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Abstract. We study mappings of the Orlicz–Sobolev classes with
a branching defined in the unit ball of the Euclidean space. We have
obtained estimates of the distortion of the distance under these mappings
at the points of the unit sphere. Under some conditions we also have
obtained the Hölder continuity of the mappings mentioned above. If
we suppose that considered mappings are solutions to certain Laplacian-
gradient inequalities, we get Lipschitz property. In section 7–9 we review
some results and prove a new result, Theorem 7.1 and outline proof of
Theorem 9.2.
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1. Introduction

In our previous publication [19], we discussed the question of Hölder
continuity of homeomorphisms in Orlicz–Sobolev classes of the unit ball.
In particular, it was proved that the corresponding mappings are locally
Hölder continuous if their inner dilatations has bounded integral means
over the infinitesimal spheres. In this article, we will enhance the results
obtained in several directions at once. First of all, we will consider the
case when the dilatations of mappings has an arbitrary order n−1 < p 6
n. In addition, the principal attention is paid to mappings with branching,
the study of which differs significantly from the already mentioned case
of homeomorphisms. Finally, in this article we do not limit ourselves
to studying only the continuity of mappings in the sense of Lipschitz
and/or Hölder, as it was before in [19]. The principal object of study
is the order of growth of mappings at a fixed point, which can turn out
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to be Hölder continuous, logarithmic Hölder continuous, or even more
generally, described by some general expression defined by the dilatations
of mappings.

Throughout this manuscript, D denotes a domain in Rn, n > 2. Let
x0 ∈ Rn, x0 ̸= ∞,

B(x0, r) = {x ∈ Rn : |x− x0| < r} , Bn := B(0, 1) ,

S(x0, r) = {x ∈ Rn : |x− x0| = r} , Si = S(x0, ri) , i = 1, 2 , (1.1)

Sn−1 := S(0, 1) ,

A = A(x0, r1, r2) = {x ∈ Rn : r1 < |x− x0| < r2} . (1.2)

We assume that the reader is familiar with the definitions of Sobolev
classes W 1,1

loc and some of their basic properties, see, for example, [30, 2.I].
Here only recall if f : D → Rm has ACL (absolutely continuous on lines)
property on D we write that f ∈ ACL(D).

We write f ∈ W 1,φ
loc (D) for a locally integrable vector-function f =

(f1, . . . , fm) of n real variables x1, . . . , xn if fi ∈W 1,1
loc and∫

D ∗

φ (|∇f(x)|) dm(x) <∞ (1.3)

for every subdomain D ∗ with a compact closure, where

|∇f(x)| =

√√√√∑
i,j

(
∂fi
∂xj

)2

.

If additionally f ∈W 1,1(D) and∫
D

φ (|∇f(x)|) dm(x) <∞ , (1.4)

we write f ∈ W 1,φ(D). For a mapping f : D → Rn having partial
derivatives almost everywhere in D, we set

J(x, f) := det f ′(x), l
(
f ′(x)

)
= min

h∈Rn\{0}

|f ′(x)h|
|h|

(1.5)

for the Jacobian and smallest distortion respectively. Fix α > 1. We
define the inner dilatation of the mapping f at a point x of the order α
by the relation

KI,α(x, f) =


|J(x,f)|
l(f ′(x))α , J(x, f) ̸= 0,

1, f ′(x) = 0,
∞, otherwise

. (1.6)
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Given a mapping f : D → Rn, a set E ⊂ D and y ∈ Rn, we define the
multiplicity function N(y, f, E) as a number of preimages of the point y
in a set E, i.e.

N(y, f, E) = card {x ∈ E : f(x) = y} ,

N(f,E) = sup
y∈Rn

N(y, f, E) . (1.7)

Note that, the concept of a multiplicity function may also be extended
to sets belonging to the closure of a given domain. Indeed, given a set
G ⊂ D we set

N(y, f,G) = card {x ∈ G : ∃ xk ∈ D, xk → x : f(xk) → y, k → ∞} .

In this case, the function N(f,G) may be defined similarly to (1.7).

Let h be a chordal metric in Rn,

h(x,∞) =
1√

1 + |x|2
, h(x, y) =

|x− y|√
1 + |x|2

√
1 + |y|2

, x ̸= ∞ ̸= y ,

and let h(E) := sup
x,y∈E

h(x, y) be a chordal diameter of a set E ⊂ Rn (see,

e.g., [41, Definition 12.1]). Let X and Y be metric spaces. A mapping
f : X → Y is discrete if f −1(y) is discrete for all y ∈ Y and f is open if
f maps open sets onto open sets. A mapping f : X → Y is called closed
if f(A) is closed in f(X) whenever A is closed in X. As usual, put

∥f ′(x)∥ = max
h∈Rn\{0}

|f ′(x)h|
|h|

. (1.8)

Recall that a mapping f between domains D and D ′ in Rn, n > 2, is of
finite distortion if f ∈ W 1,1

loc and ∥f ′(x)∥n 6 K(x)J(x, f) for a.e. x ∈ D
and some finite function K(x) <∞.

We say that a function φ : D → R has a finite mean oscillation at a
point x0 ∈ D, write φ ∈ FMO(x0), if

lim sup
ε→0

1

Ωnεn

∫
B(x0, ε)

|φ(x) − φε| dm(x) <∞ ,

where φε = 1
Ωnεn

∫
B(x0, ε)

φ(x) dm(x). We also say that a function φ : D →

R has a finite mean oscillation at A ⊂ D, write φ ∈ FMO(A), if φ has a
finite mean oscillation at any point x0 ∈ A.
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Given n > 3, a Lebesgue measurable function Q : Rn → [0,∞],
Q(x) ≡ 0 for x ∈ Rn \ Bn, a nondecreasing function φ : (0,∞) → [0,∞)
and numbers R > 1, m > 0, N ∈ N, n − 1 < α 6 n denote by
FφQ,R,m,N,α(Bn) the family of all open discrete and closed mappings f
with a finite distortion of Bn onto Bn of the class W 1,φ(Bn) such that
N(f,Bn) = N(f,Bn) 6 N, KI,α(x, f) 6 Q(x) a.a. in Bn and f(Ψ(y)) >
m for {1 < |y| < R}, where Ψ(y) := y

|y|2 . The following results hold.

Theorem 1.1. Let n > 3 and α < n − 1 6 n, and let Q ∈ FMO(x0)
for any x0 ∈ Sn−1. Suppose that, a function φ : (0,∞) → [0,∞) satisfies
Calderon’s condition

∞∫
1

(
t

φ(t)

) 1
n−2

dt <∞ (1.9)

and, in addition, there exist constants C > 0 and T > 0 such that

φ(2t) 6 C · φ(t) ∀ t > T . (1.10)

Then any mapping f ∈ FφQ,R,m,N,α(Bn) has a continuous extension f :

Bn → Bn such that f(Bn) = Bn. In addition,

I. If α = n, then, for any x0 ∈ Sn−1, there are constants ε0 =
ε0(x0) > 0 and 0 < ε0

′ = ε0
′(x0) < ε0 such that the relation

h(f(x), f(x0)) 6 Cn ·

(
log 1

ε0

log 1
|x−x0|

)βn
(1.11)

holds for any x ∈ B(x0, ε0
′) ∩ Bn and any f ∈ FφQ,R,m,N,n(Bn), where

FφQ,R,m,N,n(Bn) denotes the family of all extended mappings f : Bn → Bn,
Cn > 0 depends only on n, R and m, and βn > 0 depends only n, R, m,
and N.

II. If n − 1 < α 6 n, then, for any x0 ∈ Sn−1, there are constants
ε0 = ε0(x0) > 0 and 0 < ε0

′ = ε0
′(x0) < ε0 such that the relation

|f(x) − f(x0)| 6 Cn ·

(
log

log 1
|x−x0|

log 1
ε0

) (1−α)(n−1)
α

(1.12)

holds for every x ∈ B(x0, ε0
′) ∩ Bn and any f ∈ FφQ,R,m,N,α(Bn), where

FφQ,R,m,N,α(Bn) denotes the family of all extended mappings f : Bn → Bn,
Cn > 0 is a constant depending only on n, α, R, m, N.
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Given a Lebesgue measurable function Q : Rn → [0,∞], we set

q ∗x0(r) :=
1

ωn−1rn−1

∫
|x−x0|=r

Q ∗(x) dHn−1 , (1.13)

where ωn−1 is the area of the unit sphere in Rn, and Q ∗ is defined by the
equality

Q ∗(x) =

{
Q(x), x ∈ Bn ,
Q
(

x
|x|2

)
, x ∈ Rn \ Bn

. (1.14)

Theorem 1.2. Let n > 3 and let α < n− 1 6 n. Assume that, for any
x0 ∈ Sn−1 there exists ε0 = ε0(x0) > 0 such that for sufficiently small
ε > 0 the relations

ε0∫
ε

dt

t
n−1
α−1 q

∗ 1
α−1

x0 (t)
<∞ (1.15)

and
ε0∫
0

dt

t
n−1
α−1 q

∗ 1
α−1

x0 (t)
= ∞ (1.16)

hold. Suppose also that a function φ : (0,∞) → [0,∞) satisfies Calderon’s
condition (1.9) and, in addition, there exist constants C > 0 and T > 0
such that the relation (1.10) holds. Then any mapping f ∈ FφQ,R,m,N,α(Bn)

has a continuous extension f : Bn → Bn such that f(Bn) = Bn. In addi-
tion,

I. If α = n, then, for any x0 ∈ Sn−1, there is 0 < ε0
′ = ε0

′(x0) < ε0
such that the relation

h(f(x), f(x0)) 6 Cn · exp

−βn

ε0∫
|x−x0|

dt

tq
∗ 1
n−1

x0 (t)

 (1.17)

holds for any x ∈ B(x0, ε0
′) ∩ Bn and any f ∈ FφQ,R,m,N,n(Bn), where

FφQ,R,m,N,n(Bn) denotes the family of all extended mappings f : Bn → Bn,
Cn > 0 depends only on n, R and m, and βn > 0 depends only n, R, m,
and N.

II. If n − 1 < α 6 n, then, for any x0 ∈ Sn−1, there is 0 < ε0
′ =

ε0
′(x0) < ε0 such that the relation

|f(x) − f(x0)| 6 C ′
n ·

 ε0∫
|x−x0|

dt

t
n−1
α−1 q

∗ 1
α−1

x0 (t)


(1−α)(n−1)

α

(1.18)
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holds for every x ∈ B(x0, ε0
′) ∩ Bn and any f ∈ FφQ,R,m,N,α(Bn), where

FφQ,R,m,N,α(Bn) denotes the family of all extended mappings f : Bn → Bn,
C ′
n > 0 is a constant depending only on n, α, R, m, N.

The following simple corollary follows directly from Theorem 1.2.

Corollary 1.1. Let us assume that under the conditions of Theorem 1.2
α = n and, instead of assumptions (1.15)–(1.16), a stronger condition
is satisfied: q ∗x0(r) 6 q ∗ = const for any r ∈ (0, ε0). Then, for any
x0 ∈ Sn−1, the relation

h(f(x), f(x0)) 6 Cn ·
1

ε

βn

q ∗1/(n−1)

0

|x− x0|
βn

q ∗1/(n−1)

holds for any x ∈ B(x0, ε0
′) ∩ Bn and any f ∈ FφQ,R,m,N,n(Bn), where

FφQ,R,m,N,n(Bn) denotes the family of all extended mappings f : Bn → Bn,
and constants βn and Cn are described in Theorem 1.2. Moreover, the
inequality

|f(x) − f(x0)| 6 C̃n ·
1

ε

βn

q ∗1/(n−1)

0

|x− x0|
βn

q ∗1/(n−1)

holds for some another constant C̃n > 0 depending only on n, R and m.

