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Abstract. Let Ω and Ω̃ be domains in the Euclidean space Rn. We
study the boundary behavior of weak (p, q)-quasiconformal mappings
φ : Ω → Ω̃, n − 1 < q 6 p < n. The suggested method is based on
the capacitary distortion properties of the weak (p, q)-quasiconformal
mappings.
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1. Introduction

Let Ω and Ω̃ be domains in the Euclidean space Rn, n > 2. We
consider the boundary behavior of weak (p, q)-quasiconformal mappings
φ : Ω → Ω̃, n − 1 < q 6 p < n. The weak (p, q)-quasiconformal map-
pings represent generalizations of (quasi)conformal mappings and have
significant applications in the geometric analysis of PDE (see, for exam-
ple, [6, 9–11]). In the frameworks of the boundary value problems for
elliptic equations becomes important the boundary behavior of this class
of mappings. From the historic point of view this arises due to the bound-
ary behavior of conformal mappings (univalent analytic functions) [3] and
due to the boundary behavior of quasiconformal mappings [2]. In series
of works [12,19,20,26,28,30,31,41] the boundary behavior of space quasi-
conformal mappings and their generalizations in the terms of capacitory
(moduli) inequalities was studied.

The theory of weak (p, q)-quasiconformal mappings arose in the Sobo-
lev embedding theory [8,22] and was founded in the series of works [5,32,
38–40]. Recent applications of the weak (p, q)-quasiconformal mappings
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theory to Sobolev extension operators can be found in [17,18]. Recall that
a mapping φ : Ω → Ω̃ is called a weak (p, q)-quasiconformal mapping if
φ ∈W 1

1,loc(Ω), has finite distortion and

K
pq
p−q
p,q (φ; Ω) =

∫
Ω

(
|Dφ(x)|p

|J(x, φ)|

) q
p−q

dx <∞,

for 1 < q < p <∞ [32,38] and

Kp
p,p(φ; Ω) = ess sup

Ω

|Dφ(x)|p

|J(x, φ)|
<∞,

for 1 < q = p <∞ [5, 35]. In the case p = q = n we have quasiconformal
mappings [34] and in the case 1 < q < p = n we have mappings of
integrable distortion [15].

The main result of the article states: Let φ : Ω → Ω̃, φ(Ω) = Ω̃, be a
weak (p, q)-quasiconformal mapping, n − 1 < q 6 p < n, where Ω has a
strongly accessible boundary with respect to q-capacity and Ω̃ has locally
connected boundary. Then the inverse mapping φ−1 can be extended to
a continuous mapping

φ−1 : Ω̃ → Ω.

The definition of a strongly accessible boundary in the terms of the
q-capacity will be given in Section 3.

The suggested method is based on the capacitary distortion properties
of the weak (p, q)-quasiconformal mappings. Let us note that the weak
(p, q)-quasiconformal mappings are closely connected with mappings de-
fined by weighted capacitary (moduli) inequalities [7, 25].

2. Weak quasiconformal mappings

Let Ω be a domain in the Euclidean space Rn, n > 2. The Sobolev
space W 1

p (Ω), 1 6 p 6 ∞, is defined as a Banach space of locally in-
tegrable weakly differentiable functions f : Ω → R equipped with the
following norm:

∥f |W 1
p (Ω)∥ = ∥f | Lp(Ω)∥ + ∥∇f | Lp(Ω)∥,

where ∇f is the weak gradient of the function f .
The homogeneous seminormed Sobolev space L1

p(Ω), 1 6 p 6 ∞,
is defined as a space of locally integrable weakly differentiable functions
f : Ω → R equipped with the following seminorm:

∥f | L1
p(Ω)∥ = ∥∇f | Lp(Ω)∥.
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In accordance with the non-linear potential theory [24] we consider
elements of Sobolev spaces W 1

p (Ω) as equivalence classes up to a set of
p-capacity zero [23].

Let Ω and Ω̃ be domains in Rn, n > 2. We say that a homeomorphism
φ : Ω → Ω̃ induces a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), 1 6 q 6 p 6 ∞,

by the composition rule φ∗(f) = f ◦ φ, if for any function f ∈ L1
p(Ω̃),

the composition φ∗(f) ∈ L1
q(Ω) is defined quasi-everywhere in Ω [23] and

there exists a constant Kp,q(Ω) <∞ such that

∥φ∗(f) | L1
q(Ω)∥ 6 Kp,q(Ω)∥f | L1

p(Ω̃)∥.

