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On Grunsky norm of univalent functions
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Abstract. We establish an intrinsic lower bound for the Grunsky
norm of univalent functions in the disk. This bound sheds light on
the intrinsic geometric features of complex analysis and of Teichmiillerv
space theory.
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1. The Grunsky norm

The classical Grunsky theorem of 1939 implies the necessary and suf-
ficient conditions for univalence of holomorphic functions in a finitely
connected domain on the Riemann sphere C = C U {oo} in terms of an
infinite system of the coefficient inequalities. In particular, for the canon-
ical disk D* = {z € C: |z| > 1} this theorem yields that a holomorphic
function f(z) = z + const +O(z~!) in a neighborhood of z = co can be
extended to a univalent holomorphic function on D* if and only if the
Taylor coefficients au,, of the function

Lg(o —— i amnzfmgfn’ (ZaC) c (D*)2, (1)
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called the Grunsky coefficients of f(z), satisfy the inequality
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74 ON GRUNSKY NORM OF UNIVALENT FUNCTIONS

for any sequence x = (z,) from the unit sphere S(I?) of the Hilbert

o0
space 12 with norm ||x|| = (3 |zn|?)'/?; here the principal branch of the
1

logarithmic function is chosen (cf. [7]). The quantity

%(f):sup{‘ i VN Qnn T x| - X:(wn)eS(ZQ)}Sl

m,n=1

is called the Grunsky norm of f.

The univalent functions f(z) = z + by + b1z~ + ... in D* admitting
quasiconformal extensions across the unit circle S' = 9D* onto the disk
D = {|z| < 1} form the class ¥g. To have their uniqueness for a given
Beltrami coefficient p(z) = 9zf/9.f in D, compactness in the topology
of locally uniform convergence on C, etc., we add the third normalization
condition

£(0) = 0.

All such f € ¥ are zero free in D*, hence their inversions Fy(z) =
1/f(1/2) = 2z + agz® + ... are holomorphic and univalent in the disk
D with Ft(oo) = oco. The functions f and Fy have the same Grunsky
coefficients, and »(Fy) = »(f).

Note also that the norm s(f) is defined for all f € ¥ and does not
depend on the additional normalization at O.

For the functions with k-quasiconformal extensions (k < 1), we have
instead of (2) a stronger bound

‘ Z VIn Qpnme,| < k- for any x = (z,) € S(I?), (3)

m,n=1

established first in [19] (see also [15]).

Note that the Grunsky matrix operator G(f) = (v/mn amn(f))ps n=1
acts as a linear operator (> — % contracting the norms of elements x € [?;
the norm of this operator equals s(f).

The method of Grunsky inequalities was generalized in several di-
rections, even to bordered Riemann surfaces with a finite number of
boundary components (see [6,7, 16,23, 24, 26, 30]), replacing the gener-
ating function (1) by appropriate bilinear differential; this leads to the
generalized Grunsky norm. In this paper, we shall deal only with the
canonical case of disk D*.

The Grunsky norm »(f) is dominated by the Teichmiiller norm
k(f), which is equal to the infimum of dilatations k(w") = [|u[lec of
quasiconformal extensions of f to C. Here w" denotes a homeomorphic
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solution to the Beltrami equation dzw = pd,w on C extending f; ac-
cordingly, u is called the Beltrami coefficient (or complex dilatation)
of w.

For most functions f, we have the strong inequality s(f) < k(f)
(moreover, the functions satisfying this inequality form a dense subset of
¥), while the functions with the equal norms play a crucial role in many
applications.

On the other hand, the important result of Pommerenke and Zhu-
ravlev states that if a function f € ¥ satisfies the inequality »(f) < k
with some constant k < 1, then f has a quasiconformal extension to C
with a dilatation k1 = ki(k) > k [26,32]; [17, pp. 82-84]. On explicit
bounds ki (k) see, e.g., [14,18,22].

Each coefficient auy,,,(f) in (4) is represented as a polynomial of a
finite number of the initial coefficients b1, bs, . .., bs of f; hence it depends
holomorphically on Beltrami coefficients of quasiconformal extensions of
f as well as on the Schwarzian derivatives

Si(z) = (;,g;)l — %(;,8)2 z € D*.

These derivatives range over a bounded domain in the complex Banach
space B(ID*) of hyperbolically bounded holomorphic functions ¢ € D*
with norm

lells = Sﬂl)gp(w = 1)%p(2)],

This domain models the universal Teichmiiller space T (the space of
complex structures on the disk) in holomorphic Bers’ embedding of T.

