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Abstract. Recently the author proved that the Hummel–Scheinberg–
Zalcman conjecture of 1977 on coefficients of nonvanishing Hp functions
is true for all p = 2m, m ∈ N, i.e., for the Hilbertian Hardy spaces H2m.
As a consequence, this also implies the proof of the Krzyz conjecture for
bounded nonvanishing functions, which originated this direction.

In the present paper, we solve the problem for all spaces Hp with
p ≥ 2.
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1. Introductory remarks ad main result

This paper is devoted to construction of special quasiconformal defor-
mations of nonvanishing Hardy functions with prescribed distortion prop-
erties and their application to proof of the Hummel–Scheinberg–Zalcman
conjecture.

Recall that this conjecture posed in [7] generalizes and strengthens
the Krzyz conjecture for nonvanishing H∞ functions to the Hardy spaces

Hp of holomorphic functions f(z) =
∞∑
0
cnz

n on the unit disk D = {z :

|z| < 1} with norm

∥f∥p = sup
r<1

( 1

2π

π∫
−π

|f(reiθ)|pdθ
)1/p

.
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It states that Taylor’s coefficients of nonvanishing functions f(z) ∈ Hp,
p > 1, with ∥f∥p ≤ 1 are sharply estimated by

|cn| ≤ (2/e)1−1/p, (1)

and this bound is realized only by the functions ϵ2κn,p(ϵ1z), where |ϵ1| =
|ϵ2| = 1 and

κn,p(z) =
[(1 + zn)2

2

]1/p [
exp

zn − 1

zn + 1

]1−1/p
. (2)

This eminent conjecture has been investigated by many authors. A
long time, the only known results here are that the conjecture is true for
n = 1 (Brown) and n = 2 (Suffridge) as well as some results for special
subclasses of Hp, see [5, 6, 14]. Brown also showed that (1) is true for
arbitrary n ≥ 2, provided cm = 0 for all m, 1 ≤ m < (n + 1)/2, and
Suffridge also estimated sharply the coefficient c1 for 0 < p ≤ 1.

Recently the author proved this conjecture for Hilbertian Hardy spaces
H2m with m ∈ N in [12], applying a new approach to the coefficient prob-
lems for holomorphic functions on the disk. This approach was presented
in [10, 11] and involves some fundamental results of Teichmüller space
theory, especially the Bers isomorphism theorem for Teichmüller spaces
of punctured Riemann surfaces.

In the limit as p = 2m → ∞, one obtains as a consequence of (1)
and (2) that the coefficients of nonvanishing H∞ functions with norm
∥f∥∞ ≤ 1 are sharply estimated by |cn| ≤ 2/e, which proves the initial
Krzyz conjecture.

In fact, the last estimate holds for some broader class containing also
unbounded nonvanishning functions, see [12].

The aim of the present paper, which continues [12], is to prove the
Hummel–Scheinberg–Zalcman conjecture for all spaces Hp with p ≥ 2.
The main result states:

Theorem 1. The estimate (1) is valid for all spaces Hp with p ≥ 2;
that is, the coefficients of any nonvanishing function f ∈ Hp, p ≥ 2,
with ∥f∥p ≤ 1 satisfy |cn| ≤ (2/e)1−1/p for any n > 1; the equality in (1)
is realized only on the function f(z) = κn,p(z) and its compositions with
pre and post rotations about the origin.

The proof of this general theorem is based on the same ideas as its
special case p = 2m, m ∈ N, in [12]. A new essential step is to establish
that in the case of nonvanishing Hp functions the needed quasiconformal
deformations exist for all p > 1.
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Another essential step in the proof of Theorem 1 relies on the fact
that for any n ≥ 2 the coefficients of the function κ1,p satisfy

|cn(κ1,p)| = |c0n| < |c01|,

which follows, for example, from Parseval’s equality. But this remains
unknown for f ∈ Hp with 1 < p < 2.

The last section of the paper contains some remarks concerning the
possible generalizations of this problem.

2. Quasicoformal deformatios of Hp functions

We start with establishing the existence of some special quasiconfor-
mal deformations of nonvanishning Hardy and Bergman functions.

The general result established in [9] for the generic Hp functions with
p = 2m, m ∈ N, states the follows.

Consider the functions f(z) ∈ H2m ∩ L∞(D), with

sup
D

|f(z)| = M > ∥f∥2m.

Let E be a ring domain bounded by a closed curve L ⊂ D containing
inside the origin and by the unit circle S1 = ∂D. Let, in addition,

d0 = (0, 1, 0, ... , 0) =: (d0k) ∈ Rn+1,

and |x| denote the Euclidean norm in Rl.

Proposition 1. [9] For any holomorphic function f(z) =
∞∑
k=j

c0kz
k ∈

L2m(E) ∩ L∞(E) (with c0j ̸= 0, 0 ≤ j < n and m ∈ N), which is not a
polynomial of degree n1 ≤ n, there exists a positive number ε0 such that
for every point

d′ = (d′j+1, . . . , , d
′
n) ∈ Cn−j

and every a ∈ R satisfying the inequalities

|d′| ≤ ε, |a| ≤ ε, ε < ε0,

there exists a quasiconformal automorphism h of the complex plane Ĉ,
which is conformal in the disk

D0 = {w : |w − c00| < sup
D

|f0(z)| + |c00| + 1}

(hence also outside of E) and satisfies the conditions:
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(i) h(k)(c00) = k!dk = k!(d0k + d′k), k = j + 1, . . . , n (i.e., d1 = 1 + d′1
and dk = d′k for k ≥ 2);

(ii) ∥h ◦ f∥2m2m = ∥f∥2m2m + a.

For any function f ∈ Hp, we have

∥f∥p = sup
r<1

( 1

2π

π∫
−π

|f(reiθ)|pdθ
)1/p

=
( 1

2π

π∫
−π

|f(eiθ)|pdθ
)1/p

, (3)

since the mean function

Mf(r)p =
1

2π

π∫
−π

|f(reiθ)|pdθ

is a circularly symmetric subharmonic function on D, monotone increas-
ing with r → 1. Any such function is logarithmically convex with respect
to log r and has at least one-side derivative on [0, 1].

