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On the Hilbert problem
for semi-linear Beltrami equations

Vladimir Gutlyanskĭı, Vladimir Ryazanov,
Olga Nesmelova, Eduard Yakubov

Abstract. The present paper is devoted to the study of the well-known
Hilbert boundary-value problem for semi-linear Beltrami equations with
arbitrary boundary data that are measurable with respect to logarithmic
capacity.

Namely, we prove here the corresponding results on existence, regu-
larity and representation of its nonclassical solutions with geometric in-
terpretation of boundary values as angular (along nontangential paths)
limits in comparison with the classical approach in PDE.

For this purpose, we apply completely continuous operators by Ahl-
fors–Bers first of all to obtain solutions of semi-linear Beltrami equations,
generally speaking with no boundary conditions, and then to derive their
representation through solutions of the Vekua type equations and the so-
called generalized analytic functions with sources.

Moreover, we obtain similar results on nonclassical solutions of the
Poincare boundary-value problem on the directional derivatives and, in
particular, of the Neumann problem with arbitrary measurable data to
semi-linear equations of the Poisson type.

As consequences, it is given a series of applications of these results
to some problems of mathematical physics describing such phenomena
as diffusion with physical and chemical absorption, plasma states and
stationary burning in anisotropic and inhomogeneous media.
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1. Introduction

Recall that boundary-value problems for analytical functions and ge-
neralizations originated from the famous Riemann dissertation (1851)
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and were further investigated in works of Hilbert (1904, 1912, 1924) and
Poincare (1910).

The theory of boundary-value problems of mathematical physics is
actively developed in many modern leading world schools, and the Hilbert
boundary-value problem belongs to the most important of them because
of its numerous applications to the hydromechanics, elasticity etc.

The classic formulation of the Hilbert boundary value problem,
see [30], was as follows: To find an analytic function f(z) in a domain D
of the complex plane C bounded by a rectifiable Jordan contour C that
satisfies the boundary condition

lim
z→ζ,z∈D

Re {λ(ζ) f(z)} = φ(ζ) ∀ ζ ∈ C , (1.1)

where the coefficient λ and the boundary date φ of the problem were
assumed continuously differentiable with respect to the natural parameter
s and λ ̸= 0 everywhere on C. The latter allows to consider that |λ| ≡ 1
on C. Note that the quantity Re {λ f} in (1.1) means a projection of f
into the direction λ interpreted as vectors in R2.

The reader can find a comprehensive treatment of its theory in excel-
lent books [7,8,31,58]. We also recommend to make familiar with historic
surveys in monographs [16, 45, 59] on the topic with an exhaustive bib-
liography. Recall here only that the first approach to its solution was
proposed by Hilbert himself and it was based on the theory of singular
integral equations. This approach made possible to prove the existence
of its solutions for Hölder continuous data.

The research of boundary-value problems with arbitrary measurable
data is due to the cornerstone dissertation of Luzin where he has studied
the corresponding Dirichlet problem for harmonic functions in the unit
disk D.

In this connection, recall his lemma on antiderivatives that was one
of the main results of his dissertation, see e.g. his paper [39], dissertation
[40], p. 35, and its reprint [41], p. 78: For any measurable function
φ : [0, 1] → R, there exists a continuous function Φ : [0, 1] → R such that
Φ′ = φ a.e. on [0, 1].

On this basis, Luzin just proved, see e.g. [41], p. 87: For any
measurable function φ : ∂D → R, there exists a harmonic function u :
D → R such that u(z) → φ(ζ) for a.e. ζ ∈ ∂D as z → ζ along any
nontangential path.

Note that the Luzin dissertation was later on published only in Rus-
sian language as book [41] with comments of his students Bari and
Men’shov already after his death. A part of its results was also printed in
Italian [42]. However, his lemma was published in English in book [56] as
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Theorem VII(2.3). Hence Frederick Gehring in [17] has rediscovered the
Luzin theorem, and his proof on the basis of the lemma in fact coincided
with the original proof of Luzin.

The Luzin theorem was strengthened by the statement that the space
of the Luzin harmonic functions has infinite dimension for each mea-
surable function φ : ∂D → R, see e.g. Corollary 5.1 in [50] and also
Corollary 3.1 [51]. The latter was key to establish that the space of an-
alytic functions f : D → C with the angular (along nontangential paths)
limits (1.1) for a.e. ζ ∈ ∂D has infinite dimension for any measurable
functions λ : ∂D → C, |λ(ζ)| ≡ 1, and φ : ∂D → R, see Theorems 3.1
and Remark 5.2 in [50].

In turn, on the base of the latter result, the corresponding theorems
on the existence of nonclassical solutions to the Poincare boundary-value
problem on the directional derivatives and, in particular, to the Neumann
problem for harmonic functions were derived in [52], Theorems 3, 4 and
5. Moreover, similar results were obtained for the so–called generalized
analytic functions and generalized harmonic functions with sources, see
[54]. In a series of further works, see e.g. [20]- [29], these results were
extended to the Beltrami equations and analogs of the Poisson equation
in anisotropic and inhomogeneous media with a replacement of measure of
length by logarithmic capacity in the case of domains with nonrectifiable
boundaries.

In this connection, let us recall that the known monograph [59] was
devoted to the generalized analytic functions, i.e., continuous com-
plex valued functions h(z) of one complex variable z = x + iy of class
W 1,1

loc satisfying equations

∂z̄h + ah + bh = c , ∂z̄ :=
1

2

(
∂

∂x
+ i · ∂

∂y

)
, (1.2)

where it was assumed that the complex valued functions a, b and c belong
to class Lp(D) with some p > 2 in the corresponding domain D ⊆ C.

In particular, paper [54] contained Theorem 1 on the existence of non-
classical solutions of the Hilbert boundary-value problem with arbitrary
boundary data that were measurable with respect to the length measure
for generalized analytic functions with sources g, when a ≡ 0 ≡ b,

∂z̄h(z) = g(z) , (1.3)

where g is of class Lp(D), p > 2, in domains with rectifiable bound-
aries. A similar result, Theorem 1 in [26], was also proved on the Hilbert
boundary-value problem with arbitrary boundary data that were mea-
surable with respect to the logarithmic capacity in domains with nonrec-
tifiable boundaries.



492 On the Hilbert problem for semi-linear...

Moreover, paper [54] included Theorem 6 (Corollary 6) on the exis-
tence of continuous solutions of class W 2,p

loc to the Poincare (Neumann)
boundary-value problem with arbitrary boundary data that were mea-
surable with respect to the length measure in domains with rectifiable
boundaries for generalized harmonic functions with sources G in
Lp(D), p > 2, satisfying the Poisson equations

△U(z) = G(z) . (1.4)

Note that by the Sobolev embedding theorem, see Theorem I.10.2 in [57],
such functions U belong to the class C1. And again, similar results, The-
orem 5 (Corollary 4) in [26], were also proved on the Poincare (Neumann)
boundary-value problem with arbitrary boundary data that were measur-
able with respect to the logarithmic capacity in domains with nonrectifi-
able boundaries.