2. Preliminaries

Given α > 1, we say that the boundary ∂D of a domain D is strongly
accessible at a point x0 ∈ ∂D with respect to α-modulus if for each neigh-
borhood U of x0 there exist a compact set E ⊂ D, a neighborhood V ⊂ U
of x0 and δ > 0 such that

Mα(Γ(E,F,D)) > δ (2.1)

for each continuum F in D that intersects ∂U and ∂V . When α = n, we
will usually drop the prefix in “α-modulus” when speaking about (2.1).
Recall that a pair E = (A, C) , where A is an open set in Rn, and C is a
compact subset of A, is called condenser in Rn. The quantity

capαE = capα (A, C) = inf
u∈W0(E)

∫
A

|∇u|α dm(x) , (2.2)

where W0(E) = W0 (A, C) is a family of all nonnegative absolutely con-
tinuous on lines (ACL) functions u : A → R with compact support in
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A and such that u(x) > 1 on C, is called α-capacity of the condenser E.
We set capE := capnE.

Let f : D → Rn, f is open, n > 2, x0 ∈ D, 0 < r1 < r2 < d0 =
dist(x0, ∂D), E = (A, C) where A = B(x0, r2), C = B(x0, r1). By the
continuity and openness of f, the pair f(E) = (f(A), f(C)) is also a
condenser.

The proof of the main assertions of the article is connected with the
use of modulus techniques, in particular, mappings that distort the mod-
ulus of families of paths according to the Poletsky inequality type. In
this regard, consider the following definition.

Given α > 1. An open mapping f : D → Rn is called a ring Q-
mapping at the point x0 ∈ D \ {∞} with respect to α-modulus in the
sense of condenser, if the condition

capα(f(E)) 6
∫

A(x0,r1,r2)

Q(x) · ηα(|x− x0|) dm(x) (2.3)

holds for all 0 < r1 < r2 < r0 and some 0 < r0 = r0(x0) 6 d0 and all
Lebesgue measurable functions η : (r1, r2) → [0,∞] such that

r2∫
r1

η(r) dr > 1 . (2.4)

Here A = A(x0, r1, r2) is defined in (1.2) and Si are defined in (1.1).
Similarly, a mapping f is called a ring Q-mapping with respect to α-
modulus in D in the sense of condenser, if condition (2.3) is satisfied
at every point x0 ∈ D. We need the following statement, see e.g. [17,
Lemma 7.4, Ch. 7] for α = n and [34, Lemma 2.2] for α ̸= n.

Proposition 2.1. Let x0 ∈ Rn, let Q be a Lebesgue measurable function
Q : Rn → [0,∞], Q ∈ L1

loc(Rn). Set η0(r) = 1

Ir
n−1
α−1 q

1
α−1
x0

(r)

, where J :=

J(x0, r1, r2) =
r2∫
r1

dr

r
n−1
α−1 q

1
α−1
x0

(r)

and qx0(r) is defined in the relation (1.13).

Then

ωn−1

Jα−1
=

∫
A

Q(x) ·ηα0 (|x−x0|) dm(x) 6
∫
A

Q(x) ·ηα(|x−x0|) dm(x) (2.5)

for any Lebesgue measurable function η : (r1, r2) → [0,∞] such that
r2∫
r1

η(r) dr = 1, where A is defined in (1.2).
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Remark 2.1. Note that, if (2.5) holds for any function η with a condition

r2∫
r1

η(r) dr = 1 , (2.6)

then the same relationship holds for any function η with the condition

r2∫
r1

η(r) dr > 1 . (2.7)

Indeed, let η be a nonnegative Lebesgue function that satisfies the condi-

tion (2.7). If I :=
r2∫
r1

η(t) dt < ∞, then we put η0 := η/I. Obviously, the

function η0 satisfies condition (2.6). Then the relation (2.5) gives that

ωn−1

Jα−1
6 1

I α

∫
A

Q∗(x) · ηα(|x− x0|) dm(x) 6
∫
A

Q∗(x) · ηα(|x− x0|) dm(x)

because I > 1. Let now I = ∞. Then, by [33, Theorem I.7.4], a function
η is a limit of a nondecreasing nonnegative sequence of simple functions

ηm, m = 1, 2, . . . . Set Im :=
r2∫
r1

ηm(t) dt < ∞ and wm(t) := ηm(t)/Im.

Then, it follows from (2.7) that

ωn−1

Jα−1
6 1

Iαm

∫
A

Q∗(x) · ηαm(|x− x0|) dm(x) 6

6
∫
A

Q∗(x) · ηαm(|x− x0|) dm(x) , (2.8)

because Im → I = ∞ as m → ∞ (see [33, Lemma I.11.6]), and, conse-
quently, Im > 1 for sufficiently large m ∈ N. Observe that, a functional
sequence fm(x) = Q∗(x)·ηαm(|x−x0|), m = 1, 2 . . . , is nonnegative, mono-
tone increasing and converges to a function f(x) := Q∗(x) · ηα(|x− x0|)
almost everywhere. By the Lebesgue theorem on the monotone con-
vergence (see [33, Theorem I.12.6]), it is possible to go to the limit on
the right side of the inequality (2.8), which gives us the desired inequal-
ity (2.5).

Let (X,µ) be a metric space with measure µ. For each real number
n > 1, we define the Loewner function ϕn : (0,∞) → [0,∞) on X by the
relation

ϕn(t) = inf{Mn(Γ(E,F,X)) : ∆(E,F ) 6 t} ,
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where the infimum is taken over all disjoint nondegenerate continua E
and F in X and

∆(E,F ) :=
dist (E,F )

min{diamE, diamF}
.

A pathwise connected metric measure space (X,µ) is said to be a Loewner
space of exponent n, or an n-Loewner space, if the Loewner function ϕn(t)
is positive for all t > 0 (see [17, section 2.5], cf. [10, Ch. 8]). Following [10,
section 7.22], given a real-valued function u in a metric space X, a Borel
function ρ : X → [0,∞] is said to be an upper gradient of a function
u : X → R if |u(x) − u(y)| 6

∫
γ
ρ |dx| for each rectifiable curve γ joining

x and y in X. Let (X,µ) be a metric measure space and let 1 6 α <∞.
We say that X admits a (1;α)-Poincare inequality if there is a constant
C > 1 such that

1

µ(B)

∫
B

|u− uB| dµ(x) 6 C · (diamB)

 1

µ(B)

∫
B

ρα dµ(x)

1/α

for all balls B in X, for all bounded continuous functions u on B, and for
all upper gradients ρ of u. Metric measure spaces where the inequalities

1

C
Rn 6 µ(B(x0, R)) 6 CRn

hold for a constant C > 1, every x0 ∈ X and all R < diamX, are called
Ahlfors n-regular. Let us to prove the following statement.

Lemma 2.1. Given n > 2 and n − 1 < α 6 n, the set ∂Bn is strongly
accessible with respect to α-modulus.

Proof. Observe that, Bn is a Loewner space (see [10, Example 8.24(a)])
and, therefore, is Ahlfors regular, see [10, Proposition 8.19]. Moreover,
by [11, Theorem 10.5], the Poincaré (1;α)-inequality is fulfilled in Bn
for any α > 1. By [1, Proposition 4.7], for n− 1 < α 6 n we have that

Mα(Γ(E,F,Bn)) > 1

C
min{diamE, diam F}, (2.9)

where C > 0 is a constant. Let x0 ∈ ∂Bn, and let U be an arbitrary
neighborhood of x0. We choose ε1 > 0 in such a way that, putting V :=
B(x0, ε1), we have V ⊂ U . Let ∂U ̸= ∅, then ε2 := d(∂U, ∂V ) > 0. Note
that, diam(F1) > ε2 and diam(F2) > ε2 for any continua F1 and F2 in Bn
satisfying F1∩∂U ̸= ∅ ̸= F1∩∂V and F2∩∂U ̸= ∅ ̸= F2∩∂V. Therefore,
by (2.9), we obtain that Mα(Γ(F1, F2,Bn)) > ε2, as required.



550 On the behavior of Orlicz–Sobolev mappings...

3. On the local behavior of ring homeomorphisms
in the sense of condensers

Note that, studies of the local behavior of mappings close to (2.3) have
been repeatedly carried out in our papers (see, for example, [35] and [8]).
However, in order to study it, we need to establish some facts specifically
for mappings of the form (2.3). An analog of the following lemma in a
slightly different form was proved in [16, Lemma 2.9], see [36, Lemma 3].

Lemma 3.1. Let E = (A,C) be a condenser such that A ⊂ B(0, r),
r > 0, and a set C is connected. Then the estimate

capE > ωn−1{
log 2λ2n

h(C)h(Rn \B(0,r))

}n−1

holds, where λn ∈ [4, 2en−1) is some constant depending only on n.

The following statement holds (see, e.g., [35, Lemma 3.3]).

Lemma 3.2. Let f : D → Rn, n > 2, be an open mapping satisfying (2.3)
at x0 ∈ D for α = n such that D ′ = f(D) ⊂ B(0, r) for some r > 0.
Assume that, there are p 6 n, ε0 ∈ (0, dist (x0, ∂D)), ε ′0 ∈ (0, ε0) and a
Lebesgue measurable function ψ, ψ : (ε, ε0) → [0,∞], ε ∈ (0, ε ′0) , such
that the relation ∫

ε<|x−x0|<ε0

Q(x) · ψn(|x− x0|) dm(x) 6

6 K · Ip(ε, ε0) ∀ ε ∈ (0, ε ′0) , (3.1)

holds, where

0 < I(ε, ε0) :=

ε0∫
ε

ψ(t) dt <∞ ∀ ε ∈ (0, ε ′0) . (3.2)

Then
h(f(x), f(x0)) 6

αn
δ

exp{−βnIγn,p(|x− x0|, ε0)} (3.3)

for any x ∈ B(x0, ε0
′), where δ := h

(
Rn \B(0, r)

)
, besides that, λn, αn

and βn are some constants depending only on n, and γn,p = 1 − p−1
n−1 .

Proof. Let E = (B(x0, ε0), B(x0, ε)), 0 < ε < ε ′0. Let us note that,

cap f(E) 6 K · Ip−n (ε, ε0) . (3.4)
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Indeed, setting ηε(t) = ψ(t)/I(ε, ε0), t ∈ (ε, ε0), we obtain that
ε0∫
ε
ηε(t) dt

= 1. Now, substituting ηε(t) into the relation (2.3) and using the condi-
tion (3.1), we obtain (3.4), as required.

Since f(A) ⊂ B(0, r), by Lemma 3.1 we obtain that

cap f(E) > ωn−1{
log 2λ2n

h(f(C))h(Rn \B(0,r))

}n−1 , (3.5)

where λn ∈ [4, 2en−1). Since δ = h
(
Rn \B(0, r)

)
, by (3.4) and (3.5) we

obtain that

h (f(C)) 6 2λ2n
δ

exp

{
−
(ωn−1

K

) 1
n−1

(I(ε, ε0))
n−p
n−1

}
.

