasing critical point of J and, hence, u is a solution of Eq. (2.1) that
satisfy (2.3).

The proof in the case of non-increasing solutions is similar. The proof
is complete.

Conclusion

Thus, in the present paper we obtain a result on the existence of
non-constant monotone solitary traveling waves with vanishing relative
displacement profiles in Fermi-Pasta-Ulam type systems with saturable
nonlinearities on a two-dimensional lattice.
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