These results have been extended then to the corresponding Hilbert
problem with arbitrary measurable boundary data for the semi-linear
Vekua type equations of the form

∂z̄h(z) = g(z) · q(h(z)) a.e. in D , (1.5)

with g ∈ Lp(D), p > 2, and continuous q : C → C, see Theorem 2 in [27]
and Theorem 2 in [55], and to the corresponding Poincare (Neumann)
boundary-value problem with arbitrary measurable boundary data for
the nonlinear Poisson equations of the form

△U(z) = G(z) ·Q(U(z)) a.e. in D (1.6)

with G ∈ Lp(D), p > 2, and continuous Q : R → R, see Theorem 4
(Corollary 5) in [27] and Theorem 4 (Corollary 4) in [55] for the cases of
nonrectifiable and rectifiable boundaries, correspondingly.

Recall also that the Beltrami equation is the equation of the form

fz̄ = µ(z)fz (1.7)

a.e. in D, where µ : D → C is a Lebesgue measurable function with
|µ(z)| < 1 a.e., fz̄ = (fx + ify)/2, fz = (fx − ify)/2, z = x + iy, fx and
fy are partial derivatives of the function f in x and y, respectively. Note
that continuous functions with generalized derivative fz̄ = 0 are analytic
functions, see e.g. Lemma 1 in [2].

Equation (1.7) is said to be nondegenerate if ||µ||∞ < 1 that
we will assume later on. Homeomorphic solutions f of nondegener-
ate (1.7) in W 1,2

loc are called quasiconformal mappings or sometimes
µ−conformal mappings. Its continuous solutions in W 1,2

loc are called
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µ−conformal functions. On the corresponding existence theorems for
nondegenerate (1.7), see e.g. [1, 9] and [37].

The nonhomogeneous Beltrami equations

ωz̄ = µ(z) · ωz + σ(z) (1.8)

have been introduced and studied in the known Ahlfors-Bers paper [2],
see also the Ahlfors monograph [1]. Boundary value problems for (1.8)
have been researched in our preprint [25].

The present paper is devoted to the study of the Hilbert (Dirichlet)
boundary value problem with arbitrary boundary data that are measurab-
le with respect to the logarithmic capacity for the semi-linear Beltrami
equations of the form

ωz̄ = µ(z) · ωz + σ(z) · q(ω(z)) , (1.9)

where σ : D → C belongs to class Lp(D), p > 2, q : C → C is continuous
and

lim
w→∞

q(w)

w
= 0 , (1.10)

as well as to the Poincare (Neumann) boundary-value problem with ar-
bitrary boundary data that are also measurable with respect to the loga-
rithmic capacity for the semi-linear Poisson type equations

divA(z)∇U(z) = Σ(z) ·Q(U(z)) , (1.11)

where A(z) is a matrix valued function that is relevant to µ, Σ : D → R
belongs to class Lp(D), p > 2, Q : R → R is continuous and

lim
t→∞

Q(t)

t
= 0 . (1.12)

2. On solutions with no boundary conditions

We start here from a theorem on existence of solutions for semi-linear
Beltrami equations (1.9) without any boundary conditions.

Following [2], see also monograph [1], we assume that the source
σ : C → C in equation (1.8) belongs to class Lp(C) for some p > 2 with

k Cp < 1 , k := ∥µ∥∞ < 1 , (2.1)

where Cp is the norm of the known operator T : Lp(C) → Lp(C) defined
through the Cauchy principal limit of the singular integral

(Tg)(ζ) := lim
ε→0

− 1

π

∫
|z−ζ|>ε

g(z)

(z − ζ)2
dxdy

 , z = x+ iy . (2.2)
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As known, ∥Tg∥2 = ∥g∥2, i.e. C2 = 1, and by the Riesz convexity
theorem Cp → 1 as p→ 2. Thus, there are such p, whatever the value of
k in (1.8).

Let us denote by Bp the Banach space of functions ω, defined on the
whole plane C, which satisfy a global Hölder condition of order 1 − 2/p,
which vanish at the origin, and whose generalized derivatives ωz and ωz̄
exist and belong to Lp(C). The norm in Bp is defined by

∥ω∥Bp := sup
z1,z2∈C,
z1 ̸=z2

|ω(z1) − ω(z2)|
|z1 − z2|1−2/p

+ ∥ωz∥p + ∥ωz̄∥p . (2.3)

The principal result in [2], Theorem 1, is the following statement:

Theorem A. Let condition (2.1) hold and σ ∈ Lp(C) for p > 2.
Then the equation (1.8) has a unique solution ωµ,σ ∈ Bp. This is the
only solution with ω(0) = 0 and ωz ∈ Lp(C).

Its following consequence holds, see Theorem 4 and Lemma 8 in [2].

Theorem B. Let µ : C → C be in L∞(C) with compact support and
∥µ∥∞ < 1. Then there exists a unique µ−conformal mapping fµ in C
which vanishes at the origin and satisfies condition fµz − 1 ∈ Lp(C) for
any p > 2 with (2.1). Moreover, fµ(z) = z + ωµ,µ(z).

To proceed to the semi-linear Beltrami equations, recall also that a
completely continuous mapping from a metric space M1 into a metric
space M2 is defined as a continuous mapping on M1 which takes bounded
subsets of M1 into relatively compact subsets of M2, i.e., with compact
closures in space M2. When a continuous mapping takes M1 into a rel-
atively compact subset of M1, it is nowadays said to be compact on
M1.

Note that the notion of completely continuous (compact) operators
is due essentially to Hilbert in a special space that, in reflexive spaces, is
equivalent to Definition VI.5.1 for the Banach spaces in [14] which is due
to F. Riesz, see also further comments of Section VI.12 in [14].

Recall some further definitions and the fundamental result of the cel-
ebrated paper [38]. Leray and Schauder extend as follows the Brouwer
degree to compact perturbations of the identity I in a Banach space B,
i.e., a complete normed linear space. Namely, given an open bounded set
Ω ⊂ B, a compact mapping F : B → B and z /∈ Φ(∂Ω), Φ := I − F , the
(Leray–Schauder) topological degree deg [Φ,Ω, z] of Φ in Ω over z
is constructed from the Brouwer degree by approximating the mapping
F over Ω by mappings Fε with range in a finite-dimensional subspace Bε
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(containing z) of B. It is showing that the Brouwer degrees deg [Φε,Ωε, z]
of Φε := Iε−Fε, Iε := I|Bε , in Ωε := Ω∩Bε over z stabilize for sufficiently
small positive ε to a common value defining deg [Φ,Ω, z] of Φ in Ω over
z.

This topological degree “algebraically counts” the number of fixed
points of F (·)− z in Ω and conserves the basic properties of the Brouwer
degree as additivity and homotopy invariance. Now, let a be an isolated
fixed point of F . Then the local (Leray–Schauder) index of a is
defined by ind [Φ, a] := deg[Φ, B(a, r), 0] for small enough r > 0. ind [Φ, 0]
is called by index of F . In particular, if F ≡ 0, correspondingly, Φ ≡ I,
then the index of F is equal to 1.

Let us formulate the main result in [38], Theorem 1, see also the
survey [44].