The following two sets of holomorphic functions ¢ (equivalently, of
holomorphic quadratic differentials 1)dz?)

A1(D) ={y € Li(D) : ¢ holomorphic in D},

A2(D) = {¢p = w? € A;(D): w holomorphic in D}
are intrinsically connected with the extremal Beltrami coefficients (with
minimal norm in their equivalence class) hence, with the Teichmiiller
norm and Grunsky inequalities.

The Beltrami coefficients of quasiconformal extensions w* of functions
f(z) € ¥g range over the unit ball

Belt(D) = {p € Loo(C) ¢ p(=)D* =0, [l < 1},

and the well-known criterion for extremality (the Hamilton—Krushkal—
Reich—Strebel theorem) implies that a Betrami coefficient ug € Belt(D),



76 ON GRUNSKY NORM OF UNIVALENT FUNCTIONS

is extremal if an only if

liolloo = sup | // po(2()dady| (z=w+iy). ()

1Y, =1

The same condition is necessary and sufficient for the infinitesimal ex-
tremality of ug at the origin of the space T in the direction tér (1), where
o1 is the defining (factorizing) holomorphic projection Belt(D); — T;
see, e.g., [4,5,10].

Due to [11,16], the elements of A%(DD) are represented in the form

P(z) = w(z)? = % Z VI Ty, 22,

m+4n=2
with ||x||;2 = [|w||z,; here x = (x,,).
Using the pairing
(1, Y)p = // z)dzdy ¢ € Li(D), p € Belt(D)y,

we define the set

A}(D)t = {p € Belt(D)y : (p,¥))p =0 forall ¢ € AAD)},  (5)

where g%(]D)) is the span of elements from A2(D) (with Aj-norm). A
crucial similar set for the Teichmiiller norm is

A (D)t = Ker ¢/p(0) = {p € Belt (D) : (1, ¥)p = 0 for all ¢ € A;(D)}.

An important fact is that the extremal Teichmiiller Beltrami coefficients
o = k|| /¢ with 1 € A;(D) cannot lie in A;(D)*.

2. A lower bound for Grunsky norm

The aim of this paper is to prove the following theorem giving an
intrinsic lower bound for the Grunsky norm. This bound sheds light on
the intrinsic geometric features of complex analysis and of Teichmiillerv
space theory.

Theorem 1. For any function f € ¥q, its Grunsky norm satisfies

ADzalf)i= s | // wo(2)(2)dzdy|,  (6)

YEAT(D),[[¢]la, =1
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where pg is an extremal Beltrami coefficient among quasiconformal ex-
tensions f* of f in the disk D.

This theorem naturally relates to the intrinsic features of the Grun-
sky norm, though the estimate (6) is rough. This estimate is trivial for
functions whose extremal coefficients pg lie in the set (5), and there-
fore (in view of continuity of the Grunsky norm on T), for all func-
tions f* with small || — o, we have in (6) a strong inequality.
This is valid, for example, for f#» with (extremal) Beltrami coefficients

n =k[z"|/z", n=2p—1 with p € N.

Note also that generically the extremal extension f#° is not unique,
but for a dense subset of functions f in ¥.g(D*) their extremal coefficients
p is of Teichmiiller type, which means that u = kl¢|/vy, where k =
const < 1 and ¥ € A;(D) (such p is unique in its equivalence class). It
determines the Strebel point of the universal Teichmiiller space T such
points are dense in T; see [5,31]).

3. Two applications

We mention two important consequences of this theorem.

First, Theorem 1 improves the known results characterizing the uni-
valent functions, for which the inequality sp-(f) < k is also sufficient
for existence of k-quasiconformal extension to C established in [11,15]:
the equality »(f) = k(f) is valid if and only if the extremal extension of
f(2) to D satisfies

lolloo = SUP ‘//Mo z)dxzdy|.
YeAZ(D),|l¢lla, =1

This important fact found various applications. Its part "if" is an in-
finite dimensional generalisation of Kra’s theorem for finite dimensional
Teichmiiller spaces [9].

Theorem 1 also improves some related results obtained in [14].