Setting αn = 2λ2n, βn =
(ωn−1

K

) 1
n−1 and γn,p = 1 − p−1

n−1 , we obtain that

h (f(C)) 6 αn
δ

exp {−βnIγn,p(ε, ε0)} . (3.6)

Let x ∈ D be such that |x− x0| = ε, 0 < ε < ε ′0. Then x ∈ B (x0, ε) and

f(x) ∈ f
(
B (x0, ε)

)
= f(C), in addition, by (3.6) we obtain that the

relation

h (f(x), f(x0)) 6 αn
δ

exp {−βnIγn,p(|x− x0|, ε0)} (3.7)

holds for any ε ∈ (0, ε ′0). Due to the arbitrariness of ε ∈ (0, ε ′0) , we
obtain the relation (3.7) for all x ∈ B(x0, ε

′
0).

The case α ̸= n will be considered now separately. Recall the basic
lower estimate of p-capacity of a condenser E = (A,C) in Rn :

capα E = capα (A,C) >
(
c1

(d(C))α

(m(A))1−n+α

) 1
n−1

, α > n− 1, (3.8)

where c1 depends only on n and p, and d(C) denotes the Euclidean di-
ameter of C (see, e.g., [14, Proposition 6]).

Lemma 3.3. Let n − 1 < α 6 n, n > 2, and let f : D → Rn, be an
open mapping satisfying (2.3) at x0 ∈ D, D ′ := f(D) ⊂ B(0, r). Suppose
that there exist numbers q 6 α, ε0 ∈ (0, dist (x0, ∂D)), ε ′0 ∈ (0, ε0) and a
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nonnegative Lebesgue measurable function ψ : (ε, ε0) → [0,∞], ε ∈ (0, ε ′0)
such that∫
ε<|x−x0|<ε0

Q(x) · ψα(|x− x0|) dm(x) 6 K · Iq(ε, ε0) ∀ ε ∈ (0, ε ′0) ,

(3.9)
where I(ε, ε0) is defined by (3.2). Then

|f(x) − f(x0)| 6 Cr
(1−n+α)n

α K
n−1
α I

(q−α)(n−1)
α (|x− x0|, ε0)

for any x ∈ B(x0, ε0
′), where C is a constant depending only on n and

α.

Proof. Let E = (B(x0, ε0), B(x0, ε)), 0 < ε < ε′0. Setting ηε(t) =

ψ(t)/I(ε, ε0), t ∈ (ε, ε0), we obtain that
ε0∫
ε
ηε(t) dt = 1. Now, substi-

tuting ηε(t) into the relation (2.3), one obtains from (3.9) that

capα f(E) 6 K · Iq−α (ε, ε0) . (3.10)

Since f(A) ⊂ B(0, r), the bound (3.8) yields

capα f(E) >

>
(
c1

(d(f(C)))α

(m(f(A)))1−n+α

) 1
n−1

>
(
c1

(d(f(C)))α

(Ωnrn))1−n+α

) 1
n−1

. (3.11)

It follows from (3.10) and (3.11) that

d (f(C)) 6
(

1

c1

)1/α

Ω
1−n+α

α
n r

(1−n+α)n
α K

n−1
α I

(q−α)(n−1)
α (ε, ε0) , (3.12)

where Ωn is the volume of the unit ball Bn in Rn. Now let x ∈ D be
such that |x − x0| = ε, 0 < ε < ε ′0. Then, x ∈ B (x0, ε) and f(x) ∈
f
(
B (x0, ε)

)
= f(C), and from (3.12) we obtain the estimate

|f(x) − f(x0)| 6

6
(

1

c1

)1/α

Ω
1−n+α

α
n r

(1−n+α)n
α K

n−1
α I

(q−α)(n−1)
α (|x− x0|, ε0) . (3.13)

Since ε ∈ (0, ε ′0) is arbitrary, the relation (3.13) holds in B(x0, ε
′
0).
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4. On upper distortion of the modulus under
Orlicz–Sobolev classes

Let ω be an open set in Rn−1. A continuous mapping σ : ω → Rn is
called a surface. Accordingly, we say that a property P holds for almost
every surface, if P holds for all surfaces except a family of zero p-modulus.
Let Γ be a family of surfaces S. A Borel function ρ : Rn → R+ is said to
be admissible for Γ (briefly: ρ ∈ admΓ) if∫

S

ρn−1 dA > 1 (4.1)

for every surface S ∈ Γ, where the integral on the left-hand side of (4.1)
is defined by relation∫

S

ρ dA =

∫
Rn

ρ(y)N(S, y) dHn−1y , (4.2)

and Hn−1 denotes the (n− 1)-measured Hausdorff measure.

If p > 1, the p-modulus of the family Γ is defined to be the quantity

Mp(Γ) = inf
ρ∈admΓ

∫
Rn

ρp(x) dm(x).

Following [17], a metric ρ is said to be extensively admissible for Γ with
respect to p-modulus, write ρ ∈ extpadm Γ, if ρ ∈ adm (Γ\Γ0) such that
Mp(Γ0) = 0. The next class of mappings is a generalization of quasi-
conformal mappings in the sense of Gehring’s ring definition (see [5];
cf. [17, Chapter 9]). Let D and D ′ be domains in Rn with n > 2. Sup-
pose that x0 ∈ D \ {∞} and Q : D → (0,∞) is a Lebesgue measurable
function. A mapping f : D → D ′ is called a lower Q-mapping at a point
x0 relative to the p-modulus if

Mp(f(Σε)) > inf
ρ∈extp admΣε

∫
D∩A(x0,ε,r0)

ρ p(x)

Q(x)
dm(x) , (4.3)

where A(x0, ε, r0) is defined in (1.2), r0 ∈ (0, d0), d0 = sup
x∈D

|x − x0|,

in addition, Σε denotes the family of all intersections of the spheres
S(x0, r) with the domain D, r ∈ (ε, r0). The following statement holds
(see e.g. [38, Lemma 2]).
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Lemma 4.1. Let D be a domain in Rn, n > 3, and let φ : (0,∞) →
(0,∞) be a nondecreasing function satisfying (1.9). If p > n − 1, then
every open discrete mapping f : D → Rn with a finite distortion of the
class W 1,φ

loc such that N(f,D) < ∞ is a lower Q-mapping relative to the
p-modulus at every point x0 ∈ D for

Q(x) = N(f,D) ·K
p−n+1
n−1

I,α (x, f),

α := p
p−n+1 , where the inner dilation KI,α(x, f) for f at x of order α

is defined by (1.6), and the multiplicity N(f,D) is defined by the second
relation in (1.7).

The following statement is proved in [39, Lemma 4.2].

Lemma 4.2. Let n > 2, p > n− 1, let D be a domain in Rn, let x0 ∈ D
and let Q : D → [0,∞] be a function in L s(D), where s = n−1

p−n+1 . Assume

that D ′ is a domain in Rn with a compact closure D ′. If f : D → D ′ is
an open discrete lower Q-mapping at x0 with respect to p-modulus, then
there is C > 0 such that

capβ f(E) 6
∫
A

Q ∗(x) · ηβ(|x− x0|) dm(x)

for β = p
p−n+1 , Q

∗ = C · Q
n−1

p−n+1 , E = (B(x0, r2), B(x0, r1)), any
0 < r1 < r2 < ε0 := dist (x0, ∂D), and any Lebesgue measurable func-
tion η : (r1, r2) → [0,∞] such that the relation (2.4) holds. Here A =
A(x0, r1, r2) is defined in (1.2).

Observe that, p ∈
[
n, n+ 1

n−2

)
if and only if α := p

p−n+1 ∈ (n−1, n].

Now, combining Lemmas 4.1 and 4.2 we obtain the following.

Lemma 4.3. Let D,D ′ be domains in Rn, n > 3, x0 ∈ D, let α ∈
(n − 1, n], and let φ : (0,∞) → (0,∞) be a nondecreasing function sat-
isfying (1.9). Assume that, f : D → D ′ is an open discrete mapping
with a finite distortion of the class W 1,φ

loc (D) such that N(f,D) <∞ and
KI,α ∈ L1

loc(D). Then there is C1 > 0 depending only on domains D and
D,′ such that

capα f(E) 6
∫
A

Q ∗∗(x) · ηα(|x− x0|) dm(x)

for Q ∗∗ = C1 · Nα−1(f,D) · KI,α(x, f), E = (B(x0, r2), B(x0, r1)), 0 <
r1 < r2 < ε0 := dist (x0, ∂D), and any Lebesgue measurable function
η : (r1, r2) → [0,∞] with (2.4).
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5. The main Lemma

Analogues of the following lemma have been repeatedly proved by
various authors in the study of the local and boundary behavior of map-
pings, see, for example, [17, Lemma 6.2], [31, Lemma 4.9].

Lemma 5.1. Let n > 3, n− 1 < α 6 n, and let φ : (0,∞) → [0,∞) be a
non-decreasing Lebesgue measurable function which satisfies Calderon’s
condition (1.9) and the condition (1.10). Let Q : Bn → [0,∞] be inte-
grable function in Bn,

Q ∗(x) =

{
Q(x), x ∈ Bn ,
Q
(

x
|x|2

)
, x ∈ Rn \ Bn

.

Assume that f is an open discrete and closed mapping of Bn onto Bn
such that f ∈ W 1,φ(Bn) and, in addition, N(f,Bn) = N(f,Bn) . Let,
moreover, KI,α(x, f) 6 Q(x) for a.e. x ∈ Bn and, besides that, for any
x0 ∈ Sn−1 there is 0 < ε0 = ε0(x0) and 0 < ε ′0 < ε0 and some positive
Lebesgue measurable function ψ : (0, ε0) → (0,∞) such that

0 < I(ε, ε0) :=

ε0∫
ε

ψ(t) dt <∞ (5.1)

for any ε ∈ (0, ε ′0) and, in addition,∫
A(x0,ε,ε0)

Q ∗(x) · ψ α(|x− x0|) dm(x) 6 K · Ip(ε, ε0) , (5.2)

for some p < α, for some constant K > 0 and for any ε ∈ (0, ε ′0), where
A := A(x0, ε, ε0) is defined in (1.2). Assume that I(ε, ε0) → ∞ as ε→ 0,

while
ε0∫
ε

dt

tq
1

n−1
x0

(t)

<∞ for sufficiently small 0 < ε < ε0 and any x0 ∈ Sn−1.

Then:

I. A mapping f has a continuous extension f : Bn → Bn, while
f(Bn) = Bn. Moreover, there is a continuous extension F : B(0, R0) →
Rn for any R0 > 1, which is open and discrete. Namely,

F (x) =

{
f(x), |x| < 1 ,

Ψ(f(Ψ(x))), |x| > 1 .
(5.3)

II. There are m > 0 and R > 0 such that the relation

|f(Ψ(y))| > m, 1 6 |y| 6 R , (5.4)
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holds, where Ψ(x) := x
|x|2 .

III. Let 0 < ε0 < 1/R.

III. 1) If α = n, then, for any x0 ∈ Sn−1, the relation

h(F (x), F (x0)) 6
αn
δ

exp{−βnIγn,p(|x− x0|, ε0)} (5.5)

holds for any x ∈ B(x0, ε0
′), where αn is a number depending only on n,

βn =

(
ωn−1

KC ·Nα−1(F,B(0, R))

) 1
n−1

, γn,p = 1 − p− 1

n− 1
, (5.6)

δ := h
(
Rn \ F (B(0, R))

)
and C > 0 depends on n, m and R.

III. 2) if n− 1 < α 6 n, then, for any x0 ∈ Sn−1, the relation

|F (x) − F (x0)| 6

6 Cr
(1−n+α)n

α
(
KC ·Nα−1(F,B(0, R))

)n−1
α I

(p−α)(n−1)
α (|x−x0|, ε0) (5.7)

holds for every x ∈ B(x0, ε0
′), where C is a constant depending only on

n and α, and r > 0 is any radius of the ball consisting F (B(0, R)).

