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Proximinal sets and connectedness in graphs

KARIM CHAIRA, OLEKSIY DOVGOSHEY

Abstract. Let G be a graph with a vertex set V. The graph G is
path-proximinal if there are a semimetric d: V x V — [0, oo and disjoint
proximinal subsets of the semimetric space (V,d) such that V = AU B,
and vertices u, v € V are adjacent iff

d(u,v) < inf{d(z,y): z € A,y € B},

and, for every p € V, there is a path connecting A and B in G, and
passing through p. It is shown that a graph is path-proximinal if and
only if all its vertices are not isolated. It is also shown that a graph is
simultaneously proximinal and path-proximinal for an ultrametric if and
only if the degree of every its vertex is equal to 1.
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1. Introduction and Preliminaries

1.1. Introduction

A bipartite graph G(A, B) with fixed parts A and B is said to be
proximinal if there exists a semimetric space (X,d) such that A and B
are disjoint proximinal subsets of X and vertices a € A and b € B are
adjacent if and only if d(a,b) = dist(A, B). The structure of proximinal
bipartite graphs for semimetric and metric spaces was described in [4].
In particular, it is proved that a bipartite graph G is not isomorphic to
any proximinal graph if and only if G is finite and empty. In [5], the au-
thors characterized the semimetric spaces whose proximinal graphs have
at most one edge and the semimetrics spaces whose proximinal graphs
have the vertices of degree at most one only. This allows them to find the
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2 PROXIMINAL SETS AND CONNECTEDNESS IN GRAPHS

necessary and sufficient conditions for the uniqueness of the best proxim-
ity pairs and the best approximations. Some results concerning graphs
and best proximity points are given in [1,4,6-10].

In this paper we continue to study the interaction between proximity
and graphs by introducing path-proximinal graphs as graphs that are the
union of all paths starting at nearest between A and B points and having
edges {z,y} which satisfy the inequality d(z,y) < dist(A, B).

1.2. Semimetrics and proximinal sets

Let X be a nonvoid set. A semimetric on X is afunction d: X x X —
[0, 4+00] such that d(a,b) = d(b,a) and

(d(a,b) =0) & (a=10)

for all a,b € X. A pair (X,d), where d is a semimetric on X, is called a
semimetric space. A semimetric d is a metric if the triangle inequality

d(a,b) < d(a,c) + d(c,)
holds for all a, b, ¢ € X. A semimetric d is an ultrametric if we have
d(a,b) < max{d(a,c),d(c,b)}

for all a, b, ¢ € X. Every ultrametric space is a metric space and every
metric space is a semimetric space.

Definition 1.1. Let (X, d) a semimetric space, let A be a nonempty sub-
set of X and let x € X. The point ag € A is called a best approzimation
to z (in A) if

d(z,a0) = inf{d(x,a): a € A}. (1.1)

The set A is said to be proximinal if A contains a best approximation to
every point of X.

Remark 1.2. In [10] Ivan Singer wrote: “The term <proximinal> set
(a combination of <proximity> and <minimal>) was proposed by R.
Killgrove and used first by R. R. Phelps [7].”
Let A and B be subsets of a semimetric space (X,d). We will say
that the pair (A, B) is proziminal if A and B are proximinal in (X, d).
For nonempty subsets A and B of a semimetric space (X, d), we define
a distance from A to B as

dist(A, B) := inf{d(a,b): a € A and b € B}. (1.2)

If A is a one-point set, A = {a}, then, for brevity, we write dist(a, B)
instead of dist({a}, B).
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Definition 1.3. Let (X,d) be a semimetric space, and let A, B be
nonempty subsets of X. Write

Ap:={a € A: d(a,b) = dist(A, B) for some b € B}, (1.3)
By :={b € B: d(a,b) = dist(A, B) for some a € A}. (1.4)

A pair (ag,bg) € Ag x By is called a best proximity pair for A and B if
d(ao, bo) = diSt(A, B)

Remark 1.4. For every pair A, B of nonempty subsets of a semimetric
space (X, d), we have Ay # @ if and only if By # @. If S C Ax B is a set
of all best proximity pairs for A and B, then Ay (By) is the projection
of Son A (B).

The next result is a part of Theorem 2.6 from [3].

Theorem 1.5. Let (A, B) be a proziminal pair in an ultrametric space
(X,d). Then the following statements are equivalent:

(1) The inequality diam(B) < dist(A, B) holds.

(ii) The set Ay C A is a proximinal subset of X, and the equality
By = B holds, and every (a,b) € Ay x By is a best proximity pair
for the sets A and B.

1.3. Graphs

A simple graph is a pair (V, E) consisting of a nonempty set V' and a
set F/ whose elements are unordered pairs of different elements of V. In
what follows, we will consider the simple graphs only.

For a graph G = (V,E), the sets V = V(G) and E = E(G) are
called the set of vertices and the set of edges, respectively. Two vertices
u, v € V are adjacent if {u,v} € E(G). A complete graph is a graph
in which every two different vertices are adjacent. A vertex v € V(G) is
1solated if there are no vertices which are adjacent with v in G. We say
that G is empty if E(G) = @. Thus, G is empty iff all vertices of G are
isolated.

