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Harnack’s inequality for degenerate double
phase parabolic equations under the
non-logarithmic Zhikov’s condition

MARITA SAVCHENKO, IGOR SKRYPNIK, YEVGENIIA YEVGENIEVA

Abstract. We prove Harnack’s type inequalities for bounded non-
negative solutions of degenerate parabolic equations with (p,q) growth

ug —div (| Vu P72 Vu+a(z,t) | Vu |72 Vu) =0, a(z,t) >0,
under the generalized non-logarithmic Zhikovs conditions

la(z,t) —a(y, ) |< Au(r)r®™", (2,1), (y,7) € Qr.r(wo, to),

_ _ dr

: a—p _ : _ B _

lim p(r)r®™" =0, lim p(r) = +oo, /u (r) =1
0

with some (> 0.
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1. Introduction and main results

In this paper we are concerned with a class of parabolic equations
with nonstandard growth conditions. Let €2 be a domain in R™, T >
0, Qp :=Q x (0,T). We study bounded solutions to the equation

up — divA(z,t, Vu) =0, (x,t) € Qr. (1.1)

We suppose that the functions A : Q7 x R™ — R™ are such that A(-,-,§)
are Lebesgue measurable for all £ € R", and A(z,t,-) are continuous
for almost all (z,t) € Q7. We also assume that the following structure
conditions are satisfied:
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where K71, Ko are positive constants and p < q.

Fix point (zg,t9) € Qr and set Qr, r,(zo,t0) = Q}}17R2(azo,to) U
Qh, 1, (@0, 10), Q. g, (20, t0) := B, (0) X (to — R2,t0), Qf, g, (%0, t0) ==
Bp, (.%'0) X (to,to + Rz), Ry, Ry > 0.

We assume that there exists positive continuous non-increasing func-
tion p(r) > 1 on the interval (0,1), lgr%] p(r)yrt=t = 0 with some

b € (0,1) such that

| a(x’t)_a’(yﬂ—) |§AM(T)Tq_p’ (x’t)’ (yaT) € QT,T(xO,tO) C QT’ (13)
with some A > 0.

Remark 1.1. Setting @(z,t,v) := vP + a(z,t)v?, v > 0, we note (see
e.g. [43]) that (1.3) yields the following (®,) and (®,,) conditions:

(@,) there exists K > 0 depending only on A such that for any K > 0
there holds

+ v 2 T—P\p— v
PG (zorto) (7") <SK(A+K )gpQr,r(x07t0) (7’)’ r<uv< KXr),

1

where \(r) = [u(r)] «», and

(®,) there exists K > 0 depending only on A such that for any K > 0
there holds

+ v > _ _
QSQT,T(:B()’tO) <;> < K(l + K(] p)lu(r)dsQr,r(l‘O,to) <;>7 r<ov < K,

+ pp—
here @QT’T@OJO)(U) o (x,t)eglfr}%xo,to) (z,t,0),
¢Qw(zo7to) (v) = (x,t)egg?(zo,to) o(x,1,v).

In addition, we assume that the equation (1.1) is degenerate at the
point (zg,tp) which means that there exists K3, Ry > 0 such that the
function

K
WY(xo, to,v) == P2 + a(xg, to)v? 2 is non-decreasing for v > R—3 (1.4)
0
Particularly, this condition is valid if p > 2 or p < 2 < ¢ and a(xo,ty) >
0 (see [42,43]). In the case p = q > 2, these equations are classified
as degenerate because the diffusion term depends degenerately on the
gradient Vu.
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Similarly, if we assume that ¥ (z, tg,v) is non-increasing for v > N
then equation (1.1) is singular at the point (xo, tp). This condition is valigl
if g <2orp<2<qand a(xg,tg) =0. This case will not be considered
in this paper we refer the reader to [41] for the Harnack’s inequality in
the case g < 2.

We will establish that non-negative bounded weak solutions of
Eq. (1.1) satisfy an intrinsic form of the Harnack’s inequality in a neigh-
borhood of (xg,%y). This property is basically characterized by the dif-
ferent types of degenerate behavior, according to the size of a coefficient
a(x,t) that determines the phase. Indeed, on the set {a(x,t) = 0} equa-
tion (1.1) has the growth of order p with respect to the gradient (this
is so-called p-phase), and at the same time this growth is of order ¢ if
a(x,t) > 0 (this corresponds to (p,q)-phase).

Before describing the main results, a few words concerning the history
of the problem. The study of regularity of minima of functionals with non-
standard growth has been initiated by Kolodij [28,29], Zhikov [55-58,60],
Marcellini [34, 35| and Lieberman [32], and in the last thirty years there
has been growing interest and substantial development in the qualitative
theory of second-order quasilinear elliptic and parabolic equations with
so-called “log-conditions” (i.e. if u(r) = 1). We refer the reader to the
papers [1,3-14, 19, 20, 23-27, 33, 39, 40, 44, 47-54] for the basic results,
historical surveys and references.

The case when the condition (1.3) holds differs substantially from
the logarithmic case. To our knowledge, there are a few results in this
direction. Zhikov [59] obtained a generalization of the logarithmic condi-
tion which guarantees the density of smooth functions in Sobolev space
WLr()(Q). Particularly, this result holds if p(z) > p > 1 and

log pu(| — yl)

) x7y€an7éy7
[log |z —y ||

| p(z) —p(y) <

and /[M(r)]—%%zﬂo. (1.5)
0

1
We note that the function u(r) = [log —]L, 0< LK<
T

above condition.

satisfies the

33

Interior continuity, continuity up to the boundary and Harnack's in-
equality to the p(x)—Laplace equation were proved in [1], [2] and [46]
under the condition

r

/ efw[u(r)]cﬁ = 400 (1.6)
0
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1
with some ~, ¢ > 1. Particularly, the function p(r) = [loglog —]L,
,

1
0 < L < —, satisfies the above condition.
c

These results were generalized in [38,42] for a wide class of elliptic
and parabolic equations with non-logarithmic Orlicz growth. Later, for
elliptic and parabolic equations, the results from [38,42] were substan-
tially refined in [21,41,43,45]. Interior continuity for double phase elliptic
and parabolic equations instead of condition (1.6) was proved under the
condition

__1.dr
/[u(r)] P = 4o (1.7)
0
In addition, in [21,41] Harnack’s inequality was proved for quasilinear
elliptic and singular (¢ < 2) parabolic equations under the condition

Sl 7 — (1.9
0
with some 8 > 0. We note that this condition is worse than condition
(1.7), but at the same time it is much better than condition (1.6).

Harnack’s inequality for non-uniformly elliptic conditions under non-
logarithmic condition was proved in [22]. Later, continuity and Har-
nack’s inequality under combining logarithmic, non-logarithmic, and non-
uniformly elliptic conditions were obtained in [37].

In this paper, we prove Harnack’s inequality for nonnegative solutions
to Eq. (1.1) under the conditions (1.4) and (1.8).

To describe our results let us introduce the definition of a weak solu-
tion to Eq. (1.1).

We say that u is a bounded weak sub(super) solution to Eq. (1.1)
if u € Cioe(0,T; L2 (Q)) N LL (0, T; W,2%(Q)) N L®(Qr), and for any
compact set E C € and any subinterval [t1,t3] C (0,7] the integral
identity

to
to
/undw + //{—um + A(z, 7, Vu)Vnldx dr < (=)0 (1.9)
t1
E t1 E

holds for any test function 50, neW (0, T; L2(E))NL1(0, T; W, 4(E)).
It would be technically convenient to have a formulation of a weak
solution that involves u;. Let p(z) € C§°(R"), p(x) > 0, p(z) = 0 for
|z |>1and [ p(xz)dz =1, and set
Rn

t+h

pr() == h7"p(%), up(z,t) :=h~t [ an u(y, 7)pn(z — y)dydr.