Proof. I. Note that, a mapping f has a continuous extension f onto
Sn−1 = ∂Bn. Indeed, Bn is locally connected on ∂Bn, in addition, by
Lemma 2.1 the set ∂Bn is strongly accessible with respect to α-modulus.
Observe that a function η := ψ/I(ε, ε0) satisfies the relation (2.4). Now,
by Proposition 2.1 and by the relation (5.2) we obtain that

ωn−1

Jα−1
=

∫
A

Q ∗(x) · ηα0 (|x− x0|) dm(x) 6

6 1

Iα(ε, ε0)

∫
A

Q ∗(x) · ψα(|x− x0|) dm(x) 6 K · Ip−α(ε, ε0) , (5.8)

where J := J(x0, ε, ε0) =
ε0∫
ε

dr

r
n−1
α−1 q

∗ 1
α−1

x0
(r)

, A := A(x0, ε, ε0) is defined

in (1.2) and q ∗x0(r) := 1
ωn−1rn−1

∫
|x−x0|=r

Q ∗(x) dHn−1. Since, by the as-

sumption, I(ε, ε0) → ∞ as ε → 0, it follows by (5.8) that J → ∞ as

ε → 0. Since by the assumption
ε0∫
ε

dt

tq
1

n−1
x0

(t)

< ∞ for sufficiently small

0 < ε < ε0 and any x0 ∈ Sn−1, by Theorem 1 in [38] f has a continuous
extension f : Bn → Bn, as required.
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II. Let R0 > 0. Using the conformal transformation Ψ(x) = x
|x|2 , we

extend the mapping f continuously onto B(0, R0) by (5.3). Let us show
that the mapping f is open and discrete in Rn. Since f is open discrete
and closed, N(f,Bn) = N(f,Bn) < ∞ (see [18, Theorem 2.8]). Now, f
is discrete in B(0, R0).

It is known that any discrete open map defined in Bn is either sense-
preserving or sense reversing (see, for example, [29, Ch. I, § 4]). To
be definite, let f be sense-preserving in Bn. Now, f is sense-preserving
in B(0, R0) \ Sn−1. Let G be a domain in B(0, R0) such that G is a
compactum and let y ∈ (f(G) \ f(∂G)) ∩ f(Sn−1). Given a mapping
f : D → Rn and a set E ⊂ D we use the notation

C(f,E) =
∪
x∈E

C(f, x)

and

C(f, x) := {y ∈ Rn : ∃xk ∈ D : xk → x, f(xk) → y, k → ∞} .

Since f is closed, C(f, Sn−1) ⊂ Sn−1 (see, e.g., [42, Theorem 3.3]). Then
there is a point y0 ∈ (Rn \ f(∂G)) \ Sn−1 belonging to the connected
component of the set Rn \ f(∂G) that contains y. Denote, as usual, by
µ(y, f,G) the topological degree of the mapping f at the point y with
respect to the domain G, and by i(x, f) the local topological index of the
mapping f at the point x (see e.g. [29, Ch. I, § 4]). Since the topological
index is constant on every connected component of the set Rn \ f(∂G)
(see [29, Proposition 4.4, Ch. I]), we obtain µ(y, f,G) = µ(y0, f,G) =∑
x∈G∩f −1(y0)

i(x, f) > 0. Thus, the map f is sense-preserving in Rn. In

this case, f is open and discrete in Rn, as required (see [40], p. 333).

III. Using the condition f ∈ W 1,φ(Bn), we show that the inclusion
F ∈W 1,φ(B(0, R)) for some R > 1. Observe that

f(Sn−1) = Sn−1 . (5.9)

Indeed, by proving above, f(Sn−1) ⊂ Sn−1. On the other hand, let y ∈
Sn−1. Since f(Bn) = Bn, there is a sequence ym ∈ Bn, m = 1, 2, . . . , such
that ym → y as m→ ∞ and, simultaneously, ym = f(xm), xm ∈ Bn. We
may assume that xm converge to some x0 ∈ Bn as m → ∞. Then x0 ∈
Sn−1. Now f(xm) → f(x0) = y as m → ∞ because f has a continuous
extension to x0. Thus y ∈ f(Sn−1), as required. The relation (5.9) is
proved. It follows from (5.9) that f(Bn) = Bn.

Observe that f(x) ̸= 0 for any x ∈ A(0, r∗, 1) and some sufficiently
small r∗ > 0, where A is defined in (1.2). Indeed, in the contrary case, for
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any m ∈ N there is xm ∈ A(0, 1−1/m, 1) such that f(xm) = 0. According
to the Bolzano–Weierstrass theorem, we may assume that xm → x0 ∈ Bn
as m → ∞ for some x0 ∈ Bn. Since xm ∈ A(0, 1 − 1/m, 1), we obtain
that 1 − 1/m < |xm| < 1. Now x0 ∈ Sn−1. Since by the item I f has a
continuous extension to Sn−1 = ∂Bn, we obtain that f(xm) = 0 → f(x0)
as m → ∞. This contradicts with (5.9). The contradiction obtained
above proves that f(x) ̸= 0 for any x ∈ A(0, r∗, 1) and some sufficiently
small r∗ > 0.

IV. Let us to prove that the functions |∇F | and φ(|∇F |) are inte-
grable in B(0, R) for some R > 1. For this, we observe that, for |x| > 1,
by the differentiation rule of a superposition of mappings,

F ′(x) = Ψ ′(f(Ψ(x)) ◦ f ′(Ψ(x)) ◦ Ψ ′(x) . (5.10)

Here we used the fact that homeomorphisms of the Orlicz–Sobolev classes
under the Calderon condition are differentiable almost everywhere, see,
for example, [15, Theorem 1]. Using direct calculations, we may establish
the inequality

∥f ′(x)∥ 6 |∇f(x)| 6 n1/2 · ∥f ′(x)∥ (5.11)

at all points x ∈ D where the map f has formal partial derivatives.
Observe that ∥Ψ ′(x)∥ = 1

|x|2 (see, e.g., [37, paragraph 7]). Recall that,

for any two linear mappings g and h the relation

∥g ◦ h∥ 6 ∥g∥ · ∥h∥ (5.12)

holds, and here, equality holds as soon as at least one of the mappings
is generalized orthogonal (see, e.g., [30, I.4, relation (4.13)]).

By the item III, f(Ψ(y)) ̸= 0 for 1 < |y| 6 R and some R > 1. Since
the map f(Ψ(y)) is continuous in {1 6 |y| 6 R} and does not vanish,
there is m > 0 such that the relation (5.4) holds. In this case, from (5.4),
(5.10), (5.11) and (5.12) we obtain that∫

1<|x|<R

|∇F (x)| dm(x) 6
∫

1<|x|<R

n1/2 · ∥F ′(x)∥ dm(x) =

= n1/2 ·
∫

1<|x|<R

∥Ψ ′(f(Ψ(x))∥ · ∥f ′(Ψ(x))∥ · ∥Ψ ′(x)∥ dm(x) =

= n1/2 ·
∫

1<|x|<R

1

|f(Ψ(x))|2
· ∥f ′(Ψ(x))∥ · 1

|x|2
dm(x) 6
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6 n1/2

m2
·
∫

1<|x|<R

∥f ′(Ψ(x))∥ dm(x) =

=
n1/2

m2
·

∫
1/R<|y|<1

∥f ′(y)∥
|y|2n

dm(y) 6

6 n1/2R 2n

m2
·

∫
1/R<|y|<1

|∇f(y)| dm(y) <∞ . (5.13)

V. Quite similarly, applying the same arguments to the function
φ(|∇F |) instead of |∇F |, and taking into account relation (1.10) together
with the non-decreasing property of the function φ, we obtain that∫

1<|x|<R

φ(|∇F (x)|) dm(x) 6 C̃1 ·
∫

1<|x|<R

φ(∥F ′(x)∥) dm(x) =

= C̃1 ·
∫

1<|x|<R

φ(∥Ψ ′(f(Ψ(x)))∥ · ∥f ′(Ψ(x))∥ · ∥Ψ ′(x)∥) dm(x) =

= C̃1 ·
∫

1<|x|<R

φ

(
1

|f(Ψ(x))|2
· ∥f ′(Ψ(x))∥ · 1

|x|2

)
dm(x) 6

6 C̃2 ·
∫

1<|x|<R

φ(∥f ′(Ψ(x))∥) dm(x) =

= C̃2 ·
∫

1/R<|x|<1

φ (∥f ′(x)∥)

|x|2n
dm(x) 6

6 C̃2R
2n ·

∫
1/R<|x|<1

φ(|∇f(x)|) dm(x) <∞ , (5.14)

where C̃1 and C̃2 are some constants.
VI. It follows from (5.13) and (5.14) that∫

B(0,R)

|∇F (x)| dm(x) <∞ ,

∫
B(0,R)

φ(|∇F (x)|) dm(x) <∞ , R > 1 . (5.15)
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Reasoning in a similar way, we may also obtain similar relations for the
inner dilatation of the map F. Indeed, since l((f ◦ g) ′(x)) > l(f ′(g(x))) ·
l(g ′(x)) for any mappings f and g at the corresponding points x and, in
addition, J(x, f ◦ g) = J(g(x), f) · J(x, f) we obtain that

KI,α(x, F ) 6 KI,α(f(Ψ(x)),Ψ) ·KI,α(Ψ(x), f) ·KI,α(x,Ψ) .

Using the the calculation of l(Ψ ′(x)) and J(x,Ψ) through the radial and
tangential stretchings (see, e.g., [30]), we obtain that l(Ψ ′(x)) = 1

|x|2 and

|J(x,Ψ)| = 1
|x|2n , so that

KI,α(x, F ) 6 1∣∣∣∣f ( x
|x|2

)∣∣∣∣2(n−α)
·KI,α

(
x

|x|2
, f

)
· 1

|x|2(n−α)
. (5.16)

Due to the relations in (5.4) and (5.16) we obtain that

KI,α(x, F ) 6 1

m2(n−α) ·KI,α

(
x

|x|2
, f

)
· 1

|x|2(n−α)
. (5.17)

Now, we obtain that ∫
B(0,R)

KI,α(x, F ) dm(x) 6

6
∫
Bn

KI,α(x, f) dm(x)+
1

m2(n−α) ·
∫

1<|x|<R

KI,α

(
x

|x|2
, f

)
· 1

|x|2(n−α)
dm(x) .

Making a change of variables here, and taking into account that
KI,α(x, f) ∈ L1(Bn) by the assumption, we obtain that∫

B(0,R)

KI,α(x, F ) dm(x) 6

6
∫
Bn

KI,α(x, f) dm(x)+

+
1

m2(n−α) ·
∫

1/R<|y|<1

KI,α (y, f) · |y|
2(n−α)

|y|2n
dm(y) 6 (5.18)

6
∫
Bn

KI,α(x, f) dm(x) +R2α ·
∫

1/R<|y|<1

KI,α(y, f) dm(y) <∞.
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VII. Let us check that F ∈ ACL(B(0, R)). It is known if f ∈
W 1,1(Bn), that the unit ball Bn may be divided in a standard way into no
more than a countable number of parallelepipeds Is, s > 1, with disjoint
interiors, such that F is absolutely continuous on almost all coordinate
segments in each Is, s > 1. We call a segment coordinate segment if it
is parallel to a coordinate axis. Let us prove:

(A) F is absolutely continuous on almost all segments in Bn, parallel
to the coordinate axes.