Another application concerns the Fredholm eigenvalues of Jordan
curves. Recall that the Fredholm eigenvalues p,, of an oriented smooth
closed Jordan curve L C C are the eigenvalues of its double-layer poten-
tial, or equivalently, of the integral equation

0 1
u(z) + g/ u(C)G—nC log mdsc = h(z),

which often appears in applications (here n¢ is the outer normal and ds¢
is the length element at { € L).
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The least positive eigenvalue p;, = p; plays a crucial role in many ap-
plications and is naturally connected with conformal and quasiconformal
maps related to L. It can be defined for any oriented closed Jordan curve
L by

1 [Dg(u) — Dg-(u)|

— =sup ,

or De(u) + Do~ (1)
where G and G* are, respectively, the interior and exterior of L; D de-
notes the Dirichlet integral, and the supremum is taken over all functions
u continuous on C and harmonic on G U G*. In particular, p;, = co only
for the circle. This quantity remains invariant under the action of the
Moebius group PSL(2,C).

The indicated value is intrinsically connected with the Grunsky coef-
ficients of the exterior conformal map f*: D* — D*; this is qualitatively
expressed by the Kiihnau—Schiffer theorem on reciprocity of pr to the
Grunsky norm »(f*) [20,29].

The above theorem implies that for any quasiconformal curve L C C
its Fredholm eigenvalue is estimated from below by

Lo s ()l

PL $eA(D),|[¢]a, =1
where pig is the extremal Beltrami coefficient of the appropriately normal-
ized exterior conformal mapping function f* on which the Teichmiiller
norm of f* is attained.

This gives simultaneously the lower bound for the extremal dilatation
of quasiconformal reflections across the curve L (the orientation reversing
quasiconformal automorphisms of C which preserve L pointwise fixed);
see, e.g. [13].

4. Preliminary lemmas

The proof of Theorem involves certain known results on conformal
metrics ds = A(t)|dt| on the disk D with A(t) > 0 (called also semi-
metrics) of negative generalized Gaussian curvature and of negative inte-
gral curvature bounded from above.

Recall that the generalized Gaussian curvature x) of an upper
semicontinuous Finsler metric ds = A|dt| in a domain Q C C is defined
by
_Al;(i )AQ(t)’ )

where A is the generalized Laplacian

/€)\(t) =

N N U e i
A)\(t):4hm1nf—2{2— ; A(t +re )d@—)\(t)}

r—=0 7r m
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(provided that —co < A(t) < 00). Similar to C? functions, for which A
coincides with the usual Laplacian, one obtains that A is subharmonic
on Q if and only if AX(¢) > 0; hence, at the points tg of local maximuma
of A with A\(t9) > —o0, we have AX(tg) < 0.

The sectional holomorphic curvature of a Finsler metric on a com-
plex Banach manifold X is defined in a similar way as the supremum of
the curvatures (7) over appropriate collections of holomorphic maps from
the disk into X for a given tangent direction in the image.

As is well-known [1,12], the holomorphic curvature of the Kobayashi-
Teichmiiller metric K (z, v) of universal Teichmiiller space T equals —4
at all points (z,v) of the tangent bundle 7(T) over T. Instead, the holo-
morphic curvature of metric \,, generated on I by the Grunsky Finsler
structure satisfies the inequality AlogA > 4\?, where A is again the
generalized Laplacian (see [14]).

We shall consider a more general inequality

AlogA > K\?, K = const > 0, (8)

and use here somewhat different generalizations of curvature. Following
[2], we say that a conformal metric A(t)|d¢| in a domain G on C (or
on a Riemann surface) has curvature less than or equal to K in the
supporting sense if for each K’ > K and each ty with A(tg) > 0,
there is a C2-smooth supporting metric Ao for A at ty (i.e., such that
Xo(to) = A(tg) and Ao(t) < A(t) in a neighborhood of tg) with xy, < K’
(cf. [8]).

There are also integral generalizations of the inequality (8) (see, e.g.
[27,28]). We shall use its generalization in the potential sense due to [28]
and say that A\ has curvature at most K in the potential sense at g
if there is a disk U about ty in which the function

log A + K Potyr(\?),

where Poty denotes the logarithmic potential

oty h =5 [ h(Q)log ¢ ~ sldsdn (¢ = €+ i),
7T
U

is subharmonic. One can replace U by any open subset V C U, because
the function Poty(A\2) — Poty (A\?) is harmonic on U. Note that having
curvature at most K in the potential sense is equivalent to A satisfy (8)
in the sense of distributions.

The following three lemmas are proven in [28].

Lemma 1. If a conformal metric has curvature at most K in the sup-
porting sense, then it has curvature at most K in the potential sense.
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Lemma 2. Let A|dz| be a conformal metric on the unit disk which has
curvature at most —4 in the potential sense. Then the metric A = eM*,

where u = log A and Mu 1is the circular mean

also has curvature at most —4 in the potential sense.