~+
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Fix t € (0,T) and let h > 0 be so small that 0 <t <t+ h < T. Now
we take t; =t, to =t+hin (1.9) and replace n by [ n(y,t)pn(x —y)dy.
R?’L

Dividing by h, since the test function does not depend on 7, we obtain

/ (%n + [A(m,t,Vu)]hVn> dz < ()0, (1.10)
Ex{t}

for all t € (0,T — h) and for all non-negative n € W, 4(E).

We refer to the parameters M = supu, 4, K1, Ko, K3,n,p,q as our
Qr
structural data, and we write «y if it can be quantitatively determined a

priori in terms of the above quantities only. The generic constant v may
change from line to line.

As was already mentioned, the behavior of the solution in a neigh-
borhood of a point (xg,ty) depends on the value of the function a(xzg, to).
We will distinguish two cases: a(zg,tg) > 0 (so-called (p,q)-phase) and
a(xo,tp) = 0 (so-called p-phase).

First result is Harnack’s inequality for positive solutions to (1.1) in
the (p, ¢)-phase.

Theorem 1.1. Fiz point (zo,ty) € Qr, let w € C(Qr) be a positive
bounded weak solution to Eq. (1.1) and let the conditions (1.2)—(1.4) be
fulfilled. Assume also that

a(xo,tg) > 0.
Then there exists R > 0, depending only on the data and a(zg,to), and

there exist positive numbers ¢, C', depending only upon the data, such that
for all p < R?, either

u(zo,to) < Cp2, (1.11)
or
u(zo,to) < C inf wu(-,t) (1.12)
BP(JCO)
with t € (tg + %H,to +0), 0:= u2(x0 o) provided that
(st 0 )

Qpo(z0,t0) C Qpp(wo,t0) C Qr p2(T0,t0) C Qsr,sr)2(To,to) C Q.

The function ¥(zo,to,v), v > 0 was defined in (1.4).
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Remark 1.2. Choosing R>0 from the condition ARIPpuR=1a(xo, to),
we have 2a(zg,to)<a(z,t)<Za(xo, to) for any (z,t) EQRJ:EQ(I'Q,tQ), and
by the Young inequality conditions (1.2) can be rewritten as follows:

_ K 3
ooy A1 08 > St s (167 + alan 1) > ZEAlel g >2,
1 Ky . »

a (o, to) |A($’t’5)|<m(|5|” +a(x,1)|E77") <

1K) (| €177 +alwo.to) +7).

If (1.11) is violated we set T = a(xo, to)t which transforms Eq. (1.1) into

_ - 1
Ur — diVA(I’,T, Vu) = 07 A= m
0,40
_ a
in @, 4(wo,to) ,0 = ym. By the results of DiBenedetto, Gia-

nazza and Vespri [16], returning to the original coordinates, it follows
that B

_ _ 0
to) < C inf wu(-,t), te (to+ 30, tg+0), § = ——,
u(xo, to) Bif(lxo)u( ), t€(to+ 50, to+6) (o o)

provided that u(xo,to) = vp [a(zo, to)]_ﬁ, which holds if (1.11) is vio-
lated. Indeed,

u(zo,to) > cp? > cpR™" > (A, M)p w77 (eR)[al(o, to)] 77 >

> (A, M)p [a(zo, to)] 77

To complete the proof of Theorem 1.1 we note that if inequality (1.11)
is violated then

u(xg, t a2 u(xg, t
a(xoﬂfo)(M) < ¢($0,to7w) <
p p
t
< a(xo, to) (u 700 )
t
< a(zo, to) (u 7010 >
to)\ 1~ 2 1
< (G, A)alzo, to) (@) {1+ (B

q—2
< 24(C. Aao. 1) (@)

Therefore, Theorem 1.1 is a consequence of the results by DiBenedetto,
Gianazza and Vespri, we refer the reader to [16] for the details.
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Our next result corresponds to the p-phase. Set
1

Ar(r) = [p(r)] ="

Further we will also suppose that with some b; > 1 the following condition
holds

by
M(p) < <3> (), 0<r<p. (1.13)

r

Note that for the function z(r) = [log 1]%, L > 0 this condition is fulfilled
automatically.

Theorem 1.2. Fiz (xg,tp) € Qr, let uw € C(Qr) be a positive bounded
weak solution to Eq. (1.1) and let conditions (1.2)—(1.4), (1.13) be ful-
filled. Assume also that

a(.%'o, to) = 0,

and
(A(z,t,&) — Az, t,n)(E —n) >0, EmeR™, E#0. (1.14)

Then there exist positive numbers c, ¢, C' depending only upon the data
such that for all p > 0 either

u(wo, o) < C

(1.15)

or

C
u(xo, to)<~—— inf wu(-, 1), 1.16
(70 00516y ity 421 (116)

with t € (to + cd,tg + c10),0 := pP (A1 (p)u(xo,t0))> P, provided that

Qp0(0,t0) C Qpp(To,t0) C Qspsp(T0,to) C Q7.

Remark 1.3. We note that in the case u(p) = [log %]L, 0< LK<
q—7p . . .
———— inequality (1.16) transformes into
1+n(q—p) (11
(0,t0) < Clog ~ inf u(-to+0), 0= cpP log 5\ (1.17)
u(xg,to) < Clog — inf wu(-,t9+0), =c <7> . .
P Bp(xo) u(o, to)

We would like to mention the approach taken in this paper. To prove
our results we use DiBenedetto’s approach [15], who developed innovative
intrinsic scaling methods for degenerate and singular parabolic equations.
For the p-Laplace evolution equation the intrinsic Harnack’s inequality
was proved in the papers [16,17].
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The difficulties arising in the proof of our Theorem 1.2 are related to
the so-called theorem on the expansion of positivity. Roughly speaking,
having information on the measure of the "positivity set" of w over the
ball B,.(Z) for some time level ¢:

[ {z € B(2) : u(z,t) = N} = a(r) | Br(2) |,

with some » > 0, N > 0 and a(r) € (0,1), a(r) — 0, as r — 0, and
using the standard DiBenedetto’s arguments, we inevitably arrive at the
estimate

u(x,t) > %exp ( -m [oz(r),u(r)]fw), x € Bo(Z),

for some time level ¢ > ¢ and with some 71,72 > 1. This estimate leads
us to a condition similar to that of (1.6) (see, e.g. [38,43]). To avoid this,
we use a workaround that goes back to Maz’ya [36] and Landis [30, 31]
papers. So, in Section 3 we use the auxiliary solutions and prove integral
and pointwise estimates of these solutions.

Another difficulty arising in the proof of Theorem 1.2 is also closely
related to the theorem on the expansion of positivity. Namely, if we ex-
pand the positivity from the small ball B,.(Z) and time level ¢ to the large
ball B,(zo) and some time level ¢ > ¢ in the case when a(zg,ty) = 0 and

o ma(x . a(z,t) > 4A p(4r)(4r)?P for some (z,t) € Q, (0, to), we need
4r dr i‘yt

to obtain the lower bound of a solution independent of o ma(x 5 a(z,t).
4r,4r z,t
For this, we also use the auxiliary solutions defined in Section 3.

The rest of the paper contains a proof of the above theorems. In
Section 2 we collect some auxiliary propositions. Section 3 contains the
proof of the required integral and pointwise estimates of auxiliary solu-
tions. Expansion of positivity is proved in Section 4. In Sec-
tion 5 we give a proof of Harnack’s inequality using pointwise estimates
of auxiliary solutions.

2. Auxiliary material and integral estimates of solutions

2.1. An auxiliary proposition

The following lemma, will be used in the sequel, it is the well-known
De Giorgi-Poincare lemma (see [15], Chapter I).

Lemma 2.1. Let u € WHY(B,(y)) for some r >0, and y € R™. Let k,l
be real numbers such that k < 1. Then there exists a constant v depending
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only on n such that

(L= k) Al Be () \ Ay] < 477! / Vulda,

Al,r\Ak,r

where Ay, = Br(y) N {u < k}.

