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On the behavior of Orlicz—Sobolev mappings
with branching on the unit sphere

MIODRAG MATELJEVIC, EVGENY SEVOST YANOV
(Presented by V. Ryazanov)

Abstract. We study mappings of the Orlicz-Sobolev classes with
a branching defined in the unit ball of the Euclidean space. We have
obtained estimates of the distortion of the distance under these mappings
at the points of the unit sphere. Under some conditions we also have
obtained the Holder continuity of the mappings mentioned above. If
we suppose that considered mappings are solutions to certain Laplacian-
gradient inequalities, we get Lipschitz property. In section 7-9 we review
some results and prove a new result, Theorem 7.1 and outline proof of
Theorem 9.2.
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1. Introduction

In our previous publication [19], we discussed the question of Holder
continuity of homeomorphisms in Orlicz—Sobolev classes of the unit ball.
In particular, it was proved that the corresponding mappings are locally
Holder continuous if their inner dilatations has bounded integral means
over the infinitesimal spheres. In this article, we will enhance the results
obtained in several directions at once. First of all, we will consider the
case when the dilatations of mappings has an arbitrary order n—1 < p <
n. In addition, the principal attention is paid to mappings with branching,
the study of which differs significantly from the already mentioned case
of homeomorphisms. Finally, in this article we do not limit ourselves
to studying only the continuity of mappings in the sense of Lipschitz
and/or Holder, as it was before in [19]. The principal object of study
is the order of growth of mappings at a fixed point, which can turn out
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to be Holder continuous, logarithmic Holder continuous, or even more
generally, described by some general expression defined by the dilatations
of mappings.

Throughout this manuscript, D denotes a domain in R", n > 2. Let
xg € R", xg # o0,

B(zg,r) ={z e R": |z — x| <r}, B":=DB(0,1),
S(zo,r) ={x € R": |z —xo| =71}, Si=S(zo,rs), =12, (1L.1)
s»1.=5(0,1),
A= A(zg,r1,m2) ={z € R": 1y < |z —z9| <r2}. (1.2)

We assume that the reader is familiar with the definitions of Sobolev
classes VV&)C1 and some of their basic properties, see, for example, |30, 2.1].
Here only recall if f : D — R™ has ACL (absolutely continuous on lines)
property on D we write that f € ACL(D).

We write f € Wli)’f(D) for a locally integrable vector-function f =

fi,--+, fm) of n real variables x1,...,x, if f; € whl and

( loc
[ 29 5@) dm(z) < oo (1.3
D*

for every subdomain D * with a compact closure, where

V()| =

If additionally f € WhH1(D) and

/ o (IVF(@)]) dm(z) < oo, (1.4)

D

we write f € W1¥(D). For a mapping f : D — R" having partial
derivatives almost everywhere in D, we set
!/ h‘
J(z, ) :=det (), [(f'(z)) = min M 1.5
(@f) = det f'(@), 1(7'@) = | min 0 (L5)
for the Jacobian and smallest distortion respectively. Fix a > 1. We
define the inner dilatation of the mapping f at a point z of the order «
by the relation
|J(2.f)]
Wv J(.’IJ, f) 7& 07
y f/("]j) _= O7 . (16)

o0, otherwise

Kl,a(xaf) =

[
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Given a mapping f: D — R", aset E C D and y € R", we define the
multiplicity function N (y, f, E) as a number of preimages of the point y
in a set F, i.e.

N(y, f,E) = card{z € E: f(z) =y} ,
N(f,E) = sup N(y, [, E). (1.7)
yeR”™

Note that, the concept of a multiplicity function may also be extended
to sets belonging to the closure of a given domain. Indeed, given a set
G C D we set

Ny, f,G)=card {z € G: Jap € D, xp —» x: f(zr) >y, k— oo} .

In this case, the function N(f,G) may be defined similarly to (1.7).

Let h be a chordal metric in R”,

1 [z —y
——— h(z.y) = - -
1+ |z \/1+|x| \/1+|y|

and let h(E) := sup h(x,y) be a chordal diameter of a set E C R™ (see,
r,yeE

e.g., [41, Definition 12.1]). Let X and Y be metric spaces. A mapping
f: X — Y is discrete if f~!(y) is discrete for all y € Y and f is open if
f maps open sets onto open sets. A mapping f: X — Y is called closed
if f(A) is closed in f(X) whenever A is closed in X. As usual, put

h(z,00) = , TFOOFY,

o £ (@)h)
7@l = e (1)

Recall that a mapping f between domains D and D’ in R", n > 2, is of
finite distortion if f € I/Vlicl and ||f/(z)||" < K(x)J(z, f) for a.e. x € D
and some finite function K(z) < oo.

We say that a function ¢ : D — R has a finite mean oscillation at a
point zg € D, write ¢ € FMO(xg), if

lim sup
es0 Qpe™

/ () — 7] dim(z) < oo,

B(zo,¢€)

where p, = ﬁ [ ¢(x)dm(z). We also say that a function ¢ : D —
B(zo,¢)

R has a finite mean oscillation at A C D, write ¢ € FMO(A), if ¢ has a

finite mean oscillation at any point zg € A.
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Given n > 3, a Lebesgue measurable function @ : R" — [0, 0],
Q(z) =0 for z € R" \ B", a nondecreasing function ¢ : (0,00) — [0, 00)
and numbers R > 1, m > 0, N € N, n—1 < a < n denote by
Fg Rm.N, oB") the family of all open discrete and closed mappings f

with a finite distortion of B™ onto B™ of the class W1#(B") such that
N(f,B") = N(f,B") < N, Kra(z, f) < Q(z) a.a. in B" and f(¥(y)) >

m for {1 < |y| < R}, where ¥(y) := ﬁ The following results hold.

Theorem 1.1. Letn > 3 and a <n—1 < n, and let Q € FMO(xg)
for any xo € S"~L. Suppose that, a function ¢ : (0,00) — [0,00) satisfies

Calderon’s condition
)"
—_— t < oo .
/ o(t)

and, in addition, there exist constants C > 0 and T > 0 such that
e2t) K C-pt)Vt=T. (1.10)

Then any mapping f € FngNa(B”) has a continuous extension f :
B™ — B" such that f(B™) = B". In addition,

I. If @ = n, then, for any xo € S"!, there are constants g =
eo(xo) >0 and 0 < g9’ = e¢'(x0) < €0 such that the relation
B o 10g % Bn
h(f(z), f(z0)) < PO (1.11)
0g lx—ao|

holds for any x € B(wzo,e0') N B" and any f € QRmNn(W), where
Fg,R,m,N,n(W) denotes the family of all extended mappings f : B* — B,
Ch > 0 depends only on n, R and m, and B, > 0 depends only n, R, m,
and N.

II. If n — 1 < a < n, then, for any g € S"~!, there are constants
g0 =¢eo(xo) >0 and 0 < gy’ = e’ (x0) < o such that the relation

(1—a)(n—1)
o

_ logﬁlm
|f(z) — f(2o)] < log ———— (1.12)

log %0

holds for every x € B(xo,g0") NB" and any f € F, Q Rom, NQ(W), where
Fg,R,m,N,a(@) denotes the family of all extended mappings f : B* — B,
Cn > 0 is a constant depending only on n, a, R, m, N.
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Given a Lebesgue measurable function @ : R™ — [0, 00|, we set
* 1 * n—1
6= [ @@ (113
|lz—zo|=7

where w,,_1 is the area of the unit sphere in R, and @ * is defined by the

equality
ey Q(x), r e B,
vin= {@ (%), zerm\B (19

Theorem 1.2. Letn > 3 and let o« < n —1 < n. Assume that, for any
xg € S"7L there exists g = £o(xg) > 0 such that for sufficiently small
g > 0 the relations

— & < (1.15)

and

dt
/ S (1.16)
n-l x-"9
0 T ge (1)
hold. Suppose also that a function ¢ : (0,00) — [0, 00) satisfies Calderon’s

condition (1.9) and, in addition, there exist constants C > 0 and T > 0
such that the relation (1.10) holds. Then any mapping f € Fng No(B™)

has a continuous extension f : B™ — B" such that f(B") = B". In addi-
tion,

I. If a = n, then, for any xo € S" 1, there is 0 < g9’ = o’ (x0) < €0
such that the relation

h(F(x), F(20)) < Cn - exp{ —By / S (117)

|xix0‘ th0n71 (t)

holds for any v € B(zo,50") NB™ and any f € Fg Rm’Nn(W), where
F(g’R’m’N’n (B™) denotes the family of all extended mappings f : B® — B~
Cy > 0 depends only on n, R and m, and B, > 0 depends only n, R, m,
and N.

II. If n — 1 < o < n, then, for any xo € S*1, there is 0 < gy’ =
eo’(z0) < €9 such that the relation

(1—a)(n—1)
_ _ ? d )
F(e) — F(zo) < C1- / L (1.18)

n—1 x——-

T—x0| to-t q$0a_1 (t)
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holds for every x € B(xg,g0’) NB™ and any f € FngNa(W)v where
FaR,ijﬂ (B™) denotes the family of all extended mappings f : B™ — B™,
C, > 0 is a constant depending only on n, o, R, m, N.

The following simple corollary follows directly from Theorem 1.2.

Corollary 1.1. Let us assume that under the conditions of Theorem 1.2
a = n and, instead of assumptions (1.15)—(1.16), a stronger condition
is satisfied: q; (1) < q* = const for any r € (0,e0). Then, for any
xo € S"7L, the relation

-\ F 1
h(f(ﬂﬁ),f(ﬂﬂo)) gcn‘Iu’—xg
5q*l/(n—l)
0

Bn
PEIVICES)

holds for any = € B(xo,e0’) NB™ and any f € FS’R7m7N7n(W), where
F&R,m,Mn(W) denotes the family of all extended mappings f : B* — Bn,
and constants B, and Cy are described in Theorem 1.2. Moreover, the
mequality

_ _ . 1 _ Bn

|f(x) = f(zo)| < Cp » ——F— |z — 20[a™/ "7

PESVICESY
€0

holds for some another constant 6’; > 0 depending only on n, R and m.