A graph H is a subgraph of a graph G if V(H) C V(G) and E(H) C
E(G) are valid.

If G is a nonempty graph, then we will denote by G’ a subgraph of G
whose vertices are non-isolated vertices of G and such that E(G’) = E(G).
It is easy to see that V(G") is the union of all two-point sets {a,b} € E(G).

Remark 1.6. The graph G’ can be characterized by the following extremal
property: If H is a subgraph of G such that G’ C H holds and H does
not have any isolated vertices, then G’ = H.
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A graph G is finite if V(G) is a finite set, |V(G)| < co. Following [2]
we define a path as a finite nonempty graph P whose vertices can be
numbered so that

V(P) = {uo,u1,...,ux}, k=1, and E(P) = {{uo,u1},..., {ur—1,ur}}

In this case we say that P is a path joining ug and ug, and write P =
(ug,uy,...,ur). A graph G is connected if, for every two distinct w,
v € V(G), there is a path P C G joining u and v.

Let F be a nonempty set of graphs. A graph H is called the union of
graphs G € F if

V(H) = GLleV(G) and E(H) = GLleE(G)'

We say that the union H is disjoint if V(G1) NV (G2) = @ holds for all
different graphs G1, Go € F.

A subgraph H of a graph G is a connected component of G if the
implication

(HCT)= (H=T) (1.5)

is valid for every connected graph I' C G.
In the next section of the paper we will use the following simple lem-
mas describing some properties of connected graphs.

Lemma 1.7. Every graph is the disjoint union of its connected compo-
nents.

Lemma 1.8. Let G and Gy be connected graphs. If V(G1)NV (Ge) # &,
then the union G1 U Gy is also connected.

Lemma 1.9. Let H be a graph and let Hy be a connected subgraph of H
such that V(Hy) = V(H). Then H is connected.

Lemma 1.10. Let W, be a connected component of a graph W, a €
V(W,) and let W* be a connected subgraph of W. If a € V(W*) is valid,
then W* is a subgraph of W,,.

Proofs of Lemmas 1.7-1.9 are simple and we omit it here. Lemma 1.10
follows from Lemma 1.8 and (1.5).

Let S be an arbitrary nonvoid set of vertices of a graph G. The
subgraph induced in G by S is a graph G[S] such that V/(G[S]) = S and,
for all u, v € S, we have {u,v} € E(G[Y]) iff {u,v} € E(G).

Definition 1.11. A graph G is bipartite if the vertex set V(G) can be
partitioned into two nonvoid disjoint subsets, or parts, in such a way that
no edge has both ends in the same part.
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Let G be a bipartite graph with parts A and B. Then we say that G
is complete bipartite G if {a,b} € E(G) whenever a € A and b € B.

By analogy with the concept of induced graphs, one can introduce
the concept of induced-bipartite ones.

Definition 1.12. Let G be a graph and let A, B be disjoint nonempty
subsets of V(G). The induced-bipartite subgraph G[A, B] of G is the

graph whose vertex set is AUB and whose edge set consists of all {u,v} €
E(G) that satisfies {u,v} N A # @ # {u,v} N B.

The next lemma follows from the definitions of induced graphs and
induced-bipartite graphs.

Lemma 1.13. Let G be a graph and let A, B be disjoint nonempty
subsets of V(G) such that AU B = V(G). Then G is the union of the
induced graphs G[A], G[B] and the induced-bipartite graph G[A, B].

Definition 1.14 ([4]). A bipartite graph G = G(A, B) with fixed parts A
and B is proziminal for a semimetric space (X, d) if A and B are disjoint
proximinal subsets of X, and the equivalence

({a, b} € E(G)) & (d(a, b) = dist(A,B)) (1.6)
is valid for all a € A and b € B.

Theorem 1.15 ( [4]). Let G be a bipartite graph with some fized parts
A and B. Then the following statements are equivalent:

(1) Either G is nonempty or G is empty but A and B are infinite.
(i) G is proximinal for a metric space.
(#i1) G is proximinal for a semimetric space.

The main objects of our studies are path-bipartite graphs and path-
proximinal graphs which can be defined as follows.

Definition 1.16. Let A and B be two nonvoid disjoint sets. A path
P is a be-path of A and B if V(P) C AU B and there is a unique
{ag,bo} € E(P) for which

AN {ao,bo} #+ 3% BN {ao,bo}.

The union of nonempty set of be-paths of fixed A and B will be called
a path-bipartite graph of A and B. We will say that a graph G is path-
bipartite if there are A, B C V(G) such that G is path-bipartite of A
and B.
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Definition 1.17. Let G be a path-bipartite graph of sets A and B, let
X = AUB and let d: X x X — [0, +00[ be a semimetric. The graph
G is path-proriminal for A and B w.r.t. the semimetric d if A, B are
proximinal subsets of (X, d) and the equivalence

({z,y} € E(G)) & (d(z,y) < dist(4, B)) (1.7)

is valid for all distinct z, y € X.