Proposition 1. Let B be a Banach space, and let F (·, τ) : B →
B be a family of operators with τ ∈ [0, 1]. Suppose that the following
hypotheses hold:

(H1) F (·, τ) is completely continuous on B for each τ ∈ [0, 1] and
uniformly continuous with respect to the parameter τ ∈ [0, 1] on each
bounded set in B;

(H2) the operator F := F (·, 0) has finite collection of fixed points
whose total index is not equal to zero;

(H3) the collection of all fixed points of the operators F (·, τ), τ ∈
[0, 1], is bounded in B.

Then the collection of all fixed points of the family of operators F (·, τ)
contains a continuum along which τ takes all values in [0, 1].

Remark 1. By Lemma 5 in [2] the mapping σ → ωµ,σ from Theorem
A is a bounded linear operator from Lp(C) to Bp(C) with a bound that
depends only on k and p in (2.1). In particular, this is a bounded linear
operator from Lp(C) to C(C). Namely, by (15) in [2] we have that ωµ,σ

is Hölder continuous:

|ωµ,σ(z1) − ωµ,σ(z2)| ≤ c · ∥σ∥p · |z1 − z2|1−2/p ∀ z1 z2 ∈ C , (2.4)

where the constant c may depend only on k and p in (2.1). Moreover,
ωµ,σ(z) is locally bounded because ωµ,σ(0) = 0. Thus, the linear operator
σ → ωµ,σ|S is completely continuous for each compact set S in C by
Arzela–Ascoli theorem, see e.g. Theorem IV.6.7 in [14].

Theorem 1. Let µ : C → C belong to class L∞(C) with k := ∥µ∥∞ <
1 and σ : C → C be with compact support and of class Lp(C) for some
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p > 2 satisfying (2.1). Suppose that q : C → C is a continuous function
with condition (1.10). Then the semi-linear Beltrami equation (1.9) has
a solution ω of class Bp(C).

Proof. If ∥σ∥p = 0 or ∥q∥C = 0, then Theorem A above gives the desired
solution ω := ωµ,0 of equation (1.9). Thus, we may assume that ∥σ∥p ̸= 0
and ∥q∥C ̸= 0. Set q∗(t) = max

|w|≤t
|q(w)|, t ∈ R+ := [0,∞). Then the

function q∗ : R+ → R+ is continuous and nondecreasing and, moreover,
by (1.10)

lim
t→∞

q∗(t)

t
= 0 . (2.5)

Let us show that the family of operators F (g; τ) : Lpσ(C) → Lpσ(C),

F (g; τ) := τσ · q(ωµ,g) ∀ τ ∈ [0, 1] , (2.6)

where Lpσ(C) consists of functions g ∈ Lp(C) with supports in the support
S of σ, satisfies hypotheses H1–H3 of Theorem 1 in [38], see Proposition
1 above. Indeed:

H1). First of all, the function F (g; τ) ∈ Lpσ(C) for all τ ∈ [0, 1] and g ∈
Lpσ(C) because the function q(ωµ,g) is continuous and, furthermore, the
operators F (·; τ) are completely continuous for each τ ∈ [0, 1] and even
uniformly continuous with respect to parameter τ ∈ [0, 1] by Theorem A
and Remark 1.

H2). The index of the operator F (g; 0) is obviously equal to 1.

H3). Let us assume that the collection of all solutions of the equations
g = F (g; τ), τ ∈ [0, 1], is not bounded in Lpσ(C), i.e., there is a sequence
of functions gn ∈ Lpσ(C) with ∥gn∥p → ∞ as n → ∞ such that gn =
F (gn; τn) for some τn ∈ [0, 1], n = 1, 2, . . ..

However, then by Remark 1 we have that

∥gn∥p ≤ ∥σ∥p q∗ (∥ωµ,gn |S∥C) ≤ ∥σ∥p q∗ (M ∥gn∥p)

for some constant M > 0 and, consequently,

q∗(M ∥gn∥p)
M ∥gn∥p

≥ 1

M ∥σ∥p
> 0 . (2.7)

The latter is impossible by condition (2.5). The obtained contradiction
disproves the above assumption.

Thus, by Theorem 1 in [38], see Proposition 1 above, there is a func-
tion g ∈ Lpσ(C) with F (g; 1) = g, and then by Theorem A the function
ω := ωµ,g gives the desired solution of (1.9).
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3. Factorization for Beltrami semi-linear equations

Let us first start in this section from the following factorization lemma
for linear inhomogeneous Beltrami equations (1.8).

Lemma 1. Let D be a bounded domain in C, µ : D → C be in class
L∞(D) with k := ∥µ∥∞ < 1, σ : D → C be in class Lp(D), p > 2, with
condition (2.1). Suppose that fµ : C → C is the µ−conformal mapping
from Theorem B with an arbitrary extension of µ onto C keeping compact
support and condition (2.1).

Then each continuous solution ω of equation (1.8) in D of class
W 1,p(D) has the representation as a composition h ◦ fµ|D, where h is
a generalized analytic function in D∗ := fµ(D) with the source g ∈
Lp∗(D∗), p∗ := p2/2(p− 1) ∈ (2, p),

g :=
(
fµz · σ

J

)
◦ (fµ)−1 , (3.1)

where J is the Jacobian of fµ.
Vice versa, if h is a generalized analytic function with the source

g ∈ Lp∗(D∗), p∗ > 2, in (3.1), then ω := h ◦ fµ is a solution of (1.8) of

class Cαloc ∩W
1,s
loc (D), where α = 1 − 2/s and s := p2∗/2(p∗ − 1) ∈ (2, p∗).

Proof. To be short, let us apply here the notation f instead of fµ. Let
us consider the function h := ω ◦ f−1. First of all, note that by point
(iii) of Theorem 5 in [2] f∗ := f−1|D∗ , D∗ := f(D), is of class W 1,p(D∗).
Then, arguing as under the proof of Lemma 10 in [2], we obtain that
h ∈W 1,p∗(D∗), where p∗ := p2/2(p− 1) ∈ (2, p). Since ω = h ◦ f , we get
also, see e.g. formulas (28) in [2] or formulas I.C(1) in [1], that

ωz = (hζ ◦ f) · fz + (hζ ◦ f) · fz̄ ,

ωz̄ = (hζ ◦ f) · fz̄ + (hζ ◦ f) · fz ,

and, thus,

σ(z) = ωz̄ − µ(z)ωz = (hζ ◦ f)fz(1 − |µ(z)|2) = (hζ ◦ f)J(z)/fz ,

where J(z) = |fz|2 − |fz̄|2 = |fz|2(1 − |µ(z)|2) is the Jacobian of f , i.e.,

hζ = g(ζ) :=
(
fz
σ

J

)
◦ f−1(ζ) .

Similarly, applying Lemma 10 in [2] and the Sobolev embedding the-
orem, see Theorem I.10.2 in [57], we come to the inverse conclusion.
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Remark 2. Note that if h is a generalized analytic function with the
source g in the domain D∗, then H = h+A is so for any analytic function
A in D∗ but |A′|p∗ can be integrable only locally in D∗. By Lemma 1,
the source in (3.1) is always in class Lp∗(D∗), p∗ := p2/2(p− 1) ∈ (2, p),
in view of Theorem A with σ extended onto C by zero outside of D.
Here we may assume that µ is extended onto C by zero outside of D.
However, any other extension of µ keeping condition (2.1) is suitable
here, too. Moreover, we may apply here as fµ any µ−conformal map-
pings with different normalizations, in particular, with the hydrodynamic
normalization fµ(z) = z + o(1) as z → ∞.