Lemma 3. If a circularly symmetric conformal metric A(|t])|dt| in the
unit disk has curvature at most —4 in the potential sense and A(0) = a >
0, then

a
)\('I") Z )\a(’l") = m

(9)

The right hand-side of (9) defines a supporting conformal metric for
A at the origin with constant Gaussian curvature —4 on the whole disk D
(actually, A4 is the hyperbolic metric of the broader disk D/, = {|2] <
1/a}).

Note also that any circularly symmetric subharmonic function w(r)
in a disk Dy = {|t| < s} has one-sided derivatives for each r < 1 and
ru/(r) is monotone increasing, u/(0) exists and is nonnegative, and u(r)
is convex with respect to logr.

The strengthened version of Lemma 2.3 for singular metrics with pre-
scribed singularities given in [15] states:

Lemma 4. Let A(|t|)d|t| be a circularly symmetric subharmonic met-
ric on D such that

Ar)=mer™ 4+ 00r™) as r—0 with 0<c<1 (m=1,2,...)
(10)

and this metric has curvature at most —4 in the potential sense. Then

mer™ =1
1 — e2p2m’

A(r) > (11)

We shall apply Lemmas 3 and 4 to metric A,, generated on D by
the Grunsky Finsler structure. This metric also is circularly symmet-
ric, because the class ¥ contains every its function f(z) with rotations
e Wf(e?2), —m<0 <.
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5. Proof of Theorem 1

First observe that the Grunsky coefficients ay,, (f*) of functions f* €
Y generate for each x = (z,,) € 2 with ||x|| = 1 the holomorphic maps

hx(f*) = i A (fH)Tmzy, « Belt(D); — D, (12)
m,n=1
and
sup |hx (f*)| = 32p=(f*). (13)

The holomorphy of these functions follows from the holomorphy of coeffi-
cients auy, with respect to Beltrami coefficients u € Belt(D); mentioned
above, by applying the estimate

M N
DI) S

m=j n=lI

9 M N
<D lem Y fwnf? (14)
m=j n=l

which holds for any finite M, N and 1 < j < M, 1 <1 < N (see |26,
p. 61], [24, p. 193]).

Similar arguments imply that the maps (12) regarded as functions of
points ¢ = Syu in the universal Teichmiiller space T are holomorphic
on T. This holomorphy provides, together with the equality (13), that
the Grunsky norm sp+ regarded as a function of the Schwarzians Sy is
logarithmically plurisubharmonic on the space T. In addition, as it is
established in [16], the functions »p=(S¢) is continuous; moreover, it is
Lipschitz continuous on this space. The Teichmiiller norm has the similar
properties.

We calculate the differentials of maps hy(Sx) at the origin using the
well-known variational formula for f € X with extensions to D satisfying

£4(0) = 0:

w—z

e =21 [ utw) (52 = 5 ) dudo+ O, w = ki
D

(15)
where the ratio O(||u?||%,)/||#?||%, is uniformly bounded on compact sets
of C (see, e.g., [10]). Comparing the right-hand side of (15) with the
expansion f*(z) = z+by+ b1z~ + ..., one derives that the coefficients
b; are given by

1
by = — // pw(w)w™ tdudv + O(||p2||se), n=1,2,...,
77
D
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and from (1),

G (1) = 7 / / w(2)2™ 2 dwdy + O(lul%),  Nullso — 0.

Hence, the differential at zero of the corresponding map hyx(tuo/||10]|0o)
with x = (z,,) € S(I?) is given by

oo
Ao O) o/ ollc) =~ [ 0°) D2 i et 2dady,
D m+n=2
(16)
For simplicity of notation, we have preserved above for the lifts of func-
tions (12) to Belt(D); and T the same symbols.
Using these maps, we pull back the hyperbolic metric Ap(t)|dt| =
|dt|/(1 — |t|?) of the disk D onto this disk , getting conformal metrics

An, (t)|dt] on D with

Mo (1) = (B (D)]/ (1 = [hx (1)) (17)

of Gaussian curvature —4 at noncrical points. We take the upper envelope
of these metrics

() = sup{An, (1) : x € S(?)}

and its upper semicontinuous regularization A, (t) = limsup, ., A (t'),
which implies a logarithmically subharmonic metric on D.