We will say that a graph G is path-proximinal if there are a semimetric
d on X := V(@) and disjoint nonempty A, B C V(G) such that G is a
path-proximinal graph for A and B w.r.t. d.

The paper is organized as follows.

Theorem 2.3 describes structure of path-bipartite graphs G of sets
A and B, for which given points a; € A and by € B can be joined by
be-path in G. In Theorem 2.7 we consider a bipartite graph G(A,B)
corresponding to path-bipartite graph G(A, B) and show that G(A,B)
is complete bipartite iff any a € A and b € B can be joining by be-path
in G(4, B). Corollary 2.8 describes the path-bipartite graphs G(A, B)
which are connected iff the corresponding graphs G(A, B) are complete-
bipartite. Theorem 2.10 give us necessary and sufficient conditions under
which G is path-bipartite for fixed A, B C V(G). It is the one of the
main results of Section 2. Using this theorem we characterize the path-
bipartite graphs up to isomorphism in Corollaries 2.11-2.12.

The properties of path-proximinal graph are studied in Section 3.

Theorem 3.1 describes the structure of semimetric spaces (X, d) with
disjoint proximinal subsets A, B for which graphs defined by (1.7) are
path-bipartite. Theorem 3.3 shows that for every path-bipartite graph
G there is a metric such that G is path-proximinal with respect to this
metric. This result allows us to characterize path-proximinal graphs up to
isomorphism in Theorem 3.7. In Propositions 3.8 and 3.9 we describe the
graphs which are proximinal and path-proximinal simultaneously. The
final result, Theorem 3.10, shows that a proximinal graph G is path-
proximinal w.r.t. an ultrametric iff every vertex of G has degree 1.

2. Path-bipartite graphs

Below we will consider the path-bipartite graphs of arbitrary cardi-
nality.

Proposition 2.1. Let G be a path-bipartite graph of A and B. Then
V(G) = AU B holds.
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Proof. By Definition 1.16, we have
AUB CV(Q). (2.1)

Since G is a path-bipartite graph of A and B, there is a set P of be-paths
P of A and B such that

V(e c [ v (2.2)

PcP

For every P € P, Definition 1.16 implies V(P) C AU B. Hence, (2.2)
implies the inclusion

V(G) C AUB. (2.3)
Now the equality V(G) = AU B follows from (2.1) and (2.3). O

Let G be a path-bipartite graph of A and B. Then we write Bpqn(G)
for the set

Bpain(G):={(a,b) € Ax B: there is a be-path P4 g CG joining a and b}.

If Bpatn(G) = A x B, then G is called path-complete.

Remark 2.2. Bpan(G) is a nonempty set for every path-bipartite graph
G of A and B.

Theorem 2.3. Let G = G(A, B) be a path-bipartite graph of sets A and
B, let a; € A and by € B be given, and let Go,[A] and Gy, [B] be the
connected components of the induced graphs G[A] and G[B] such that
a1 € Ay and by € By, where

A1 :=V(Gy, [4]) and By =V (Gy,[B]). (2.4)

Write
Cy,:= A UB;. (25)

Then the following statements are equivalent:

(i) The pair (a1,b1) belongs to Bpan(G).

(13) The subgraph G[C1] induced in G by the set Cy is connected.
(ti3) The inclusion Ay x By C Bpan(G) holds.
Proof. (i) = (ii). Suppose that (i) holds,

(al, bl) S Bpath(G)- (2.6)
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Then there is a be-path P4 p joining a; € A and b; € B. By Lemma 1.8,
the union P4 g UGy, [A] is connected because a; € V(Pa,g) NV (G, [A4])
and the graphs P4 p and Gg, [A] are connected. Similarly, the union
Py UGy, [B] is also connected. Let us consider a graph

Hy = P U Ga,[A] UGy [B]. (2.7)

Using Lemma 1.8 again we see that Hj is connected. By Lemma 1.9, to
complete the proof of statement (i7) it suffices to show that

H, C G[Cy] (2.8)

and

V(H;) = V(G[C1]). (2.9)
It follows from (2.4), (2.5) and (2.7) that
V(Hl) DA UBy = V(G[Cl])

Consequently, (2.9) holds if we have (2.8). For proof (2.8), we note that
Ga,[A1] and Gy, [B1] are subgraphs of G[C1]

Gm [Al] Q G[Cl] and Gbl [Bl] Q G[Cl] (2.10)

Hence, (2.8) holds if
Py p C G[C]. (2.11)

Let us prove the last inclusion.
By Definition 1.16, we can find points ag € A, by € B and connected
graphs P4y C G[A], Pg C G[B] such that

ap, a1 € V(PA), bo, b1 € V(PB) (2.12)

and
Pyp=PysUPguUP, (2.13)

where PV is a path defined by
V(P°) := {ap,bo}, E(P°):= {{ag,bo}}. (2.14)
It follows from (2.12)—(2.14) that (2.11) holds whenever
P4 C G[C4] and Pp C G[C]. (2.15)
Lemma 1.10 and (2.12) imply

P4 C G, |A] and Py C Gy, [B. (2.16)
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Now (2.15) follows from (2.16) and (2.10).
(74) = (i4i). Let G[C1] be a connected graph. Then there are points
ap € Ay and by € Bj such that

{ao, bo} S E(G[Cl])

It is clear that the graph P° defined by (2.14) is a be-path of A and B
joining ap and by. Hence, we have (ag, by) € Bpain(G).