2. Preliminaries

Given a > 1, we say that the boundary 0D of a domain D is strongly
accessible at a point xy € 0D with respect to a-modulus if for each neigh-
borhood U of xq there exist a compact set E C D, a neighborhood V' C U
of g and § > 0 such that

M, (D(B, F,D)) > § (2.1)

for each continuum F' in D that intersects U and dV. When o« = n, we
will usually drop the prefix in “a-modulus” when speaking about (2.1).
Recall that a pair E' = (A, C), where A is an open set in R”, and C is a
compact subset of A, is called condenser in R™. The quantity

E = A, C)= inf Vul® dm(z), 2.2

ca, cap, (4. C)= it [ [Vultdm(e). (22
A

where Wy(E) = Wy (A, C) is a family of all nonnegative absolutely con-

tinuous on lines (ACL) functions v : A — R with compact support in
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A and such that u(z) > 1 on C, is called a-capacity of the condenser E.
We set cap I := cap,, E.

Let f: D — R" fisopen,n > 2,290 € D,0 <71 <719 <dy =
dist(xg,0D), E = (A, C) where A = B(xg,r2), C = B(zg,r1). By the
continuity and openness of f, the pair f(E) = (f(A), f(C)) is also a
condenser.

The proof of the main assertions of the article is connected with the
use of modulus techniques, in particular, mappings that distort the mod-
ulus of families of paths according to the Poletsky inequality type. In
this regard, consider the following definition.

Given a > 1. An open mapping f : D — R is called a ring Q-

mapping at the point xo € D\ {oo} with respect to a-modulus in the
sense of condenser, if the condition

capy(f / Q@) -1 — zo)dm(z)  (2.3)
A(zo,r1,r2)

holds for all 0 < 1 < ro < 79 and some 0 < ro = ro(xp) < dp and all
Lebesgue measurable functions 7 : (r1,r2) — [0, 00] such that

/77(7") dr>1. (2.4)

T1

Here A = A(xo,r1,72) is defined in (1.2) and S; are defined in (1.1).
Similarly, a mapping f is called a ring Q-mapping with respect to a-
modulus in D in the sense of condenser, if condition (2.3) is satisfied
at every point g € D. We need the following statement, see e.g. [17,
Lemma 7.4, Ch. 7| for « = n and [34, Lemma 2.2] for a # n.

Proposition 2.1. Let g € R", let Q) be a Lebesgue measurable function

Q:R" - [0,00], Q € LL (R"). Set no(r) = ——++—, where J :=
18t 45T )
T2
J(z0,71,7m2) = [ ——T—— and gy, (r) is defined in the relation (1.13).

ry po—l q:,?O*l (r)

Then

= /Q 02 (|2 — o) dm(z /Q (13— o) dm(z) (2.5)

for any Lebesgque measurable function n : (ri,r2) — [0,00] such that

T2
[ n(r)dr =1, where A is defined in (1.2).
r1
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Remark 2.1. Note that, if (2.5) holds for any function n with a condition

/Mﬂmzl, (2.6)

then the same relationship holds for any function n with the condition

T2

/WMW>1. (2.7)

T1
Indeed, let 1 be a nonnegative Lebesgue function that satisfies the condi-

T2
tion (2.7). If I := [ n(t)dt < oo, then we put ny := n/I. Obviously, the
1

function 7y satisfies condition (2.6). Then the relation (2.5) gives that

Wn-1 < 1/@*(-75) (‘1' $0’ dm /Q* ‘il} $0|)dm( )

because I > 1. Let now I = co. Then, by [33, Theorem 1.7.4], a function
7 is a limit of a nondecreasing nonnegative sequence of simple functions

Ny, m = 1,2,.... Set[m:—fnm Ydt < oo and wy,(t) = N (t) /I

Then, it follows from (2.7 that

/@ (| — o) dm(z) <

< / Qu(w) - (|2 — wol) dm(a) (2.8)
A

because I, = I = oo as m — oo (see [33, Lemma 1.11.6]), and, conse-
quently, I, > 1 for sufficiently large m € N. Observe that, a functional
sequence fr, () = Q«(z) n% (|lz—x0|), m = 1,2..., is nonnegative, mono-
tone increasing and converges to a function f(z) := Q.(x) - n*(|Jz — xo|)
almost everywhere. By the Lebesgue theorem on the monotone con-
vergence (see [33, Theorem 1.12.6]), it is possible to go to the limit on
the right side of the inequality (2.8), which gives us the desired inequal-
ity (2.5)

Let (X, u) be a metric space with measure p. For each real number
n > 1, we define the Loewner function ¢, : (0,00) — [0,00) on X by the
relation

on(t) = inf{M,(I'(E,F, X)) : A(E,F) < t},
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where the infimum is taken over all disjoint nondegenerate continua E
and F'in X and

dist (E, F)

A(E,F) := .
(B, F) min{diam F, diam F'}

A pathwise connected metric measure space (X, u) is said to be a Loewner
space of exponent n, or an n-Loewner space, if the Loewner function ¢, (t)
is positive for all ¢ > 0 (see [17, section 2.5], cf. [10, Ch. 8|). Following [10,
section 7.22|, given a real-valued function u in a metric space X, a Borel
function p: X — [0,00] is said to be an upper gradient of a function
uw: X — Rif Ju(z) —u(y)| < [ pl|dz| for each rectifiable curve v joining

5
x and y in X. Let (X, ) be a metric measure space and let 1 < o < 00.
We say that X admits a (1;«)-Poincare inequality if there is a constant
C > 1 such that
1/a
1

) 1 o
o B/ u— usdufe) < € @ B) | - B/ e

for all balls B in X, for all bounded continuous functions v on B, and for
all upper gradients p of u. Metric measure spaces where the inequalities

1
o' < w(B(xo, R)) < CR"
hold for a constant C > 1, every g € X and all R < diam X, are called

Ahlfors n-reqular. Let us to prove the following statement.

Lemma 2.1. Givenn > 2 andn —1 < a < n, the set OB" is strongly
accessible with respect to a-modulus.

Proof. Observe that, B" is a Loewner space (see [10, Example 8.24(a)])
and, therefore, is Ahlfors regular, see [10, Proposition 8.19]. Moreover,
by [11, Theorem 10.5], the Poincaré (1;a)-inequality is fulfilled in B"
for any o > 1. By [1, Proposition 4.7], for n — 1 < a < n we have that

Mo(T(E, F,B")) > é min{diam E, diam F}, (2.9)

where C' > 0 is a constant. Let xyp € OB", and let U be an arbitrary
neighborhood of xg. We choose €1 > 0 in such a way that, putting V :=
B(xg,1), we have V. .C U. Let OU # @, then g5 := d(0U, V) > 0. Note
that, diam(F}) > e9 and diam(F3) > €5 for any continua F and Fy in B
satisfying F1NOU # @ # F1NOV and FoNOU # @ # F>NAOV. Therefore,
by (2.9), we obtain that M, (I'(F1, F»,B"™)) > €2, as required. O
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3. On the local behavior of ring homeomorphisms
in the sense of condensers

Note that, studies of the local behavior of mappings close to (2.3) have
been repeatedly carried out in our papers (see, for example, [35] and [8]).
However, in order to study it, we need to establish some facts specifically
for mappings of the form (2.3). An analog of the following lemma in a
slightly different form was proved in [16, Lemma 2.9], see [36, Lemma 3.

Lemma 3.1. Let E = (A,C) be a condenser such that A C B(0,r),
r > 0, and a set C' is connected. Then the estimate

Wn—1

log 27)\% n—1
h(C)h(R™\B(0,r))

holds, where A, € [4,2¢"71) is some constant depending only on n.

capE >

The following statement holds (see, e.g., [35, Lemma 3.3]).

Lemma 3.2. Let f : D — R"™, n > 2, be an open mapping satisfying (2.3)
at ¢y € D for o = n such that D' = f(D) C B(0,r) for some r > 0.
Assume that, there are p < n, g € (0, dist (zg,0D)), g} € (0,e0) and a
Lebesgue measurable function 1, ¢ : (€,e0) — [0,00], € € (0,¢(), such
that the relation

Q(z) - " (|2 = o|) dm(z) <

8<|$—:Uo‘<60

< K - IP(g, ) Vee (0,g), (3.1)
holds, where
€0
0 < I(e, 20) i= /w(t) dt<oo Vee(0el). (3.2)
15
Then o
h(f(z), f(z0)) < 7” exp{ =Bl (|z — xo|, 0)} (33)
for any x € B(xo,e0”), where 6 := h (R*\ B(0,7)) , besides that, An, v,

and 3, are some constants depending only on n, and v, p =1 — %.

Proof. Let E = (B(z,¢0), B(zo0,¢)), 0 < € < g}. Let us note that,

cap f(E) < K - IP7" (g,¢9) . (3.4)
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€0
Indeed, setting 1. (t) = ¥ (t)/I(,20), t € (¢, €0), we obtain that [ n.(¢) dt

€
= 1. Now, substituting 7.(¢) into the relation (2.3) and using the condi-
tion (3.1), we obtain (3.4), as required.

Since f(A) C B(0,r), by Lemma 3.1 we obtain that

Wn—1

log 2& n—1"
h(f(C))h(R™\B(0,r))

where A, € [4,2¢""1). Since § = h (R™\ B(0,7)), by (3.4) and (3.5) we
obtain that

cap f(E) > (3.5)

h(F(0)) < 222 exp { - (“’"Kl)"ll u<e,ao>>3—?} .