Using the appropriately thin rings E adjacent to the unit circle, one
derives that for any bounded in D function f ∈ H2m there exists a O(ε)-
quasiconformal automorphism h of Ĉ satisfying the conditions (i) and
distorting the H2m-norm of f by

∥h ◦ f∥2m = ∥f∥2m +O(ε) (4)

(where the bound of the remainder term depends on m).
The proof of Proposition 1 in [9] shows that all its assumptions are

essential; the arguments do not extend to arbitrary p ≥ 2 and unbounded
holomorphic Lp functions.

One of the important steps in the proof of Theorem 1 is the following
weakened extension of Lemma 1 to nonvanishing functions from the
spaces Hp with p > 1.

Fix a natural n > 1 and consider the collections d = (d0, d1, . . . , dn) ∈
Cn+1.

Proposition 2. For every bounded nonvanishing function f(z) = c0 +
c1z + c2z

2 + · · · ∈ Hp, p > 1, with ∥f∥p <∞, which is not a polynomial
of degree at most n, there exists ε0 > 0 such that for any point d ∈ Cn+1

with |d| ≤ ε < ε0, there is a bounded nonvanishing function f∗(z) =
c∗0 + c∗1z + c∗2z

2 + · · · ∈ Hp satisfying c∗j = cj + dj for all j = 0, 1, . . . , n
and

∥f∗∥p = ∥f∥p +O(ε).
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Note that quasiconformal deformations of such type preserve the Lp-
norm of holomorphic functions, but generically increase their L∞-norm
(an illustrating example is given in [11]).

Proof. For any nonvanishing function f(z) =
∞∑
0
cnz

n ∈ Hp, p > 1, the

function
fp/2(z) := f(z)p/2 = e(p/2) log f(z),

with a fixed branch of the logarithmic function, also is single valued,
holomorphic and zero free in the unit disk D. We take everywhere the
principal branch. Explicitly,

fp/2(z) = c
p/2
0

(
1 +

p

2

c1
c0

z + . . .
)

= c0(fp/2) + c1(fp/2)z + . . . ; (5)

this function belongs to the space H2. In the case of nonvaninshing f ,
the correspondence f(z) ↔ fp/2(z) creates a biholomorphism (one-to-one
and open map) between the neighborhoods of the origin in Cn+1 filled by
collections d(f) = (c0, . . . , cn) and d(f/2)p = (c0(fp/2), . . . , cn(fp/2)).

Since the function (5) is holomorphic, one can apply to it all argu-
ments used in [9] in the proof of Proposition 1 for p = 2m (this proof
essentially requires that f(z)m is single valued). In view of the impor-
tance of Proposition 2, we outline the main steps of its proof; the details
omitted are given in [9].

Fix R ≥ supD |f(z)| + |c0| + 1 and take the annulus

GR = {w : R < |w − c00| < R+ 1}.

We define for ρ ∈ Lp(B), p ≥ 2, the operators

Tρ = − 1

π

∫∫
GR

ρ(ζ)dξdη

ζ − w
, Πρ = ∂wTρ = − 1

π

∫∫
GR

ρ(ζ)dξdη

(ζ − w)2

(the second integral exists as a principal Cauchy value). We seek the
required quasiconformal automorphism h = hµ of the form

h(w) = w − 1

π

∫∫
GR

ρ(ζ)dξdη

ζ − w
= w + Tρ(w), (6)

with the Beltrami coefficient µ = µh equal to zero outside of GR, with
∥µ∥∞ < κ < 1. Substituting (6) into the Beltrami equation ∂wh = µ∂wh,
we get

ρ = µ+ µΠµ+ µΠ(µΠµ) + ... .
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This series is convergent in Lp(E) for some p > 2, and on the basis
of well-known properties of operators T and Π, we have for any disk
DR′ = {w ∈ C : |w| < R′}, 0 < R′ <∞, that

∥ρ∥Lp(DR′ ), ∥Πρ∥Lp(DR′ ) ≤M1(κ,R
′, p)∥µ∥L∞(C);

∥h∥C(DR′ ) ≤M1(κ,R
′, p)∥µ∥∞.

Therefore,
h(w) = w + Tµ(w) + ω(w),

with ∥ω∥C(DR′ ) ≤M2(κ,R
′)∥µ∥2∞. Using the pairing

< ν,φ >= − 1

π

∫∫
GR

ν(ζ)φ(ζ)dξdη, ν ∈ L∞(GR), φ ∈ L1(GR),

one can rewrite the above representation in the form

h(w) = w+
∞∑
0

< µ,φk > (w− c00)k +ω(w), φk(ζ) =
1

(ζ − c00)
k+1

. (7)

This equality and the condition c∗j = cj+dj for all j = 0, 1, . . . , n, provide
the first group of equalities to determine the desired Beltrami coefficient
µ:

k!dk =< µ,φk > +ω(k)(c00) =< µ,φk > +O(∥µ∥2∞), k = j + 1, ... , n.
(8)

On the other hand, (7) and the requirement of preserving Lp norms give

∥h ◦ f∥pp = ∥f + Tρ ◦ f∥pp =

∫
GR

|f(z) + Tµ ◦ f(z)|pdEz +O(∥µ∥2∞)

=

∫
GR

[|f(z)|2 + 2 Re(f(z)Tµ ◦ f(z)) + |Tµ ◦ f(z)|2
]p/2

dxdy +O(∥µ∥2∞)

= ∥f∥pp +
p

2π
Re
[∫∫
GR

µ(ζ)dξdη

∫
GR

|f(z)|p−2 f(z)

ζ − f(z)
dxdy

]
+Op(∥µ∥2∞)

(here z = x+ iy). Now set

ϕ(ζ) = −p
2

∫
GR

|f(z)|p−2f(z)

f(z) − ζ
dxdy; (9)

then the previous equality can be rewritten in the form

∥h ◦ f∥pp − ∥f∥pp = Re < µ, ϕ > + Op(∥µ∥2∞). (10)
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The function (9) is holomorphic in the disk D∗
R = {w ∈ Ĉ : |w −

c00| > R} and belongs to the space Bp
R formed in Bp(B) by functions

holomorphic in D∗
R; moreover, ϕ(ζ) ̸≡ 0. The latter follows from the fact

that for large |ζ| we have ϕ(ζ) =
∞∑
1
bkζ

−k with b2 = p
2 ∥f∥pp > 0.