Let us consider now an arbitrary a € A; and b € By. If a # ag and
b # by, then there are a path P, in A; joining a and ag, and a path P,
in B; joining b and by. Then the union P, U P® U P, is a be-path of A
and B joining a and b. For the case when a = ag or b = by, the desired
be-path of A and B can be constructed similarly.

(7i1) = (7). Let (i7i) hold. Then (i) follows from (a,b;) € A1 x By
and A1 X B1 - Bpath(G)- ]

Remark 2.4. Let a graph GG be path-bipartite for A and B. An element
(a,b) of Bpain(G) can have several be-paths joining a and b in G.

Remark 2.5. Let G be a path-bipartite graph of A and B. If G is path
complete, then G is connected, but not vice versa, in general (see Exam-
ple 2.6 below).

Example 2.6. Let P = (a1, b1,a2,b2) be a path (see Figure 1).

a1 az
b1 b2

Figure 1: The path P is a path-bipartite graph of sets A = {ay, a2} and
B = {by,bs}.

Then P is a connected path-bipartite graph of the sets A = {a1,a2}
and B = {b1, b2}, but (a1,b2) & Bpain(P).
Let us consider a graph G = G(A, B) with V(G) = AU B, where A
and B are disjoint nonempty sets, and denote by
A:={Aicl} B:={B:jcJ})

the set of all connected components of the induced graph G[A] (G[B)).

Now we define a bipartite graph G = G(A,B) by the rules V(G) :=
A UB and, for iy € I and j; € J, {A", B/t} € E(G) holds iff there are
a; € A" and by € B such that

(al,bl) S Bpath(G)- (2.17)
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Theorem 2.7. Let G be a path-bipartite graph of sets A and B. Then
the following statements are equivalent:

(i) G is path-complete.
(1) G(A,B) is complete bipartite.

Proof. (i) = (ii). Let G be path-complete. We must show that G(A,B)
is complete bipartite. It is valid iff, for all i; € I and j; € J, there are
a1 € A% and by € Bt such that (2.17) holds. Since G is path-complete,
(a,b) € Bpairn(G) holds for all @ € A and b € B, in particular, (2.17) is
also valid for every a; € A" and by € B,

(7i) = (7). Let G(A, B) be a complete bipartite graph. The equalities

AxB:(UAZ)x UB|= U @xp)

icl jeJ iel,jeJ
imply that G is path-complete iff the inclusion
A" x B C Buan(G) (2.18)

holds for all ¢ € I and j € J.

Let us consider arbitrary iy € I and j; € J. Since G(A,B)
is complete bipartite, we can find a; € A’ and b; € BJ such that
(a1,b1) € Bpain(G). Now inclusion (2.18) follows from Theorem 2.3 with
A" = Ay and B’ = By. O

Corollary 2.8. Let G = G(A, B) be a path-bipartite graph of the sets A
and B. If at least one from the sets A, B has exactly one point,

min{|4|,|B|} <1, (2.19)
then the following statements are equivalent:

(1) G is connected.
(17) G is path-complete.

This corollary follows from Theorems 2.3 and 2.7, but, for simplicity,
we give below a direct elementary proof.

Proof of Corollary 2.8. The implication (i7) = (i) is evidently valid. Let
us prove the validity of (i) = (44).

Let G be connected. Without loss of generality, suppose that A =
{a1}, where a; is the unique point of A. Then B = V(G) \ {a;1} holds by
Proposition 2.1. Hence, every path joining a; with an arbitrary b € B
is a be-path of A and B by Definition 1.16. Now (2) implies that G is
path-complete. O
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Remark 2.9. Example 2.6 shows the number 1 is the best possible integer
number for inequality (2.19).

Theorem 2.10. Let G be a graph, A and B are disjoint nonempty sub-
sets of V(G), and {G;: i € I} be the set of all connected components
of G, and let P4 p be the set of all be-paths P of A and B which are
subgraphs of G, P C G. Then the following statements are equivalent:

(1) The equality
G= |y r (2.20)
PeP4 B
holds, i.e., G is a path-bipartite graph of A and B.
(1i) We have
V(G)=AUB (2.21)
and
ANV(G;) # @ # BNV(G)) (2.22)
for every i € I.

Proof. (i) = (i7). Equality (2.21) follows from Proposition 2.1. To prove
(2.22), suppose contrary that there is ig € I such that

ANV(G;)) =@ or BNV(G;) = 2.

Without loss of generality, we can assume that B N V(G;,) = @ holds.
Then, using the last equality and (2.21), we obtain

V(Gy,) C A. (2.23)

Equality (2.20) implies that there is a be-path P° € P4 p such that a;, €
V(PY). The be-path P is a connected subgraph of G. Consequently,
the inclusion

P°C G, (2.24)

holds by Lemma 1.10. In particular, from (2.23) and (2.24) it follows
that
V(P°) C 4,

contrary to Definition 1.16. Thus, (2.22) holds for every i € I.