It is enough to consider segments r for which F is absolutely con-
tinuous (shortly AC) on rs := r ∩ Is for every s > 1. Suppose that
r(t) = {x ∈ Rn : x = x0 + te, t ∈ [a, b]} is such a segment in Bn, where e
is some coordinate unit vector, and x0 ∈ Bn.

Two cases are possible: when z0 := x0 + be belongs to the inte-
rior of the ball, and when the same point lies on the unit sphere. Set
α(t) = f(x0 + te). In the first case, there are finite number of integers

s1, s2, ..., sl such that r =
l∪

ν=1
rsν . Hence F is AC on r. Note also here

that by ACL-characterization of the Sobolev classes (see, e.g., [26, The-
orems 1.1.2 and 1.1.3]) and by the fact that for a real-valued functions
defined on an interval of the real line, absolute continuity may be for-
mulated by the validity of the fundamental theorem of calculus in terms
of Lebesgue integration, (see, for example, see [33, Theorem IV.7.4]),

we have
b∫
a
α ′(t) dt = α(b) − α(a). Let now z0 ∈ Sn−1. Then, as it was

proved above with respect to the inner points of the ball, for an arbitrary
a < c < b we have that

c∫
a

α ′(t) dt = α(c) − α(a) . (5.19)

Since it was also proved above, that the map f is a continuous mapping
in the closed unit ball Bn, the passage to the limit on the right-hand side
of (5.19) as c→ b gives that α(b) − α(a).

Since (5.19) holds for every subinterval of r, we first conclude that
F is AC on r, and (A) follows. Now consider the family J(B(0, R))
of all coordinate segments in B(0, R). It follows from the integrabil-
ity of the gradient of the mapping F on B(0, R) (see (5.15) and by
virtue of Fubini’s theorem (see, for example, [33, Theorem III.8.1]) that
the derivative of the function α is integrable on almost all segments in
B(0, R) parallel to the coordinate axes. Without loss of generality, we
may assume that a segment r(t) has exactly this property.
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Since the reflection with respect to the unit sphere is C∞ change of
variables, and f ∈ W 1,1(Bn), we conclude that F ∈ W 1,1

(
B(0, R) \ Bn

)
(see item 1.1.7 in [26] and also definitions of Sobolev spaces on manifolds
in literature). Similarly as above, we may verify that:

(B) F is absolutely continuous on almost all segments in Rn \ Bn,
parallel to the coordinate axes.

Since F is continuous on B(0, R), this immediately implies that F is
absolutely continuous on the same segments in B(0, R), as required.

VIII. Since F ∈ ACL(B(0, R)), by (5.15) F ∈ W 1,φ
loc (B(0, R)). In

addition, by (5.18) KI(x, F ) ∈ L1(B(0, R)). Now, by Lemma 4.3 and
by (5.17) F is a ring Q∗∗-mapping in B(0, R) with respect to α-modulus
with respect to a condenser , where Q∗∗(x) = C2 ·Q(x) for x ∈ Bn, C2 :=
C1 ·Nα−1(F,B(0, R)) and C1 > 0 depends only on R, and Q∗∗(x) = C2 ·

1
m2(n−α) ·Q

(
x

|x|2

)
for x ∈ B(0, R)\Bn, where C2 is given above. Generally,

F is a ring C ·Nα−1(F,B(0, R)) · Q ∗-mapping, where C depends on n,
m, α and R.

IX. Let x0 ∈ Sn−1. Now, by Lemma 3.2 there exists 0 < ε0
′ < ε0

such that, for α = n

h(F (x), F (x0)) 6
αn
δ

exp{−βnIγn,p(|x− x0|, ε0)} (5.20)

for any x ∈ B(x0, ε0
′), where δ := h

(
Rn \ F (B(0, R))

)
, besides that, αn

depends only on n, βn =
(

ωn−1

KC·Nα−1(F,B(0,R))

) 1
n−1

and γn,p = 1 − p−1
n−1 .

If α ̸= n, by Lemma 3.3 we obtain that

|F (x) − F (x0)| 6 (5.21)

6 Cr
(1−n+α)n

α
(
KC ·Nα−1(F,B(0, R))

)n−1
α I

(p−α)(n−1)
α (|x− x0|, ε0)

for every x ∈ B(x0, ε0
′) and for some 0 < ε0

′ < ε0 < 1/R, where C is a
constant depending only on n and α, and r > 0 is any radius of the ball
consisting F (B(0, R)). Lemma is proved.

The following statement holds.

Lemma 5.2. Assume that, for any x0 ∈ Sn−1 there is 0 < ε0 = ε0(x0)
and 0 < ε ′0 < ε0 and some positive Lebesgue measurable function ψ :
(0, ε0) → (0,∞) such that the relation

0 < I(ε, ε0) :=

ε0∫
ε

ψ(t) dt <∞ (5.22)
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holds for any ε ∈ (0, ε ′0) and, in addition, the condition∫
A(x0,ε,ε0)

Q(x) · ψ α(|x− x0|) dm(x) 6 K · Ip(ε, ε0) (5.23)

holds for some p < α, for some constant K > 0 and for any ε ∈ (0, ε ′0),
where A := A(x0, ε, ε0) is defined in (1.2). Assume that I(ε, ε0) → ∞ as
ε → 0, and that φ : (0,∞) → [0,∞) satisfies Calderon’s condition (1.9)
and the condition (1.10). Then:

I. A mapping f has a continuous extension f : Bn → Bn. Moreover,
there is a continuous extension F : B(0, R) → Rn for any R > 1, where
F is defined by (5.3).

II. Let x0 ∈ Sn−1.

II. 1) If α = n, then

h(f(x), f(x0)) 6
αn
δ

· exp{−βnIγn,p(|x− x0|, ε0)} (5.24)

for any x ∈ B(x0, ε0
′)∩Bn and any mapping f ∈ FφQ,R,m,N,n(Bn), where

FφQ,R,m,N,α(Bn) denotes the family of all extended mappings f : Bn → Bn,
αn depends only on n; βn depends only n, R, m, and N ; δ depends only
n, R and m; and γn,p = 1 − p−1

n−1 .

II. 2) if n− 1 < α 6 n, then

|f(x) − f(x0)| 6 C ′
n · I

(p−α)(n−1)
α (|x− x0|, ε0) (5.25)

for any x ∈ B(x0, ε0
′)∩Bn and f ∈ FφQ,R,m,N,α(Bn), where FφQ,R,m,N,α(Bn)

denotes the family of all extended mappings f : Bn → Bn, C ′
n > 0 is a

constant depending only on n, α, R and m.

Proof. The desired conclusion follows directly from Lemma 5.1. In par-
ticular, denoting as above F (y) = ψ(f(ψ(y)), y ̸∈ Bn, ψ(y) := y

|y|2 ,

we observe that |F (y)| = |ψ(f(ψ(y)))| = 1
|f(ψ(y))| 6 m for any f ∈

FφQ,R,m,N,α(Bn) and 1 < |y| < R. So, we may set in Lemma 5.1 δ :=
h(Rn \B(0,m)) for α = n and r = B(0,m) for α ̸= n.

6. Proof of the main results

The proof of the following results may be found in [8, Lemma 2.5,
Proof of Theorem 3.3].
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Lemma 6.1. Let Q : Rn → [0,∞] be a Lebesgue measurable function in
D ⊂ Rn, n > 2, x0 ∈ Rn and n−1 < α 6 n. Assume that Q ∈ FMO(x0).
Then the relations (5.22)–(5.23) hold for all sufficiently small ε0 > 0 with

ψ(t) = 1

(t log 1
t )

n
α

and p = 1. In this case, I(ε, ε0) = log
log 1

ε

log 1
ε0

.

Lemma 6.2. Let Q : Rn → [0,∞] be a Lebesgue measurable function in
D ⊂ Rn, n > 2, x0 ∈ Rn and α < n−1 6 n. Assume that, for sufficiently
small ε0 > 0,

ε0∫
ε

dt

t
n−1
α−1 q

1
α−1
x0 (t)

<∞ (6.1)

and
ε0∫
0

dt

t
n−1
α−1 q

1
α−1
x0 (t)

= ∞ . (6.2)

Then the relations (5.22)–(5.23) hold for all sufficiently small ε0 > 0 with

ψ(t) =

{
1/[t

n−1
α−1 q

1
α−1

0 (t)] , t ∈ (ε, ε0) ,
0 , t /∈ (ε, ε0) ,

where K = ωn−1 and p = 1. In this case, I(ε, ε0) =
ε0∫
ε

dt

t
n−1
α−1 q

1
α−1
x0

(t)

.

The following lemma holds.

Lemma 6.3. Let Q : Rn → [0,∞] be a Lebesgue measurable function
such that Q(x) ≡ 0 for x ̸∈ Bn, and let ζ0 ∈ Sn−1. Assume that, there is
0 < C1 <∞ such that

1

Ωnεn

∫
B(ζ0,ε)

Q(x) dm(x) 6 C1 (6.3)

as ε→ 0. Then
1

Ωnεn

∫
B(ζ0,ε)

Q ∗(x) dm(x) 6 C2

as ε→ 0, where C2 := C1(4
n + 1) and

Q ∗(x) =

{
Q(x), x ∈ Bn ,
Q
(

x
|x|2

)
, x ∈ Rn \ Bn

. (6.4)
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Proof. In essence, the assertion of the lemma was established in [19, Proof
of Theorem 1.1, items VII-VIII], however, for the sake of completeness,
we present its proof in full. Let ζ0 ∈ Sn−1 and ε0 > 0. Notice, that

ψ(B+(ζ0, ε0)) ⊂ B−(ζ0, ε0) ∀ ε0 ∈ (0, 1) , (6.5)

where

B+(ζ0, ε0) = {x ∈ Rn : ∃ e ∈ Sn−1, t ∈ [0, ε0) : x = ζ0 + te, |x| > 1} =

= B(ζ0, ε0) ∩ (Rn \ Bn) ,

B−(ζ0, ε0) = {x ∈ Rn : ∃ e ∈ Sn−1, t ∈ [0, ε0) : x = ζ0 + te, |x| < 1} =

= B(ζ0, ε0) ∩ Bn ,

and, as above, ψ(x) = x
|x|2 . Indeed, for a given x = ζ0 + te ∈ B+(ζ0, ε0),

computing the square of the module of the vector by means of the scalar
product (·, ·), we obtain that

|ψ(x) − ζ0|2 =

∣∣∣∣ ζ0 + te

|ζ0 + te|2
− ζ0

∣∣∣∣2 =

=
1

|ζ0 + te|2
− 2(1 + t(ζ0, e))

|ζ0 + te|2
+

|ζ0 + te|2

|ζ0 + te|2
=

=
1 − 2(1 + t(ζ0, e)) + 1 + 2t(ζ0, e) + t2

|ζ0 + te|2
= (6.6)

=
t2

|ζ0 + te|2
< t2 ,

that is, |ψ(x) − ζ0| < t, as required.

Similarly, let us to show that

ψ(Rn \ (B(ζ0, ε) ∪ Bn)) ⊂ Bn \B(ζ0, ε) ∀ ε ∈ (0, 1) . (6.7)

Indeed, let x ∈ Rn \ (B(ζ0, ε) ∪ Bn), x = ζ0 + te, |x| > 1, e ∈ Sn−1,
ζ0 ∈ Sn−1, t > ε. Arguing similarly to (6.6), we obtain that

|ψ(x) − ζ0|2 =
t2

|ζ0 + te|2
=

t2

|ζ0|2 + t2 + 2t(ζ0, e)
. (6.8)

By the Cauchy–Bunyakovsky inequality, we obtain that |ζ0|2 + t2 +
2t(ζ0, e) 6 1 + 2t+ t2 = (1 + t)2. Now, we obtain from (6.8) that

|ψ(x) − ζ0|2 >
t2

(1 + t)2
> t2 > ε2 . (6.9)
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In addition, since x ∈ Rn \(B(ζ0, ε)∪Bn), we obtain that x ̸∈ Bn, so that
ψ(x) ∈ Bn. Due to the relation (6.9), ψ(x) ∈ Bn \B(ζ0, ε), as required.