1
Setting o, = 202, B3, = (%) T and ypp =1— p;i, we obtain that

n—

h(F(C)) < 5 exp {~Bul ™ (e,20)} (3.6)

Let € D be such that |z — x| = ¢, 0 < ¢ < gj. Then = € B (xo, ) and

f(z) € f (B (xo, 6)) = f(C), in addition, by (3.6) we obtain that the
relation

h(f(x), f(x0)) < % exp {—Ln """ (|2 — zol, €0)} (3.7)

holds for any € € (0,e(). Due to the arbitrariness of ¢ € (0,g(), we
obtain the relation (3.7) for all z € B(zo, (). O

The case a # n will be considered now separately. Recall the basic
lower estimate of p-capacity of a condenser E = (A4,C) in R" :

(d(C))”

E = AC) > (e —2
CapPq capy, ( ) <01 (m(A))lfn+a

n—1
) , a>n—1, (3.8)

where ¢; depends only on n and p, and d(C') denotes the Euclidean di-
ameter of C' (see, e.g., [14, Proposition 6]).

Lemma 3.3. Letn—1 < a<n,n =2 andlet f: D — R be an
open mapping satisfying (2.3) at g € D, D' := f(D) C B(0,r). Suppose
that there exist numbers q < «, ¢ € (0, dist (zo,0D)), e} € (0,£0) and a
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nonnegative Lebesque measurable function i : (e,e¢) — [0, 00], € € (0,¢()
such that

[ Q@ vl -l dm@) <K -1z Ve O,
e<|z—zo|<eo
(3.9)
where I(e,e0) is defined by (3.2). Then

(1—n+a)n n— (g— a)(n 1)

(@) = flzo)| < Cr & K% T (|2 — 0|, €0)

for any x € B(xg,e0"), where C is a constant depending only on n and
Q.

Proof. Let E = (B(wo,¢0), B(xo,¢)), 0 < e < g. Setting n.(t) =
P(t)/1(e,e0), t € (g, €9), we obtain that f’ng t)dt = 1. Now, substi-
tuting 7:(t) into the relation (2.3), one obtams from (3.9) that

cap, f(E) < K - 17%(e,e9) . (3.10)
Since f(A) C B(0,r), the bound (3.8) yields
cap, f(E) =

(@) ™ (@A) N+
(Cl( (f(A)))l n+a> P <01(Qn))1_n+a> . (3.11)

nT

WV

It follows from (3.10) and (3.11) that
1 1/a l1-nto (1—nta)n n—1 _(g—a)(n—1)
d(f(0) < |— Q> r o« Kol o  (ge), (312)
C1

where ,, is the volume of the unit ball B™ in R™. Now let x € D be
such that |z — zo| = ¢, 0 < ¢ < gj. Then, x € B(xg, €) and f(z) €
f (B (xo, 5)) = f(C), and from (3.12) we obtain the estimate

[f(x) = flzo)| <

1 1/O¢ l-nta (1—n+a)n n— (g—a)(n—1)
< () Q, & r (j KTlI —a (‘:L‘—.%'0|,60). (3.13)
C1

Since ¢ € (0,¢/) is arbitrary, the relation (3.13) holds in B(zg,g)). O
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4. On upper distortion of the modulus under
Orlicz—Sobolev classes

Let w be an open set in R®~!. A continuous mapping o: w — R is
called a surface. Accordingly, we say that a property P holds for almost
every surface, if P holds for all surfaces except a family of zero p-modulus.
Let T be a family of surfaces S. A Borel function p: R* — R is said to
be admissible for T' (briefly: p € admI") if

/pn_ldA >1 (4.1)

S

for every surface S € I', where the integral on the left-hand side of (4.1)
is defined by relation

/pd.A / dH" 1y (4.2)

and H"~! denotes the (n — 1)-measured Hausdorff measure.

If p > 1, the p-modulus of the family I' is defined to be the quantity

M,(T') = inf /pp ) dm(x

pcadml’

Following [17], a metric p is said to be extensively admissible for I’ with
respect to p-modulus, write p € extpadmI', if p € adm (I"\I'g) such that
Mp(T9) = 0. The next class of mappings is a generalization of quasi-
conformal mappings in the sense of Gehring’s ring definition (see [5];
cf. [17, Chapter 9]). Let D and D’ be domains in R™ with n > 2. Sup-
pose that 29 € D\ {00} and Q: D — (0,00) is a Lebesgue measurable
function. A mapping f: D — D’ is called a lower Q-mapping at a point
xqg relative to the p-modulus if

. pP(z)

> .

M,(f(%:)) = pEextlpnafdng / dm(z), (4.3)
DNA(zo,e,7m0)

where A(xzg,e,70) is defined in (1.2), 7o € (0,dp), do = sup |x — zo|,
zeD
in addition, . denotes the family of all intersections of the spheres

S(xo,r) with the domain D, r € (¢,7p). The following statement holds
(see e.g. |38, Lemma 2|).
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Lemma 4.1. Let D be a domain in R™, n > 3, and let p: (0,00) —
(0,00) be a nondecreasing function satisfying (1.9). If p > n — 1, then
every open discrete mapping f: D — R™ with a finite distortion of the
class WN% such that N(f,D) < 00 is a lower Q-mapping relative to the

loc —
p-modulus at every point xg € D for

p—n+1

Q(:E) = N(f)D) : KI,371 (‘/L‘af)a

o = #H, where the inner dilation K (x, f) for f at x of order a
is defined by (1.6), and the multiplicity N(f, D) is defined by the second

relation in (1.7).

The following statement is proved in [39, Lemma 4.2].

Lemma 4.2. Letn > 2, p>n—1, let D be a domain in R™, let xg € D
and let Q: D — [0, 0] be a function in L*(D), wherﬁ: pf;}rl. Assume
that D' is a domain in R™ with a compact closure D'. If f: D — D' is
an open discrete lower QQ-mapping at xg with respect to p-modulus, then

there is C' > 0 such that

capg f(E /Q |m—x0|)dm( )

_n—1_ e ——
f07" 6 = 1#4_17 Q* - C : Qp7n+17 E = (B(HZ’O,T’Q),B(.TO,TI)), any
0 <r; <ry<egg:=dist(xg,dD), and any Lebesque measurable func-
tion n: (ri,r2) — [0,00] such that the relation (2.4) holds. Here A =
A(zg,r1,72) 15 defined in (1.2).
Observe that, p € [n n+ - ) if and only if a :=

p—Z—f—l € (n—1,n).

Now, combining Lemmas 4.1 and 4.2 we obtain the following.

Lemma 4.3. Let D, D’ be domains in R®, n > 3, xg € D, let o €
(n — 1,n], and let ¢: (0,00) — (0,00) be a nondecreasing function sat-
isfying (1.9). Assume that, f: D — D’ is an open discrete mapping
with a finite distortion of the class W/I})’C‘p(D) such that N(f, D) < oo and
Kio € Ll (D). Then there is Cy > 0 depending only on domains D and
D’ such that

capy f / Q™ (z) - (| — xo]) dm(x)

for Q** = Cy- N*"N(f,D) - Kra(z, f), E = (B(xo,72), B(zo,71)), 0 <
re < ro < go := dist (x0,0D), and any Lebesque measurable function
n: (ri,m2) — [0, 00] with (2.4).
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5. The main Lemma

Analogues of the following lemma have been repeatedly proved by
various authors in the study of the local and boundary behavior of map-
pings, see, for example, [17, Lemma 6.2], [31, Lemma 4.9].

Lemma 5.1. Letn >3, n—1 < a <n, and let ¢ : (0,00) — [0,00) be a
non-decreasing Lebesgue measurable function which satisfies Calderon’s
condition (1.9) and the condition (1.10). Let @ : B™ — [0,00] be inte-
grable function in B™,

z), x € B,
Q) = {Q( AN

Q(#) , R\ B"’

Assume that [ is an open discrete and closed mapping of B" onto B"
such that f € WH9(B") and, in addition, N(f,B") = N(f,B"). Let,
moreover, Ky o(z, f) < Q(x) for a.e. x € B" and, besides that, for any

xo € SVt there is 0 < g9 = eo(x0) and 0 < g}y < g9 and some positive
Lebesgue measurable function v : (0,e9) — (0,00) such that

0<I(g,ep):= /¢(t) dt < oo (5.1)

for any € € (0,¢() and, in addition,
[ Q@ v(a ) dm@) <K Pz, 62)
A(zo,e,€0)

for some p < a, for some constant K > 0 and for any € € (0,¢(), where
A = A(xo,e,e0) is defined in (1.2). Assume that I(e,e9) — 00 ase — 0,
&

0

while [ i < o for sufficiently small 0 < € < g and any xo € S*~ 1.
€ tqgy ' (t)

Then:

I. A mapping f has a continuous extension f : B?" — B", while

f(B") = B™. Moreover, there is a continuous extension F : B(0, Ry) —
R™ for any Ry > 1, which is open and discrete. Namely,

{ f(@), || <1,
(f(P(2))), |z =1.

II. There are m > 0 and R > 0 such that the relation

F(z)= (5.3)

fEy)l=m,  1<[y<R, (5.4)
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holds, where ¥(x) := E |2

III. Let 0 < ey < 1/R.
IIl. 1) If a« = n, then, for any xo € S"~1, the relation

h(F(x), F(x0)) < % exp{—Pnl "™ (|x — 20|, €0)} (5.5)

holds for any x € B(xo,e0"), where ay, is a number depending only on n,

1
wn 1 n—1 p_
= . mp=1—"—" :
P (Kc-Na—l(F,B(o,R))) i n—1 (5:6)

5= 1 (BT F(B(0, B)
III. 2) if n —1 < a < n, then, for any xo € S* Y, the relation

and C' > 0 depends on n, m and R.

|F(z) — F(zo)| <

< or T (KO NYEBO,R))) T TR (e — ol e0) (5.7)
holds for every x € B(xg,eo’), where C is a constant depending only on
n and o, and r > 0 is any radius of the ball consisting F(B(0, R)).