(73) = (7). Let (4i) hold. We must show that equality (2.20) is valid.
Let us do it.

First of all, we note that

G;UP

PEPA,B
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holds. Hence, (2.20) holds iff

GQUP.

PEPA,B
The last inclusion means that
o c | BP), (2.25)
PEPA,B
vig)c |J v (2.26)
PGPAA’B

Using (2.22), we see that every connected component G; of G contains
at least two distinct vertices and, consequently,

vigy= U A{uv

{u,v}eE(G;)

holds. The last equality and Lemma 1.7 give us

vie) =Uven= U {uv}

iel {u,v}eE(G)

Hence, (2.26) follows from (2.25). To prove (2.25) it suffices to show that
every edge of G, i € I, is also an edge of a be-path P € P4 p, i.e.,

E(G)c |J EP) (2.27)
PeP4 5

holds for every i € I.
Let i1 be an arbitrary index of the family I and let

{z,y} € E(G,,). (2.28)

We must find P € P4 g such that

{z,y} € E(P). (2.29)
If we have
An{z,y} # 2 # Bn{z,y}, (2.30)
then the path P;, defined by

belongs to P4 p.
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If (2.30) is not satisfied, then, without loss of generality, we can
assume that
{z.y} CV(G1)NB.

Let us denote by P! = (v, ..., v,) the shortest part joining the set {z,y}
with the set V(G1) N A in G;. Then we have either v; = z, v, € A and
v; € B\ {z,y} for every i € {2,...,n — 1} or v = y, v, € A and
v; € B\ {x,y} forevery i € {2,...,n—1}. In each of the cases, it is easy
to prove that

P'UP;, €Pagp,

where P;, is a path defined by (2.31). O
Theorem 2.10 implies the following corollaries.

Corollary 2.11. The following statements are equivalent for every graph

G:

(1) There are disjoint nonempty subsets A and B of the vertex set V(Q)
such that G is a path-bipartite graph of the sets A and B.

(i) The equality G = G’ holds.

Corollary 2.12. The following statements are equivalent for every graph

G:

(1) G is a path-bipartite graph of sets A and B whenever A and B are
disjoint nonempty subsets of V(G) such that V(G) = AU B.

2 18 connected and the equalit = olds.
(i) G d and the equality G' = G hold

Remark 2.13. For connected graphs G the equality G’ = G holds if and
only if [V (G)| = 2.

Corollary 2.14. Let G = G(A, B) be a bipartite graph with parts A and
B. Then the following statements are equivalent:

(1) G is a path-complete path-bipartite graph of A and B.
(1) G is a complete bipartite graph.

Proof. (i) = (ii). Let () hold. To prove the validity of (i7) it suffices to
note that every connected component of induced graphs G[A] and G[B]
is a graph with one vertex and to use Theorem 2.7.

(14) = (i). Let (i7) hold. Then the equality G’ = G is valid. Con-
sequently, G is path-bipartite by Corollary 2.11. Now (i) follows from
Theorem 2.7. O
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Example 2.15. Write

=(1,0,0,0), a2 =(0,1,0,0), a3=(0,0,1,0), x4 =(0,0,0,1),
=(1,0,1,0), = (1,1,0,0), 7= (1,0,0,1), a5=(0,0,0,0),
29 = (0,1,1,0), x10=(0,1,0,1), xy1 = (0,0,1,1), 212 = (0,1,1,1),
=(1,1,0,1), x4 =(1,1,1,1), 215 =(1,0,1,1), =(1,1,1,1).

Let us define a graph G = (V, E) as

V(G) = {xly xr2,X3,T4,T5,L6,L7,T8,L9,T10,L11,L12,L13,L14,L15, 2716}

and
E(G):={{z1,z5},{z1, 26}, {z1, 27}, {z1, 28}, {z2, x6 }, {z2, 20}, {x2, 210},
{903,365}7{9537908},{9037909},{903,3611},{904,367}7{364,368}7{36479010}7
{905,3614}7 {36579015}a {90679013}7 {366,3614}, {90779015}7 {369,9612},

{z10, 212}, {711,212}, {713,716}, {714,716}, {215,216} }-

Then, by Corollary 2.12, GG is a path-bipartite graph of the sets
A = {x1, 12,23, 24, T9, T10, ¥11, T12} and

B = {5, 6, x7, 8, 213, T14, T15, T16 } (2.32)

because G is connected and AU B = V(G).

3. Path-proximinal graphs

The first theorem of the section describes the geometry of proximinal
pairs (A, B) in semimetric spaces (X, d) for which the graphs G, V(G) =
X and E(G) defined by (1.7), are path-bipartite. In what follows Ay and
By are subsets of A and B defined by (1.3) and, respectively, by (1.4).