We shall need the following important lemma whose proof straight-
forwardly follows the corresponding lemma in [9].

Lemma 1. Under the assumptions of the theorem, the function ϕ is
distinct from a linear combination of the fractions φ0, ..., φl, with l ≤ n.

According to Lemma 1, the series expansion of ϕ in D∗
R must contain

the powers (ζ − c00)
−k−1 with k > n, and therefore, the remainder

ψ(ζ) = ϕ(ζ)−
n∑
0

bk(ζ−c00)−k−1 =
(j−1∑

0

+
∞∑
s

)
bk(ζ−c00)−k−1, s ≥ n+1,

is distinct from zero in D∗
R. Let us note also that (3) implies

h ◦ f(z) = c∗0 +

∞∑
j

c∗kz
k,

with c∗0 = c00 + d′0 and c∗j = c0jd
′
1 (j ≥ 1). Thus,

|c∗j |2 − |c0j |2 =

{
2 Re(c00d

′
0) = 2 Re(c00 < µ,φ0 >) +O(∥µ∥2), j = 0,

2|c0j |2 Re d′1 = 2|c0j |2 Re < µ,φ0 > +O(∥µ∥2), j ≥ 1,

and, therefore, bj ̸= 0.
Let us now seek the desired Beltrami coefficient µ in the form

µ = ξjφj +
n∑
j+1

ξkφk + τψ, µ|C \B = 0, (11)

with unknown constants ξj , ξj+1, ... , ξn, τ to be determined from equali-
ties (8) and (10).

Substituting the expression (11) into (8) and (10) and taking into
account the mutual orthogonality of φk on B, one obtains the nonlinear
equations

k!dk = ξkr
2
k +O(∥µ∥2), k = j + 1, ... , n,

∥h ◦ f0∥2m2m − ∥f0∥2m2m = Re < ξjφ̄j +
n∑
j+1

ξkφ̄k + τψ̄, ϕ > +O(∥µ∥2)

(12)
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for determining ξk and τ . The only remaining equation is a relation for
Re ξj , Im ξj ,Re τ, Im τ . To distinguish a unique solution, we add three
real equations to (12). Let us require that ξj satisfy the equality

< ξjφj +

n∑
j+1

ξkφ̄k,

n∑
0

bkφk >= 0; (13)

it is reduced to

ξjbjr
2
j = −

n∑
j+1

ξkbkr
2
k (bj ̸= 0). (14)

Then we obtain for τ the equation

∥h ◦ f0∥pp − ∥f∥pp = Re < τψ, ϕ > +O(∥µ∥]∞2),

which, letting τ be real, takes the form

∥h ◦ f∥pp − ∥f∥pp = τκ +O(∥µ∥2∞) (15)

with κ =
∑
k

r2k. The summation is taken here over all k ̸= j + 1, ... , n,

for which bk ̸= 0.
Separating the real and imaginary parts in equalities (12), (14) and

adding (15), we obtain 2(n−j)+3 real equalities, which define a nonlinear
C1 smooth (in fact, Re -analytic) map

y = W (x) = W ′(0)x +O(|x|2),

of the points x = (Re ξj , Im ξj ,Re ξj+1, Im ξj+1, ... ,Re ξn, Im ξn, τ) in a
small neighborhood U0 of the origin in Re 2(n−j)+3, taking the values

y = (Re dj , Im dj ,Re dj+1, Im dj+1, ... ,Re dn, Im dn, ∥h ◦ f∥pp − ∥f0∥pp)

also near the origin of Re 2(n−j)+3. Its linearization y = W ′(0)x defines
a linear map Re 2(n−j)+3 → Re 2(n−j)+3 whose Jacobian only differs from
r2j r

2
j+1...r

2
nκ ̸= 0 by a constant factor. Therefore, x 7→W ′(0)x is a linear

isomorphism of the space Re 2(n−j)+3 onto itself, and one can apply to
W the inverse mapping theorem. The latter implies the assertion of
Proposition 2.

So, for any collection dε(f) = d(f) + O(ε) there exists an O(ε)-
quasiconformal homeomorphism hµ of Ĉ conformal on f(D) such that
dε(f) = (c0(h

µ ◦ f), . . . , cj(h
µ ◦ f), and

∥hµ ◦ f∥Lp = ∥f∥pLp
. (16)
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Note also that the Hp-norm is distorted similar to (4) via

∥hµ ◦ f∥2H2 = ∥fp/2∥2H2 = ∥f∥pHp +O(ε). (17)

The relations (16) and (17) show the difference under the actions of de-
formations given by Propositions 1 and 2 on the Hardy and Bergman
spaces.

3. Proof of Theorem 1

Step 1: Underlying lemmas. As was mentioned in the introduction,
the proof of the theorem for functions from Hp with p ≥ 2 follows the
lines of [12] with applying in the needed places Lemma 2.

Denote the unit ball of Hp by B1(H
p) and its subset of nonvanishing

functions by B0
1(Hp). It will be convenient to regard the free coefficients

c0(f) also as elements of B0
1(Hp), which are constant on the disk D. Let

B̂0
1(Hp) = B0

1(Hp) ∪ {f0},

where f0(z) ≡ 0.
We shall essentially use Brown’s result quoted above and present it

as

Lemma 2. [5] For any f(z) = c0 + c1z + c2z
2 + · · · ∈ B0

1(Hp), we have

|c1| ≤ (2/e)1−1/p,

with equality only for the rotations of function κ1(z) given by (2).