Proof. 1. Note that, a mapping f has a continuous extension f onto
S"=! = 9B". Indeed, B" is locally connected on OB”, in addition, by
Lemma 2.1 the set OB" is strongly accessible with respect to a-modulus.
Observe that a function n := /1(e, gp) satisfies the relation (2.4). Now,
by Proposition 2.1 and by the relation (5.2) we obtain that

/Q 8 (1 — zol) dm(z) <

6 E[) /Q wa Z _$0’) dm( ) S K- Ipfa({_:’&.o)’ (58)

, A = A(xp,¢e,0) is defined

*‘I
rastg, o (T)

f Q ( ) dH™ 1. Since, by the as-

|x—x0|="

sumption, I(e,e9) — oo as € — 0, it follows by (5.8) that J — oo as

€0
where J := J(zg,e,60) = [
€
1

in (1.2) and ¢, (r) :=

wp_1rm— T

€0

e — 0. Since by the assumption [ < oo for sufficiently small
e tafy ' (t)

0 < e < epand any zg € S*"!, by Theorem 1 in [38] f has a continuous

extension f : B" — B, as requlred
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II. Let Ry > 0. Using the conformal transformation ¥(z) = ﬁ, we
extend the mapping f continuously onto B(0, Rg) by (5.3). Let us show
that the mapping f is open and discrete in R™. Since f is open discrete
and closed, N(f,B") = N(f,B") < oo (see [18, Theorem 2.8]). Now, f
is discrete in B(0, Ry).

It is known that any discrete open map defined in B” is either sense-
preserving or sense reversing (see, for example, [29, Ch. I, §4]). To
be definite, let f be sense-preserving in B™. Now, f is sense-preserving
in B(0,Rp) \ S" 1. Let G be a domain in B(0, Ry) such that G is a
compactum and let y € (f(G) \ f(0G)) N f(S*!). Given a mapping
f:D — R" and a set E C D we use the notation

C(f,B) = C(f,»)

zel

and
C(f,r):={yeR:3ap € D:ap — x, f(x}) =y, k — 00} .

Since f is closed, C(f,S" 1) C S*~! (see, e.g., [42, Theorem 3.3]). Then
there is a point yo € (R™\ f(0G)) \ S*~! belonging to the connected
component of the set R™\ f(OG) that contains y. Denote, as usual, by
wu(y, f,G) the topological degree of the mapping f at the point y with
respect to the domain G, and by i(z, f) the local topological index of the
mapping f at the point x (see e.g. [29, Ch. I, §4]). Since the topological
index is constant on every connected component of the set R™\ f(9G)
(see [29, Proposition 4.4, Ch. I]), we obtain u(y, f,G) = u(yo, f,G) =

> i(z, f) > 0. Thus, the map f is sense-preserving in R". In
z€GNf ~1(yo)
this case, f is open and discrete in R”, as required (see [40], p. 333).

III. Using the condition f € WH%(B"), we show that the inclusion
F € WH#(B(0, R)) for some R > 1. Observe that

F(sh =snt, (5.9)

Indeed, by proving above, f(S*~!) € S*~!. On the other hand, let y €
S"=1. Since f(B") = B", there is a sequence y,, € B®, m = 1,2, ..., such
that y,, — y as m — oo and, simultaneously, Y, = f(2m), Tm € B". We
may assume that x,, converge to some xy € B" as m — oo. Then ¢ €
S"L. Now f(zm) — f(z0) = y as m — oo because f has a continuous
extension to xg. Thus y € f(S"!), as required. The relation (5.9) is
proved. It follows from (5.9) that f(B") = B".

Observe that f(z) # 0 for any x € A(0, 74, 1) and some sufficiently
small 7, > 0, where A is defined in (1.2). Indeed, in the contrary case, for
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any m € N there is z,,, € A(0,1—1/m, 1) such that f(x,,) = 0. According
to the Bolzano—Weierstrass theorem, we may assume that x,,, — xo € B"
as m — oo for some x9 € B". Since x,,, € A(0,1 — 1/m,1), we obtain
that 1 — 1/m < |z, < 1. Now zg € S"~!. Since by the item I f has a
continuous extension to S*~! = 9B, we obtain that f(z,,) =0 — f(z0)
as m — oo. This contradicts with (5.9). The contradiction obtained
above proves that f(x) # 0 for any « € A(0,r,, 1) and some sufficiently
small r, > 0.

IV. Let us to prove that the functions |VF| and ¢(|VF|) are inte-
grable in B(0, R) for some R > 1. For this, we observe that, for |z| > 1,
by the differentiation rule of a superposition of mappings,

F'(x) = W' (f((x)) o f(T(x)) o U'(z). (5.10)

Here we used the fact that homeomorphisms of the Orlicz—Sobolev classes
under the Calderon condition are differentiable almost everywhere, see,
for example, [15, Theorem 1]. Using direct calculations, we may establish
the inequality

1/ (@) < IV f()| <2 || /()] (5.11)
at all points x € D where the map f has formal partial derivatives.
Observe that ||¥/(z)| = ﬁ (see, e.g., [37, paragraph 7]). Recall that,
for any two linear mappings g and & the relation

lg o il < [lgll - lI72 (5.12)

holds, and here, equality holds as soon as at least one of the mappings
is generalized orthogonal (see, e.g., [30, 1.4, relation (4.13)]).

By the item ITI, f(¥(y)) # 0 for 1 < |y| < R and some R > 1. Since
the map f(¥(y)) is continuous in {1 < |y| < R} and does not vanish,
there is m > 0 such that the relation (5.4) holds. In this case, from (5.4),
(5.10), (5.11) and (5.12) we obtain that

/ VF(2)| dm(z) < / nb/2 || P () | dm(x) =

1<|z|<R 1<|z|<R

=l [ @@ @) - @)] dmie) =

1<|z|<R

1 / 1
/ e M @I dm(@) <

1<|z|<R
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959
nl/2 /
<o [ e dm) -
1<|z|<R
nl/? 156
- . <
m? / g W) S
1/R<|y|<1
n1/2R2n
<t V£ ()] dm(y) < oo (513)
1/R<|y|<1

V. Quite similarly, applying the same arguments to the function
(|[VF)|) instead of [V F|, and taking into account relation (1.10) together
with the non-decreasing property of the function ¢, we obtain that

P(|VF (x)]) dm(z) < Ci - e(IF" (z)|l) dm(x) =

1<|z|<R 1<|z|<R
Ch - / el (FE@DI -1 (@) - 12 (2)]]) dm(z) =
1<|z|<R
— 1 1
Cr- o\ a1 (@) =5 ) dm(z) <
1<J<R <\f(‘lf(ac))l2 W)
<G [ el @@ dn() -
1<|z|<R
G <||£|2<n>r> im(@) <
1/R<|z|<1
< CHR™ - e(IVf(z)]) dm(z) < oo, (5.14)
1/R<|z|<1

where 6’1 and 6’; are some constants
VI. It follows from (5.13) and (5.14) that

/ |IVF(x)| dm(z) < oo,

B(0,R)

/ o(|[VF(x)|)dm(x) < oo, R>1. (5.15)
B(0,R)
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Reasoning in a similar way, we may also obtain similar relations for the
inner dilatation of the map F. Indeed, since I((fog)'(z)) = I(f'(g(x))) -
I(g'(x)) for any mappings f and g at the corresponding points z and, in
addition, J(x, fog) = J(g(z), f) - J(x, f) we obtain that

KI,a(x’F) < Kl,a(f(\ll(x)%\ll) ’ Kl,a(\lj($)vf) : KI,a(x7\II) :

Using the the calculation of I[(¥/(x)) and J(z, ¥) through the radial and
tangential stretchings (see, e.g., [30]), we obtain that I(V'(z)) = ﬁ and

|J(z,U)| = \x|12”’ so that

1 T 1
VQN)

Due to the relations in (5.4) and (5.16) we obtain that

1 1
Kia@F) < — Ko 2o f) —r (5.17)
) m?(n—a) ) 2

27 ) " Jaf2tn=e)

Now, we obtain that

/ Kio(z, F)dm(z) <
B(0,R)

1 T 1
< /K],a(:):,f) dm(w)—i—m' / Ki o (!m\?’f>|x]2(”—a) dm(z).
]BTL

1<|z|<R

Making a change of variables here, and taking into account that
Kro(m, f) € LY(B") by the assumption, we obtain that

/Kmmmmmm
B(0,R)

</Km@ﬂWMH
Bn

1 ‘y|2(n—a)
—an—a) Kl,a(%f)'w

1/R<|y|<1

dm(y) < (5.18)

g/KLa(x,f)dm(x)—kRQa' / Kraly, [)dm(y) < oco.
Bn 1/R<|y|<1
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VII. Let us check that F¥ € ACL(B(0,R)). It is known if f €
WLL(B"), that the unit ball B® may be divided in a standard way into no
more than a countable number of parallelepipeds I, s > 1, with disjoint
interiors, such that F' is absolutely continuous on almost all coordinate
segments in each I, s > 1. We call a segment coordinate segment if it
is parallel to a coordinate axis. Let us prove:

(A) F is absolutely continuous on almost all segments in B", parallel
to the coordinate axes.

It is enough to consider segments r for which F' is absolutely con-
tinuous (shortly AC) on ry := r N I for every s > 1. Suppose that
r(t) = {z € R" : x = 2 + te,t € [a,b]} is such a segment in B", where e
is some coordinate unit vector, and xg € B™.