The next lemma makes it is possible to reduce boundary value prob-
lems for semi-linear Beltrami equations (1.9) to semi-linear Vekua type
equations (1.5).

Lemma 2. Let D be a bounded domain in C, µ : D → C be mea-
surable with ∥µ∥∞ < 1, σ : D → C be in class Lp(D), p > 2. Suppose
that q : C → C is continuous and fµ : C → C is a µ−conformal mapping
from Theorem B with an arbitrary extension of µ onto C keeping compact
support and condition (2.1).

Then each continuous solution ω of equation (1.9) in D of class
W 1,p(D) has the representation as a composition h ◦ fµ|D, where h is
a continuous solution of (1.5) in class W 1,p∗

loc (D∗), where D∗ := fµ(D),
p∗ := p2/2(p− 1) ∈ (2, p), with the multiplier g in (1.5) of class Lp∗(D∗)
defined by formula (3.1).

Vice versa, if h is a continuous solution in class W 1,p∗
loc (D∗) of (1.5)

with multiplier g ∈ Lp∗(D∗), p∗ > 2, given by (3.1), then ω := h ◦ fµ
is a solution of (1.9) in class Cαloc ∩W

1,s
loc (D), where α = 1 − 2/s and

s := p2∗/2(p∗ − 1) ∈ (2, p∗).

Proof. Indeed, if ω is a continuous solution of (1.9) in D of class W 1,p(D),
then ω is a solution of (1.8) in D with the source Σ := σ · q ◦ ω in the
same class. Then by Lemma 1 and Remark 2 ω = h ◦ fµ, where h
is a generalized analytic function with the source G of class Lp∗(D∗)

after replacement of σ by Σ in (3.1). Note that h ∈ W 1,p∗
loc (D∗), see e.g.

Theorems 1.16 and 1.37 in [59]. The proof of the vice versa conclusion of
Lemma 2 is similar and it is again based on its reduction to Lemma 1.

4. On logarithmic potential and capacity

Given a bounded Borel set E in the plane C, a mass distribution
on E is a nonnegative completely additive function ν of a set defined on
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its Borel subsets with ν(E) = 1. The function

Uν(z) :=

∫
E

log

∣∣∣∣ 1

z − ζ

∣∣∣∣ dν(ζ) (4.1)

is called a logarithmic potential of the mass distribution ν at a point
z ∈ C. A logarithmic capacity C(E) of the Borel set E is the quantity

C(E) = e−V , V = inf
ν

Vν(E) , Vν(E) = sup
z

Uν(z) . (4.2)

It is also well-known the following geometric characterization of the
logarithmic capacity, see e.g. the point 110 in [46]:

C(E) = τ(E) := lim
n→∞

V
2

n(n−1)
n (4.3)

where Vn denotes the supremum of the product

V (z1, . . . , zn) =

l=1,...,n∏
k<l

|zk − zl| (4.4)

taken over all collections of points z1, . . . , zn in the set E. Following
Fékete, see [15], the quantity τ(E) is called the transfinite diameter
of the set E.

Remark 3. Thus, we see that if C(E) = 0, then C(f(E)) = 0 for
an arbitrary mapping f that is continuous by Hölder and, in particular,
for quasiconformal mappings on compact sets, see e.g. Theorem II.4.3
in [37].

In order to introduce sets that are measurable with respect to loga-
rithmic capacity, we define, following [10], inner C∗ and outer C∗ ca-
pacities:

C∗(E) : = sup
F⊆E

C(E), C∗(E) : = inf
E⊆O

C(O) (4.5)

where supremum is taken over all compact sets F ⊂ C and infimum is
taken over all open sets O ⊂ C. A set E ⊂ C is called measurable
with respect to the logarithmic capacity if C∗(E) = C∗(E), and
the common value of C∗(E) and C∗(E) is still denoted by C(E).

A function φ : E → C defined on a bounded set E ⊂ C is called
measurable with respect to logarithmic capacity if, for all open
sets O ⊆ C, the sets {z ∈ E : φ(z) ∈ O} are measurable with respect to
logarithmic capacity. It is clear from the definition that the set E is itself
measurable with respect to logarithmic capacity.
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Note also that sets of logarithmic capacity zero coincide with sets of
the so-called absolute harmonic measure zero introduced by Nevan-
linna, see Chapter V in [46]. Hence a set E is of (Hausdorff) length zero if
C(E) = 0, see Theorem V.6.2 in [46]. However, there exist sets of length
zero having a positive logarithmic capacity, see e.g. Theorem IV.5 in [10].

Remark 4. It is known that Borel sets and, in particular, compact
and open sets are measurable with respect to logarithmic capacity, see
e.g. Lemma I.1 and Theorem III.7 in [10]. Moreover, as it follows from
the definition, any set E ⊂ C of finite logarithmic capacity can be repre-
sented as a union of a sigma-compactum (union of countable collection
of compact sets) and a set of logarithmic capacity zero. Thus, the mea-
surability of functions with respect to logarithmic capacity is invariant
under Hölder continuous change of variables.

It is also known that the Borel sets and, in particular, compact sets
are measurable with respect to all Hausdorff’s measures and, in partic-
ular, with respect to measure of length, see e.g. theorem II(7.4) in [56].
Consequently, any set E ⊂ C of finite logarithmic capacity is measur-
able with respect to measure of length. Thus, on such a set any function
φ : E → C being measurable with respect to logarithmic capacity is also
measurable with respect to measure of length on E. However, there exist
functions that are measurable with respect to measure of length but not
measurable with respect to logarithmic capacity, see e.g. Theorem IV.5
in [10].

Dealing with measurable boundary functions φ(ζ) with respect to
the logarithmic capacity, we will use the abbreviation q.e. (quasi-
everywhere) on a set E ⊂ C, if a property holds for all ζ ∈ E except
its subset of zero logarithmic capacity, see [36].

5. Hilbert problem with respect to angular limits

In this section, we prove the existence of nonclassical solutions of the
Hilbert boundary value problem with arbitrary boundary data that are
measurable with respect to logarithmic capacity for semi-linear Beltrami
equations (1.9). The result is formulated in terms of the angular limit that
is a traditional tool of the geometric function theory, see e.g. monographs
[13,34,41,48] and [49].

Recall that a straight line L is tangent to a curve Γ in C at a point
z0 ∈ Γ if

lim sup
z→z0,z∈Γ

dist (z, L)

|z − z0|
= 0 . (5.1)
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Let D be a Jordan domain in C with a tangent at a point ζ ∈ ∂D.
A path in D terminating at ζ is called nontangential if its part in a
neighborhood of ζ lies inside of a triangle in D with one of its vertexes
at ζ. The limit along all nontangential paths at ζ is called angular at
the point.