The following important lemma concerns one of the basic intrinsic
features of nonvanishing holomorphic functions (the openness)

Lemma 3. [12] Every point f ∈ B0
1(Hp) has a neighborhood U(f, ϵ) in

Hp, which entirely belongs to B0
1(Hp), i.e., contains only nonvanishing

Hp functions on the disk D. Take the maximal balls U(f, ϵ) with such
property. Then their union

Up =
∪

f∈B0
1(H

p)

U(f, ϵ)

is an open path-wise connective set, hence a domain, in the space B̂0
1(Hp).

Let Pn be the linear space of polynomials of degree less than or equal
to n, and P =

∪
n Pn.
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Lemma 4. The intersection Up
∩

P is dense in Up, which means that
any f from the distinguished domain Up is approximated in Hp by non-
vanishing polynomials.

We shall use in the proof of Theorem 1 somewhat different (up to a
biholomorphic homeomorphism) model of the universal Teichmüller space
T, which involves quasiconformally extendable univalent functions in the
disk satisfying some non-standard prescribed normalization conditions.
Their existence of such maps is ensured by the following lemma related to
solutions of the Beltrami equation ∂zw = µ(z)∂zw on C with coefficients
µ supported in the disk D∗, i.e., from the ball

Belt(D∗)1 = {µ ∈ L∞(C) : µ|D = 0, ∥µ∥ < 1}.

Lemma 5. [12] For any Beltrami coefficient µ ∈ Belt(D∗)1 and any
θ0 ∈ [0, 2π], there exists a point z0 = eiα located on S1 so that |eiθ0 −
eiα| < 1 and such that for any θ satisfying |eiθ − eiα| < 1 the equation
∂zw = µ(z)∂zw has a unique homeomorphic solution w = wµ(z), which
is holomorphic on the unit disk D and satisfies

w(0) = 0, w′(0) = eiθ, w(z0) = z0. (18)

This solution is holomorphic on the unit disk D, and hence, wµ(z∗) = ∞
at some point z∗ with |z∗| ≥ 1.

Step 2: Holomorphic embedding of nonvanishing Hp functions
into Teichmüller spaces and lifting the functional Jn(f) = cn.
Denote by B = B(D) the space of hyperbolically bounded holomorphic
functions φ(z) (regarded as holomorphic quadratic differentials φ(z)dz2

so that φ ◦ h(z)h′(z)2 = φ(z) for any conformal coordinate map h) on
the unit disk, with norm

∥φ∥B = sup
D

(1 − |z|2)2|f(z)|.

Every φ ∈ B is the Schwarzian derivative

Sw(z) =

(
w′′(z)

w′(z)

)′
− 1

2

(
w′′(z)

w′(z)

)2

, z ∈ D,

of a locally univalent function w(z) in the disk D determined (up to a
Moebius map of the sphere Ĉ) from the nonlinear differential equation

w′′′/w′ − 3(w′′/w′)2/2 = φ,

or equivalently, as the ratio w = η2/η1 of two linearly independent solu-
tions of the linear equation 2η′′ + φη = 0 in D.
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The space B is dual to the space A1(D) of integrable holomorphic
functions on D with L1 norm.

The Schwarzians Sw of functions w univalent in the whole disk D
and having quasiconformal extensions to Ĉ fill a path-wise bounded do-
main in B; this domain is the most applicable model of the universal
Teichmüller space T = Teich(D) (with appropriate normalization of
maps w).

Let Ap(D), p ≥ 1, be the Bergman spaces of holomorphic functions in
D with norm

∥f∥Ap =
( 1

π

∫∫
D
|f(z)|dxdy

)1/p
(z = x+ iy).

For each f ∈ Hp, we have ∥f∥pAp
≤ 1

2∥f∥
p
Hp , which yields, since Ap(D) ⊂

A1(D) ⊂ B and ∥f∥B ≤ ∥f∥A1(D) for φ ∈ A1(D), that all functions
f ∈ Hp belong to the space B. Therefore, these functions can be regarded
as the Schwarzian derivatives of locally univalent functions in D.

In particular, the functions f from the ball

Bρ(H
p) = {f ∈ Hp : ∥f∥ < ρ}

with radius ρ = 1/21/p satisfy ∥f∥B < 2, and hence are the Schwarzians
of univalent functions in the whole disk D admitting quasiconformal ex-
tension to the complementary disk

D∗ = {z ∈ Ĉ : |z| > 1}.

Therefore, such f are the points of the universal Teichmüller space T.
This implies a holomorphic embedding ι of the ball Bρ(Hp) and of its
open subset

1

2p
Up = { 1

2p
f : f ∈ Up}

into the space T.

Now consider the family Ŝ(1) of quasiconformally extendable to Ĉ
holomorphic univalent functions

w(z) = a1z + a2z
2 + . . . , z ∈ D,

with |a1| = 1 and w(z0) = z0 for some point z0 ∈ S1 (depending on
w), completed in the topology of locally uniform convergence on C. This
collection is a disjunct union

Ŝ(1) =
∪

−π≤θ<π
Sθ,
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where Sθ consists of quasiconformally extendable univalent functions on
D with expansions

w(z) = eiθz + a2z
2 + . . .

having a fixed point z0 ∈ S1 (also completed in the indicated weak topol-
ogy). These collections preserve conjugation with rotations z 7→ eiαz, i.e.,
contain for each w the rotated functions wα,α(z) = e−iαw(eiαz). There
is often enough to deal with the class S0 related to z0 = 1.

The assertion of Lemma 5 is also valid for the limit functions of se-
quences {wn} of functions wn ∈ Ŝ(1) with quasiconformal extension, but
in the general case the equality w(z0) = z0 must be understand in terms
of the Carathéodory prime ends. As was indicated above, any function
from Ŝ(1) with θ chosen following Lemma 5 is holomorphic on the disk
D (has there no pole).

This family Ŝ(1) is closely related to the canonical class S of univalent
functions w(z) on D normalized by w(0) = 0, w′(0) = 1. Every w(z) ∈ S
has its representatives wτ,θ in Ŝ(1) obtained by pre and post compositions
of w with rotations z 7→ eiτz about the origin, related by

wτ,θ(z) = e−iθw(eiτz) with τ = arg z0, (19)

where z0 is a point of the circle S1 whose image w(z0) = eiθ is a common
point of the unit circle and the boundary of domain w(D).