Let 0 < ε < 1/2. Now, by (6.5) and by formula for the change of
variable in the integral (see, e.g., [4, Theorem 3.2.5]) we obtain that∫

B(ζ0,ε)∩(Rn\Bn)

Q∗(y) dm(y) =

∫
B(ζ0,ε)∩(Rn\Bn)

Q(ψ(y)) dm(y) 6

6
∫

B(ζ0,ε)∩Bn

Q(y) · 1

|y|2n
dm(y) . (6.10)

Let y ∈ B(ζ0, ε) ∩ Bn. Now y = ζ0 + et, where e ∈ Sn−1 and 0 6 t < ε <
1/2. Hence, by the Cauchy–Bunyakovsky inequality, we have that

|y|2 = |ζ0 +et|2 = 1+2t(ζ0, e)+ t2 > 1−2t+ t2 = (1− t)2 > 1/4 . (6.11)

By (6.10) and (6.11),∫
B(ζ0,ε)∩(Rn\Bn)

Q∗(y) dm(y) 6 4n ·
∫

B(ζ0,ε)∩Bn

Q(y) dm(y) . (6.12)

It immediately follows from (6.12) that∫
B(ζ0,ε)

Q∗(y) dm(y) 6 (4n + 1) ·
∫

B(ζ0,ε)∩Bn

Q(y) dm(y) <∞ . (6.13)

It follows by (6.13) that

1

Ωnrn

∫
B(ζ0,ε)

Q∗(y) dm(y) 6

6 4n + 1

Ωnrn
·

∫
B(ζ0,ε)∩Bn

Q(y) dm(y) 6 C1(4
n + 1) . (6.14)

Lemma 6.4. Let Q : Rn → [0,∞] be a Lebesgue measurable function
such that Q(x) ≡ 0 for x ∈ Rn \ Bn.

If Q Q ∈ FMO(ζ0) for some ζ0 ∈ Sn−1, then Q ∗ ∈ FMO(ζ0), where
Q ∗ is defined in (6.4).
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Proof. Let Q ∈ FMO(ζ0). Denote Qε := 1
Ωnεn

∫
B(ζ0,ε)

Q(x) dm(x). Then,

by Lemma 6.3

1

Ωnεn

∫
B(ζ0,ε)

|Q ∗(x)−Qε| dm(x) 6 4n + 1

Ωnεn

∫
B(ζ0,ε)∩Bn

|Q(x)−Qε| dm(x) <∞

for sufficiently small ε > 0. Now, Q ∗ ∈ FMO(ζ0) (see [17, Proposi-
tion 6.1]).

Proof of Theorem 1.1 directly follows from Lemmas 5.2, 6.1 and 6.4. 2

Proof of Theorem 1.2 directly follows from Lemmas 5.2 and 6.2. 2

The following theorem holds.

Theorem 6.1. Let us assume that under the conditions of Theorem 1.2
n − 1 < α < n and, instead of assumptions (1.15)–(1.16), the following
condition holds: Q ∈ Ll(Bn), l > n

n−α . Let x0 ∈ Sn−1. Then under
notions of Theorem 1.2 the relations

|f(x) − f(x0)| 6 C ′
n · log

(αn−α)(n−1)

α
ε0

|x− x0|
(6.15)

for l = n
n−α , x ∈ B(x0, ε0

′) ∩ Bn and any f ∈ FφQ,R,m,N,α(Bn), and

|f(x) − f(x0)| 6 C ′
n · log−(n−1) ε0

|x− x0|
(6.16)

hold for l > n
n−α , x ∈ B(x0, ε0

′)∩Bn and any f ∈ FφQ,R,m,N,α(Bn), where

FφQ,R,m,N,α(Bn) denotes the family of all extended mappings f : Bn → Bn,
C ′
n > 0 is a constant depending only on n, α, R, m, N.

Proof. Choose ψ(t) := 1
t in Lemma 5.2 and arguing similarly to the proof

of [8, Theorem 3.2], we obtain the relations (5.22)–(5.23) with p = α
n for

l = n
n−α and p = 0 for l > n

n−α .

Finally, we have the following statement.

Theorem 6.2. If, under conditions of Theorem 6.1 and α = n, we
replace the assumption Q ∈ FMO(Sn−1) by the condition (6.3), then

|f(x) − f(x0)| 6 2αnε
−γ
0 |x− x0|γ

as x→ x0, where αn > 0 depends only on n, and

γ =

(
ωn−1 log 2

Ωn(4n + 1)2n+1CC1Nn−1(F,B(0, R))

)1/(n−1)

,

where C depends on n, m and R, and F is defined by (5.3).
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Proof. Firstly, Q ∈ FMO(Sn−1) (see Corollary 6.1 in [17]), so that all of
conclusions of Theorem 6.1 hold. Due to Lemma 6.1, all of the conditions
and arguing from Lemma 5.1 hold, as well. In particular, F is a ring
C ·Nn−1(f,B(0, R)) ·Q-mapping, where F is defined by (5.3).

By Lemma 6.3

sup
ε∈(0,ε0)

1

Ωnεn

∫
B(x0,ε)

Q ∗(x) dm(x) 6 (4n + 1) · C1 .

By Lemma 3.1 in [32], for C∗ = (4n + 1) · C1 and φ(t) = 1,∫
A(x0,ε,ε0)

Q∗(x) dm(x)

|x− x0|n
6

6 Ωn(4n + 1)2nC1

log 2

(
log

1

ε

)
, ∀ ε ∈ (0, ε0) , ∀ x0 ∈ ∂Bn .

Observe that
log 1

ε

log( ε0
ε )

= 1 +
log 1

ε0

log( ε0
ε )

< 2 for ε ∈ (0, δ0), where δ0 =

min
{
1
2 , ε

2
0

}
. Now

(
log
(ε0
ε

))−1
·

∫
A(x0,ε,ε0)

Q∗(x) dm(x)

|x− x0|n
6

6 Ωn(4n + 1)2nC1

log 2

log 1
ε

log
(
ε0
ε

) 6 Ωn(4n + 1)2n+1C1

log 2
. (6.17)

Applying Lemma 5.1 for ψ(t) = 1/t we obtain by (6.17) that

h(F (x), F (x0)) 6 αn

(
|x− x0|
ε0

)γ
,

for every x ∈ B(x0, ε
′
0) and any x0 ∈ Rn \ {0}, where γ is defined above,

and αn is some constant depending only on n. Finally, since h(x, y) >
|x−y|
1+r20

for x, y ∈ B(0, r0) and any r0 > 0, and F |Bn = f, we obtain that

|f(x) − f(x0)| 6 2αnε
−γ
0 |x− x0|γ .

Theorem is proved.
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7. Boundary behaviour of partial derivatives for solutions
to certain Laplacian-gradient inequalities and spatial
qr maps

For the subject see papers cited here and literature cited there (in
particular [22]). Here we shortly review some results from [22] and prove
a new result, Theorem 7.1. We also use notation from [22] (in particular
see Definition 1 there). For the convenient of reader we recall a part of
this definitions.

Definition 7.1. 1. We say that a bounded domain Ω in Rn and its
boundary belong to the class Ck,α, 0 6 α 6 1, if for every point
x0 ∈ ∂Ω there exists a ball B = B(x0) and we have mapping ψ
from B onto D such that (cf. [7], page 95)

(a) ψ(B ∩ Ω) ⊂ Rn+

(b) ψ(B ∩ ∂Ω) ⊂ ∂Rn+

(c) ψ ∈ Ck,α(B), ψ−1 ∈ Ck,α(D).
We refer to ψ in the above definition as a local coordinate diffeo-
morphism flattering the boundary in a neighboorhod of x0.

If ψ is bi-Lipschitz we say that the domain Ω is weakly Lipschitz.
On some place instead of Lipschitz we write Lip.

2. Suppose that f : D → D′ is differentiable at a point x ∈ D. By
f ′(x) (or (df)x) we denote the linear operator which can be iden-
tified with the matrix [Djfi(x)] and maps the tangent space at x
into the tangent space at f(x).

3. We adopt the standard terminology and notation for K-quasicon-
formal (K-qc) mappings [41]. If, in addition, f is a C1 home-
morphism on G and there is a constant K ∈ [1,∞) such that
∥f ′(x)∥n 6 KJ(x, f), x ∈ G, where J(x, f) denotes the Jaco-
bian of f , and ∥f ′(x)∥ is defined by (1.8), then we say that it is a
K-quasiconformal (shortly K-qc) mapping. A map is called quasi-
conformal (shortly qc) if it is K-quasiconformal with some K.

For harmonic quasiconformal mappings we use short notation HQC
mappings.

4. If f is a twice-differentiable real-valued function, then the Laplacian
of f is the real-valued function defined by:

∆f = ∇2f = ∇ · ∇f .
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Explicitly, the Laplacian of f is thus the sum of all the unmixed
second partial derivatives in the Cartesian coordinates xi:

∆f =

n∑
i=1

∂2f

∂x2i
.

Let D be a domain in Rn and s : D → R. If

|∆s| 6 a|∇s|2 + b

on D, then we say that s satisfies a, b - Laplacian-gradient (Pois-
son differential inequality) inequality on D. It turns out that it is
convenient to adapt this definition to vector valued functions on
the following way. Namely, if w : D → Rn satisfies the above in-
equality with w instead of s, then we say that w satisfies a, b -
Laplacian-gradient inequality on D. If w = (w1, ..., wn) and wk,
k = 1, 2, ..., n, satisfy a, b - Laplacian-gradient inequality on D, we
say that w satisfies a, b - Laplacian-gradient inequality with respect
to the coordinate functions on D.

Throughout this paper D,D1, D2, G denote domains in Rn space. In
[22] we proved the following results:

Clame 7.1. ψ is bi-Lip on B if k > 1 and that |D2
ijψ|, 1 6 i, j 6 n are

bounded on B if k > 2.

Clame 7.2. if w = (w1, ..., wn) : D → D1 is a C2 function, ∆w and
|∇w| are bounded on D and the partial derivatives of H of the second
order, i.e., D2

ijH are bounded, then ∆(H ◦ w) is bounded on D.

Clame 7.3. Suppose that f is a C1 homemorphism on G ⊂ Rn into Rn
and there is a constant K ∈ [1,∞) such that ∥f ′(x)∥n 6 KJ(x, f), x ∈
G, where J(x, f) denotes the Jacobian of f . Then ∥f ′(x)∥ ≈ l(f ′(x)) ≈
|∇fi(x)|, x ∈ G.

Recall that we study mappings in plane and space which satisfy the
Laplacian-gradient inequality.

7.1. Local C2 flattering method

First we outline approach which we refer as Local C2 -coordinate
method flattering the boundary used in [22](shortly local C2 flattering
method).