Following [28], we say that a Jordan curve Γ in C is almost smooth
if Γ has a tangent q.e. (quasi everywhere) with respect to logarithmic
capacity, see e.g. [36] for the term. In particular, Γ is almost smooth if
Γ has a tangent at all its points except its countable collection. The
nature of such a Jordan curve Γ can be complicated enough because this
countable collection can be everywhere dense in Γ, see e.g. [12].

Recall that the quasihyperbolic distance between points z and z0
in a domain D ⊂ C is the quantity

kD(z, z0) := inf
γ

∫
γ

ds/d(ζ, ∂D) ,

where d(ζ, ∂D) denotes the Euclidean distance from the point ζ ∈ D
to ∂D and the infimum is taken over all rectifiable curves γ joining the
points z and z0 in D, see [19].

Further, it is said that a domain D satisfies the quasihyperbolic
boundary condition if there exist constants a and b and a point z0 ∈ D
such that

kD(z, z0) ≤ a + b ln
d(z0, ∂D)

d(z, ∂D)
∀ z ∈ D . (5.2)

The latter notion was introduced in [18] but, before it, was first implic-
itly applied in [6]. By the discussion in [28], every smooth (or Lipschitz)
domain satisfies the quasihyperbolic boundary condition but such bound-
aries can be even nowhere locally rectifiable.

Note that it is well–known the so–called (A)−condition by Ladyzhens-
kaya–Ural’tseva, which is standard in the theory of boundary value prob-
lems for PDE, see e.g. [35]. Recall that a domain D in Rn, n ≥ 2, is
called satisfying (A)-condition if

mes D ∩B(ζ, ρ) ≤ Θ0 mes B(ζ, ρ) ∀ ζ ∈ ∂D , ρ ≤ ρ0 (5.3)

for some Θ0 and ρ0 ∈ (0, 1), where B(ζ, ρ) denotes the ball with the
center ζ ∈ Rn and the radius ρ, see 1.1.3 in [35].

A domain D in Rn, n ≥ 2, is said to be satisfying the outer cone
condition if there is a cone that makes possible to be touched by its top
to every point of ∂D from the completion of D after its suitable rotations
and shifts. It is clear that the latter condition implies (A)–condition.
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Probably one of the simplest examples of an almost smooth domain D
with the quasihyperbolic boundary condition and without (A)–condition
is the union of 3 open disks with the radius 1 centered at the points 0 and
1 ± i. It is clear that this domain has zero interior angle at its boundary
point 1.

Given a Jordan domain D in C, we call λ : ∂D → C a function of
bounded variation, write λ ∈ BV(∂D), if

Vλ(∂D) : = sup

k∑
j=1

|λ(ζj+1) − λ(ζj)| < ∞ (5.4)

where the supremum is taken over all finite collections of points ζj ∈ ∂D,
j = 1, . . . , k, with the cyclic order meaning that ζj lies between ζj+1 and
ζj−1 for every j = 1, . . . , k. Here we assume that ζk+1 = ζ1 = ζ0. The
quantity Vλ(∂D) is called the variation of the function λ.

Now, we call λ : ∂D → C a function of countable bounded varia-
tion, write λ ∈ CBV(∂D), if there is a countable collection of mutually
disjoint arcs γn of ∂D, n = 1, 2, . . . on each of which the restriction of
λ is of bounded variation and the set ∂D \ ∪γn has logarithmic capacity
zero. In particular, the latter holds true if the set ∂D \ ∪γn is countable.
It is clear that such functions can be singular enough.

Theorem 2. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., λ : ∂D → C, |λ(ζ)| ≡
1, be in CBV(∂D) and let φ : ∂D → R be measurable with respect to
logarithmic capacity.

Suppose also that q : C → C is a continuous function with condition
(1.10), µ : D → C is of class L∞(D) with k := ∥µ∥∞ < 1, µ is Hölder
continuous in an open neighborhood of ∂D inside of D, σ : D → C has
compact support in D, σ ∈ Lp(D) and condition (2.1) holds for some
p > 2.

Then equation (1.9) has a solution ω : D → C of class Cαloc∩W
1,s
loc (D),

where α = 1 − 2/s and s ∈ (2, p), that is smooth in the neighborhood of
∂D with the angular limits

lim
z→ζ,z∈D

Re
{
λ(ζ) · ω(z)

}
= φ(ζ) q.e. on ∂D . (5.5)

Remark 5. By the construction in the proof below, each such so-
lution has the representation ω = h ◦ f |D, where f = fµ : C → C is a
µ−conformal mapping from Theorem B with a suitable extension of µ
onto C and h is a continuous solution of class W 1,p∗

loc (D∗) for equation
(1.5) with the multiplier g ∈ Lp∗(D∗), p∗ := p2/2(p − 1) ∈ (2, p), as in
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(3.1), D∗ := f(D), which is a generalized analytic function with a source
in class Lp∗(D∗) and has the angular limits

lim
w→ξ,w∈D∗

Re
{

Λ(ξ) · h(w)
}

= Φ(ξ) q.e. on ∂D∗ , (5.6)

Λ := λ ◦ f−1|∂D∗ , Φ := φ ◦ f−1|∂D∗ . Also, s = p2∗/2(p∗ − 1) ∈ (2, p∗) ⊂
(2, p).

Proof. First of all, let us choose a suitable extension of µ onto C
outside of D. By hypotheses of Theorem 1 µ belongs to a class Cα,
α ∈ (0, 1), for an open neighborhood U of ∂D inside of D. By Lemma 1
in [29] µ is extended to a Hölder continuous function µ : U ∪C\D → C of
the class Cα. Then, for every k∗ ∈ (k, 1), there is an open neighborhood V
of ∂D in C, where ∥µ∥∞ ≤ k∗ and µ in Cα(V ). Let us choose k∗ ∈ (k, 1)
so close to k that k∗Cp < 1 and set µ ≡ 0 outside of D ∪ V .

By Theorem B, there is a µ−conformal mapping f = fµ : C → C a.e.
satisfying the Beltrami equation (1.7) with the given extended complex
coefficient µ in C. Note that the mapping f has the Hölder continuous
first partial derivatives in V with the same order of the Hölder continuity
as µ, see e.g. [32] and also [33]. Moreover, its Jacobian

J(z) ̸= 0 ∀ z ∈ V , (5.7)

see e.g. Theorem V.7.1 in [37]. Hence f−1 is also smooth in V∗ := f(V ),
see e.g. formulas I.C(3) in [1].

Now, the domain D∗ := f(D) satisfies the boundary quasihyperbolic
condition because D is so, see e.g. Lemma 3.20 in [18]. Moreover, ∂D∗
has q.e. tangents, furthermore, the points of ∂D and ∂D∗ with tangents
correspond each to other in one-to-one manner because the mappings f
and f−1 are smooth there. It is evident that the function Λ := λ◦f−1|∂D∗

belongs to the class CBV(∂D∗).
Let us also show that the function Φ := φ ◦ f−1|∂D∗ is measurable

with respect to logarithmic capacity. Indeed, for each open set Ω ⊆ C,
Φ−1(Ω) = f ◦φ−1(Ω), where the set φ−1(Ω) is measurable with respect to
logarithmic capacity. Thus, it suffices to see that f(S) is measurable with
respect to logarithmic capacity whenever S is measurable with respect to
logarithmic capacity.