This is trivial for the identity map w(z) ≡ z (then one can take θ =
τ = 0). For any another w(z) the existence of such a point z0 follows from
the Schwarz lemma, which yields, together with the assumption w′(0) =
1, that the image w(D) cannot lie entirely in D; hence, its boundary
∂w(D) has common points with the circle S1.

This connection also implies that the functions conformal in the closed
disk D are dense in each class Sθ. Note also that the classes Sθ and Ŝ(1)
are compact in the topology of locally uniform convergence on D.

The Schwarzian derivatives of w and wτ,θ are related by

Swτ,θ
(z) = Sw(eiτz)e2iτ ,

which yields that for any fixed θ the Schwarzians Sw of w ∈ Sθ fill the
same bounded domain in the space B, which models T.

In other words, the relation (19) allows us to model the universal Te-
ichmüller space T for any fixed θ by the Schwarzians Sw = φ of functions
w(z) = eiθz + a2z

2 + . . . from the sets Sθ.
In this case, going to the limit lim

t→0
∥Sw(teiαz)∥B → 0 along a curve

{Sw(teiαz) : 0 ≤ t ≤ 1} with fixed nonzero θ and α one attains in the
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space T its base point φ = 0, and the corresponding function in Sθ is the
elliptic fractional linear transformation

w =
eiθz

(1 − e−iθ)z−1
0 z + 1

with fixed points 0 and z0 = eiα. For α = θ = 0, this is the identity map.
Note also that the relation (19) is compatible with existence and

uniqueness of appropriate conformal and quasiconformal maps, holomor-
phy of their Taylor coefficients, the Teichmüller space theory, etc. Actu-
ally we deal with the classical model of Teichmüller spaces via domain in
the Banach spaces of Schwarzian dervatives Sw in D (or in the disk D∗) of
univalent holomorphic functions normalized either by fixing three bound-
ary points on the unit circle S1 or via w(0) = 0, w′(0) = 1, w(∞) = ∞
(often the disk is replaced by the half-plane).

An equivalent model of T is obtained by applying the inverted func-
tions W (z) = 1/w(1/z) for w ∈ Sθ, which form the corresponding classes
Σθ of nonvanishing univalent functions on the disk D∗ with expansions

W (z) = e−iθz + b0 + b1z
−1 + b2z

−2 + . . . , W (1/α) = 1/α,

and Σ̂(1) =
∪
θ Σθ.

Simple computations yield that the coefficients an of f ∈ Sθ and the
corresponding coefficients bj of W (z) = 1/f(1/z) ∈ Σθ are related by

b0 + e2iθa2 = 0, bn +
n∑
j=1

ϵn,jbn−jaj+1 + ϵn+2,0an+2 = 0, n = 1, 2, ... ,

where ϵn,j are the entire powers of eiθ (θ is fixed). This successively
implies the representations of an by bj via

an = (−1)n−1ϵn−1,0b
n−1
0 − (−1)n−1(n− 2)ϵ1,n−3b1b

n−3
0

+lower terms with respect to b0. (20)

By abuse of notation, we shall denote the holomorphic embedding of
Hp into the space T modelled by Schwarzians in D∗ by the same letter
ι. The image ιHp is a non-complete linear subspace in B, and the image
of the distinguished domain 1

2pU
p is a complex submanifold in T.

Note that the coefficients αn of Schwarzians

Sw(z) =
∞∑
0

αnz
n
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are represented as polynomials of n + 2 initial coefficients of w ∈ Sθ
and, in view of (20), as polynomials of n + 1 initial coefficients of the
corresponding W ∈ Σθ (provided that θ and α are given and fixed and
the number eiθ is considered to be a constant).

We denote these polynomials by Jn(w) and J̃n(W ), respectively, and
will deal with these polynomial functionals only on the union of admissible
classes Sθ or Σθ.

Step 3: Lifting to covering space T1 and estimating the re-
stricted plurisubharmonic functional. Our next step is to lift both
polynomial functionals Jn(w) and J̃n(W ) onto the Teichmüller space T1

of the punctured disk D∗ = D \ {0}, which covers T.
Recall that the points of T1 are the classes [µ]T1 of T1-equivalent

Beltrami coefficients µ ∈ Belt(D)1 so that the corresponding quasicon-
formal automorphisms wµ of the unit disk coincide on both boundary
components (unit circle S1 and the puncture z = 0) and are homotopic
on D \ {0}. This space also is a complex Banach manifold.

Due to the Bers isomorphism theorem [4], the space T1 is biholomor-
phically isomorphic to the Bers fiber space

F(T) = {(ϕT(µ), z) ∈ T× C : µ ∈ Belt(D)1, z ∈ wµ(D)}

over the universal space T with holomorphic projection π(ψ, z) = ψ.
This fiber space is a bounded hyperbolic domain in B×C and represents
the collection of domains Dµ = wµ(D) as a holomorphic family over the
space T.

The indicated isomorphism between T1 and F(T) is induced by the
inclusion map
j : D∗ ↪→ D forgetting the puncture at the origin via

µ 7→ (Swµ1 , wµ1(0)) with µ1 = j∗µ := (µ ◦ j0)j′0/j
′
0, (21)

where j0 is the lift of j to D.
Now, letting

Ĵn(µ) = J̃n(Wµ), (22)

we lift these functionals from the sets Sθ and Σθ onto the ball Belt(D)1.
Then, under the indicated T1-equivalence, i.e., by the quotient map

ϕT1 : Belt(D)1 → T1, µ→ [µ]T1 ,

the functional J̃n(Wµ) is pushed down to a bounded holomorphic func-
tional Jn on the space T1 with the same range domain.

Equivalently, one can apply the quotient map Belt(D)1 → T (i.e., T-
equivalence) and compose the descended functional on T with the natural
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holomorphic map ι1 : T1 → T generated by the inclusion D∗ ↪→ D
forgetting the puncture. Note that since the coefficients b0, b1, . . . of
Wµ ∈ Σθ are uniquely determined by its Schwarzian SWµ , the values of
Jn in the points X1, X2 ∈ T1 with ι1(X1) = ι1(X2) are equal.