In the geometric function theory composition operators on Sobolev
spaces arise in the work [36] and have numerous applications in the ge-
ometric analysis of PDE. The characterization of composition operators
on Sobolev spaces is given in the following theorem [32,38] ( [35] for the
case p = q > n and [5] for the case n− 1 < q = p < n).

Theorem 2.1. Let φ : Ω → Ω̃ be a homeomorphism between two domains
Ω and Ω̃. The homeomorphism φ induces a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), 1 6 q < p <∞,

if and only if φ is the weak (p, q)-quasiconformal mapping.

Recall the notion of a variational p-capacity [37]. The condenser in a
domain Ω ⊂ Rn is a pair (E,F ) of connected disjoint closed relatively to
Ω sets E,F ⊂ Ω. A continuous function u ∈ L1

p(Ω) is called an admissible
function for the condenser (E,F ), if the set E ∩ Ω is contained in some
connected component of the set Int{x|u(x) = 0} and the set F ∩ Ω is
contained in some connected component of the set Int{x|u(x) = 1}. We
call as the p-capacity of the condenser (E,F ) relatively to domain Ω the
following quantity:

capp(E,F ; Ω) = inf ∥u|L1
p(Ω)∥p.

Here the greatest lower bond is taken over all functions admissible for the
condenser (E,F ) ⊂ Ω. If the condenser has no admissible functions we
put the capacity is equal to infinity.

The following capacitory properties of weak (p, q)-quasiconformal map-
pings were established in [32,38] (for the case p = ∞ see in [33]).
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Theorem 2.2. Let φ : Ω → Ω̃ be a weak (p, q)-quasiconformal mapping,
1 6 q 6 p 6 ∞. Then for every condenser (E,F ) ⊂ Ω̃ the inequality

cap1/q
q (φ−1(E), φ−1(F ); Ω) 6 Kp,q(φ; Ω) cap1/p

p (E,F ; Ω̃)

holds.

By using these capacitory distortion properties we consider boundary
behavior of weak (p, q)-quasiconformal mappings.

3. On boundaries correspondence

Recall that the boundary ∂Ω of a domain Ω ⊂ Rn is called strongly
accessible at a point x0 ∈ ∂Ω with respect to the p-capacity if for each
neighborhood U such that ∂U ∩ Ω ̸= ∅ of x0 there exist a compact set
E ⊂ Ω, a neighborhood V ⊂ U of x0 and δ > 0 such that

capp(E,F ; Ω) > δ (3.1)

for each continuum F in Ω that intersects ∂U and ∂V . The boundary
∂Ω of a domain Ω is called strongly accessible at a point x0 ∈ ∂Ω, if it
is strongly accessible at a point x0 ∈ ∂Ω with respect to the n-capacity
(n-modulus).

Remark 3.1. The notion of a strongly accessible boundary was intro-
duced in [21, section 3.8] and it is very close to the notion of a uniform
domain which was introduced by Näkki [27] Theorem 6.2.

This notion also coincides, up to some (not too essential) details, with
the concept of a quasiconformally accessible boundary [26, section 1.7].
Note that both of these concepts were formulated in terms of the modulus
of families of paths. In this connection, we recall the concept of a modulus
of a family of locally rectifiable curves (paths) Γ.

Let ρ : Rn → [0,∞] be a Borel function. Then ρ is called admissible
for Γ (i. e. ρ ∈ adm Γ), if the inequality

∫
γ
ρ(x) ds > 1 holds for any

locally rectifiable curve γ ∈ Γ. Let p > 1, then the quantity

Mp(Γ) = inf
ρ∈admΓ

∫
Rn

ρp(x) dx (3.2)

is called the p-modulus of the family of curves of Γ.
For a given domain Ω in Rn = Rn ∪ {∞}, and sets E and F in Ω

we denote by the symbol Γ(E,F,Ω) the family of all locally rectifiable
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curves γ : [0, 1] → Rn joining the sets E and F in Ω, that is: γ(0) ∈ E,
γ(1) ∈ F and γ(t) ∈ Ω for all t ∈ (0, 1).

We say that the boundary ∂Ω of a domain Ω is strongly accessible at
a point x0 ∈ ∂Ω with respect to the p-modulus if for each neighborhood
U of x0 there exist a compact set E ⊂ Ω, a neighborhood V ⊂ U of x0
and δ > 0 such that

Mp(Γ(E,F,Ω) > δ (3.3)

for each continuum F in Ω that intersects ∂U and ∂V .
Note that (3.1) is equivalent to (3.3). Indeed,

Mp(Γ(E,F,Ω) = capp(E,F ; Ω)

by Hesse and Shlyk equalities (see [16, Theorem 5.5] and [29, Theorem 1]).