Theorem 3.1. Let (X, d) be a semimetric space and let A, B be disjoint
proxziminal subsets of (X,d) such that

X =AUB. (3.1)
Let us consider a graph G such that V(G) = X and the equivalence
({z,y} € E(G)) < (d(z,y) < dist(4, B))

is valid for all distinct x, y € X. Then G is path-bipartite for A and B
if and only if the following conditions are fulfilled:
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(1) For everya € A\ Ay there are a best prozimity pair (a*,b*) € Ax B
and a finite path (ai,...,a,) C G[A] such that a1 = a, a, = a*.

(ii) For every b € B\ By there are a best proximity pair (a*,b*) € Ax B
and a finite path (by,...,b,) C G[B] such that by = b, b, = b*.

Proof. Let G be a path-bipartite graph. We must show that conditions
(1)—(i1) are valid.

(7). Let a be a point of A\ Ag. By Definition 1.16, there is a be-path
Py p C G such that a € V(Py ). Using this definition again we can
find a* € A such that a* € V(P4 g). The be-path P4 g is a connected
graph, consequently, there is a path P C P4 p joining a and a* in Py g.
To complete the proof of (i) it suffices to show that V (P) C A. Suppose
contrary that there is a point b° € B such that b° € V(P). Since P is a
path joining a and a*, there are paths P, C P and P, C P such that

a, i’ e V(P), ¥°,a* € V(P), P=P UP, and V(P) NV (Py) = {v°}.

(3.2)
Using (3.2), V(P) € AUB and aj, a* € A and b’ € B, we can find
{a',b'} € E(Py) and {a?,b*} € E(P,) such that

a',a®> € A and by,by € B. (3.3)

The last equality in (3.2) implies that {a',b'} and {a?,b?} are different
edges of Py p that together with (3.3) contradicts the definition of be-
paths.

(74). The validity of (i7) can be proved similarly.

Suppose now that (i) and (i4) hold. To prove that G is a path-
bipartite graph of sets A and B we consider an arbitrary connected com-
ponent G of G and an arbitrary point p € V(G;). Equality (3.1) implies
that p € A or p € B. Without loss of generality we assume that p € A. If
p € Ag holds, then, by (1.3), there is ¢ € B such that d(p, q) = dist(A, B).
Hence, {p,q} € E(G) by definition of G and, consequently, ¢ € V(G,)
by Lemma 1.10. If p € A\ Ay, then, by condition (i), there is a path

PCG (3.4)

joining p with a point pg € Ap. Since G; is a connected component
of G, inclusion (3.4) implies P C G, by Lemma 1.8. Thus, the point
po € Ap also belongs to V(G;). Now, arguing as above, we can find
q € BNV(G,). Hence, G is path-bipartite by Theorem 2.10. O

Corollary 3.2. Let G be a path-proximinal graph for sets A and B with
respect to a semimetric d on the set X = AU B. Then the inequality

dist(A4, B) > 0 (3.5)
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holds and there are points ag € A and by € B such that
d(ay, bo) = dist(A, B). (3.6)

Proof. By Definition 1.17, every path-proximinal graph for sets A and
B are path-bipartite graph of these sets. Hence, by Theorem 3.1, there
is a best proximity pair (ag,by) € A x B which satisfies (3.6). Now (3.5)
follows from (3.6) and the definition of semimetrics. O

Theorem 3.3. For every path-bipartite graph G of sets A and B, there
is a metric d on X := V(G) such that G is path-proziminal for A and B
with respect to the metric d.

Proof. Let G be path-bipartite graph of sets A and B. We must find a
metric d: X x X — [0,00[, X = AUB, such that A and B are proximinal
subsets of (X, d) and (1.7) holds for all distinct z, y € X. Let us define
a function d: X x X — [0, 00][ as

0 ifz=y
d(z,y) =411 if {z,y} € E(G) (3.7)
2 ifx#yand {x,y} ¢ E(G).

Then d evidently is a metric on X.

The sets A and B are nonvoid by Definition 1.16. Since the set
{d(x,y): =,y € X} is finite, every nonempty subset of X is proximinal.
Hence, A and B are proximinal in (X, d).

We claim that

dist(A, B) = 1. (3.8)

Indeed, since A and B disjoint and nonvoid, (3.7) and (1.2) give us the
inequality
dist(A, B) > 1. (3.9)

Since G is path-bipartite of A and B, there is a be-path Py p C G.
Consequently, by Definition 1.16, there is {ag,bo} € E(Pa p) such that

AN {ao, b()} £ @+ BN {CL(], bo} (310)

Using the equality AN B = @ and (3.10) we may suppose, without loss
of generality, that
ap € A and by € B. (3.11)

From {ag,bp} € E(Pa p) and P4 p C G it follows that

{ao,bo} € E(G) (3.12)
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Now (3.7) and (3.12) imply d(ag, bg) = 1 and, consequently,
dist(A, B) < 1. (3.13)

holds by (3.11). Now (3.8) follows from (3.9) and (3.13). To complete
the proof it suffices to show that (1.7) holds for all distinct z, y € X.
Indeed, using (3.9), we obtain the equivalence

({z,y} € E(G)) & (d(z,y) = dist(4, B))

for all z, y € X. Now the equality dist(A, B) = 1 and (3.7) imply the
equivalence