2.2. Local material and energy estimates
Further we will need the following local energy estimate.

Lemma 2.2. Let u be a bounded weak solution to (1.1) in Qp. Then for
any cylinder Q_,(Z,t) C Qp, any k € R, any o € (0,1) and any smooth

1
C(z,t) which vanishes on 0B, (T) x (t — 0,t) and |V{| < — one has

sup / (u —k)2¢%dx + 7! // O(2,t, |V (u— k)x|)ldzdt <

t—o<t<t

Br(j) Q;e(f,ﬂ
< [ w-0ica -0ty [[ (- bRiGI dodes
By (z) Q.. 0(T:1)

My (k,r,0)
+ 228 oo (2B 0otz 00 (- (2)

here My (k,r,0):= sup (u—Fk)t.
Qr,e(f@

Proof. Test identity (1.10) by n = (u, — k)+(9, integrating it over (t —
0,t),t € (t — 6,t) and then integrating by parts in the term containing

%. Letting h — 0, using conditions (1.2) and the Young inequality,

we arrive at the required inequality (2.1), which completes the proof of
the lemma. O

The following lemma will be used in the sequel.

Lemma 2.3. Let u be a bounded non-negative weak solution to Eq. (1.1)
in Qp. Suppose that for some Q. 4 (T, 1) C Qp

{Br(z) : u(,1) < N} < (1—ao)|Br(7)], (2:2)

for some 0 < N < M and some ag € (0,1). Then there exist numbers e,
do depending only on the known data and aq such that for allt € (t,t+6)

{BA(®) : (1) < 20N} < ( - %) 1B,(@)]. (2.3)
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L er (v) I i@+ (v)
1/}54r,4r(a’:,i) (%) ’ Qar,ar (7.1 v2 Qarar(@H)N7)

provided that 6 < 4r.

= (2.4)

Proof. We use Lemma 2.2 in the cylinder Q:rg(i“, t) and ¢ € C§°(B,(z)),

1

0< (<1, ¢(x) =1in By_g) (), [V(| < —, where o € (0,1) will be
or

fixed later. By Lemma 2.2 and (2.2) it follows that

/ (N—u)%_dngQHBT(:cO):u(-,t_)gN}H—
B(lfo')r(i)x{t}

F90 (PN max a(e, O INYB| B, (7)] <
Q4r,4r(f7a

< N2{1 — Qg —|—'ya*q50}\Br(£)|.

We infer from this that for all t € (£, + 0)

— o796
{B,(3) : ult) < 2N} < (na e+ 60;3) 1B,(®)].

Choosing o such that no < %a%, and g( such that 5 < 1+ ao,

(1 —¢o)
and finally, choosing dyp such that dyyo~9(1+agp) < iag, we arrive at the
required (2.3), which completes the proof of the lemma. O

2.3. De Giorgi type lemmas

The next lemmas will be used in the sequel and they are a consequence
of the Sobolev embedding theorem and Lemma 2.2.

Lemma 2.4. Let u be a bounded non-negative weak solution to Eq. (1.1)
in Qp. Let (Z,t) be some point in Qr such that Qo(Z,t) C Quarar(Z,T) C
Qp. Fix & € (0,1) and N € (0, M), then there exists number v € (0,1)
depending only on the data and &, r, 0, N such that if

{Qo(Z, 1) u < N} < wlu(dr)]"Q, 4(2,1)], (2.5)
then
u(x,t) = &N,  for a.a. (x,t) € Q) ,(Z,t). (2.6)

Likewise, assume that with some vy > 0

<E>‘”’ max a(z,1) <o, (2.7)

r Q47‘,47‘ (jvf)
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then there exists number v € (0,1) depending only on the data and &, T,
0, N, v such that if

{Q,5(z.1) : u < N} <v|Q, (T, 1), (2.8)
then
u(w,t) > &N, for a.a.(a,t) € Q7 , (.. (2.9)

Proof. For j =0,1,2,..., we define the sequences r; := g(l—i—Q_j), 6 =

0 PN ri+Tien 4 05+ 011 —
5(1 +2 .7)’ rj = %’ 9] = % B = BT’j(xO)a B‘7 =

Bz (z0), Qj = Q;jﬂj(x(]a%)’ Q; = Q = (550, t), kj = &N+ (1-
&), Ajg, = Qi N{u < kj}, A],kj = Q; N{u < kj}. Let ¢; €
Cs(B;), 0 < ¢ <1, ¢ = 1in By and |V(;| < 727/r. Consider
also the function x;(t) = 1 for ¢t > t — 041, x;(t) = 0 for t < ¢ — 6;,
0< x;(t) < 1 and x| < 727/6.

Lemma 2.2 with such choices implies that

sup /(u— quqdm—i— // (x,t,|V(u—Fkj)- \)ququdt
£—€j<t<£B_
J

v B k;
<fy2ﬂ<0 B+ 2’<72%4r4m>< >>! Ajr;| <

< A2 EF M (14 - A |, (2.10)
S ’7 Q4r 41"(1 a w ( ) 75 k‘ .
Q47‘ 47‘ x E)

where 1,[)54““(%@(%) was defined in (2.4).

By the Young inequality and (2.10) we have

//W _4r4r$f)<( _Tk) >!Cq Ydadt <

b - (u—kj)
S r // PQurar(3,) (T) |V (u— ‘)_]quxg»dxdt <

J

// (xt Y- )\V(u— ) |¢Ixddadt <
//< )> it // (0,19 = ) )¢
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2J N r?
oy ddrdt<ny @54r4r<m< ) Lo Al (211)
¢Q47‘47‘$E)( )

By (2.10), (2.11), using the Sobolev embedding theorem and Hélder’s
inequality, we obtain

2
(1—8)N\" _ (1—E&)N
( o1 ) Pova@n| o, Akl <

(u—kj)- 1
// - Q4r4r(xi)<+ (Gixj)  Trdrdt <
1
S 7( sup /(u - kj)%Cf)(?dx) X
t*9j<t<tB

J

I (Barea (M) 50)
Q

J

2],\/ N 1+1 9 1+%
n r ‘ 1+l
Ar 4r\T, r

dzdt <

which by (2,) condition yields

| A1k ; _2 0
i = gl < a1 - ) {wa(m( )—} 9

2 + 1
r nol4=
X <1 + > Y. "
+ N J
0¢Q4r,4r(fvi) (7)

From this, by iteration, it follows that .hrf |Ajx;| = 0, provided that v
_]*) o

is chosen to satisfy

T2 T2

—n—1
1+ > , (2.13)
9¢54r,4r (53,{) (%) < 9w54r,4,~ (i’,ﬂ (%)

v=9"H1-&)"rt?

which proves (2.6).
N
To prove (2.9) we choose kj := {N + (1 — {0) , by condition (2.7)

1 70
— m t — k)L < Eu—k)P
rd Qm,j(éf) al@, ) (u J)_ rP (u ])_
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N\P 2 . N e
(7) S YO, D) <7> < (1 +’Yo)<7> .

Therefore inequalities (2.10)-(2.12) can be rewritten as follows:

and

sup /(u — kj)%ngg-dw + // IV (u — k) - P¢IxGdwdt <
Qj

t—0;<t<t
./ N\P rP
< 207 <?> (1 + 7«9]\/1’2) |Aj,kj|,

J

and

<(1 — &)V

p+2
91 > [ Ajr ik | <
1

, N\ PO+ AN L
< y270rP <7> (1 + W) | Ajr |,

from which it follows that

3=

2

Sl

Yin1im |Aj+1,kj+1|
= bR
’ 1Qj+1]

which yields lim |A; | =0, provided that v is chosen to satisfy
j—+oo B

6Np2>

1+1
rP no1+d

ONP—2

-1 npra_ "7 e\
v=r (1 — 50) HNP*2 1 + W s (214)
which proves (2.9). This completes the proof of the lemma. O

3. Integral and pointwise estimates of auxiliary solutions

Fix (zo,t0) € Q7 such that a(xo,t9) = 0 and let (z,7) € Q,, (o, t0) C
Qspsp(0,t0) C Q. Let 0<r < ip, EC B.(z), | E|[>0,0< N < M,
and we also suppose that

|E|
NA(r) o > p. (3.1)
We will consider separately two cases: 0 ma(x . a(z,t) < 4Au(8r)(8r)4™P
87,87 i‘vt

and max a(x,t) = 4A pu(8r)(8r)7P. In the case max a(x,t) <
QBr,Br(fyi) ( ) IUI( )( ) QBr,Br(i'ya ( )

4A p(8r)(8r)97P, we consider the function v(z,t) = v, n(z,t,Z,t) €
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C(L, T + 8m1; L? (B, (%)) N LI(E, T + 871; Wy U (Bs,(%))) with 7 = p? x

E|\*7?
X (N A(r)%) as the solution of the following problem
p
vy — divA(z,t,Vv) =0, (z,t) € Q1 := Bg,(Z) x (t,t+8m1), (3.2
v(z,t) =0, (x,t) € O0Bg,(T) x (t,t +871), (3.3)
v(z,t) = NA(r)x(E), « € Bg,(Z). (3.4
In addition, the integral identity
ovy,
wralhs [A(z,t, V)],V | do = 0, (3.5)

Bs, (Z)x{t}

holds for all ¢ € (£,7 4 87 — h) and for all n € W,*(Bs,()). Here vy, is
defined similarly to (1.10).