Based on the definition of domains with strongly accessible boundaries
and taking Remark 3.1 into account, we give some examples of such
domains.

1. By Theorem 6.2 and Corollary 6.8 in [27], the planar domain with
finitely many boundary components has a strongly accessible boundary
whenever it is finitely connected on the boundary.

2. Following [27], a domain Ω is said to be quasiconformally collared
on the boundary if each point of ∂Ω has arbitrarily small neighborhoods
U such that U ∩ Ω can be mapped quasiconformally onto a ball B ⊂
Rn. Let Ω be a domain which can be mapped quasiconformally onto
some quasiconformally collared domain. If Ω is finitely connected on the
boundary, then the boundary of Ω is strongly accessible (see Corollary 6.7
in [27]).

3. The next example gives domains with a strongly accessible boundary
for p ̸= n. Recall the notion of the upper gradient [13,14]. Let (X,µ) be
a metric measure space. A Borel function g : X → [0,∞] is said to be an
upper gradient of a function u : X → R if

|u(x) − u(y)| 6
∫
γ

g ds

for any rectifiable curve γ joining x and y in X. Let 1 6 p <∞. We say
that X,µ admits an (1; p)-Poincare inequality if there exists a constant
1 6 Cp <∞ such that

1

µ(B)

∫
B

|u− uB|dµ(x) 6 Cp · (diamB)

 1

µ(B)

∫
B

gpdµ(x)

1/p
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for all balls B in X and for all bounded continuous functions u on B,
where g is the upper gradient of u. Metric measure spaces where exists
a number n such that the inequalities

1

K
Rn 6 µ(B(x0, R)) 6 KRn

hold with some constant 1 6 K < ∞, for every x0 ∈ X and all R <
diamX are called Ahlfors n-regular. Let Ω ⊂ B(0, R) for some R > 0
be an Ahlfors n-regular domain satisfying the (1; p)-Poincare inequality
for n − 1 < p 6 n. Assume that E and F are some continua E,F ⊂ Ω.
By [1, Proposition 4.7] and due to Remark 3.1,

capp(E,F ; Ω) > 1

C

min{diamE, diamF}
R1+p−n , (3.4)

where C > 0 is some constant.

Let us prove that Ω has a strongly accessible boundary at any point
x0 ∈ ∂Ω with respect to p-capacity. Suppose that x0 ∈ ∂Ω and that U
is an arbitrary neighborhood of x0. Choose a small enough ε1 > 0 such
that for V := B(x0, ε1), we have V ⊂ U . Because ∂U ∩D ̸= ∅ we can
set ε2 := dist(∂U, ∂V ) > 0. Note that for arbitrary continua F1 and F2

in Ω satisfying F1 ∩ ∂U ̸= ∅ ̸= F1 ∩ ∂V and F2 ∩ ∂U ̸= ∅ ̸= F2 ∩ ∂V we
have diam(F1) > ε2 and diam(F2) > ε2. Therefore, by (3.4), we obtain
capp(Γ(F1, F2;G0)) > ε2, as required.

Given x0 ∈ Rn, we set

B(x0, r) = {x ∈ Rn : |x− x0| < r} ,

S(x0, r) = {x ∈ Rn : |x− x0| = r} , (3.5)

A = A(x0, r1, r2) = {x ∈ Rn : r1 < |x− x0| < r2} . (3.6)

The following statement holds.

Theorem 3.1. Let φ : Ω → Ω̃, φ(Ω) = Ω̃, be a weak (p, q)-quasiconfor-
mal mapping, n − 1 < q 6 p < n, Ω has a strongly accessible boundary
with a respect to q-capacity and Ω̃ has locally connected boundary. Then
the inverse mapping φ−1 can be extended by continuity to the continuous
mapping

φ−1 : Ω̃ → Ω.
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Proof. Suppose the contrary, namely, there exists such point b ∈ ∂Ω̃,
that φ−1 has no the continuous extension to the point b. It means that
there exist two sequences xi, x

′
i ∈ Ω̃, i = 1, 2, . . ., such that xi → b,

x ′
i → b as i → ∞, and φ−1(xi) → y, φ−1(x ′

i ) → y ′ as i → ∞, while

y ′ ̸= y. Note that y and y ′ ∈ ∂Ω, because C(φ−1, ∂Ω̃) ⊂ ∂Ω for any
homeomorphism φ−1, see [21, Proposition 13.5].