(d(z,y) < dist(4, B)) < (d(z,y) = dist(4, B)),
for any pair of distinct x, y € X. O

Example 3.4. Let X be the set of all sequences ¢ = (71,m2,m3,74),
where each 7; € {0,1} and let A, B C X and the graph G be defined as
in Example 2.15. Let us denote by d(p, ¢) the Hamming distance between
p,qgeX,

4
d(P,q) = i — mil-
i=1

Then (X, d) is a metric space, A and B are disjoint proximinal subsets
of (X,d), the equality dist(A4, B) = 1 holds, vertices p and ¢ of G are
adjacent iff d(p,q) = 1, and

Bpain(G) ={(21,25), (21, 6), (21, 27), (1, 28), (1, T13), (21, 214), (21, T15),
(w1,216), (22, 76), (72, 213), (T2, T16), (3, 75), (73, 28), (23, T14),
(w3, 215), (23, 716), (T4, 7), (74, T8), (T4, 213), (T4, T15), (T4, T16),
(w9, x5), (9, x6), (9, 78), (T9, 213), (79, T14), (9, T15), (9, T16),
(710, 26), (10, 28), (10, 713), (Z10, T14), (Z10, T16), (T11, 25),
(w11, 8), (211, 214), (211, T15), (711, T16), (12, 25), (T12, T6),

( ), (

T12,27), (T12,28), (T12, Z13), (T12, T14), (Z12, Z15), (T12, T16) }-

The element (x4, 215) of Bpan(G) admits the following be-paths

(564,337,3315); (334,337,$13,€U6,5614,$16,5615); ($4,$7,$13,$16,~’U15) and

(x4, 7,213, T16, T14, T6, T13, L16, L15)-

The graph G is path-proximinal for A and B w.r.t. the Hamming dis-
tance d.
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Example 3.5. Let G be a graph with V(G) = A such that {Z,7} € E(G)
iff d(z,y) = 1, where A and d are defined as in Example 3.4. The point
x1 is an isolated vertex of G (see Figure 2). Hence, the bipartite graph
G is not path-proximinal by Corollary 2.12 and Theorem 3.3.

9 10 T11

(]
1 2 x3 T4 12

Figure 2: The point x; is an isolated vertex of G.

Example 3.6. Let us consider a metric space (C, d), where C is the set of
all complex numbers z = x+iy. Suppose that for arbitrary z; = x1+iy1,
zo = X9 + 1Yo we have

sllen] = o]l +1lya) = lwell + 1 if 21 # 2
0 if21222,

d(z1,22) = {
where [x;] ([y;]) is the integer part of z; (v;).
Write
A:={n+ih:n € N* and h =0} and B := {m+ik: m € N and k € N*},
where N* is the set of all naturals without zero. Then the equalities
dist(A, B) = inf{d(a,b): (a,b) € A x B}

1
:inf{§|n—m|+|k|+1: (n,m,k) € N* XNXN*} =2

hold.

Since every nonempty subset of the set
{d(z1,22): 21,22 € C}

has the smallest element, each nonempty S C C is proximinal subset of

the metric space (C,d). Hence, (A, B) is a proximinal pair for (C,d).
Let us define a graph G such that V(G) = AU B and, for 21, 23 €

AUB, {z1,22} € E(G) iff 0 < d(z1, 22) < 2. It is easy to show that:

e For all n € N*, d(n,n + 1) = 2 < dist(4, B);
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e For m € N*, d(m,m +1i) = 2 = dist(4, B);
e For all (m,k) € Nx N* d(m +ik,m+i(k+1)) =2 =dist(A, B).

Let us consider n € N* and (m, k) € N x N*. Suppose n < m. Then we
get the be-path P
V(P)={n,n+1,--- m—1mm+i,--- ,m+i(k—1),m+ ik},
E(P)={{n,n+1},--- ;{m —1,m},{m,m +i}, -,
{m+i(k —1),m +ik}}.

If m < n, then we get the following be-path P;:

V(Pl):{n7n+17 7m+17m7m+17 7m+2(k_1)7m+2k}7
E(Pl):{{n7n+1}7"' 7{m+17m}7{m7m+i}7"' >
{m+i(k —1),m +ik}}.
Thus, Bpan(G) = {(n,m + ik): (n,m,k) € N* x N x N*} = A x B and,

consequently, the graph G is path-complete and path-proximinal for A
and B with respect to d.

The next theorem follows from Corollary 2.11 and Theorem 3.3.

Theorem 3.7. Let G be a graph. Then the following statements are
equivalent:

(1) G does not contain any isolated vertices.
(ii) G is a path-proxziminal graph for a semimetric space.
(#i1) G is a path-proriminal graph for a metric space.

Proposition 3.8. Let a bipartite graph G with fized parts A and B be
proximinal for a semimetric space (X,d), where X = V(G) = AU B.
Then G is a path-proximinal graph if and only if the equalities

AO =A and BO =B (314)

holds, where the sets Ay and By are defined by (1.3) and (1.4), respec-
tively.