In the case max _a(z,t) > 4A p(8r)(8r)?7P, by our assumptions
Q8T,8T(53713

there exists p € (0, p), such that
max _a(z,t) = 4Ap(4p)(4p)T P, max _a(x,t) < 4Au(8p)(8p)1P.

Qap,45(T,0) 8p,85(T,t

Let pg be the maximal number satisfying the above conditions. We con-
sider the function w(z,t) = w, n(2,t,Z,t) € C(t,t + 872; L*(Bsp, (Z))) N

N LAt T + 8793 Wy (Bsy, (7)), 2 = 9}, <NA(T)@
of the following problem ’
wy — divA(z,t, Vw) =0, (z,t) € Qa2 := By, () x (I, +872), (3.6)
w(z,t) =0, (z,t) € 0Bgp,(T) % (t,t+ 87), (3.7
w(z,t) = NA(r)x(E), x € Bgy,(T).
In addition, the integral identity

—p
) as the solution

Gwh

/ (Wﬁ + [A(z, ¢, Vw)]hVn> dxr =0, (3.9)
Bspg (@)x{t}

holds for all t € (,7 + 875 — h) and for all € Wy"%(Bg,, (z)). Here wy,
is defined similarly to (1.10). The existence of the solutions v and w
follows from the general theory of monotone operators. Testing (3.5) by
n = (vy)- and n = (v, — N)4, integrating it over (¢,t), t € (¢, + 87p)
and letting h — 0, we obtain that 0 < v < N < A(r)M. Similarly we
obtain that 0 < w < N < A(r)M.

Set D(p) := {(m,t) Jx—z P +(t—f)<N)\(7“)| E |>P gpp}.
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Lemma 3.1. Next inequalities hold

E
e, <AL @) e @i\ D) (3.10)
E
we,) MO @0 e\ D). @1
0
Proof. For fixed o € (0,1), p < s<s(l4+0)<2p,and j =0,1,2,...

set s, :=s(1+0)— ki =k—2"9k, k>0 D;:={(z,t):|z—Z [P

E,
|ENT?_
+(t—1) NA(r)—— < sj}, and let My := sup v, My, := sup v,
P Q1\Po Q1\Pos
and consider the function ¢ € C®(R"™1), 0< (<1, (=0inD;,( =1

9j+1 ‘E‘Qp
i Q\ Dy, |96 I< 22 fa < 20 7 (ML) st

(3.5) by n = (vp, — k;j)4:£9, integrating it over (¢,t), ¢t € (¢, + 871) and
letting h — 0, we arrive at

sup / (v—k)i(qdm—i-/ V(v — kj)4|P¢ldadt <

t<t<t+8T1

Bz, (Z)
// )2 1Gil ¢t 1dwdt+v// z,t, (v — kj) 4 |V¢|)dzdt <
Q1\D; Q1\D;
< yo 92V // v — dxdt +p // v — k)b dadt

Q1\D; Q1\Dj
Above, we also used the following inequality, which is a consequence of
our choices, condition (&,), the fact that v(z,t) < MA(r) and Q1 C
Qﬂvp(jaf) C Q?p,2p(x0’t0) :

oot 520 < (52 (1 g e 0770000 <

< (” — kﬂ’>p (1 +  max a(x,t)ppq(M)\(r))qp> < (” - kﬂ’>p x

P + Q2p,2p(70;t0) P +

S N D (R S

where  (z, t) € Q1 \Dj.
Set Ajk; :=D; N{v > kj;}, then by the Sobolev embedding theorem

from the previous we obtain
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n+2
Yj+1 = // v — kj)E dedt < // v—ki), " Cqua:dt X
Ajieg Ajitksy
_p
n+2
2
X |Ajg; |72 < sup / (v — kj)%¢lda X
t<t<t+8r;
ng :73)
=
q 2
J[w@=rchr| 14,07 <
—1 =
o\ " (1) 4+t
< yo 120 (k,; 5+ p) KPRy TR =0,1,2,

Iterating the last inequality, we get that ‘hT y; = 0, provided k is
j—+oo

chosen to satisfy

_ ntp
2o (T4 ) Pdadt 3.12
=0 T +p vPdxdt. (3.12)

Q1\Do

To estimate the integral on the right-hand side of (3.12), we test identity
(3.5) by n = min(vp, Mp). Integrating it over (¢,t),t € (¢,t 4+ 871) and
letting h — 0, for vz, = min(v, Mp), we obtain

sup / UJZ\/[Oda: —{—//@(m,t, |Vong ) dxdt < vMoNA(r)|E|. (3.13)

t<t<t+81y
BSp j) Ql

E
Assumming that k > (pP/11)7—2 S = NX\(r )’ n‘, from (3.12) and (3.13)
p

by the Poincare inequality, using the fact that v = vy, on Q1 \ Dy, we
obtain that

M2 < yo Tp P // vPdadt = yo~ Tp P // vﬁ’/fodxdt <

Q1\Do Q1\Do

< ’ya_“/p_"/ |Vu, [Pdzdt <
Q1\Do

E
<yo Tp" // D(z,t, |Vupg|)dedt < ’}/O'_’YMQN)\(T‘)%. (3.14)
p
Q1
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Using the Young inequality, we obtain for every e € (0, 1)

E
My < eMy+ o 7eTNA(r )| |
pr

from which, by iteration, the required inequality (3.10) follows.
The proof of (3.11) is completely similar, we also use the inequality,
which is a consequence of our choices

b <x,t, (W= kj)+>< (w — kﬂ)i@ + max a(x,t)pf” (MA@))H)

o £0 on PO (@, E)

< (w_kj )i<1 +  max a(a:,t)pg_q(M)\(r))qp> <

pO Q8P078P0 (jvf)

< (1) (1+msmane ) <

o +

— k. p — k. p
<<w j) <1+7Mq_”><'y<w j> , (z,t) € Q2\ Dy
o + Po +

This completes the proof of the lemma. U

Lemma 3.2. There exist numbers €1,a1,01 € (0,1) depending only on
the data such that

'{B4p(m) cv(t) < alNA(r)’[i’H < (1 —oa1) | Bap() | (3.15)

for some time level t; € (t+ 6171, t+ 71),

K2

'{B4p0(m):w( 9) < €1N)\()p0

b<a-aniBn@ | o)
for some time level ty € (t+ 6172, T+ T2),

Proof. Let Cll(ﬂf) € C°(Bsp(7)), 0 < Q(x) < 1, G(x) = 1 in Byy(7),
| VGi(z) |< o Testing (3.5) by n = v, — NA(r){{(z), integrating it over
(t,t+ 71) and letting h — 0, we obtain

AR | vt

2
Bsg,(Z)

t+71

+y7 / / O(x,t,| Vo |)dudt < NA(r) / v(@, & +m)¢ (2)de+

t Bsp(Z) Bz, (Z)
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)\ £+T1
AN (r)
p

o(x,t,| Vo )¢ ) dedt = 1) + I, (3.17)
t Bsp(T)\B2,(T)
Let us estimate the terms on the right-hand side of (3.17). By Lemma
3.1 we obtain
L<aN )P E|+
2| B
P