Note for this goal that the quasiconformal mapping f is Hölder contin-
uous on the compact set ∂D and, thus, C(f(S)) = 0 whenever C(S) = 0,
see Remark 3. Moreover, it is known that Borel sets and, in particular,
compact and open sets are measurable with respect to logarithmic ca-
pacity, see Remark 4. In addition, by definition a C−measurable set is
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a union of a sigma-compactum (union of a countable collection of com-
pact sets) and a set S with C(S) = 0, see again Section 4, especially
formulas (4.5). Thus, to conclude that f translates C−measurable sets
into C−measurable sets, it remains to note that the homeomorphism f
translates compact sets into compact sets.

Next, by Remark 2 the function g : D∗ → C in (3.1) belongs to class
Lp∗(D∗), where p∗ = p2/2(p − 1) ∈ (2, p). Thus, by Theorem 2 in [27]
there is a continuous solution h of equation (1.5) that is a generalized
analytic function with a source of class Lp∗(D∗) and that has the angular
limits (5.5). Note that h ∈ W 1,p∗

loc (D∗), see e.g. Theorems 1.16 and 1.37
in [59]. Finally, by Lemma 2 the function ω := h ◦ fµ is a solution of
(1.9) in class Cαloc ∩W

1,s
loc (D), where α = 1− 2/s and s := p2∗/2(p∗ − 1) ∈

(2, p∗) ⊂ (2, p). 2

In particular case λ ≡ 1, we obtain the corresponding consequence of
Theorem 2 on the Dirichlet problem for the semi–linear Beltrami equa-
tions (1.9).

6. On Poincare problem for semi-linear equations

In this section we study the solvability of the Poincare boundary-
value problem for semi-linear Poisson type equations of the form (1.11)
in anisotropic and inhomogeneous media.

It is well–known, see Theorem 16.1.6 in [3], that nonhomogeneous
Beltrami equations (1.8) in a domain D of the complex plane C are closely
connected with the divergence type equations of the form

div [A(z)∇u(z)] = g(z) , (6.1)

where A(z) is the matrix function:

A =

( |1−µ|2
1−|µ|2

−2Imµ
1−|µ|2

−2Imµ
1−|µ|2

|1+µ|2
1−|µ|2

)
. (6.2)

As we see, the matrix function A(z) in (6.2) is symmetric and its entries
aij = aij(z) are dominated by the quantity

Kµ(z) :=
1 + |µ(z)|
1 − |µ(z)|

,

and, thus, they are bounded if the Beltrami equation is not degenerate.
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Vice verse, uniformly elliptic equations (6.1) with symmetric A(z)
whose entries are measurable and detA(z) ≡ 1 just correspond to non-
degenerate Beltrami equations with coefficient

µ =
1

det (I +A)
(a22 − a11 − 2ia21) =

a22 − a11 − 2ia21
1 + TrA + detA

, (6.3)

where M2×2(D) denotes the collection of all such matrix functions A(z)
in D. Here I is the unit 2 × 2 matrix and TrA is the trace of A, i.e.,
a11 + a22.

Note that (6.1) are the main equation of hydromechanics (mechanics
of incompressible fluids) in anisotropic and inhomogeneous media.

Given such a matrix function A and a µ−conformal mapping fµ :
D → C, we have already seen in Lemma 1 of [20], by direct computation,
that if a function T and the entries of A are sufficiently smooth, then

div [A(z)∇ (T (fµ(z)))] = J(z)△T (fµ(z)) . (6.4)

In the case T ∈ W 1,2
loc , we understand the identity (6.4) in the distribu-

tional sense, see Proposition 3.1 in [21], i.e., for all ψ ∈ C1
0 (D),∫

D

⟨A∇(T ◦fµ),∇ψ⟩ dmz =

∫
D

J(z)⟨M−1((∇T )◦fµ),∇ψ⟩ dmz , (6.5)

where M is the Jacobian matrix of the mapping fµ and J is its Jacobian.

Theorem 3. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., ν : ∂D → C, |ν(ζ)| ≡ 1, be
of CBV(∂D) and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose also that A ∈ M2×2(D) has entries in a class Cα(D), α ∈
(0, 1), Σ : D → R is a function of class Lp(D), p > 2, with a compact
support in D and Q : R → R is a continuous function with condition
(1.12).

Then there is a weak solution u : D → R of class C1,γ
loc ∩W 2,p

loc , γ =
min(α, β), β = 1−2/p, of the equation (1.11) that has the angular limits
of its derivatives in the directions ν = ν(ζ), ζ ∈ ∂D,

lim
z→ζ,z∈D

∂u

∂ν
(z) = φ(ζ) q.e. on ∂D . (6.6)

Here u is called a weak solution of equation (1.11) if∫
D

{⟨A(z)∇u(z),∇ψ⟩ + Σ(z)Q(u(z))ψ(z)} dmz = 0 ∀ ψ ∈ C1
0 (D) .

(6.7)
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Remark 6. By the construction in the proof below, such a solution
u has the representation u = U ◦ f |D, where f = fµ : C → C is a
µ−conformal mapping from Theorem B with a suitable extension of µ in
(6.3) to C, and U is a solution of class C1,β ∩W 2,p

loc , β = (p − 2)/p, for
the quasilinear Poisson equation (1.6) with the multiplier (where J is the
Jacobian of f) :

G :=
Σ

J
◦ f−1 , G ∈ Lp(D∗) , D∗ := f(D) , (6.8)

that is a generalized harmonic function with a source of the same class
Lp(D∗), which has the angular limits

lim
w→ξ,w∈D∗

∂U

∂N
(w) = Φ(ξ) q.e. on ∂D∗ , (6.9)

where

N (ξ) :=

{
∂f

∂ν
·
∣∣∣∣∂f∂ν

∣∣∣∣−1
}

◦ f−1(ξ) , ξ ∈ ∂D∗ , (6.10)

and

Φ(ξ) :=

{
φ ·
∣∣∣∣∂f∂ν

∣∣∣∣−1
}

◦ f−1(ξ) , ξ ∈ ∂D∗ . (6.11)

Proof. By the hypotheses of the theorem µ given by (6.3) belongs
to a class Cα(D), α ∈ (0, 1), and by Lemma 1 in [29] µ is extended to a
Hölder continuous function µ : C → C of the class Cα. Then, for every
k∗ ∈ (k, 1), there is an open neighborhood V of D, where ∥µ∥∞ ≤ k∗ and
µ is of class Cα(V ). We may assume that V is bounded and set µ ≡ 0 in
C \ V .

Let f = fµ : C → C be the µ−conformal mapping from Theorem
B with the given extended complex coefficient µ in C. Note that the
mapping f has the Hölder continuous first partial derivatives in V with
the same order of the Hölder continuity as µ, see e.g. [32] and also [33].
Moreover, its Jacobian

J(z) = |fz|2 − |fz̄|2 > 0 ∀ z ∈ V , (6.12)

see e.g. Theorem V.7.1 in [37]. Hence f−1 is also smooth in V∗ := f(V ),
see e.g. formulas I.C(3) in [1].