Using the Bers isomorphism theorem, we regard the points of the
space T1 as the pairs XWµ = (SWµ ,Wµ(0)), where µ ∈ Belt(D)1 obey
T1-equivalence (hence, also T-equivalence). Denote (for simplicity of
notations) the composition of Jn with biholomorphism T1

∼= F(T) again
by Jn. In view of (20) and (21), it is presented on the fiber space F(T)
by

J (XWµ) = J (SWµ , t), t = Wµ(0). (23)

This yields a logarithmically plurisubharmonic functional |Jn(SWµ , t)| on
F(T).

We have to estimate a smaller plurisubharmonic functional arising
after restriction of J (SWµ , t) to SW ∈ ι

(
1
2pU

p
)

and to Wµ(0) filling
some subdomain Dθ.

Since our functionals are polynomials, they are defined for all SW ∈ T
and t from some domain in B×C over Dθ. We define on Dθ the function

uθ(t) = sup
SWµ

|Jn(SWµ , t)|,

where the supremum is taken over all SWµ ∈ T admissible for a given
t = Wµ(0) ∈ Dθ.

The following basic lemma is a generalization of the corresponding
result in [12]. It provides that this function inherits subharmonicity of
Jn.

Lemma 6. The function uθ(t) is subharmonic on its domain Dθ filled
by the admissible values of Wµ(0).

The proof of this lemma is complicated. Similar to [12], it involves the
approximation of elements from 1

2pU
p by polynomials given by Lemma 5

which provides the finite dimensional submanifolds weakly approximating
ι(
(

1
2pU

p)) in the underlying space T (and simultaneously in the space T1)
in the topology of locally uniform convergence on C.

Since the set ι(
(

1
2pU

p)) is a complex submanifold in T, the restriction
of the function |J (SWµ , t)| to this submanifold and to the corresponding
values of t = Wµ(0) also is plurisubharmonic. The arguments from [12]
are straightforwardly extended to this restriction, giving in a similar way
the corresponding maximal subharmonic function

uθ(t) = sup
SWµ

|Jn(SWµ , t)|;
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the supremum here is taken over SWµ ∈ ι(
(

1
2pU

p)) as indicated above.
One also has to extend the previous construction to the increasing

unions of the quotient spaces

Ts =

s∪
j=1

Σ̂0
θj
/ ∼ =

s∪
j=1

{(SWθj
,Wµ

θ (0))} ≃ T1 ∪ · · · ∪T1, (24)

where θj run over a dense subset Θ ⊂ [−π, π], the equivalence relation ∼
means T1-equivalence on a dense subset Σ̂0(1) in the union Σ̂(1) formed
by univalent functions Wθj (z) = e−iθjz + b0 + b1z

−2 + . . . on D∗ with
quasiconformal extension to Ĉ satisfying Wθj (1) = 1, and

Wµ
θ (0) := (Wµ1

θ1
(0), . . . ,Wµs

θs
(0)).

The Beltrami coefficients µj ∈ Belt(D)1 are chosen here independently.
The corresponding collection β = (β1, . . . , βs) of the Bers isomorphisms

βj : {(SWθj
,W

µj
θj

(0))} → F(T)

determines a holomorphic surjection of the space Ts onto F(T).
Taking in each union (24) the corresponding collection ιs

(
1
2pU

p
)
, one

obtains in a similar fashion the increasing sequence of maximal subhar-
monic functions

us(t) = sup
Θ
uθs(t) = sup

{
|Jn(SWµ , t)| : SWµ ∈

∪
s

ιs

( 1

2p
Up
)}
,

whose limit
u(t) = lim

s→∞
us(t) (25)

is determined and subharmonic on a disk

Dρ =
∪
Θ

Dρ,θs , (26)

because the union of spaces (15) admits the circular symmetry.

Step 4: Determination of the range domain of Wµ(0). Our goal
now is to find the domain of admissible values of Wµ(0), i.e. the radius
of the disk (26). This requires a covering estimate of Koebe’s type given
by the following lemma.

Let G be a domain in a complex Banach space X = {x} and χ
be a holomorphic map from G into the universal Teichmüller space T
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modeled as a bounded subdomain of B. Consider in the unit disk the
corresponding Schwarzian differential equations

Sw(z) = χ(x) (27)

and pick their univalent solutions w(z) satisfying w(0) = w′(0) − 1 = 0
(hence w(z) = z +

∑∞
2 anz

n). Set

|a02| = sup{|a2| : Sw ∈ χ(G)}, (28)

and let
w0(z) = z + a02z

2 + . . .

be one of the maximizing functions for a2.

Lemma 7. [11] (a) For every indicated solution w(z) = z + a2 + . . . of
the differential equation (27), the image domain w(D) covers entirely the
disk {|w| < 1/(2|a02|)}.

The radius value 1/(2|a02|) is sharp for this collection of functions,
and the circle {|w| = 1/(2|a02|) contains points not belonging to w(D) if
and only if |a2| = |a02| (i.e., when w is one of the maximizing functions).

(b) The inverted functions

W (ζ) = 1/w(1/ζ) = ζ − a02 + b1ζ
−1 + b2ζ

−2 + . . .

map the disk D∗ onto a domain whose boundary is entirely contained in
the disk {|W + a02| ≤ |a02|}.

Now we show that in the case of nonvanishing Hp functions this ra-
dius 1/(2|a02|) is naturally connected with the extremal function κ1,p(z)
maximizing the coefficient |c1|.

Consider the collection Np (p > 1) of all nonvanishing Hp functions
located in the ball {∥φ∥ < 2} in B and denote the minimal radius of the
balls in Hp containing these functions by r(p); that is

r(p) = sup{∥f∥p : ∥f∥B ≤ 2, f(z) ̸= 0 in D}.