Let Go(z) € C*(R™), 0 < C2(2) < 1, G(x) = 1in Bs,(T) \ Bay(7),
Ca(z) =0 for z € B%p(f) and for z € R"™\ By,(7), | Via(z) | < vp L

K2

7

+YNZ[A(r)]

(3.18)

{B4p(1‘) : U(-,E—i— T1) > €1N)\(7“)

Using the Young inequality with € = egNA(r) | EJ, where gy € (0,1) to
be determined later, we obtain ’
t+711
I < yNe120) / / B(x,t,| Vo |) | Vo | C(a)dadi+
g t Bup(@)\B3 (1)
t+r
+ VNM / / o(x,t,e)dedt = Is + Iy.  (3.19)
g t Bap(7)

By condition (€)) we have

p—1
max ¢ (:c,t,NMr)'pfil') <o (Nw)' L ') |

Q2p,2p(x0,t0)

SO

pt | E |> .
€ max x,t, NA(r B, (%) | n <
P 0 Q2p,2p(0,t0) ¥y ( ( )pN—i—l ’ P( ) ’ 1

<Al NP B (3:20)

To estimate I3 we test (3.5) by n = v, (J(z), integrating it over (¢, +
71) and letting h — 0, we arrive at
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From this, by condition (g)) and Lemma 3.1 we obtain

A(r v €
e 1 ) 2
Is< N—=—"= / / sz 2p(Z0,t0) <;>d$dt<7%N [)\(7“)] ‘ E H‘

t B4p \Bg :Z'

NPOPE S
HW/ HB@(%)\B

Collecting estimates (3.17)—(3.21), we arrive at

(@): (-, t)Ze1 NA(r )f}‘dt (3.21)

[SI[oN

1 _
SN 1< (2 ke 4 ) MR | B+
0

E E
N pEP B o4 m) > a2+
BT B
N2A())? / By, (Z) :v(-,t N dt
O B EVCIEEERIS
t
b1 1 1. 1
Choose €y such that ve, = 3’ and e such that ve1(1 + 6—) =g
0

from the previous we obtain

_ E
A < HB4,,(:E) cv(t+ 1) = el NA(r) | o | }' +

t+m1
1
_|_ R
T1

{34,,(@);@(- t) > eNA()'f'}'dt

From this, we conclude that at least one of the following two inequalities

holds

‘{B4p(;z) cv( T+ 1) = el NA(r) | ,le | H > % | Bay(Z) |,

t+71

J

From the second one it follows that there exists t; € (t + %Tl,l? + 71)
such that

{B4p(:ﬁ) () > elN)\(r)|lf:L|H > %ﬁ | By)(@) |-

1
B
47_1’ 4p(

[{B(@) o) > coMA L > 7).
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indeed, if not, then

t+71
(1— %)7—1 | Bap(Z) |< / HB4P(E) cv(,t) < 61N)\(7“)|5/;|}' dt <
erﬁTl
t+11 i ’ B ’ 1 i
< {B4p(x) cu(+t) < alN)\(r)—n}‘ dt < (1-— g)ﬁ | Bap(Z) |,

reaching a contradiction. This proves inequality (3.15).
The proof of (3.16) is completely similar, we also use the inequality,
which is a consequence of our choices

+ | E | v | ET\"
Qom0 (20 (NA(T)/%“) S (NA(T) py )
this completes the proof of the lemma. ]

4. Expansion of positivity

The following theorem will be used in the sequel which is an expan-
sion of positivity result. In the case of the p-Laplace evolution equation
this result was proved by DiBenedetto, Gianazza and Vespri [18], in the
logarithmic case this theorem was proved in [11].

Theorem 4.1. Let u be a mon-negative bounded weak solution to
Eq. (1.1) and let conditions (1.2)—(1.4) be fulfilled. Fiz point (x,tg) €
Qp such that a(zg,ty) = 0, and let for some p > 0, for some 0 < N < M
and some § € (0,1),

Qp0(Y,5) C Qap2p(0,t0) C Qspgp(xo,t0) C Qp, 6 =3p” (N)\(P))%p-
Assume also that
[ {Bp(y) s ul-;s) K NA(p)} IS (1 —a) | Bp(y) |, (4.1)

for some o € (0,1). Then there exist o9 € (0,1) and 1 < C; < Cy
depending only upon the data and o, such that either

N A(p) < p, (4.2)
or

u(z,t) = ooNX(p), forall (z,t) € Bapy(y) X (s+ C10,5+ Ca0). (4.3)
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Proof of Theorem 4.1
We will suppose that inequality (4.2) is violated, i.e.

C«NX(p) = p, (4.4)

where C, is a positive number to be chosen later depending on the known
data only. By our assumptions and by (@) condition

NA(p)\"? NA(p)
( p ) <¢5p,p<y,s>< p ><

NA(p) NA(p)\"™?
+
g wQ2p’2p(1.O,tO) < p > g 'Y( p Y

therefore inequality (4.1) and Lemma 2.3 with r replaced by p, N replaced
by NA(p)e™ 7,7 > 0 implies that

aZ
(Bl uls + o (VA P<zoNe 7 (12 5 ) Bulo), (49

for all 7 > 0 and &y = v~ 18, & is the number defined in Lemma, 2.3.
Following [16], we introduce the change of variables and the new un-
known function:

_ e

x=1y+z2p,t =5+ 0pP(NA(p)e )P, hiz, 1) = u(z,t).

(NA(p)e™) () = a0

Inequality (4.5) transforms into h as
o2
’ {Bl th < 60} ’< <1 - 7) ‘ B1 ‘, B1 = Bl(O), (46)
for all 7 > 0. Since h > 0, the formal differentiation gives
_ e’ p—1 _

h-=h — 2)4, —_— = divA(z,t,Vh) + h, 4.7
L2 () = dvA@LTR LA @)

where A satisfies the inequalities

A(z,t,Vh)Vh > (p — 2)50K1< | Vh |P +a(z,7) | Vh |4 )
(4.8)
| A(z,t,Vh) |< (p— 2)501(2( | Vh |P7! +a(z,7) | VR |7! >

NA(p)
eTp

where a(z,7) = ( >q_pa(y + 2p, 5+ 60pP (N A(p)e™T)27P) .
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Lemma 4.1. For every v there exists s, > 1 depending only on the data,
a, 0y and v such that

€0

{a.in< 2 <vial (4.9)

95+ p—2 98 p—2
) A(5) )
€0 €0
Proof. Using Lemma 2.1 with k = ks11, | = ks, ks 2 , due to (4.6) we

obtain for every 1 < s < s, — 1

where Q, 1= By X <<

(b= ko) [ Aun(r) [< 907 [ [Vh|dey Ar) = {Brsh <,
As(T)\Asy1(7)

for all 7 > 0. Integrating this inequality with respect to TE(k‘E:p , 21{:2:1) )
and using the Holder inequality, we have

p—1
(ks —k5+1)p U] Agyq |P I< (o / | Vh P | As\ Asy1 |, (4.10)
2277
where Ag := f As(7)dr. To estimate the first term on the right-hand
ks*

side of (4.10) we use Lemma 2.2 with k = ks, ( € C§°(Q.), Qs = Ba x
(3K2TP4k3TP), 0< ¢ <1, ¢ =11in Qu, | VCI< 2, | ¢ |< 2KE % Due to
(4.8) we have

//\Vh\pdxdTgy//(h—ksf | ¢ | dedr+
As Q.