Now, the domain D∗ := f(D) satisfies the boundary quasihyperbolic
condition because D is so, see e.g. Lemma 3.20 in [18]. Moreover, ∂D∗
has q.e. tangents, furthermore, the points of ∂D and ∂D∗ with tangents
correspond each to other in a one-to-one manner because the mappings
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f and f−1 are smooth. In addition, the function N in (6.10) belongs to
the class CBV(∂D∗) because

∂f

∂ν
= fz · ν + fz̄ · ν ,

∣∣∣∣∂f∂ν
∣∣∣∣ ≥ |fz| − |fz̄| > 0 ,

and Φ in (6.11) is measurable with respect to logarithmic capacity by
repeating arguments in the proof to Theorem 2.

Next, the source G : D∗ → R in (6.8) belongs to class Lp(D∗) because
by (5.7) the function J−1 ◦f−1 is continuous and, consequently, bounded
on the compact set D∗, see also point (vi) of Theorem 5 in [2] on the
replacement of variables in integrals. Thus, by Theorem 4 in [27] there
is a solution of class C1,β

loc (D∗)∩W 2,p
loc (D∗), β = (p− 2)/p, of the quasilin-

ear Poisson equation (1.6) with the multiplier (6.8) that is a generalized
harmonic function with a source of the same class Lp(D∗) and which has
the angular limits (6.9) q.e. on ∂D∗.

Note that the function u := U ◦ f belongs to class W 2,p
loc (D) because

f is a quasi-isometry in D of class C1, see e.g. 1.1.7 in [43]. Finally,
by Proposition 3.1 in [21] the function u gives the desired solution of the
equation (6.1) because by Lemma 10 and the point (i) of Theorem 5 in [2]

∂u

∂ν
= uz ·ν + uz̄ ·ν = ν·(Uw◦f ·fz + Uw̄◦f ·fz̄) + ν·(Uw◦f ·fz̄ + Uw̄◦f ·fz)

= Uw◦f ·(ν ·fz + ν ·fz̄) + Uw◦f ·(ν ·fz̄ + ν ·fz) = Uw◦f ·
∂f

∂ν
+ Uw̄◦f ·

∂f

∂ν

=
(
N · Uw + N · Uw̄

)
◦ f ·

∣∣∣∣∂f∂ν
∣∣∣∣ =

∂U

∂N
◦ f ·

∣∣∣∣∂f∂ν
∣∣∣∣ ,

where the direction N is given by (6.10). This solution u belongs to the
class C1,γ

loc (D), γ = min(α, β), because by the above calculations with
ν = 1 and i

ux = Uw◦f ·fx + Uw̄◦f ·fx , uy = Uw◦f ·fy − Uw̄◦f ·fy , z = x+iy .

Remark 7. We are able to say more in the case of Re n(ζ)ν(ζ) > 0,
where n(ζ) is the inner normal to ∂D at the point ζ. Indeed, the latter
magnitude is a scalar product of n = n(ζ) and ν = ν(ζ) interpreted as
vectors in R2 and it has the geometric sense of projection of the vector
ν into n. In view of (6.6), since the limit φ(ζ) is finite, there is a finite
limit u(ζ) of u(z) as z → ζ in D along the straight line passing through
the point ζ and being parallel to the vector ν because along this line

u(z) = u(z0) −
1∫

0

∂u

∂ν
(z0 + τ(z − z0)) dτ . (6.13)
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Thus, at each point with condition (6.6), there is the directional derivative

∂u

∂ν
(ζ) := lim

t→0

u(ζ + t · ν) − u(ζ)

t
= φ(ζ) . (6.14)

In particular case of the Neumann problem, Re n(ζ)ν(ζ) ≡ 1 > 0,
where n = n(ζ) denotes the unit interior normal to ∂D at the point ζ,
and we have by Theorem 3 and Remark 7 the following significant result.

Corollary 1. Let D be a Jordan domain in C with the quasihyperbolic
boundary condition, the unit inner normal n(ζ), ζ ∈ ∂D, belong to the
class CBV(∂D) and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose also that A ∈ M2×2(D) has entries in a class Cα(D), α ∈
(0, 1), Σ : D → R is a function of class Lp(D), p > 2, with a compact
support in D and Q : R → R is a continuous function with condition
(1.12).

Then one can find a weak solution u : D → R of class C1,γ
loc ∩W 2,p

loc

with γ = min(α, β), β = 1 − 2/p, of equation (1.11) such that q.e. on
∂D there exist:

1) the finite limit along the normal n(ζ)

u(ζ) := lim
z→ζ

u(z) ,

2) the normal derivative

∂u

∂n
(ζ) := lim

t→0

u(ζ + t · n(ζ)) − u(ζ)

t
= φ(ζ) ,

3) the angular limit

lim
z→ζ

∂u

∂n
(z) =

∂u

∂n
(ζ) .

Remark 8. In addition, such a solution u has the representation
u = U ◦ f |D, where f = fµ : C → C is the µ−conformal mapping from
Theorem B with a suitable extension of µ in (6.3) onto C outside of D,
described in the proof of Theorem 3, and U is a weak solution of the class
C1,β
loc ∩W 2,p

loc , β = 1 − 2/p, of the quasilinear Poisson equation (1.6) with
the multiplier G in (6.8) that is a generalized harmonic function with a
source of the same class Lp(D∗), which has the angular limits

lim
w→ξ,w∈D∗

∂U

∂n∗
(w) = φ∗(ξ) q.e. on ∂D∗ , (6.15)
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with

n∗(ξ) :=

{
∂f

∂n
·
∣∣∣∣∂f∂n

∣∣∣∣−1
}

◦ f−1(ξ) , ξ ∈ ∂D∗ , (6.16)

and

φ∗(ξ) :=

{
φ ·
∣∣∣∣∂f∂n

∣∣∣∣−1
}

◦ f−1(ξ) , ξ ∈ ∂D∗ . (6.17)

7. The Poincare problem in physical applications

Theorem 3 on the Poincare boundary-value problem with arbitrary
measurable boundary data over the logarithmic capacity in Jordan do-
mains can be applied to mathematical models of physical and chemical
absorption with diffusion, plasma states, stationary burning etc.

The first group of such applications is relevant to reaction-diffusion
problems. Problems of this type are discussed in [11], p. 4, and, in
detail, in [4]. A nonlinear system is obtained for the density U and the
temperature T of the reactant. Upon eliminating T the system can be
reduced to equations of the form

△U = σ ·Q(U) (7.1)

with σ > 0 and, for isothermal reactions, Q(U) = Uλ where λ > 0
that is called the order of the reaction. It turns out that the density
of the reactant U may be zero in a subdomain called a dead core. A
particularization of results in Chapter 1 of [11] shows that a dead core may
exist just if and only if β ∈ (0, 1), see also the corresponding examples
in [21].

In the case of anisotropic and inhomogeneous media, we come to
the semi-linear Poisson type equations (1.11). In this connection, the
following statement may be of independent interest.