Two cases are possible: when zy := xg + be belongs to the inte-
rior of the ball, and when the same point lies on the unit sphere. Set
a(t) = f(xo + te). In the first case, there are finite number of integers

l
1,82, ..., 8; such that » = |J rs,. Hence F' is AC on r. Note also here
v=1
that by AC L-characterization of the Sobolev classes (see, e.g., [26, The-
orems 1.1.2 and 1.1.3]) and by the fact that for a real-valued functions
defined on an interval of the real line, absolute continuity may be for-
mulated by the validity of the fundamental theorem of calculus in terms

of Lebesgue integration, (see, for example, see [33, Theorem IV.7.4)),
b
we have [a'(t)dt = a(b) — a(a). Let now 2o € S""1. Then, as it was

a
proved above with respect to the inner points of the ball, for an arbitrary
a < ¢ < b we have that

[

/a’(t) dt = a(c) — a(a) . (5.19)

a

Since it was also proved above, that the map f is a continuous mapping
in the closed unit ball B?, the passage to the limit on the right-hand side
of (5.19) as ¢ — b gives that a(b) — a(a).

Since (5.19) holds for every subinterval of r, we first conclude that
F is AC on r, and (A) follows. Now consider the family J(B(0, R))
of all coordinate segments in B(0,R). It follows from the integrabil-
ity of the gradient of the mapping F on B(0,R) (see (5.15) and by
virtue of Fubini’s theorem (see, for example, [33, Theorem II1.8.1]) that
the derivative of the function « is integrable on almost all segments in
B(0, R) parallel to the coordinate axes. Without loss of generality, we
may assume that a segment r(t) has exactly this property.
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Since the reflection with respect to the unit sphere is C'*° change of
variables, and f € W1 (B"), we conclude that F € W' (B(0, R) \ B")
(see item 1.1.7 in [26] and also definitions of Sobolev spaces on manifolds
in literature). Similarly as above, we may verify that:

(B) F is absolutely continuous on almost all segments in R™ \ B",
parallel to the coordinate axes.

Since F'is continuous on B(0, R), this immediately implies that F is
absolutely continuous on the same segments in B(0, R), as required.

VIIL Since F € ACL(B(0,R)), by (5.15) F € W ?(B(0,R)). In
addition, by (5.18) K(x,F) € LY(B(0,R)). Now, by Lemma 4.3 and
by (5.17) F is a ring Q**-mapping in B(0, R) with respect to a-modulus
with respect to a condenser , where Q**(z) = Cy-Q(z) for z € B", Cy :=
Cy-N*"Y(F,B(0,R)) and C; > 0 depends only on R, and Q**(z) = C3 -
m-@ (ﬁ) for z € B(0, R)\B", where Cs is given above. Generally,

Fis aring C - N*~Y(F, B(0, R)) - Q*-mapping, where C depends on n,
m, a and R.

IX. Let 29 € S* 1. Now, by Lemma 3.2 there exists 0 < g9’ < &g
such that, for a = n

h(F(x), F(z0)) < % exp{—LFnI"*(|x — xol|,£0)} (5.20)

for any = € B(zo,20"), where 6 := h (R™ \ F(B(0, R))) , besides that, o,
1
Wn—1

depends only on n, 8, = (KC-N%l(RB(O,R))) "' and Ynp=1— %.

If a # n, by Lemma 3.3 we obtain that

|F(z) — F(xo)| < (5.21)

(1—-n+ao)n

<Cr a (KC-N*"Y(F, B0, R)))%1 I

(p—a)(n—1)
o (|z —mo|,e0)

for every z € B(zo,£0") and for some 0 < g9’ < g < 1/R, where C is a
constant depending only on n and «, and r > 0 is any radius of the ball
consisting F(B(0, R)). Lemma is proved. O

The following statement holds.

Lemma 5.2. Assume that, for any xo € S"~! there is 0 < g9 = o(x0)
and 0 < e} < €9 and some positive Lebesgue measurable function ) :
(0,£0) — (0,00) such that the relation

0< I(z, 20) = /w(t) dt < oo (5.22)
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holds for any € € (0,¢() and, in addition, the condition

/ Q(z) - Y|z — xo|) dm(x) < K - IP(g,€0) (5.23)

270,6 E()

holds for some p < a, for some constant K > 0 and for any € € (0,¢(),
where A := A(xo,€,€0) is defined in (1.2). Assume that I(e,e9) — 00 as
e — 0, and that ¢ : (0,00) — [0,00) satisfies Calderon’s condition (1.9)
and the condition (1.10). Then:

I. A mapping f has a continuous extension f : B* — B®. Moreover,
there is a continuous extension F': B(0, R) — R™ for any R > 1, where
F' is defined by (5.3).

II. Let zp € S* 1.
II. 1) If « = n, then

(67

h(f (@), [(w0)) < = - exp{=Pnl ™ (|z — wo|,£0)} (5.24)

for any x € B(x0,¢0’) NB™ and any mapping f € F, Q Rom, Nn(IB%”), where
FéRm’N’a(W) denotes the family of all extended mappings f : B* — B,
an depends only on n; By, depends only n, R, m, and N; § depends only
n, R and m; and vpp =1 — %.
II. 2) ifn — 1 < a < n, then

(p=a)(n=1)

[f(@) = fl@o)| < Cp - I o (J& — o, 0) (5.25)

for any x € B(xg,e0")NB™ and f € F, 0. RmNa(B ), where FéRmNa(W)
denotes the family of all extended mappings f : B — B, C! > 0 is a
constant depending only on n, o, R and m.

Proof. The desired conclusion follows directly from Lemma 5.1. In par-

ticular, denoting as above F(y) = ¢¥(f(¥(y)), y & B", ¥(y) := ﬁ,
we observe that |[F(y)| = [¢(f(¥(y)))| = 7|f(¢1(y))l < m for any f €

FngNa(IB%”) and 1 < |y| < R. So, we may set in Lemma 5.1 § :=
h(R™\ B(0,m)) for « =n and r = B(0,m) for a # n. O

6. Proof of the main results

The proof of the following results may be found in [8, Lemma 2.5,
Proof of Theorem 3.3|.
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Lemma 6.1. Let Q : R™ — [0, 00] be a Lebesgue measurable function in

DCR"'n>=2z9€R"andn—1 < a < n. Assume that Q € FMO(xp).

Then the relations (5.22)—(5.23) hold for all sufficiently small eg > 0 with
. log 1

P(t) = w and p = 1. In this case, I(e,ep) = log 155%

Lemma 6.2. Let Q : R" — [0, 00| be a Lebesgue measurable function in

DCR" n>2 x9 €R” and a < n—1 < n. Assume that, for sufficiently

small eg > 0,

dt
/1 < 00 (6.1)
n—1 ——
tetqg, ' (¢)
and
dt
0 to=Tqn, ' (t)
Then the relations (5.22)—(5.23) hold for all sufficiently small eg > 0 with

1

W(t) = {1/[t31q6*‘1(t)], t € (e,¢0) ,
t

where K = wy,—1 and p = 1. In this case, I(g,¢&0) f —
€ ta— 1‘110 (t)

The following lemma holds.

Lemma 6.3. Let @ : R" — [0,00] be a Lebesgue measurable function
such that Q(x) = 0 for x ¢ B", and let (o € S*~ . Assume that, there is
0 < Cq < 00 such that

1
Qo / Q(z)dm(z) < Cy (6.3)
B(Co.e)
as € — 0. Then .
oD / Q" (z)dm(x) < Cy
B(Co€)
as € — 0, where Cy := C1(4" + 1) and
Q(x), x € B”,
* = . 6.4
Q" () {Q %F)’ r € R\ B (6.4)
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Proof. In essence, the assertion of the lemma was established in [19, Proof
of Theorem 1.1, items VII-VIII], however, for the sake of completeness,
we present its proof in full. Let ¢y € S”~! and &g > 0. Notice, that

Y(B+(Co,€0)) C B-(¢o,0) Veo€(0,1), (6.5)

where
Bi(Co,e0) ={z €R":FeeS" L te(0,6):x=Cy+te|z]>1} =
= B(Co,0) N (R™\ B"),
B_(Co,e0) ={z €R":TecS" 1t c0,60): 2= +te|z] <1} =
= B(Co,€0) NB",

and, as above, ¥(z) = ﬁ Indeed, for a given x = {y + te € B4 ({o,<0),
computing the square of the module of the vector by means of the scalar
product (-,-), we obtain that

2_ | Sotte L
V@) =GP = |2 —
_ 1 204 HG.e) | ot tef
TG +tel? T Cot+ter T Go+te
_ 120+ (o, €)) + 1+ 2t(Co,e) +£2 (6.6)
- [Co + tef? - |
— t2 2
= m <t

that is, |¢(z) — (o] < t, as required.
Similarly, let us to show that
»(R™\ (B(Co,e) UB")) CB" \ B(¢o,e) Vee(0,1).  (6.7)

Indeed, let © € R™\ (B(Co,e) UB"™), z = (o + te, |x| > 1, e € S*°1
Co € S* 1, t > e. Arguing similarly to (6.6), we obtain that
t2 t2

_ 2 _ —
() = Gol” = el - GE T P12 (6.8)

By the Cauchy-Bunyakovsky inequality, we obtain that [(p|? + % +
2t((p,e) < 1+ 2t +t2 = (1 + )% Now, we obtain from (6.8) that

t2
(1+41)2

> 2> 2. (6.9)

[¥(2) = Col* =
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In addition, since z € R™\ (B((p, ) UB™), we obtain that = ¢ B", so that

¥ (x) € B™. Due to the relation (6.9), ¥(x) € B™ \ B((p, ), as required.
Let 0 < ¢ < 1/2. Now, by (6.5) and by formula for the change of

variable in the integral (see, e.g., [4, Theorem 3.2.5]) we obtain that

/ Q" (y) dm(y) = / QUiy)) dm(y) <

B(¢o,e)N(R™\B") B(¢o,e)N(R™\B")
1
< / Q) - 7 Am(v). (6.10)
B(Co,é‘)ﬂBn

Let y € B({p,) NB™. Now y = (o +et, where e € S" L and 0 <t < e <
1/2. Hence, by the Cauchy—Bunyakovsky inequality, we have that

|2 = [Co+et]? = 14+2t(Co,e) +12 > 1—2t+12 = (1—1)2 > 1/4. (6.11)
By (6.10) and (6.11),
[ ewaw<r [ auane). 612
B(Co,e)N(R™\B™) B(Go,e)NB™
It immediately follows from (6.12) that
[ cwanw<@ry. [ Qwdnm) <x. (613
B(Co.¢) B(Co,e)NB"

It follows by (6.13) that

/ Q) dm(y) < CL(4" +1).  (6.14)

B(Co,e)ﬂBn

O]

Lemma 6.4. Let Q : R™ — [0,00] be a Lebesgue measurable function
such that Q(x) =0 for x € R™\ B™.