Proof. By Theorem 3.7, the graph G is path-proximinal iff G’ = G holds.
Since G is proximinal for semimetric space (X,d), Definition 1.12 and
Definition 1.3 imply that the equality G’ = G holds if and only if (3.14)
is valid. O
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The conditions Ag = A and By = B guarantee the existence of a
semimetric p: X x X — [0, 00[ such that G is path-proximinal w.r.t. p.
In the next proposition we describe geometric properties of the space
(X, d) under which the equality d = p is possible.

Proposition 3.9. Let G = G(A, B) be a proximinal graph for a semi-
metric space (X,d) with X = AU B and let G = G’ hold. Then the
following conditions are equivalent:

(1) G is path-proziminal for A and B w.r.t. the semimetric d.

(i) The inequality
d(z,y) > dist(A, B) (3.15)

holds whenever x #vy and x, y € A or x, y € B.

Proof. (i) = (ii). Let (i) hold. Definition 1.14 implies that

{z,y} ¢ E(G) (3.16)

whenever z, y € A or x, y € B. By Definition 1.17, (3.16) holds for
distinct points x, y € X if and only if we have (3.15) for these points.
Condition (i7) follows.

The validity of (i) = (i) can be proved similarly. O

Proposition 3.9 admits the following “ultrametric modification”.

Theorem 3.10. The following conditions are equivalent for every graph

G:

(i) For every vertex v of G there is a unique vertex u of G such that
u and v are adjacent.

(1) There are an ultrametric d on the set X = V(G) and disjoint
proziminal subsets A, B of X such that X = AU B, and G is
bipartite with the parts A and B, and path-proximinal w.r.t. the
ultrametric d.

Proof. (i) = (ii). Let G satisfy condition (7). Then G has no isolated
vertices and, hence,

vie)= J {=y (3.17)

{zy}eE(G)
holds. Condition (¢) implies also the equality

{z,y} N{u,v} =2 (3.18)
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whenever {z,y} and {u,v} are different edges of G. Now using (3.17)
and (3.18) and the axiom of choice we can find disjoint subsets A and B
of V(G) such that V(G) = AU B and

{u,v} NA# @ # {u,v}NB
for every {u,v} € E(G). Write
X=AUB (3.19)
and define a semimetric d: X x X — [0, 00| as

0 ifx=y
dz,y) =41 if {z,y} € E(G) (3.20)

2 otherwise.

We claim that d is an ultrametric on X. By definition, d is an ultrametric
if

d(w.y) < max{d(x, 2), d(z,y)} (3.21)
holds for all z, y, z € X. It is easy to see that (3.21) holds for arbitrary

semimetric d on X if |[{z,y,z}| < 2. Let x, y, z be pairwise distinct
points of X. If (3.21) is false,

d(z,y) > max{d(z, 2),d(z,y)},
then, using (3.20), we see that d(z,y) = 2 and
d(z,z) =d(z,y) = 1. (3.22)

It follows from (3.20) and (3.22) that the vertex z has two different
adjacent vertices x and y, contrary to (). Thus, d is an ultrametric on
X.

The sets A and B do not intersect by construction and, in addition,
(3.19) holds. Since the set {d(z,y): z,y € X} is finite by (3.20), these
sets are also proximinal subsets of (X, d). It follows from Definition 1.11
that G is bipartite graph with parts A and B. Equality (3.20) and the
definition of the sets A and B also give us the equality dist(A4, B) = 1.
Now using (3.20) and Definition 1.17 we see that G is path-proximinal
w.r.t. the ultrametric d.

(73) = (7). Let G satisfy condition (7). Then G is path-proximinal for
an ultrametric space (X, d) and, consequently, G has no isolated vertices
by Theorem 3.7. Suppose that there is a vertex v of G such that

{v,u},{v,w} € E(Q) (3.23)
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for some different u, w € V(G). By condition (ii), G is a bipartite graph
with parts A and B. Consequently, (3.23) implies either

veEAand u,w € B (3.24)

or
u,w € Aand v € B. (3.25)

Suppose that (3.24) holds. Then using the strong triangle inequality and
Definition 1.14 we obtain

d(u, w) < max{d(u,v),d(v,w)} = dist(4, B).
Hence, the vertices u and w are adjacent in G,
{u,w} € E(G) (3.26)
by Definition 1.17. Now it suffices to note that (3.24) implies {u,w} ¢
E(G) by Definition 1.14, contrary to (3.26). Thus, (3.24) is false. Anal-

ogously, we obtain that (3.25) is also false. The proof of the validity of
(79) = (i) is complete. O

Theorem 3.10 implies, in particular, the following.

Corollary 3.11. A graph G is simultaneously proximinal and path-
proziminal for an ultrametric space (X, d) and given disjoint proriminal
subsets A and B of X iff every connected component of G has exactly 2
vertices.
Corollary 3.12. Let G be a bipartite graph with parts A and B. Sup-
pose that there is an ultrametric d: X x X — [0,00] such that G is path-
proximinal with respect to d. Then the following conditions are equiva-
lent:

(1) G is connected.

(i) G is complete.
(tit) The induced-bipartite subgraph G[A, B] of G is complete bipartite.

(iv) G is path-complete.
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