Corollary 2. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., ν : ∂D → C, |ν(ζ)| ≡ 1, be
of CBV(∂D) and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose also that A ∈ M2×2(D) has entries in a class Cα(D), α ∈
(0, 1), σ : D → R is a function of class Lp(D), p > 2, with a compact
support in D and Q : R → R is a continuous function with condition
(1.12).

Then there is a weak solution u : D → R of class C1,γ
loc ∩W 2,p

loc , γ =
min(α, β), β = 1 − 2/p, of the semi-linear Poisson type equation

div [A(z)∇u(z)] = σ(z) ·uλ(z) , 0 < λ < 1 , a.e. in D (7.2)
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satisfying the Poincare boundary condition on directional derivatives

lim
z→ζ

∂u

∂ν
(z) = φ(ζ) q.e. on ∂D (7.3)

in the sense of the angular limits.

Note also that certain mathematical models of a thermal evolution of
a heated plasma lead to nonlinear equations of the type (7.1). Indeed, it
is known that some of them have the form △ψ(u) = f(u) with ψ′(0) = ∞
and ψ′(u) > 0 if u ̸= 0 as, for instance, ψ(u) = |u|q−1u under 0 < q < 1,
see e.g. [11]. With the replacement of the function U = ψ(u) = |u|q ·
signu, we have that u = |U |Q · signU , Q = 1/q, and, with the choice
f(u) = |u|q2 · signu, we come to the equation △U = |U |q · signU = ψ(U).
For anisotropic and inhomogeneous media, we obtain the corresponding
equation (7.4) below:

Corollary 3. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., ν : ∂D → C, |ν(ζ)| ≡ 1, be
of CBV(∂D) and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose also that A ∈ M2×2(D) has entries in a class Cα(D), α ∈
(0, 1), σ : D → R is a function of class Lp(D), p > 2, with a compact
support in D and Q : R → R is a continuous function with condition
(1.12).

Then there is a weak solution u : D → R of class C1,γ
loc ∩W 2,p

loc , γ =
min(α, β), β = 1 − 2/p, of the semi-linear Poisson type equation

div [A(z)∇u(z)] = σ(z) · |u(z)|λ−1u(ξ) , 0 < λ < 1 , a.e. in D
(7.4)

satisfying the Poincare boundary condition on directional derivatives (7.3)
q.e.

Finally, we recall that in the combustion theory, see e.g. [5, 47] and
the references therein, the following model equation

∂u(z, t)

∂t
=

1

δ
· △u + eu , δ > 0 , t ≥ 0, z ∈ D, (7.5)

takes a special part. Here u ≥ 0 is the temperature of the medium.
We restrict ourselves here by the stationary case, although our approach
makes it possible to study the parabolic equation (7.5), see [21]. The
corresponding equation of the type (1.11), see (7.6) below, appears in
anisotropic and inhomogeneous media with the function Q(u) = e−|u|

that is uniformly bounded at all.
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Corollary 4. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., ν : ∂D → C, |ν(ζ)| ≡ 1, be
of CBV(∂D) and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose also that A ∈ M2×2(D) has entries in a class Cα(D), α ∈
(0, 1), σ : D → R is a function of class Lp(D), p > 2, with a compact
support in D and Q : R → R is a continuous function with condition
(1.12).

Then there is a weak solution u : D → R of class C1,γ
loc ∩W 2,p

loc , γ =
min(α, β), β = 1 − 2/p, of the semi-linear Poisson type equation

div [A(z)∇u(z)] = σ(z) · e−|u(z)| a.e. in D (7.6)

satisfying the Poincare boundary condition on directional derivatives (7.3)
q.e.

Remark 9. Such solutions u in Corollaries 2–4 have the representa-
tion u = U ◦ f |D, where f = fµ : C → C is a µ−conformal mapping in
Theorem B with a suitable extension of µ in (6.3) to C described in the
proof of Theorem 3, and U is a solution of class C1,β∩W 2,p

loc , β = (p−2)/p,
for the quasilinear Poisson equation (1.6) with the functions Q(t) = tλ,
|t|λ−1t, λ ∈ (0, 1) and e−|t|, correspondingly, and with the multiplier (here
J is the Jacobian of f) :

G :=
σ

J
◦ f−1 , G ∈ Lp(D∗) , D∗ := f(D) , (7.7)

that is a generalized harmonic function with a source g of the same class
Lp(D∗), which satisfy the Poincare boundary condition on directional
derivatives (6.9) in the sense of the angular limits q.e. on ∂D∗.

8. Neumann problem in physical applications

In turn, Corollary 1 can be applied to the study of the physical phe-
nomena discussed by us in the last section. In this connection, the par-
ticular cases of the function Q(t) = tλ, |t|λ−1t, λ ∈ (0, 1), and e−|t| will
be again useful.

Corollary 5. Let D be a Jordan domain in C with the quasihyperbolic
boundary condition, the unit inner normal n(ζ), ζ ∈ ∂D, belong to the
class CBV(∂D) and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose also that A ∈ M2×2(D) has entries in a class Cα(D), α ∈
(0, 1), σ : D → R is a function of class Lp(D), p > 2, with a compact
support in D.
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Then one can find a weak solution u : D → R of class C1,γ
loc ∩W 2,p

loc

with γ = min(α, β) and β = 1 − 2/p of the semi-linear Poisson type
equation (7.2) such that q.e. on ∂D there exist:

1) the finite limit along the normal n(ζ)

u(ζ) := lim
z→ζ

u(z) ,

2) the normal derivative

∂u

∂n
(ζ) := lim

t→0

u(ζ + t · n(ζ)) − u(ζ)

t
= φ(ζ) ,

3) the angular limit

lim
z→ζ

∂u

∂n
(z) =

∂u

∂n
(ζ) .

Corollary 6. Under hypotheses of Corollary 5, there is a weak solu-
tion u u : D → R of class C1,γ

loc ∩W
2,p
loc with γ = min(α, β) and β = 1−2/p

of the semi-linear Poisson type equation (7.4) such that q.e. on ∂D all
the conclusion 1)-3) of Corollary 5 hold, i.e., u is a generalized solution
of the Neumann problem for (7.4) in the given sense.

Corollary 7. Under hypotheses of Corollary 5, there is a weak solu-
tion u u : D → R of class C1,γ

loc ∩W
2,p
loc with γ = min(α, β) and β = 1−2/p

of the semi-linear Poisson type equation (7.6) such that q.e. on ∂D all
the conclusion 1)–3) of Corollary 5 hold, i.e., u is a generalized solution
of the Neumann problem for (7.6) in the given sense.

Remark 10. Such solutions u in Corollaries 5–7 have the represen-
tation u = U ◦ f |D, where f = fµ : C → C is a µ−conformal mapping in
Theorem B with a suitable extension of µ in (6.3) to C described in the
proof of Theorem 3, and U is a solution of class C1,β∩W 2,p

loc , β = (p−2)/p,
for the quasilinear Poisson equation (1.6) with the functions Q(t) = tλ,
|t|λ−1t, λ ∈ (0, 1) and e−|t|, correspondingly, and the multiplier G in
(7.7), that is a generalized harmonic function with a source g of the same
class Lp(D∗), which satisfy the Neumann boundary condition (6.15) in
the sense of the angular limits q.e. on ∂D∗.
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