If Q Q € FMO((o) for some (o € S*~L, then Q* € FMO((p), where
Q™" is defined in (6.4).
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Proof. Let Q € FMO({p). Denote Q. := g [ Q(z)dm(z). Then,

n
n€

B(Co:e)
by Lemma 6.3
1 4"+ 1
* _ < _
oo [ 1Q@-@ldn@) < T [ Q@)@ dm() < o
B(Coy¢) B(¢o,e)NB™

for sufficiently small ¢ > 0. Now, Q* € FMO((p) (see [17, Proposi-
tion 6.1]). O

Proof of Theorem 1.1 directly follows from Lemmas 5.2, 6.1 and 6.4. O
Proof of Theorem 1.2 directly follows from Lemmas 5.2 and 6.2. O
The following theorem holds.

Theorem 6.1. Let us assume that under the conditions of Theorem 1.2
n—1< a < n and, instead of assumptions (1.15)—(1.16), the following
condition holds: @ € L'B"), I > -2—. Let zg € S"~'. Then under
notions of Theorem 1.2 the relations

(-0)(n-1)  gq

(@) = fl@o)| < Cpy - log™ =

6.15
|z — x| ( )

forl= 2o, x € Blxo,e0’) NB" and any f € Fj) p . n o(B"), and

(@) = Fao)l < Gy -log™ "0 20 (6.16)

hold for | > 2~ x € B(zo,e0")NB" and any [ € QRmNQ(W), where

FQ,R,m,N,a( ") denotes the family of all extended mappings f : B* — B",
C) >0 is a constant depending only on n, «, R, m, N.

Proof. Choose ¢(t) := % in Lemma 5.2 and arguing similarly to the proof
of [8, Theorem 3.2], we obtain the relations (5.22)—(5.23) with p = & for
| =2 =0forl> = d

Finally, we have the following statement.

Theorem 6.2. If, under conditions of Theorem 6.1 and o = n, we
replace the assumption Q € FMO(S™™ 1Y) by the condition (6.3), then

|f(x) = Fzo)| < 2aneq |2 — x|
as x — xqg, where o, > 0 depends only on n, and

w log 2 1/(n-1)
. n—1 108
T <Qn(4" + )2 CCy N 1(F, B(0, R))) ’

where C' depends on n, m and R, and F is defined by (5.3).
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Proof. Firstly, @ € FMO(S™ 1) (see Corollary 6.1 in [17]), so that all of
conclusions of Theorem 6.1 hold. Due to Lemma 6.1, all of the conditions

and arguing from Lemma 5.1 hold, as well. In particular, F' is a ring
C - N"1(f,B(0,R)) - Q-mapping, where F is defined by (5.3).

By Lemma 6.3

sup
€€(0,e0) an-:

| @ @an@ <@ vn-cr

B(zo,¢)
By Lemma 3.1 in [32], for Cy = (4" +1) - C} and ¢(t) =1,

Q(x)dm(x) _
|z — 20["
A(zo,e,€0)

< Qn(4 +1)2 1

1
log — B™ .
10g2 <0g€), V6€(0,80), onEa

log% 105%
Observe that og(2) = 1+ @ < 2 for e € (0,00), where §y =

€

min {1,e2} . Now

€0\ Q*(x) dm(z)
. -7 7K
(105 () PR
A(zo,e,€0)
LG e _nw e
log 2 (&) log 2 ' '
€

Applying Lemma 5.1 for ¢(¢) = 1/t we obtain by (6.17) that

for every x € B(zg,¢}) and any xo € R™ \ {0}, where ~ is defined above,
and «,, is some constant depending only on n. Finally, since h(z,y) >

ﬁ%%' for z,y € B(0,70) and any ro > 0, and Flgz = f, we obtain that
0

[f(z) = F0)| < 20meq |z — o]

Theorem is proved. O
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7.

Boundary behaviour of partial derivatives for solutions
to certain Laplacian-gradient inequalities and spatial
qr maps

For the subject see papers cited here and literature cited there (in
particular [22]). Here we shortly review some results from [22] and prove
a new result, Theorem 7.1. We also use notation from [22| (in particular
see Definition 1 there). For the convenient of reader we recall a part of
this definitions.

Definition 7.1. 1. We say that a bounded domain € in R™ and its

boundary belong to the class C*®, 0 < a < 1, if for every point
xg € 0N there exists a ball B = B(xp) and we have mapping ¢
from B onto D such that (cf. [7], page 95)

$(BNQ) C R
(BN oY) C OR™
¥ € CH(B), ! € Ck(D).

We refer to ¢ in the above definition as a local coordinate diffeo-
morphism flattering the boundary in a neighboorhod of xy.

If 4 is bi-Lipschitz we say that the domain 2 is weakly Lipschitz.
On some place instead of Lipschitz we write Lip.

Suppose that f : D — D’ is differentiable at a point x € D. By
f'(z) (or (df).) we denote the linear operator which can be iden-
tified with the matrix [D;f;(z)] and maps the tangent space at z
into the tangent space at f(z).

We adopt the standard terminology and notation for K-quasicon-
formal (K-qc) mappings [41]. If, in addition, f is a C' home-
morphism on G and there is a constant K € [1,00) such that
If (@)™ < KJ(z, f), z € G, where J(z, f) denotes the Jaco-
bian of f, and || f'(z)| is defined by (1.8), then we say that it is a
K-quasiconformal (shortly K-qc) mapping. A map is called quasi-
conformal (shortly qc) if it is K-quasiconformal with some K.

For harmonic quasiconformal mappings we use short notation HQC
mappings.

If f is a twice-differentiable real-valued function, then the Laplacian
of f is the real-valued function defined by:

Af=V%f=V-Vf.
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Explicitly, the Laplacian of f is thus the sum of all the unmixed
second partial derivatives in the Cartesian coordinates x;:

Let D be a domain in R™ and s : D — R. If
|As| < a|lVs]* +b

on D, then we say that s satisfies a,b - Laplacian-gradient (Pois-
son differential inequality) inequality on D. It turns out that it is
convenient to adapt this definition to vector valued functions on
the following way. Namely, if w : D — R"™ satisfies the above in-
equality with w instead of s, then we say that w satisfies a,b -
Laplacian-gradient inequality on D. If w = (wy,...,w,) and wg,
k=1,2,...,n, satisfy a, b - Laplacian-gradient inequality on D, we
say that w satisfies a, b - Laplacian-gradient inequality with respect
to the coordinate functions on D.

Throughout this paper D, Dy, Do, G denote domains in R™ space. In
[22] we proved the following results:

Clame 7.1. %) is bi-Lip on B if k > 1 and that ]D?jw\, 1<4,7<nare
bounded on B if k > 2.

Clame 7.2. if w = (w1,...,w,) : D — Dy is a C? function, Aw and
|Vw| are bounded on D and the partial derivatives of H of the second
order, i.e., D%H are bounded, then A(H o w) is bounded on D.

Clame 7.3. Suppose that f is a C! homemorphism on G C R” into R”
and there is a constant K € [1,00) such that || f'(z)||" < KJ(z, f), = €
G, where J(z, f) denotes the Jacobian of f. Then | f'(z)| = I(f'(z)) ~
IV fi(x)], z € G.

Recall that we study mappings in plane and space which satisfy the
Laplacian-gradient inequality.

7.1. Local C? flattering method

First we outline approach which we refer as Local C? -coordinate
method flattering the boundary used in [22](shortly local C? flattering
method).

In order to explain this method suppose that D and D; are domains
in R™ and
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(1) w = (w1, ...,wp) : D — Dy, H: D; — R be C? functions and set
wp = H ow. Using the chain rule formula to compute the derivative of
a composite function we first have

n
i=1
and hence

A(How) =

:Zn:D H|le|2+22D (Vw;, Vw;) +ZD HAw;.  (7.1)

1<J i=1

Using the change of variables formula (7.1) for Laplacian we can prove
a preliminary result:

Clame 7.4. if w = (wy,...,w,) : D — D1 is a C? mapping, Aw and
|Vw| are bounded on D and the partial derivatives of H of the second
order D2 H, where 1 < i,j < n, are bounded, then A(H ow) is bounded
on D.

Next in order to outline our approach concerning spatial versions of
Kellogg’s theorem suppose in addition that

(3) the considered mapping w in (1) is harmonic (more generally Aw is
bounded on D or w satisfies Laplacian-gradient inequality on D),

(4) the codomain D; is a C? domain,

(5) w is proper and it has continuous extension on D.
For simplicity we suppose in addition a stronger hypothesis than
(5), that

(6) w is homeomorphisms of D onto Dy,
(7) D is a smooth domain.

Here in general even with hypothesis (7) and with the continuity
hypothesis (6) we can not conclude a priori that the boundary functions
w*, which is the restriction of w on 9D, has some kind of smoothness. To
get locally a smooth boundary function we use the hypothesis (4) which
provides local coordinates.