In order to explain this method suppose that D and D1 are domains
in Rn and
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(1) w = (w1, ..., wn) : D → D1, H : D1 → R be C2 functions and set
ŵH = H ◦ w. Using the chain rule formula to compute the derivative of
a composite function we first have

(2) DkŵH =
n∑
i=1

DiHDkwi,

and hence
∆(H ◦ w) =

=
n∑
i=1

D2
iiH|∇wi|2 + 2

n∑
i<j

D2
ijH ⟨∇wi,∇wj⟩ +

n∑
i=1

DiH∆wi. (7.1)

Using the change of variables formula (7.1) for Laplacian we can prove
a preliminary result:

Clame 7.4. if w = (w1, ..., wn) : D → D1 is a C2 mapping, ∆w and
|∇w| are bounded on D and the partial derivatives of H of the second
order D2

ijH, where 1 6 i, j 6 n, are bounded, then ∆(H ◦w) is bounded
on D.

Next in order to outline our approach concerning spatial versions of
Kellogg’s theorem suppose in addition that

(3) the considered mapping w in (1) is harmonic (more generally ∆w is
bounded on D or w satisfies Laplacian-gradient inequality on D),

(4) the codomain D1 is a C2 domain,

(5) w is proper and it has continuous extension on D.
For simplicity we suppose in addition a stronger hypothesis than
(5), that

(6) w is homeomorphisms of D onto D1,

(7) D is a smooth domain.

Here in general even with hypothesis (7) and with the continuity
hypothesis (6) we can not conclude a priori that the boundary functions
w∗, which is the restriction of w on ∂D, has some kind of smoothness. To
get locally a smooth boundary function we use the hypothesis (4) which
provides local coordinates.

Namely, let x0 ∈ ∂D and y0 = w(x0) and let ψ be the local coordinate
around y0 from Definition 7.1 (1.) defined on a ball B and w̃ = ψ ◦w. If
W = f−1(B∩D1), then by Claim 7.1 there is a ball W1 = B(x0, r1) with
center x0 such that W1 ∩W ⊂ W and |∇w̃| ≈ |∇w| on V = W1 ∩W .
Hence we get the following auxiliary result:
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Clame 7.5. If the considered mapping w in (1) satisfies the Laplacian-
gradient inequality on D and partial derivatives of H of the second order
D2
ijH, where 1 6 i, j 6 n, are bounded, then w̃ satisfies the Laplacian-

gradient inequality on V .

We call a domain U ⊂ Rm an elementary closed m-dimensional do-
main if it is homeomorphic to closed m-dimensional ball.

Now we consider w̃n = H ◦ w, where H = ψn. Note first that n-th
coordinate ψn is 0 on some part T1 ⊂ ∂D1 of the neighborhood of y0 with
respect to ∂D1. We can choose T1 to be domain in ∂D1 homeomorphic
to closed n− 1-dimensional ball. Hence we conclude that

(1’): w̃n is 0 on some part T ⊂ ∂D of the neighborhood of x0 with re-
spect to ∂D (we can choose T to be an elementary closed n−1-dimensional
domain), and that by Claim 7.5, we have (2’): w̃n satisfies the Laplacian-
gradient inequality on V1 = B2 ∩ D, where B2 = B(x0, r2) for every
r2 ∈ (0, r1).

In particular we consider the case D = Bn.
This approach leads us to study the boundary behavior of gradient

of real valued functions which satisfy the Laplacian-gradient inequality
with smooth boundary condition. In this setting we can apply Claim 7.7
below which states that |∇w̃n| is bounded on V .

On the following figure we illustrate Local C2-coordinate method
flattening the boundary. Recall, using the previous setting and nota-
tion, let x0 ∈ ∂D, y0 = f(x0) and let ψ be local coordinate defined on
B = B(y0, r0), r0 > 0. Note first that there is a domain W such that
x0 ∈ W and f(W ∩D) ⊂ B. Next we can choose a ball W1 = B(x0, r1)
with center x0 such that f(W1 ∩D) ⊂ B and T = W ∩ ∂D is domain in
∂D, set V = W1 ∩D.

Figure 1. Flattening the boundary

The proof of next result in [22] is related to Heinz’s approach. The
proof of Lemma 9 and 9′ of Heinz’s paper [13] clearly applies to n > 2.
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We can use Heinz’s approach (cf. also Kalaj paper [12]) to prove Lemma
7.2 stated here as

Lemma 7.1 (Local gradient lemma Version 1). Consider the hypothesis:

(h1) For a given x0 ∈ Sn−1 the real-valued function u is defined and
continuous on B(x0, r0)∩Bn, and C2 on V0 = V0(r0) := B(x0, r0)∩
Bn.

(h2) ∆u is bounded on V0.

(h3) u is C1,α on B(x0, r0) ∩ Sn−1.

Conclusion (I): Then (h1), (h2) and (h3) imply that for every r < r0
partial derivatives of u are bounded on on Br ∩Bn, where Br = B(x0, r).

Further in order to make an auxiliary statement that is interesting
in itself let us consider the hypothesis (h4): u satisfies a, b – Laplacian-
gradient inequality on V0.

Clame 7.6 (Local gradient lemma Version 2). Under hypothesis (h1)
and (h3) the hypothesis (h2) and (h4) are equivalent. In particular, the
hypothesis (h1), (h3) and (h4) imply that |∇u| is bounded on V0(r),
r < r0.

Clame 7.7. The hypothesis (h1), (h3) and (h4) imply that ∆u is bounded
on V0(r) for every r < r0.

Thus under hypothesis (h1) and (h3) we have (h2) is equivalent with
(h4). It is interesting that in this setting (h4) is only a priori more general
than (h2).

Lemma 7.2 (Local gradient lemma Version 1). Consider the hypothesis:

(h1) For a given x0 ∈ Sn−1 a real-valued function u is defined and con-
tinuous on B(x0, r0) ∩ Bn, and C2 on V0(r0) := B(x0, r0) ∩ Bn.

(h2) ∆u is bounded on V0.

(h3) u is C1,α on B(x0, r0) ∩ Sn−1.

Conclusion (IV): Then (h1), (h2) and (h3) imply that for every r < r0,
the partial derivatives of u are bounded on V0(r) := Br ∩ Bn, where
Br = B(x0, r).
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Recall that Conclusion (IV) also holds if we replace the hypothesis
(h2) with a priori more general hypothesis (h4): u satisfies a, b-Laplacian-
gradient inequality on V0. Namely, if we suppose (h1), (h3) and (h4) we
have by Claim 7.7 and Lemma 7.2 above, that there is a constant M > 0
such that |∇u| 6M on V0(r), r < r0.

A natural question is to consider in which extent we can extend the
above results using a more general inequality then Laplacian-gradient
inequality.

For a, d > 0, we say that a map u between space(in particular planar)
domains satisfy d-Poisson differential inequality (a, b-Laplacian-gradient
inequality with gradient power d) if

|∆u| 6 a|∇u|d + b .

Here using the above approach, we can prove:

Theorem 7.1. Let D be a C2 domain in Rn and let f : Bn onto−−→ D be
a C2 proper K-qr mapping. If ∆f is bounded (more generally f satisfies
the Laplacian-gradient inequality with gradient power 1) on Bn, then f
is Lip on Bn.

Proof. Suppose first that ∆f is bounded. Let x0 ∈ Sn−1 and y0 = f(x0).
For every point y0 ∈ ∂D there exists a ball B = B(y0, r0) and a mapping
ψ from B onto B∗ such that ( [7], p. 95) ψ(B∩D) ⊂ Rn+ and ψ(B∩∂D) ⊂
∂Rn+. By Claim 7.1 (see the introduction) we can choose B such ψ is
Bi-Lip on B and that D2

ijψ are bounded on B. Further we conclude, see
Theorem 4.10 [42], that

(i-1) f has continuous extension on Bn and since f is proper, f(Sn−1) ⊂
∂D.

If f̃ = ψ ◦ f and W = f−1(B), then by (i-1) w̃n = 0 on W ∩ Sn−1

and by Claim 7.2 ∆w̃n is bounded on W ∩ Bn. Hence an application of
Lemma 7.2, Local gradient lemma Version 1, shows that there is a ball
W1 with center x0 such that W1 ⊂W and that w̃n is Lip on V = W1∩Bn.
Hence since ψ is Bi-Lip on B and f is K-qr, f̃ is K1-qr on V . Next using
that f̃n is Lip on V , and f̃ is K1-qr on V and Claim 7.3 property of
a qc mapping from the introduction, we conclude that f̃ is Lip on V
and therefore since f = ψ−1 ◦ f̃ it is Lip on V . Since x0 is an arbitrary
point we conclude f is Lip on Bn. If f satisfies the Laplacian-gradient
inequality on Bn the proof can be based on Claim 7.6, Local gradient
lemma Version 2.
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7.2. Distortion of harmonic functions and harmonic
quasiconformal quasi-isometry

If D and G are domains in Rn, by QRH(D,G) (respectively
QCH(D,G)) we denote the family of quasiregular (respectively quasicon-
formal) harmonic maps of D onto G. If D = G instead of QCH(D,D)
we write QCH(D).

In [21] we proved:

Theorem 7.2. If h ∈ QCH(Hn) and h(∞) = ∞ then h is Euclidean
bi-Lipschitz and a quasi-isometry with respect to the Poincare distance.

Theorem 7.3. If h ∈ QRH(Hn) and h(∞) = ∞ then h is Lipschitz
with respect to Euclidean and the Poincare distance.

We now outline a proof of Theorem. Suppose that n = 3 (the same
proof works in general). Let h = (h1, h2, h3). Since h3(x) = x3 , we have
h′x3(x) = 1 and, therefore, |h′(x)| 6 c. Since h3(x) = x3, we have

|h′(x)|
h3(x)

6 c

x3

and hence λ(h(a), h(b)) 6 cλ(a, b), where λ is a hyperbolic metric in H3.
For a domain G ⊂ Rn let ρ : G → (0,∞) be a function. We say that

ρ is a weight function or a metric density if for every locally rectifiable
curve γ in G, the integral

lρ(γ) =

∫
γ
ρ(x)ds

exists. In this case we call lρ(γ) the ρ-length of γ. A metric density defines
a metric dρ : G×G→ (0,∞) as follows. For a, b ∈ G, let

dρ(a, b) = inf
γ
lρ(γ)

where the infimum is taken over all locally rectifiable curves in G joining
a and b. It is an easy exercise to check that dρ satisfies the axioms of a
metric. For instance, the hyperbolic (or Poincaré) metric of D is defined
in terms of the density ρ(x) = c/(1−|x|2) where c > 0 is a constant. The
quasihyperbolic metric k = kG of G is a particular case of the metric dρ
when ρ(x) = 1

d(x,∂G) . By Hn we denote closure in Rn. Suppose that G is
a domain in Rn and G is homeomorphic to Hn.

Theorem 7.4. If h ∈ QCH(G,Hn) and h(∞) = ∞ then h is Euclidean
bi-Lipschitz and a quasi-isometry with respect to the quasihyperbolic met-
ric k = kG of G and the Poincare distance Hn.
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8. Pseudo-isometry and OC1(G)

In this section, we review some results from [25].
More precisely, we give a sufficient condition for a qc mapping f :

G → f(G) to be a pseudo-isometry w.r.t. quasihyperbolic metrics on G
and f(G). First we adopt the following notation.

If V is a subset of Rn and u : V → Rm, we define

oscV u = sup{|u(x) − u(y)| : x, y ∈ V } .

Suppose that G ⊂ Rn and Bx = B(x, d(x)/2). Let OC1(G) denote
the class of f ∈ C1(G) such that

d(x)∥f ′(x)∥ 6 c1 oscBxf (8.1)

for every x ∈ G. Similarly, let SC1(G) be the class of functions f ∈ C1(G)
such that

∥f ′(x)∥ 6 ar−1 ωf (x, r) for all B(x, r) ⊂ G, (8.2)

where ωf (x, r) = sup{|f(y) − f(x)| : y ∈ B(x, r)}.