+7//(h — k)P | VC P d$d7’+’7//d(z,’7')(h — ko)L | VC |? dwdr <
2. g
<o (1R P maxaan)) Q. .
Q*

2%% \p— _
I, > 2, then by (4.1) dgp?(NA(p)e")27P < p, and therefore
by condition (&)

MegA or
kI™Pmaxa(z,7) < <807(p)> max a(x,t) <
P Q2p,2p(x0,t0)

*
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< A<M€OTMP)>q_pu(2p)(2p)q_” <A Pulp) =,

SO
/ | VR |P dedr < kP | Qx| . (4.11)
As

Combining estimates (4.10) and (4.11), we obtain

_p_ _1
| Asp1 |71 Qe [P 1 vy [ As\ Ay |-

Summing up this inequality for 1 < s < s, — 1, we conclude that
_p=1
| As. [<(ss=1) 7 | Qu |,

-1
choosing s, from the condition (s, —1)_% < v we arrive at the required
(4.9), which completes the proof of the lemma. O

Using the fact that k¢ ? maxa(z,7) < v, by Lemma 2.4 from (4.9)

*

we obtain that

€0 5 [ 925« p—2 7 [ 25x p—2
Moz g @oen < (HE) L (E) )

This inequality can be rewritten in terms of function u as follows

Sx
(2

<0 )p722_5*_1N)\(p),

u(z,t) = eoe

= 528 yp- _ _ T 25 \p—
fmau&weBﬂwXG+%wbwp%%NMmfpﬁ+%wbwp%p
2—
(VA0
) . = = B2 yp-2 = < T(2Eyp-2
This proves Theorem 4.1 with C7 = dget" <o and Cy = dge?" <o

5. Harnack’s inequality, proof of Theorem 1.2

Fix (zo,t9) € Qr such that a(zg,ty) = 0 and for 7 € (0,1) construct

. 2
the cylinder Qr := B, (o) x (to — (Tp)? (uoA(p))” ", t0), uo = u(xo, to).
Following Krylov and Safonov, we consider the equation

1
M; = N;, M, :=supu, N;:=-up(l-— 7)7"7)\1('0) ,
Q- 2 A ((1=17)p)
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Let 79 be the maximal root of the above equation and u(y,s) = N;,. Let
1-— 72

r= p and set 0 =
N
+ 0
Y Qurar (9:5) <T)

2
N, N, \P2 L
T/ngm(y,s)( 7,0) Z < r0> > (uo)\l(P))p ;

we have an inclusion Q;(y,s) C Q1+x, so by (1.13) there holds
2

, since

sup  u < 2"up(l —719)" Ai(p) =2"N A1 (2r)

_ ANV ~ < VN
Qro(:9) A (5520) ° Ai(r) ’

Further we will assume that inequality (1.15) is violated, i.e.

o (5.1)

A(p)’
with some C' > 0 to be determined later depending only on the data.

Claim 1. There exists number v > 0 depending only on the data such

that
{90z 2 A s i Qo1

Indeed, if not, we apply Lemma 2.4 for the function 2"*t% N, — u with
the choices

2n+b1

1
_)N’Toa 50 =

N = (2nt0
2

3
L a,
2

condition (5.1) implies that 6 < r, therefore we conclude that u(y,s) <
%NTO, reaching a contradiction, which proves the claim.

Claim 2. There exists time level 5 € (s — (1 — g[,u(r)]_")G,s) such
that

—-n

'{Bmy):u(-,swwa)}‘> A" gyl (52)

2 = vlu(r)]™

If not and if inequality (5.2) is violated for all ¢ € (s—(1 —%[,u(r)]‘")@, s),
then by Claim 1 we have

(1 - V[M(T)]in) ’ ra y7 ‘<' QT 1_%[M(T)]—n)9(y73) HETAS ]\;TO )\(T)}'<

7

<@t < 2 < 0wt 1@ |
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and reach a contradiction. This proves inequality (5.2).
First we assume that

max a(x,t) < 4Ap(4r)(4r)P
Q47‘,47‘(y7§)

and construct the solution v(x,t) = Noy (x,t,y,8) with

1
7’75

N = ]\;TO and FE = E(8) := {Br(y) cu(-, 8) = ]\;TO )\(r)}

of the problem (3.2)-(3.4) in Q; = Qg'pﬁn(y,g) where 71 = pP x

N E(5) \*P
><< 2T° )\(7")‘ (s) ‘) . Inequality (3.15) of Lemma 3.2 yields
p

| E(5) |

'{B4p() o 12) < LN A S

}' < (1= 1)|Bap(y)

for some time level t; € (540171, 5+71) and the numbers €1, 1,01 € (0, 1)
depended only on the data.

By (5.2) |E(5)] > g[,u(r)]*"]Br(y)], therefore, since u > v on the
parabolic boundary of @1, by the monotonicity condition (1.14) we obtain

{But: ut.) < e (2) | <
<[{Bu e < v 2 <

'{34,,( )t v(-t1) < et Ny A(r )‘Ep(f”}'«l—al){&p(y)

, (5.3)

for some time level t; € (§+ §171,5 + 11).

From (5.3) by Theorem 4.1 with N = 6lgNTO [pe(r)]—™ <C) we have
p

n
v afr
u(z,t) = Ny = 0051§NTO)\(T)[M(7’)] "(;) , x € Boy(y),
for all t € (t; + C’lpprfp,tl + C’Qpprfp), provided that ogNy > p
Since B,(xg) C Ba,(y), recalling the definition of N, N; and r, using

(1.13) and using the fact that A\1(p) = A(p)[p(p)]~", from this we obtain

u(z,t) = 2U+2811/u0)\1( ), x € Bpy(xo), (5.4)
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for all tE(tl—{— Clplez_I: t1 +C’2pPN12_ ) provided that o +2 611/U0)\1( )

p, which holds by (5.1) if C' is chosen to satisfy C > 2" 25, 51_11/*1.
By our choices t1 > 540171 = s—0 > tog—pP(uoM(p))> P—60 and t; <

N. | E(5) |>2p

s+ 71 < s+ 71 < tg+ 11, moreover, T, = M(?A(r) —

N r n\ 2—p 2—p )
P an(2) ) = (gmena)) o< N <0

() (i)

Therefore, setting ¢ = Cy(oge1v2™""2)27P + (W
Cy(ope1v2"2)2 P —1-20"+2(P=2) " we obtain that inequality (5.4) holds
for to + cpP(upA1(p))? 7P < t < c1pP(uoA1(p))? P, provided that (5.1) is
valid and C > 2”*200_ 181_11/*1, which proves Theorem 1.2 in the case

max a(x,t) < 4Ap(4r)(4r)?P.

N

)2_p and ¢; =

Q4'r 4'r(y7
Now let o ma(x _a(z,t) > 4Ap(4r)(4r)9P | then there exists p €
4r,ar\Y,S
(r,p) such that max a(x,t) > 4Au(4p)(4p)9 P and max a(x,t)<
Qap,45(y,5) 85,85(Y,5)

4A1(8p)(8p)? P, and let py be the maximal number satisfying the above
condition. Consider the solution w(zx,t) = w, ;No(x,t,y, 5) with N =
72 T

5Nm, E = E(5) of the problem (3.6)-(3.8) in Q2 = Qg s, ¥:5),
Ny | E(5) | o _ (5 — -l 5 1
To=pp| =5 Ar) o , B = E(5):={B(y) : u(~,5) = 3NnA(r)}-

Inequahty (3.16) of Lemma 3.2 implies

| E(5) |
pn

‘{34,)0 (y) : w(-,t1) < ey Ny Ar) H < (1 =oa) [ Bapy(y) |,

for some time level t; € (5+0272, 5+72) and the numbers &1, 1,01 € (0,1)
depend only on the data.

Similarly to (5.3) by the fact that u > w on the parabolic boundary
of ()2 we have

{Bunto) ) < 5N MO (£} <

o

Po
| Ef;;) |}‘§(1 —aq) | B4p0(y) I

< HB4p0(y) su(sty) < 61NTO)\(T)&§)|}' < (5.5)
é'{lepo(y) tw(e, 1) <er Ny A(r)

for some time level t; € (5 + 0272, 5 + 72), which by Theorem 4.1 with



150 HARNACK’S INEQUALITY FOR DEGENERATE DOUBLE PHASE...

n
N = 15N [p(r)] ™" <é> implies

n
- v T
u(x,t) = Ny := 0'061§N7—0)\(T)[,U,(T)] "<%> . T € Boyy(y), (5.6)
for all t € (t —i—C’lpg]Vlz_p, ty —|—C_'2pg]v12_p), provided that ogN7 > py. We
note that this inequality holds if C' > 2" 1o ey tv!