Namely, let zp € 0D and yo = w(zp) and let ¥ be the local coordinate
around yo from Definition 7.1 (1.) defined on a ball B and @ = ¢y ow. If
W = f~Y(BN D), then by Claim 7.1 there is a ball W; = B(zg, 1) with
center xg such that Wi N W C W and |Vw| = |[Vw| on V = Wi NW.
Hence we get the following auxiliary result:
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Clame 7.5. If the considered mapping w in (1) satisfies the Laplacian-
gradient inequality on D and partial derivatives of H of the second order
DZ»2~H , where 1 < 4,j < n, are bounded, then w satisfies the Laplacian-

J
gradient inequality on V.

We call a domain U C R™ an elementary closed m-dimensional do-
main if it is homeomorphic to closed m-dimensional ball.

Now we consider w,, = H o w, where H = 1,,. Note first that n-th
coordinate 1, is 0 on some part 71 C 9D; of the neighborhood of yg with
respect to 0D1. We can choose T} to be domain in dD; homeomorphic
to closed n — 1-dimensional ball. Hence we conclude that

(17): 1y, is 0 on some part T C 9D of the neighborhood of xg with re-
spect to D (we can choose T to be an elementary closed n—1-dimensional
domain), and that by Claim 7.5, we have (2’): W, satisfies the Laplacian-
gradient inequality on Vi = By N D, where By = B(xg,r2) for every
ro € (0, 7’1).

In particular we consider the case D = B".

This approach leads us to study the boundary behavior of gradient
of real valued functions which satisfy the Laplacian-gradient inequality
with smooth boundary condition. In this setting we can apply Claim 7.7
below which states that |V, is bounded on V.

On the following figure we illustrate Local C?-coordinate method
flattening the boundary. Recall, using the previous setting and nota-
tion, let g € 9D, yo = f(xo) and let ¢ be local coordinate defined on
B = B(yo,70), 7o > 0. Note first that there is a domain W such that
zg € W and f(W N D) C B. Next we can choose a ball Wi = B(xg, 1)
with center xy such that f(W; N D) C Band T'=W N 9D is domain in
0D, set V =W;ND.

1) is bi-Lipshitz on B

¢

Ba0m; A€ bounded for 1 < ¢ < n.

iy, =1, =0, onT :=V NOD

W =1 ow

Figure 1. Flattening the boundary

The proof of next result in [22] is related to Heinz’s approach. The
proof of Lemma 9 and 9’ of Heinz’s paper [13] clearly applies to n > 2.
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We can use Heinz’s approach (cf. also Kalaj paper [12]) to prove Lemma
7.2 stated here as

Lemma 7.1 (Local gradient lemma Version 1). Consider the hypothesis:

(h1) For a given zg € S*1 the real-valued function u is defined and
continuous on B(xg,r0)NB", and C? on Vo = Vy(ro) := B(zg,70)N
B™.

(ha) Au is bounded on Vj.
(h3) u is CY* on B(zg,m0) NS 1.

Conclusion (I): Then (h1), (he) and (hs) imply that for every r < rg
partial derivatives of u are bounded on on B, NB", where B, = B(xg,r).

Further in order to make an auxiliary statement that is interesting
in itself let us consider the hypothesis (h4): w satisfies a,b — Laplacian-
gradient inequality on V.

Clame 7.6 (Local gradient lemma Version 2). Under hypothesis (h1)
and (h3) the hypothesis (h2) and (h4) are equivalent. In particular, the
hypothesis (h1), (hs) and (h4) imply that |Vu| is bounded on Vy(r),
r <rg.

Clame 7.7. The hypothesis (h1), (hs) and (h4) imply that Au is bounded
on Vy(r) for every r < rg.

Thus under hypothesis (h1) and (hz) we have (hg) is equivalent with
(h4). Tt is interesting that in this setting (h4) is only a priori more general
than (ha).

Lemma 7.2 (Local gradient lemma Version 1). Consider the hypothesis:

(h1) For a given xo € S"~! a real-valued function u is defined and con-
tinuous on B(zo,70) NB", and C? on Vo(ro) := B(xg,70) N B,

(h2) Au is bounded on Vj.
(h3) u is C1 on B(xg,r) NS*L.

Conclusion (IV): Then (hi1), (h2) and (hs) imply that for every r < ro,
the partial derivatives of u are bounded on Vy(r) := B, N B", where
Br = B($0, 7“).
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Recall that Conclusion (IV) also holds if we replace the hypothesis
(hg) with a priori more general hypothesis (hy4): u satisfies a, b-Laplacian-
gradient inequality on Vp. Namely, if we suppose (h1), (h3) and (hg) we
have by Claim 7.7 and Lemma 7.2 above, that there is a constant M > 0
such that |Vu| < M on Vy(r), r < ro.

A natural question is to consider in which extent we can extend the
above results using a more general inequality then Laplacian-gradient
inequality.

For a,d > 0, we say that a map u between space(in particular planar)
domains satisfy d-Poisson differential inequality (a, b-Laplacian-gradient
inequality with gradient power d) if

|Au| < a|Vul? +b.

Here using the above approach, we can prove:

onto

Theorem 7.1. Let D be a C? domain in R"™ and let f : B® 2% D be
a C? proper K-qr mapping. If Af is bounded (more generally f satisfies
the Laplacian-gradient inequality with gradient power 1) on B"™, then f
is Lip on B".

Proof. Suppose first that Af is bounded. Let 29 € S"~! and yo = f(z0).
For every point yg € D there exists a ball B = B(yo, 7o) and a mapping
1 from B onto B* such that ( [7], p. 95) ¥(BND) C R} and ¢(BNJD) C
ORY. By Claim 7.1 (see the introduction) we can choose B such ¥ is
Bi-Lip on B and that ng@b are bounded on B. Further we conclude, see
Theorem 4.10 [42], that

(i-1) f has continuous extension on B" and since f is proper, f(S"1)
oD.

If f=1ofand W = f~1(B), then by (i-1) @, = 0 on W NS*!
and by Claim 7.2 Aw, is bounded on W N B". Hence an application of
Lemma 7.2, Local gradient lemma Version 1, shows that there is a ball
W1 with center g such that W, € W and that @, is Lip on V = W;NB".
Hence since 1 is Bi-Lip on B and f is K-qr, f is K1-qr on V. Next using
that f, is Lip on V, and f is Kj-qr on V and Claim 7.3 property of
a ¢ mapping from the introduction, we conclude that f is Lip on V
and therefore since f = ¢~ o f it is Lip on V. Since zq is an arbitrary
point we conclude f is Lip on B". If f satisfies the Laplacian-gradient
inequality on B™ the proof can be based on Claim 7.6, Local gradient
lemma Version 2. O
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7.2. Distortion of harmonic functions and harmonic
quasiconformal quasi-isometry

If D and G are domains in R™, by QRH(D,G) (respectively
QCH (D, G)) we denote the family of quasiregular (respectively quasicon-
formal) harmonic maps of D onto G. If D = G instead of QCH (D, D)
we write QCH (D).

In [21] we proved:

Theorem 7.2. If h € QCH(H") and h(co) = oo then h is Euclidean
bi-Lipschitz and a quasi-isometry with respect to the Poincare distance.

Theorem 7.3. If h € QRH(H"™) and h(co) = oo then h is Lipschitz
with respect to Fuclidean and the Poincare distance.

We now outline a proof of Theorem. Suppose that n = 3 (the same
proof works in general). Let h = (h1, ha, hg). Since h3(zr) = x3 , we have
h,,(x) = 1 and, therefore, |h'(z)| < c. Since h3(x) = 3, we have

()| _ e
hg(x) § I3

and hence A(h(a), h(b)) < cA(a,b), where ) is a hyperbolic metric in H?3.

For a domain G C R" let p: G — (0,00) be a function. We say that
p is a weight function or a metric density if for every locally rectifiable
curve v in G, the integral

exists. In this case we call [,(y) the p-length of . A metric density defines
a metric d, : G x G — (0,00) as follows. For a,b € G, let

dy(a,b) =infl,(v)
¥

where the infimum is taken over all locally rectifiable curves in G joining
a and b. It is an easy exercise to check that d, satisfies the axioms of a
metric. For instance, the hyperbolic (or Poincaré) metric of D is defined
in terms of the density p(x) = ¢/(1— |x|?) where ¢ > 0 is a constant. The
quasihyperbolic metric k = kg of G is a particular case of the metric d,
when p(z) = m. By H" we denote closure in R”. Suppose that G is

a domain in R™ and G is homeomorphic to H".
Theorem 7.4. If h € QCH(G,H") and h(co) = oo then h is Euclidean

bi-Lipschitz and a quasi-isometry with respect to the quasihyperbolic met-
ric k = kg of G and the Poincare distance H".
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8. Pseudo-isometry and OC'(G)

In this section, we review some results from [25].

More precisely, we give a sufficient condition for a qc mapping f :
G — f(G) to be a pseudo-isometry w.r.t. quasihyperbolic metrics on G
and f(G). First we adopt the following notation.

If V is a subset of R” and u : V' — R™, we define

oscyu = sup{|u(x) —u(y)| : x,y € V}.

Suppose that G C R" and B, = B(z,d(x)/2). Let OC'(G) denote
the class of f € C(G) such that

d(@)|If' ()| < eroscp, f (8.1)

for every z € GG. Similarly, let SC*(G) be the class of functions f € C(G)
such that

I/ (@)|| < ar ' wy(x,r) forall B(z,r) C G, (8.2)
where wy(z,r) = sup{|f(y) — f(z)| : y € B(z,r)}.

For a domain G C R",n > 2,z,y € G, let

lz —yl
min{d(z),d(y)}

Tg(l',y) =

where

d(z) =d(z,0G) = inf{|z — z| : z € G} .