For any such f , the solutions w(z) of the equation Sw = f are univalent
holomorphic functions on the disk D. The set 1

21/p
Up applied earlier is a

proper subset of Np.

Lemma 8. For any space Hp, p > 1, and its subset Np, we have the
equality

Sw0(z) = r(p)κ1,p(z) (29)
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which means that the Schwarzian of the extremal univalent function w0(z)
maximizing the second coefficient a2 on the set Np equals the extremal
function for c1 (hence, the maximizing function for (28) also is unique).

Proof. In view of Lemma 2, it is enough to establish that

S′
w0

(0) = c01 ̸= 0 (30)

(in other words, that the zero set of the functional J1(f) = c1 is separated
from the set of rotations (19) of the function w0). This yields that the
maximal function (25) for the functional |J1(f)| = |c1| is defined on the
whole disk D1/(2|a02|), attaining its maximum on the boundary circle.

We pass to intersections

B0
1,M (Hp) = B0

1(Hp) ∩ {f ∈ L∞(D) : ∥f∥∞ < M},

with M <∞, getting the corresponding subharmonic functions

uM (t) = sup{|J (SWµ , t)| : SWµ ∈ ι
( 1

2p
Up ∩ P

)
∩B0

1,M (Hp)}

with lim
M→∞

uM (t) = u(t) and the points fM = Sw0,M , maximizing |a2| on

these sets. The collection {fM} is weakly compact in Hp.
Applying Lemma 7, one obtains similar to [12] that both maximal

values |a02| and |c01| are obtained on the same function

f0(z) = lim
M→∞

fM (z) = Sw0 ,

and the uniqueness in Lemma 2 yields that this function must coincide
with r(p)κ1,p. This completes the proof of Lemma 8.

Step 5: Finishing the proof. Now we can prove the assertion of
the theorem. The assumption p ≥ 2 insures that the boundary function
f(eiθ) = limr→1 f(reiθ) of any f ∈ Hp admits Parseval’s equality

1 ≥ 1

2π

π∫
−π

|f(eiθ)|2dθ =
∞∑
0

|cn|2. (31)

In particular, for f(z) = κ1,p(z) =
∞∑
0
c0nz

n we have from (2)

|c01|2 = (2/e)2(1−1/p) = 0.5041...1−1/p > 0.5041... (32)

for all p > 1. Hence, by (31),
∞∑
2

|c0n|2 < 0.5 < |c01|2. (33)



S.L. Krushkal 535

Now take n = 2 and, letting f2(z) = f(z2), consider on the set B0
1(Hp)

the functional
I2(f) = max (|J2(f)|, |J2(f2)|).

Since the correspondence f(z) 7→ f2(z) is linear, the functional J2(f2)
is holomorphic with respect to f in H2m norm and naturally extends to
a holomorphic functional on the spaces T. Hence, the functional I2 is
plurisubharmonic on T. It lifted to the covering space T1 together with
J2.

Similar to above, this lifting generates via (25) a nonconstant radial
subharmonic function u2(t) on the disk {|t| < 1/2|a02|}, t = Wµ(0). This
function is logarithmically convex, hence monotone increasing, and thus
attains its maximal value at |t| = 1/(2|a02|).

Taking into account the connection between the extremal value |a02|
and the function κ1,p established by Lemma 8, one concludes that the
maximal value of I2(f) on B0

1(Hp) is attained on the pair (f, f2) with

f(z) = κ1,p(z), f2(z) = κ1,p(z
2).

Since the set of admissible maps w(z) ∈ Ŝ(1) with Sw = f for J2(f2) is
the same as for J2(f), one derives from above

max
B0

1(H
p)
I2(f) = max {|c01|, |c02|},

which by (33) is equal to |c01| = (2/e)1−1/p. This yields the desired
estimate (1) for n = 2; the extremal maximizing function is determined
up to the pre and post rotations about the origin.

Now consider subsequently for n = 3, 4, . . . the functionals

In(f) = max {|Jn(f)|, |Jn(f2)|, . . . , |Jn(fn)|} (34)

with fn(z) = f(zn). Similar to I2, this does not expand the set of admis-
sible maps w(z) ∈ Ŝ(1) with Sw = f , and therefore, |In(f)| has the same
maximum, as |Jn(fn)|.

Each functional In generates similar to above the corresponding circu-
larly symmetric subharmonic function un(t) on the disk {|t| < 1/2|a02|}, t =
Wµ(0), which provides in the same way the bound

max
B0

1(H
p)
In(f) = max {|c01|, |c0n|} = (2/e)1−1/p,

with a similar description of the extremal functions. This completes the
proof of Theorem 1.
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4. Additional Remarks

4.1. Holomorphy in parameters

As was mentioned in the proof of Theorem 1, the holomorphic de-
pendence of normalized quasiconformal maps on complex parameters is
an underlying fact for the Teichmüller space theory and for many other
applications. It was first established and applied by Ahlfors and Bers
in [1] for maps with three fixed points on Ĉ.

Another somewhat equivalent proof of holomorphy involves the vari-
ational technique for quasiconformal maps. For the maps w from Sθ,α,
this holomorphy is a consequence of the following lemma from [8, Ch. 5]
combined with appropriate Möbius maps.

Lemma 9. Let w(z) be a quasiconformal map of the plane Ĉ with Bel-
trami coefficient µ(z) which satisfies ∥µ∥∞ < ε0 < 1 and vanishes in
the disk {|z| < r}. Suppose that w(0) = 0, w′(0) = 1, and w(1) = 1.
Then, for sufficiently small ε0 and for |z| ≤ R < r0(ε0, r) we have the
variational formula

w(z) = z − z2(z − 1)

π

∫∫
|ζ|>r

µ(ζ)dξdη

ζ2(ζ − 1)(ζ − z)
+ Ωµ(z),

where ζ = ξ + iη; max|z|≤R |Ωµ(z) ≤ C(ε0, r, R)∥µ∥2∞; r0(ε0, r) is a well
defined function of ε0 and r such that limε0→0 r0(ε0, r) = ∞, and the
constant C(ε0, r, R) depends only on ε0, r and R.