Construct the solution v = vy, §, (7,1, y,t2) with N = o¢e15Ny,

()]~ (pi)n and E = By, (y) of the problem (3.2)-(3.4) in Qp =
0

Q;—p,Sﬁ (y,tQ), to =t + Clpgle_p and T = pp(Nl(zz—o)n)Q_p. Inequality
(3.15) implies

{Buw ot <cm(2) H < 00y 1 B4 |

for some time level t3 € (to + 6171,t2 + 71) with some €1, 81,1 € (0,1)
depending only upon the data.

From this, completely similar to (5.3), (5.4), by the fact that u > v
on the parabolic boundary of Q; and using Theorem 4.1 we arrive at

_ (2 n
u(w,t) > Ny := 0pe1 V1 (%) , T € ng(y),

for all t € (t3 + C1pP Ny P t5 + Cop? Ny ), provided that ogNy > p.
Since B, () C Ba,(y), recalling the definition of Ny, Ny and r, from this,
we obtain )

o
u(z,t) > 2n—9r26%1/u0)\1(,0), x € By(xo), (5.7)

for all t € (t3+C1pP Ny, t34 CopP Ny ), provided that %e%uuo)\l(p)
> p, which holds by (5.1) if C' is chosen to satisfy C' > 2”*2007251721/*1.
By our choices

: - N. EG)\*
ts <5+ 7+ 7+ CLfNy p<to+p’8< 27°A(r)‘ p(n)’) +
0

+ 0P (anlgNm)\l(r) <i> n) o Ciph <0051gNm)\1(7“) (2—£>n> Hg

o

vV \2-p _ v\ 2-p
<to +pp(uo)\1(,0))2_p |:2(n+2)(17—2) + (0'061 2n+2) + Cl (0’061§> :|

and t3 = to — pp(UQ)\l(p))27p -0 = to — pp(UQ)\l(p))27p(1 + 2(n+1)(p72)).
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Therefore, setting ¢ = 2(+2)(#=2) 4 (00e1552)2 P + Ci(o0e1y)* P +
C1(02e355)27P and ¢1 = Ca(03e355%5)? 7P — 1 — 2+2(P=2) we obtain
that inequality (5.7) holds for all tg + cpP(ugA1(p))? P < t < to+ c1pP X
x (ugA1(p))?7P, provided that (5.1) is valid and C' > 2"+2¢5 %201,
This completes the proof of Theorem 1.2.

Acknowledgements

This work is supported by the Grant EFDS-FL2-08 of the found The
European Federation of Academies of Sciences and Humanities (ALLEA)
and by the Volkswagen Foundation project “From Modeling and Analysis
to Approximation”.

References

[1] Alkhutov, Yu. A., Krasheninnikova, O. V. (2008). On the continuity of solutions
of elliptic equations with a variable order of nonlinearity, 7r. Mat. Inst. Steklova,
261, Differ. Uravn. i Din. Sist., 7-15; transl. in (2008). Proc. Steklov Inst. Math.,
261, 1-10.

[2] Alkhutov, Yu. A., Surnachev, M. D. (2019). Behavior at a boundary point of
solutions of the Dirichlet problem for the p(z)-Laplacian, Algebra i Analiz, 31(2),
88-117; transl. in (2020). St. Petersburg Math. J., 31(2), 251-271.

[3] Alkhutov, Yu. A., Zhikov, V. V. (2011). Holder continuity of solutions of
parabolic equations with variable nonlinearity exponent, Translation of Tr.
Semin. im. I. G. Petrovskogo, No. 28, Part I, 8-74; (2011). J. Math. Sci., 179(3),
347-389.

[4] Antontsev, S., Zhikov, V. (2005). Higher integrability for parabolic equations of
p(z,t)-Laplacian type, Adv. Differential Equations, 10(9), 1053—-1080.

[5

Baroni, P., Bogelein, V. (2014). Calderén-Zygmund estimates for parabolic
p(x,t)-Laplacian systems, Rev. Mat. Iberoam., 30(4), 1355-1386.

[6] Baroni, P., Colombo, M., Mingione, G. (2015). Harnack inequalities for double
phase functionals, Nonlinear Anal., 121, 206-222.

[7] Baroni, P., Colombo, M., Mingione, G. (2016). Non-autonomous functionals, bor-
derline cases and related function classes, St. Petersburg Math. J., 27, 347-379.

[8] Baroni, P., Colombo, M., Mingione, G. (2018). Regularity for general functionals
with double phase, Calc. Var. Partial Differential Equations, 57, Paper No. 62,
48 pp.

[9

Bogelein, V., Duzaar, F. (2012). Holder estimates for parabolic p(z, t)-Laplacian
systems, Math. Ann., 354(3), 907-938.

[10] Bonafede, S., Skrypnik, I. I. (1999). On Hélder continuity of solutions of doubly
nonlinear parabolic equations with weight, Ukr. Math. J., 51, 996-1012.



152 HARNACK’S INEQUALITY FOR DEGENERATE DOUBLE PHASE...

[11] Buryachenko, K. O., Skrypnik, I. I. (2022). Local continuity and Harnack inequal-
ity for double-phase parabolic equations, Potential Anal., 56, 137-164 .

[12] Colombo, M., Mingione, G. (2015). Bounded minimisers of double phase varia-
tional integrals, Arch. Rational Mech. Anal., 218(1), 219-273.

[13] Colombo, M., Mingione, G. (2015). Regularity for double phase variational prob-
lems, Arch. Rational Mech. Anal., 215(2), 443-496.

[14] Colombo, M., Mingione, G. (2016). Calderon-Zygmund estimates and non-
uniformly elliptic operators, J. Funct. Anal., 270, 1416-1478.

[15] DiBenedetto, E. (1993). Degenerate Parabolic Equations, Springer-Verlag, New
York.

[16] DiBenedetto, E., Gianazza, U., Vespri, V. (2008). Harnack estimates for quasi-
linear degenerate parabolic differential equations, Acta Math., 200, 181-209.

[17] DiBenedetto, E., Gianazza, U., Vespri, V. (2010). Forward, backward and ellip-
tic Harnack inequalities for non-negative solutions to certain singular parabolic
differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5(9), 385-422.

[18] DiBenedetto, E., Gianazza, U., Vespri, V. (2010). A new approach to the ex-
pansion of positivity set of non-negative solutions to certain singular parabolic
partial differential equations, Proc. Amer. Math. Soc., 138, 3521-3529.

[19] Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M. (2017). Lebesgue and Sobolev
Spaces with Variable Exponents. Lecture Notes in Mathematics, Springer, Heidel-
berg.

[20] Mengyao, D., Chao, Z., Shulin, Z. (2020). Global boundedness and Hoélder regu-
larity of solutions to general p(z,t)-Laplace parabolic equations, Math. Methods
Appl. Sci., 43(9), 5809-5831.

[21] Hadzhy, O. V., Skrypnik, I. I., Voitovych, M. V. (in press) Interior continuity,
continuity up to the boundary and Harnack’s inequality for double-phase elliptic
equations with non-logarithmic growth, Math. Nachrichten.

[22] Hadzhy, O. V., Savchenko, M. O., Skrypnik, I. I., Voitovych, M. V. (2022). On
asymptotic behavior of solutions to non-uniformly elliptic equations with general-
ized Orlicz growth, arXiv:2208.05671v1 [math.AP].

[23] Harjulehto, P., Hasto, P. (2019). Orlicz Spaces and Generalized Orlicz Spaces.
Lecture Notes in Mathematics, vol. 2236, Springer, Cham.

[24] Harjulehto, P., Hastd, P., Ut V. Lé, Nuortio, M. (2010). Overview of differential
equations with non-standard growth, Nonlinear Anal., 72(12), 4551-4574.