Here

C(φ−1, ∂Ω̃) =
∪

x0∈∂Ω̃

C(φ−1, x0) ,

where

C(φ−1, x0) = {y ∈ Rn : ∃ xk ∈ Ω̃, xk → x0 : φ−1(xk) → y, k → ∞}.

By the definition of a strongly accessible boundary at the point y ∈
∂Ω with respect to the q-capacity, for any neighborhood U of this point
there exists a compact set C ′

0 ⊂ Ω, a neighborhood V of a point y,
V ⊂ U , and a number δ > 0 such that

capq(C
′
0, F ; Ω) > δ > 0 (3.7)

for any continua F, intersecting ∂U and ∂V. Since C(φ−1, ∂Ω̃) ⊂ ∂Ω,
we obtain that the condition C0 ∩ ∂Ω̃ = ∅ holds for C0 := φ(C ′

0). Now
suppose ε0 > 0 is such that C0 ∩B(b, ε0) = ∅.

Since Ω̃ is locally connected at b, we can join the points xi and x ′
i by

a path γi lying in V ∩ Ω̃. We may consider that γi ∈ B(b, 2−i)∩ Ω̃. Since
φ−1(xi) ∈ V and φ−1(x ′

i ) ∈ Ω̃ \ U for sufficiently large i ∈ N and due
to (5.8), we may find i0 ∈ N such that

capq(C
′
0, φ

−1(γi); Ω)) > δ > 0 (3.8)

for any i > i0 ∈ N. Immerse the compact C0 into some the continuum C1,
still completely lying in the domain Ω̃, see [30, Lemma 1]. By reducing
ε0 > 0, we may again assume that C1 ∩B(b, ε0) = ∅. By Theorem 2.2

cap1/q
q C ′

0, φ
−1(γi); Ω) 6

cap1/q
q (φ−1(γi), φ

−1(C1); Ω) 6 Kp,q(φ; Ω) cap1/p
p (γi, C1; Ω̃) . (3.9)

Let us prove that capp(γi, C1; Ω̃) → 0 as i → ∞. Indeed, by the
definition of the capacity

capp(γi, C1; Ω̃) 6 capp(S(b, 2−i), S(b, ε0);A(b, 2−i, ε0)) . (3.10)
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However, by [4, relation (2)] and due to the Remark 3.1

capn(S(b, 2−i), S(b, ε0);A(b, 2−i, ε0)) =
ωn−1

logn−1 ε0
2−i

→ 0 , i→ ∞ ,

and

capp(S(b, 2−i), S(b, ε0);A(b, 2−i, ε0))

=

(
n− p

p− 1

)p−1 ωn−1(
(2−i)

p−n
p−1 − ε

p−n
p−1

0

)p−1 → 0 , i→ ∞ p ̸= n .

Now, capp(γi, C1; Ω̃) → 0 as i → ∞, as required. In this case, the
relation (3.9) contradicts with (3.8). This contradiction proves the the-
orem.

In the case n < q 6 p < ∞ we use the following composition duality
theorem [32,38]:

Theorem 3.2. Let φ : Ω → Ω̃ be a weak (p, q)-quasiconformal mapping,
n− 1 < q 6 p <∞. Then the inverse mapping φ−1 : Ω̃ → Ω generates a
bounded composition operator(

φ−1
)∗

: L1
q′(Ω) → L1

p′(Ω̃),

where p′ = p/(p− n+ 1), q′ = q/(q − n+ 1).

By using this composition duality theorem we obtain the capacitory
distortion estimate:

Theorem 3.3. Let φ : Ω → Ω̃ be a weak (p, q)-quasiconformal mapping,
n < q 6 p < (n − 1)2/(n − 2). Then for every condenser (F0, F1) ⊂ Ω
the inequality

cap
1/p′

p′ (φ(F0), φ(F1); Ω̃) 6 Kq′,p′(φ
−1; Ω̃) cap

1/q′

q′ (F0, F1; Ω),

n− 1 < p′ 6 q′ < n,

holds, where p′ = p/(p− (n− 1)) and q′ = q/(q − (n− 1)).

The condition p < (n− 1)2/(n− 2) provides that p′ > n− 1. Hence,
by using Theorem 3.1 and Theorem 3.3 we obtain:
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Theorem 3.4. Let φ : Ω → Ω̃ be a weak (p, q)-quasiconformal mapping,
n < q 6 p < (n − 1)2/(n − 2). Suppose that Ω has a locally connected
boundary and Ω̃ has strongly accessible boundary with a respect to p′-
capacity, p′ = p/(p − n + 1). Then the mapping φ can be extended by
continuity to the continuous mapping

φ : Ω → Ω̃.
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