If the domain G is understood from the context, we write r instead rq.
This quantity is used, for instance, in the study of quasiconformal and
quasiregular mappings, cf. [42]. It is a basic fact that [41, Theorem
18.1] for n > 2, K > 1,co > 0 there exists ¢; € (0,1) such that when-
ever f : G — f(G) is a quasiconformal mapping with G, f(G) C R"
then z,y € G and rg(z,y) < c1 imply rpq)(f(2), f(y)) < ca. We call
this property the local uniform boundedness of f with respect to r¢g.
Note that quasiconformal mappings satisfy the local uniform bounded-
ness property and so do quasiregular mappings under appropriate condi-
tions; it is known that one to one mappings satisfying the local uniform
boundedness property may not be quasiconformal.

We also consider a weaker form of this property and say that f :
G — f(G) with G, f(G) C R™ satisfies the weak uniform boundedness
property on G (with respect to rg ) if there is a constant ¢ > 0 such
that rg(r,y) < 1/2 implies r¢q)(f(x), f(y)) < c. Univalent harmonic
mappings fail to satisfy the weak uniform boundedness property as a rule

The proof of Theorem 2.13 [25] gives the following more general result:
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Theorem 8.1. Suppose that G C R, f : G — G', f € OCYG) and it
satisfies the weak property of uniform boundedness with a constant ¢ on
G. Then

(e) f: (G, kg) — (G ker) is Lipschitz.

(f) In addition, if f is K-qc, then f is pseudo-isometry w.r.t. quasi-
hyperbolic metrics on G and f(G).

Proof. By the hypothesis f satisfies the weak property of uniform bound-
edness: |f(t) — f(z)| < cad(f(x) for every t € By, that is

oscp, f < cad(f(x)) (8.3)

for every o € G. This inequality together with (8.1) gives d(z)||f'(z)|| <
c3d(f(z)). Now an application of Lemma 2.10 [25] gives part (e). Since
f~1is qc, an application of [6, Theorem 3] on f~! gives part (f). O

In order to apply the above method we introduce subclasses of OC!(Q)
(see, for example, below (8.4)).

Let f: G — G’ be a C? function and B, = B(z,d(x)/2). We denote
by OC?(G) the class of functions which satisfy the following condition:

sup d?(x)|Af(x)| < ¢ oscp, f (8.4)

T

for every x € G.
If f € OC?(Q), then by Theorem 3.9 in [7], applied to Q = B,,

sup d(t)|| £/ ()| < C(sup |f(t) — f(x)] + sup d*(t)|Af(2)])
t€B, t€B, t€B,
and hence by (8.4)
d(@)|f"(@)|| < croscp, f (8.5)

for every # € G and therefore OC?(G) C OCYH(G).
Now the following result follows from the previous theorem.

Corollary 8.1. Suppose that G C R"™ is a proper subdomain, f : G — G’
is K-qc and f satisfies the condition (8.4) (that is f € OC?(G)). Then
f: (G kg) = (G, kgr) is Lipschitz.

We will now give some examples of classes of functions to which The-
orem 8.1 is applicable. Let SC?(G) denote the class of f € C?(G) such
that

[Af(2)] < ar”tsup{|lf'(y)ll : y € Blz,r)},
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for all B(x,r) C G, where a is a positive constant. Note that the
class SC?(@) contains every function for which d(x)|Af(z)| < al f'(2)]|,
x € G. Tt is clear that SC'(G) € OCY(G) and by the mean value the-
orem, OC?(G) c SC?(G). Note that SC?(G) Cc SC'(G) and that the
class SC?(G) contains harmonic functions, eigenfunctions of the ordinary
Laplacian if G is bounded, eigenfunctions of the hyperbolic Laplacian if
G = B™ and therefore our results are applicable for instance to the men-
tioned classes.

Let P denote harmonic Poisson kernel for the unit ball B"”. It is
interesting that P maps A, (S"!) into A,(B"), 0 < a < 1, and if f €
Lip(S"~!), then in general P[f] is not in Lip(B"). Here by A, we denote
the class of Holder continuous function with power exponent c.

It is natural to consider the corresponding question for the hyperbolic
Poisson kernel Pj,.

Question 8.1. Whether partial derivatives of P, are bounded on the set
Lip(S"~1), where P, is hyperbolic Poisson kernel for the unit ball B"?

It is true; see [2,24]. More precisely, if f € Lip(S"~1), then in general,
Py[f] is in Lip(B™). This is not true for harmonic.

9. Further results 1

Here we outline a proof of Theorem 9.2 below. In the recent article [9]
D. Kalaj and A. Gjokaj proved:

Theorem 9.1. If
(i) : there is a C'* diffeomorphism ¢ : B — D and

(#4) : f is a harmonic quasiconformal mapping between the unit ball in
R” and D,

then f is Lipschitz continuous in B™.

In [22] the first author of this paper consider local version of results
of this type and announced more general results. This generalizes some
known results for n = 2 and improves some others in higher dimensional
case. Here it seems a natural to ask:

Question 9.1. If D is a C't space domain homeomorphic to the unit
ball B" whether D satisfies (i)?

Definition 9.1. 1. D is a domain with C'* boundary if there is o €
(0,1] such that it is C%* domain.
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2. We say that D is good Green-ian domain if | Dygp(z, y)| < CW,
k=1,2,..,n, z,y € D, where D, denotes D, and locally good
Green-ian domain at zg € 0D if for every 6 > 0 there is a C'*
domain W = W,, C D N B(xo,d) such that xg € OW and oW is

an open set in 9D.

3. D is a locally good Green-ian domain with respect to all 9D, if it
is a locally good Green-ian domain at every zg € 9D.

In [3] it is proved that sufficiently smooth domains are good Green-
ian. Furthermore it seems that we can use Theorem 2.3 in [43] to prove
if D is a domain with C'* boundary, then D is a locally good Green-ian
domain with respect to all dD. Here we note that Theorem 9.2 below is
more general than Theorem 9.1.

Namely, condition (i) on the codomain of the function f in Theo-
rem 9.1 and assumption (ii) that f is HQC are replaced with much more
general assumptions (1) and (2)-(3), and it seems that using our ap-
proach we can prove a general version which is applicable to (K, K') qr
mapping which in general are not injective.

Theorem 9.2 ([23]). Suppose that

(1) D and G are domains with C'* boundary, D is a locally good

Green-ian domain with respect to all 0D, and f : D LiliNye)

(2) f € OCHD).

(3) Suppose in addition that G is CY* domain, f = (f1,..., fn) is a C*
vector valued function, f;, i = 1,2, ...,n, satisfy Laplacian-gradient
inequality on D.

(4) f is K gc on D.

Conclusion:

(a) If (1) holds, then M, € LY(D), for | < Iy =
y=1-a.

(b) If (1), (2), (3) and (4) hold, then then f is Lipschitz continuous
on D.

p
p g where

Since SC'(D) Cc OCY(D) we can replace the hypothesis (3) in the
previous theorem with (3’) f € SC(D).

Question 9.2. If (1), (2), (3) and (4) hold, whether there is a unit vector
fields X on D (i.e. to each & we associate a unit vector X = X (x) with
initial point at x) such that |df,(X(z))| < ¢ for every x € V47
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This is true if G is C? domain.

Question 9.3. Suppose that
(5) fis (K, K') qr proper on D.

If (1), (2), (3) and (5) hold, whether then f is Lipschitz continuous
on D?

Note that (2) and (4) imply that for every domain Z C D, the re-
striction of f on Z is Lipschitz with respect to corresponding k-metrics
on Z and f(2).

Outline of proof of Theorem 9.2. We use harmonic coordinate
for C1* boundary and the formula x = Pp[xs) + [ g(z,y)Ax(y)dy,

D

Dix(x) = Di(Pol) () + / Dy, ) Ax(y)dy
D

and the iteration approach related to Imbedding Lemma for Riesz poten-
tial.

Now we outline approach which can be applied to C'* co-domains and
which is motivated by local C? flattering method.In this setting, instead
of local coordinate v described in Figure 1, we use harmonic coordinates
described below.

Here we will try briefly (without technical details) to outline an ap-
proach on which we refer as local C'* -coordinate method flattering the
boundary (related to functions which satisfy the Laplacian-gradient in-
equality).

Let G be a domain in R", 0 € 0G, By = B(0,79), U = Bp N G, and
ro small enough such that By N OG be C'* homeomorphic to unit ball in
R L,

There is a 1 € (0,79) such that a local coordinate 1 is defied on
By = B(0,71) (note By C By ) and there is By = B(0,73), 12 < (0,77),
and a C1® domain V € UN By such that 0 € 9V and OV N By = OU N By,

Define ¢* = |gy. Since v is C1® on By it is Bi-Lip on By and
Jy(0) # 0 and therefore Jy«(0) # 0. Let H be solution of Dirichlet prob-
lem on V with boundary data ¢ and s = H,. We call H a local Harmonic
coordinate for the domain G. The function H is C1'®* on V and therefore
Ji(0) exists. Here d(x) := dy(z) = dist(x,0V). If y € B(z,dy(z)),
then |Dy;s(z)| < c|lz — y|*~! and therefore |D;js(z)| < ed '(z). Thus
if codomain Dy is C?, | D;;9(x)| are bounded and if it is C1** in general
D;;1 does not exist and therefore we do not have estimate. So instead
we use a local Harmonic coordinate H. Since in general |D;; H(z)| are
not bounded we use the iteration approach related to Imbedding Lemma
for Riesz potential.
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Finally we use the formula x = Pp[xs]+ [ (2, y)Ax(y)dy, Dix(z) =
D

Dy(Pplxe)) (@) + [ Diga, y)Ax(y)dy, for x = H, and D = W, where W
D

is a C''* locally good Greenian domain such that f(W) c V, 9W N oD
is open nonempty set in 9D and f(OW NoOD) C OV N Ba.
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