[25] Harjulehto, P., Hasto, P., Lee, M. (2021). Holder continuity of w-minimizers of
functionals with generalized Orlicz growth, Ann. Scuola Norm. Sup. di Pisa, Cl.
di Scienze, XXII(2), 549-582.



M. SAVCHENKO, I. SKRYPNIK, Y. YEVGENIEVA 153

[26]

27]

[28]

29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Hwang, S., Lieberman, G. M. (2015). Holder continuity of bounded weak solutions
to generalized parabolic p-Laplacian equations I: degenerate case, FElectron. J.
Differential Equations, 2015(287), 1-32.

Hwang, S., Lieberman, G. M. (2015). Holder continuity of bounded weak solu-
tions to generalized parabolic p-Laplacian equations II: singular case, FElectron.
J. Differential Equations, 2015(288), 1-24.

Kolodij, I. M. (1970). On boundedness of generalized solutions of elliptic differ-
ential equations, Vestnik Moskov. Gos. Univ., 1970(5), 44-52.

Kolodij, I. M. (1971). On boundedness of generalized solutions of parabolic dif-
ferential equations. Vestnik Moskov. Gos. Univ., 1971(5), 25-31.

Landis, E. M. (1963). Some questions in the qualitative theory of second-order
elliptic equations (case of several independent variables), Uspehi Mat. Nauk,
109(18), no. 1, 3-62 [in Russian].

Landis, E. M. (1998). Second Order Equations of Elliptic and Parabolic Type.
Translations of Mathematical Monographs, vol. 171, American Math. Soc., Prov-
idence, RI.

Lieberman, G. M. (1991). The natural generalization of the natural conditions of
Ladyzhenskaya and Ural’tseva for elliptic equations, Comm. Partial Differential
Equations, 16(2-3), 311-361.

Liskevich, V., Skrypnik, I. I. (2008). Isolated singularities of solutions to quasi-
linear elliptic equations, Potential Analysis, 28(1), 1-16.

Marcellini, P. (1989). Regularity of minimizers of integrals of the calculus of
variations with non standard growth conditions, Arch. Rational Mech. Anal.,
105(3), 267-284.

Marcellini, P. (1991). Regularity and existence of solutions of elliptic equations
with p, g-growth conditions, J. Differential Equations, 90(1), 1-30.

Maz’ya, V. G. (1967). Behavior near the boundary, of solutions of the Dirichlet
problem for a second-order elliptic equation in divergent form, Math. Notes of
Ac. of Sciences of USSR, 2, 610-617.

Savchenko, M. O., Skrypnik, I. I., Yevgenieva, Ye. A. (in press). Continuity and
Harnack inequalities for local minimizers of non uniformly elliptic functionals
with generalized Orlicz growth under the non-logarithmic conditions, Nonlinear
analysis.

Shan, M. A., Skrypnik, I. I., Voitovych, M. V. (2021). Harnack’s inequality for
quasilinear elliptic equations with generalized Orlicz growth, Electr. J. Diff. Equ,
27, 1-16.

Shan, M. A. (2017). Removable isolated singularities for solutions of anisotropic
porous medium equation, Annali di Matematica Pure ed Applicata, 196, 1913—
1926.

Shishkov, A. E., Yevgenieva, Ye. A. (2019). Localized blow-up regimes for quasi-
linear doubly degenerate parabolic equations, Math. Notes, 106(4), 639-650.

Skrypnik, I. I. (2022). Harnack’s inequality for singular parabolic equations with
generalized Orlicz growth under the non-logarithmic Zhikov’s condition, J. Ewvol.
FEqu., 22, 45.



154 HARNACK’S INEQUALITY FOR DEGENERATE DOUBLE PHASE...

[42] Skrypnik, L. I., Voitovych, M. V. (2021). B; classes of De Giorgi-Ladyzhenskaya-
Ural’tseva and their applications to elliptic and parabolic equations with gener-
alized Orlicz growth conditions, Nonlinear Anal., 202, 112-135.

Skrypnik, I. I., Voitovych, M. V. (2022). On the continuity of solutions of quasi-
linear parabolic equations with generalized Orlicz growth under non-logarithmic
conditions, Annali Mat. Pure Appl., 201, 1381-1416.

[44] Skrypnik, I. I., Voitovych, M. V. (2021). B1 classes of De Giorgi-Ladyzhenskaya-
Ural’tseva and their applications to elliptic and parabolic equations with gener-
alized Orlicz growth conditions, Nonlinear Anal., 202, 112-135.

[45] Skrypnik, I. I., Yevgenieva, Ye. A. (2022). Harnack inequality for solutions of
the p(x)-Laplace equation under the precise non-logarithmic Zhikov’s conditions,
arXiv.org/abs/2208.01970v1 [math.AP].

[46] Surnachev, M. D. (2018). On Harnack’s inequality for p(z)-Laplacian, Keldysh
Institute Preprints, 10.20948 /prepr-2018-69, 1-32.

[47] Surnachev, M. D. (2021). On the weak Harnack inequality for the parabolic p(z)-
Laplacian, Asymptotic Anal., 1, 1-39.

43

[48] Wang, Y. (2013). Intrinsic Harnack inequalities for parabolic equations with vari-
able exponents, Nonlinear Anal., 83, 12-30.

[49] Winkert, P., Zacher, R. (2016). Global a priori bounds for weak solutions to
quasilinear parabolic equations with nonstandard growth, Nonlinear Anal., 145,
1-23.

[50] Xu, M., Chen, Y. (2006). Holder continuity of weak solutions for parabolic equa-
tions with nonstandard growth conditions, Acta Math. Sin., 22(3), 793-806.

[61] Yao, F. (2014). Holder regularity of the gradient for the non-homogeneous
parabolic p(z,t)-Laplacian equations, Math. Methods Appl. Sci., 37(12), 1863
1872.

[62] Yao, F. (2015). Holder regularity for the general parabolic p(z,t)-Laplacian equa-
tions, NoDEA Nonlinear Differential Equations Appl., 22(1), 105-119.

[63] Yevgenieva, Ye. A. (2019). Propagation of singularities for large solutions of quasi-
linear parabolic equations, J. Math. Phys. Anal. Geom., 15(1), 131-144.

[64] Zhang, C., Zhou, S., Xue, X. (2014). Global gradient estimates for the parabolic
p(zx,t)-Laplacian equation, Nonlinear Anal., 105, 86—101.

[65] Zhikov, V. V. (1983). Questions of convergence, duality and averaging for func-
tionals of the calculus of variations, Izv. Akad. Nauk SSSR Ser. Mat., 47(5),
961-998.

[66] Zhikov, V. V. (1986). Averaging of functionals of the calculus of variations and
elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50(4), 675-710, 877.

[67] Zhikov, V. V. (1995). On Lavrentiev’s phenomenon, Russian J. Math. Phys.,
3(2), 249-269.

[68] Zhikov, V. V. (1998). On some variational problems, Russian J. Math. Phys.,
5(1), 105-116.

[59] Zhikov, V. V. (2004). On the density of smooth functions in Sobolev-Orlicz spaces,
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI), 310, Kraev.
Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts., 35 [34], 67-81, 226; transl. in
(2006). J. Math. Sci., 132(3), 285-294.



M. SAVCHENKO, I. SKRYPNIK, Y. YEVGENIEVA 155

[60] Zhikov, V. V., Kozlov, S. M., Oleinik, O. A. (1994). Homogenization of differential
operators and integral functionals, Springer—Verlag, Berlin.

CONTACT INFORMATION

Mariia Savchenko Institute of Applied Mathematics
and Mechanics of the NAS of Ukraine,
Slavyansk, Ukraine
FE-Mail: shan_maria@ukr.net

Igor Skrypnik Institute of Applied Mathematics
and Mechanics of the NAS of Ukraine,
Slavyansk, Ukraine
E-Majsl: ihor.skrypnik@gmail.com

Yevgeniia Institute of Applied Mathematics
Yevgenieva and Mechanics of the NAS of Ukraine,
Slavyansk, Ukraine
E-Mail: yevgeniia.yevgenieva@gmail.com