On a standard way (see, e.g. [14]), one obtains that A, has at any
its noncritical point tg a supporting subharmonic metric Ag of Gaussian
curvature at most —4, and hence, k), < —4.

On the other hand, (16) yields that if the function f € ¥ has in D*
the expansion

f(2)=z24bpz™ +bpprz ™ 4, b #0, m>1, (18)

then each of the corresponding metrics and their envelope A (r) have
near r = 0 the form (10), which implies

tim 20— g 12O n0/ o]
r—0 7™M x€S(12) ]t]

> sup ‘ // z)dzdy|. (19)
YeAL(D), vl 4; =1 Huolloo
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Now we apply the following reconstruction lemma for Grunsky norm
proven in [13], which provides that this norm is the integrated form of
A, along the extremal Teichmiiller disks.

Lemma 5. On any extremal Teichmiller disk D(ug) =
{ée(to/o]loe)} € T, we have the equality

tanh ! [s(frio/llnolley) — / A (t)dt.
0

Together with Lemmas 3 and 4 and with the equality (19), this implies
the desired inequality (6), completing the proof of the theorem.

6. Additional remarks

1. Geometric picture. It follows from above that the value of Grunsky
norm »(f*) on Xq is located in the interval

tanh ™! p(1/a(f)) <t < tanh~! p(1),

where o(r) is the hyperbolic distance between 0 and ||zo|loc on the disk
{]z] < r}, taking the extremal g in the class of u (i.e., among quasicon-
formal extensions of f#|D* onto D), and «(f) is given by (6).

Generically, the Finsler metric \,, generated by »(f) on the space T
has the holomorphic curvature less or equal to —4, while the Teichmiiller
norm is determined by hyperbolic metric of curvature —4.

2. Small dilatations. Generically Theorem 1 provides a rough lower
bound a(f!0) for s(f!0). In the case of small dilatations ||u/|s, the
situation is somewhat different.

Using the variation (14) and holomorphic functions (11), one can
prove the following result established in [13] for f € Xg whose
Schwarzians belong to sufficiently small neighborhood of the origin of
the space T.

Proposition 1. For f € X(ID*) with sufficiently small norm ||S¢||B of
its Schwarzian,

() = alf) + OISy ), (20)
where the ratio O(||S¢||%)/|1S¢|IE remains bounded as ||S¢|ls — 0.
Theorem 1 yields that the remainder term in (20) is nonnegative.
3. Grunsky norm of homotopy functions. Consider the complex homo-
topy
fi(z) =tf(z/t) = 2+ bot + bit22 L+ bot3z 2+ ... D* x D — C,
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of functions f € Yg; it plays an important role in many applications.This
homotopy has a deep connection with Teichmiiller and Grunsky norms.

In particular, due to Kithnau’s result [21], for any f € ¥¢g with by # 0,
there exists a sufficiently small r,(f) such that the extensions of functions
fr with |t| < ro(f) are defined by nonvanishing holomorphic quadratic
differentials in D, and therefore, for such t the equality

#(fi) = k(fo)-

is valid (which yields the equality in (6) for such f;); generically, ro(f) <
1.

A point is that f;(z) = J;(2) + h(z,t) with J;(2) = 2 + b1t?/2; hence,
the function J; has the affine extension j;(z) = z + byt?Z with constant
dilatation.

It is not hard to establish, using the variation (14) and the properties
of bounded functions with sup-norm depending holomorphically on com-
plex parameters, that Teichmiller norms of f; and J; differ on a quantity
of order 3 as t — 0 (the proof is given in [18]).

4. Underlying features of (19). For any f € ¥ with the expansion (18)
the corresponding holomorphic map x ¢ : D — T generated by ¢t — Sy, (2)
has near ¢ = 0 the growth x ¢(t) = O(™"!) in B-norm; hence there exists
its quasiconformal extension f* onto D with dilatation k(f) = ||it|lecc =
O(t™+1). In representation (16), such yu is orthogonal to 1;(z) = 2!, | =
0,1,...,m—1.

However, under the additional restriction at z = 0, the corresponding
extremal Beltrami coefficient pg satisfies ||uollcc = O(t) as t — 0. This
is equivalent to applying Teichmiiller’s Verschiebungssatz in domain (E\

fH(D*) (see [13,33]).
Note also that m = 1 for a dense subset of f € Xg.

7. Open question. Find the functions f € X different from the known
case #(f) = k(f), on which the equality in (6) can be realized, i.e., with
#(f) = a(f)-
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