4.2. Remarks on the case 1 < p < 2

All arguments in the proof of Theorem 1, excluding the Parseval
equality, applied in the last step, work for any p > 1. In fact, this
equality was applied only to the function κ1,p maximizing |c1| and was
used for estimation |cn| by comparison of the initial non-free coefficient
of functions κ1,p(zm), 1 ≤ m ≤ n.

The explicit representation (2) of κ1,p shows that this function also is
bounded on the unit disk for p satisfying 1 < p < 2; hence it belongs to
H2. However, for all such p, we have

∥κ1,p∥H2 > ∥κ1,p∥Hp .

Thus the needed relation (31) giving (32), (33) fails, and the functionals
Jn and In cannot be compared on this way.
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4.3. On extremal functions in Bergman spaces

One of the interesting extensions of the Hummel–Scheinberg–Zalcman
problem (also still unsolved) is to estimate the Taylor coefficients of non-
vanishing holomorphic maps f(z) = c0 + c1z+ . . . of the unit disk D into
other complex Banach spaces X. Denote by B(X) the unit ball of X.

We illustrate here on the case of Bergman’s space A2 that the features
of extremal functions can be essentially different from above. Recall that
the norm of A2 is ∥f∥ = ( 1

π

∫∫
D |f(z)|2dxdy)1/2.

The collection B0(A2) of nonvanishing holomorphic functions f(z)
mapping the disk D into the closed ball B(A2) (i.e., with f(z) ̸= 0 on
D and ∥f∥ ≤ 1) is compact in the weak topology of the locally uniform
convergence in D. So any holomorphic coefficient functional

J(f) = J(cm1 , . . . , cms) with 1 ≤ m1 < m2 < · · · < ms = N <∞
(35)

has an extremal f0 on which |J(f)| attains its maximum on B0(A2).
While the extremal functions of many problems in Hardy spaces are

bounded, Proposition 2 implies, for example, that any function f0 ∈
B0(A2) maximizing the functional (35) must be unbounded on the disk
D (compare with the extremal problems for nonvanishing Bergman func-
tions investigated e.g. in [2, 3]).

This difference is caused by the fact mentioned after the proof of
Proposition 2: quasiconformal deformations created by Propositions 1
and 2 preserve the norm in Ap, while the norm of the Hardy spaces can
be increased.

Indeed, it follows from Proposition 2 that any extremal f0 of J(f) on
B0(A2) must be unbounded on D, unless f0 is a zero-free polynomial

pN (z) = c0 + c1z + · · · + cNz
N (36)

(with c0 ̸= 0); otherwise, one can vary the coefficients ck and obtain by
this lemma an admissible function f∗ ∈ B0(A2) with |J(f∗)| > |J(f0)|.

It remains to establish that the polynomials (36) with ∥pN∥A2 ≤ 1
cannot be extremal for J(f). We pick a sufficiently small ε > 0 and
consider the polynomial

pε(z) = −εc0 + εzN+1,

for which
max
S1

|pε(z)| < max
S1

|pN (z)|.

Then the Rouché theorem yields that the polynomial

PN+1,ε(z) = pN (z) + pε(z) = (1 − ε)c0 + c1z + · · · + cNz
N + εzN+1
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also must be, together with pN , zero-free on D. Its norm is estimated by

∥pN+1,ε∥2A2
= (1 − ε)2|c0|2 +

|c1|2

2
+ · · · +

|cN |2

N + 1
+

ε2

N + 2

= ∥pN∥2A2 − 2ε+O(ε2) < ∥pN∥2A2 = 1,

which implies that PN+1,ε is an admissible function, with

|J(pN+1,ε)| = |J(pN )| = max{|J(f)| : f ∈ B0(A
2)}. (37)

But this contradicts to Proposition 2, because this proposition allows
one to construct the variations of pN+1,ε, which preserve its A2-norm
and increase |J(pN+1,ε)|, disturbing (37). This completes the proof of
our claim.

Note also that the Parseval equality for functions f(z) = a0 + c1z +
c2z

2 + · · · ∈ A2 states

1

π

∫∫
D

|f(z)|2dxdy =
∞∑
0

|an|2 =
∞∑
0

|cn|2

n+ 1
,

where an are the Fourier coefficients of f . Hence, an = o(1/
√
n+ 1), and

|cn| < 1 for all n ≥ n0(f). For these n, we have |cn| < |c1|, but in (34)
all cj with j = 1, . . . , n have been used.

4.4. Another extension of the Hummel–Scheinberg–Zalcman
problem

Consider the set B0
1(B) of nonvanishing functions φ ∈ B with ∥φ∥B <

1. As was mentioned above, any such φ is the Schwarzian derivative

Sw(z) =

∞∑
0

αnz
n (|z| < 1)

of a univalent function w(z) on the disk D. It is a holomorphic map from
D to B. For the even coefficients of these functions, we have a lower
bound

max
φ∈B0

1(B)
|α2n(φ)| ≥ 1

6
|α2n(κθ)| = n+ 1, (38)

where κθ is the Koebe function

κθ(z) =
z

(1 − eiθz)2
= z +

∞∑
2

neinθzn
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mapping the unit disk onto the complement of the ray {w = −teiθ :
1/4 ≤ t ≤ ∞}. Its Schwarzian derivative

Sκθ(z) = − 6

(1 − e2iθz2)2
= −6

∞∑
0

(n+ 1)e2inθz2n,

with ∥κθ∥B = 6. This derivative is an even and zero free function in D.
The estimate (38) shows the difference of this case from H∗. Together

with the Moebius invariance of Sw, this estimate provides the lower bound
for distortion at arbitrary point of D.

The arguments applied in the proof of Lemma 3 in [12] are extended
to all nonvanishing functions φ ∈ B and give that this collection forms a
Banach submanifold. So it admits the corresponding version of Lemma
7. It does not provide an explicit expression of the extremal function
for c1(φ) (in contrast to Lemma 2). Since c1(κθ) = 0, this function is
different from constκθ; the same is valid at least for all odd coefficients
c2n−1(φ).
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