For a domain G ⊂ Rn, n > 2, x, y ∈ G, let

rG(x, y) =
|x− y|

min{d(x), d(y)}
where

d(x) = d(x, ∂G) ≡ inf{|z − x| : z ∈ ∂G} .
If the domain G is understood from the context, we write r instead rG.
This quantity is used, for instance, in the study of quasiconformal and
quasiregular mappings, cf. [42]. It is a basic fact that [41, Theorem
18.1] for n > 2,K > 1, c2 > 0 there exists c1 ∈ (0, 1) such that when-
ever f : G → f(G) is a quasiconformal mapping with G, f(G) ⊂ Rn
then x, y ∈ G and rG(x, y) 6 c1 imply rf(G)(f(x), f(y)) 6 c2. We call
this property the local uniform boundedness of f with respect to rG .
Note that quasiconformal mappings satisfy the local uniform bounded-
ness property and so do quasiregular mappings under appropriate condi-
tions; it is known that one to one mappings satisfying the local uniform
boundedness property may not be quasiconformal.

We also consider a weaker form of this property and say that f :
G → f(G) with G, f(G) ⊂ Rn satisfies the weak uniform boundedness
property on G (with respect to rG ) if there is a constant c > 0 such
that rG(x, y) 6 1/2 implies rf(G)(f(x), f(y)) 6 c . Univalent harmonic
mappings fail to satisfy the weak uniform boundedness property as a rule

The proof of Theorem 2.13 [25] gives the following more general result:
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Theorem 8.1. Suppose that G ⊂ Rn, f : G → G ′, f ∈ OC1(G) and it
satisfies the weak property of uniform boundedness with a constant c on
G. Then

(e) f : (G, kG) → (G′, kG′) is Lipschitz.

(f) In addition, if f is K-qc, then f is pseudo-isometry w.r.t. quasi-
hyperbolic metrics on G and f(G).

Proof. By the hypothesis f satisfies the weak property of uniform bound-
edness: |f(t) − f(x)| 6 c2 d(f(x) for every t ∈ Bx, that is

oscBxf 6 c2 d(f(x)) (8.3)

for every x ∈ G. This inequality together with (8.1) gives d(x)∥f ′(x)∥ 6
c3 d(f(x)). Now an application of Lemma 2.10 [25] gives part (e). Since
f−1 is qc, an application of [6, Theorem 3] on f−1 gives part (f).

In order to apply the above method we introduce subclasses ofOC1(G)
(see, for example, below (8.4)).

Let f : G → G′ be a C2 function and Bx = B(x, d(x)/2). We denote
by OC2(G) the class of functions which satisfy the following condition:

sup
Bx

d2(x)|∆f(x)| 6 c oscBxf (8.4)

for every x ∈ G.
If f ∈ OC2(G), then by Theorem 3.9 in [7], applied to Ω = Bx,

sup
t∈Bx

d(t)∥f ′(t)∥ 6 C( sup
t∈Bx

|f(t) − f(x)| + sup
t∈Bx

d2(t)|∆f(t)|)

and hence by (8.4)
d(x)∥f ′(x)∥ 6 c1 oscBxf (8.5)

for every x ∈ G and therefore OC2(G) ⊂ OC1(G).
Now the following result follows from the previous theorem.

Corollary 8.1. Suppose that G ⊂ Rn is a proper subdomain, f : G→ G′

is K-qc and f satisfies the condition (8.4) (that is f ∈ OC2(G)). Then
f : (G, kG) → (G′, kG′) is Lipschitz.

We will now give some examples of classes of functions to which The-
orem 8.1 is applicable. Let SC2(G) denote the class of f ∈ C2(G) such
that

|∆f(x)| 6 ar−1 sup{∥f ′(y)∥ : y ∈ B(x, r)},
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for all B(x, r) ⊂ G, where a is a positive constant. Note that the
class SC2(G) contains every function for which d(x)|∆f(x)| 6 a∥f ′(x)∥,
x ∈ G. It is clear that SC1(G) ⊂ OC1(G) and by the mean value the-
orem, OC2(G) ⊂ SC2(G). Note that SC2(G) ⊂ SC1(G) and that the
class SC2(G) contains harmonic functions, eigenfunctions of the ordinary
Laplacian if G is bounded, eigenfunctions of the hyperbolic Laplacian if
G = Bn and therefore our results are applicable for instance to the men-
tioned classes.

Let P denote harmonic Poisson kernel for the unit ball Bn. It is
interesting that P maps Λα(Sn−1) into Λα(Bn), 0 < α < 1, and if f ∈
Lip(Sn−1), then in general P [f ] is not in Lip(Bn). Here by Λα we denote
the class of Hölder continuous function with power exponent α.

It is natural to consider the corresponding question for the hyperbolic
Poisson kernel Ph.

Question 8.1. Whether partial derivatives of Ph are bounded on the set
Lip(Sn−1), where Ph is hyperbolic Poisson kernel for the unit ball Bn?

It is true; see [2,24]. More precisely, if f ∈ Lip(Sn−1), then in general,
Ph[f ] is in Lip(Bn). This is not true for harmonic.

9. Further results 1

Here we outline a proof of Theorem 9.2 below. In the recent article [9]
D. Kalaj and A. Gjokaj proved:

Theorem 9.1. If

(i) : there is a C1+ diffeomorphism ϕ : Bn → D and

(ii) : f is a harmonic quasiconformal mapping between the unit ball in
Rn and D,
then f is Lipschitz continuous in Bn.

In [22] the first author of this paper consider local version of results
of this type and announced more general results. This generalizes some
known results for n = 2 and improves some others in higher dimensional
case. Here it seems a natural to ask:

Question 9.1. If D is a C1+ space domain homeomorphic to the unit
ball Bn whether D satisfies (i)?

Definition 9.1. 1. D is a domain with C1+ boundary if there is α ∈
(0, 1] such that it is C1,α domain.
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2. We say thatD is good Green-ian domain if |DkgD(x, y)| 6 c 1
|x−y|n−1 ,

k = 1, 2, ..., n, x, y ∈ D, where Dk denotes Dxk and locally good
Green-ian domain at x0 ∈ ∂D if for every δ > 0 there is a C1+

domain W = Wx0 ⊂ D ∩ B(x0, δ) such that x0 ∈ ∂W and ∂W is
an open set in ∂D.

3. D is a locally good Green-ian domain with respect to all ∂D, if it
is a locally good Green-ian domain at every x0 ∈ ∂D.

In [3] it is proved that sufficiently smooth domains are good Green-
ian. Furthermore it seems that we can use Theorem 2.3 in [43] to prove
if D is a domain with C1+ boundary, then D is a locally good Green-ian
domain with respect to all ∂D. Here we note that Theorem 9.2 below is
more general than Theorem 9.1.

Namely, condition (i) on the codomain of the function f in Theo-
rem 9.1 and assumption (ii) that f is HQC are replaced with much more
general assumptions (1) and (2)-(3), and it seems that using our ap-
proach we can prove a general version which is applicable to (K,K ′) qr
mapping which in general are not injective.

Theorem 9.2 ([23]). Suppose that

(1) D and G are domains with C1+ boundary, D is a locally good

Green-ian domain with respect to all ∂D, and f : D
onto−−→ G.

(2) f ∈ OC1(D).

(3) Suppose in addition that G is C1,α domain, f = (f1, ..., fn) is a C2

vector valued function, fi, i = 1, 2, ..., n, satisfy Laplacian-gradient
inequality on D.

(4) f is K qc on D.

Conclusion:
(a) If (1) holds, then Mγ ∈ Ll(D), for l < l0 = p

2−γ+pγ , where
γ = 1 − α.

(b) If (1), (2), (3) and (4) hold, then then f is Lipschitz continuous
on D.

Since SC1(D) ⊂ OC1(D) we can replace the hypothesis (3) in the
previous theorem with (3’) f ∈ SC1(D).

Question 9.2. If (1), (2), (3) and (4) hold, whether there is a unit vector
fields X on D (i.e. to each x we associate a unit vector X = X(x) with
initial point at x) such that |dfx(X(x))| 6 c for every x ∈ V1?
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This is true if G is C2 domain.

Question 9.3. Suppose that
(5) f is (K,K ′) qr proper on D.

If (1), (2), (3) and (5) hold, whether then f is Lipschitz continuous
on D?

Note that (2) and (4) imply that for every domain Z ⊂ D, the re-
striction of f on Z is Lipschitz with respect to corresponding k-metrics
on Z and f(Z).

Outline of proof of Theorem 9.2. We use harmonic coordinate
for C1+ boundary and the formula χ = PD[χb] +

∫
D

g(x, y)∆χ(y)dy,

Dkχ(x) = Dk(PD[χb])(x) +

∫
D

Dkg(x, y)∆χ(y)dy

and the iteration approach related to Imbedding Lemma for Riesz poten-
tial.

Now we outline approach which can be applied to C1+ co-domains and
which is motivated by local C2 flattering method.In this setting, instead
of local coordinate ψ described in Figure 1, we use harmonic coordinates
described below.

Here we will try briefly (without technical details) to outline an ap-
proach on which we refer as local C1+ -coordinate method flattering the
boundary (related to functions which satisfy the Laplacian-gradient in-
equality).

Let G be a domain in Rn, 0 ∈ ∂G, B0 = B(0, r0), U = B0 ∩ G, and
r0 small enough such that B0 ∩ ∂G be C1+ homeomorphic to unit ball in
Rn−1.

There is a r1 ∈ (0, r0) such that a local coordinate ψ is defied on
B1 = B(0, r1) (note B1 ⊂ B0 ) and there is B2 = B(0, r2), r2 < (0, r1),
and a C1,α domain V ⊂ U∩B2 such that 0 ∈ ∂V and ∂V ∩B2 = ∂U∩B2.

Define ψ∗ = ψ|∂V . Since ψ is C1,α on B1 it is Bi-Lip on B2 and
Jψ(0) ̸= 0 and therefore Jψ∗(0) ̸= 0. Let H be solution of Dirichlet prob-
lem on V with boundary data ψ and s = Hn. We call H a local Harmonic
coordinate for the domain G. The function H is C1,α on V and therefore
JH(0) exists. Here d(x) := dV (x) = dist(x, ∂V ). If y ∈ B(x, dV (x)),
then |Dijs(x)| 6 c|x − y|α−1 and therefore |Dijs(x)| 6 cdα−1

V (x). Thus
if codomain D1 is C2, |Dijψ(x)| are bounded and if it is C1,α in general
Dijψ does not exist and therefore we do not have estimate. So instead
we use a local Harmonic coordinate H. Since in general |DijH(x)| are
not bounded we use the iteration approach related to Imbedding Lemma
for Riesz potential.
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Finally we use the formula χ = PD[χb]+
∫
D

g(x, y)∆χ(y)dy, Dkχ(x) =

Dk(PD[χb])(x)+
∫
D

Dkg(x, y)∆χ(y)dy, for χ = Hn and D = W , where W

is a C1+ locally good Greenian domain such that f(W ) ⊂ V , ∂W ∩ ∂D
is open nonempty set in ∂D and f(∂W ∩ ∂D) ⊂ ∂V ∩B2.
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[20] Ma, L. (2022). Hölder continuity of hyperbolic Poisson integral and hyperbolic
Green integral, Monatshefte für Mathematik, 199, 595–610.
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[22] Mateljević, M., (2021). Boundary behaviour of partial derivatives for solutions to
certain Laplacian-gradient inequalities and spatial qc maps, Springer Proceedings
in Mathematics & Statistics, 357, 393–418.
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