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On the best approximation of non-integer

constants by polynomials with

integer coefficientsRoald M. TrigubAbstrat. In this paper, exat rate of derease of best approximationsof non-integer numbers by polynomials with integer oe�ients of grow-ing degrees is found on a disk in the omplex plane, on a ube in R
d,and on a ball in R
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) in [3℄ (see also [4℄, 5.4.16). Further,in [5℄, four ases of exat rates of best approximations of onstants wereindiated on the intervals [α, β], 0 < α < β < 1, depending on the arith-meti nature of both the number and interval. In the same paper, theproblems of approximation of both smooth funtions and onstants bypolynomials with positive integer oe�ients (on a segment lying on thenegative semi-axis of R) were onsidered for the �rst time.Reeived 09.05.2023ISSN 1810 � 3200. © Iíñòèòóò ïðèêëàäíî¨ ìàòåìàòèêè i ìåõàíiêè ÍÀÍ Óêðà¨íè
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284 On the best approximation of non-integer constants...It is lear that if some funtion di�erent from a polynomial admitsuniform approximation by polynomials qn with integer oe�ients (Z +
iZ) on a ompatum K ⊂ C, then there exists a polynomial X withinteger oe�ients suh that

0 < max
z∈K

|X(z)| < 1.Hene, the trans�nite diameter of K is less than one (see, e. g., [6℄, 2.13,13).Here and in what follows pn is a polynomial of degree not greaterthan n with arbitrary oe�ients, while qn is the same but with integeroe�ients.The Chebyshev polynomial Cn(K) is de�ned by
‖Cn(K)‖∞ = min

pn−1

max
z∈K

|zn + pn−1(z)|.Then the Chebyshev onstant always oiniding with the trans�nite di-ameter is equal to
d(K) = lim

n→∞
‖Cn(K)‖

1
n∞ .The existene of the limit follows from the well-known lemma: if 0 <

xn+m ≤ xn ·xm for any n and m, then there exists the limit lim x
1
n
n . Notethat for suh sequenes, the limit lim xn+1

xn
may not exist.For a disk, the Chebyshev onstant is equal to the radius, and for anellipse, it is equal to the half-sum of semi-axes.If µ is the outer planar Lebesgue measure, then µ(K) ≤ π(d(K))2(see [20℄, Ch. YII, �2℄).For an interval [a, b] ⊂ R, the Chebyshev polynomial equals

Cn(x; a, b) = 2
(b− a

4

)n
· Tn(x; a, b),where

Tn(x; a, b) = cosn arccos
2x− a− b

b− a

=
1

2

{(
2x− a− b

b− a
+

√(2x− a− b

b− a

)2
− 1

)n

+

(
2x− a− b

b− a
−
√(2x− a− b

b− a

)2
− 1

)n}
.It has many extreme properties. Let us present one of them that willessentially be used below.



R. M. Trigub 285For any polynomial pn of x ∈ R \ (a, b), we have
|pn(x)| ≤ |Tn(x; a, b)| max

x∈[a,b]
|pn(x)|. (1)Note also that if d(K) < 1, then there exists a polynomial X withinteger oe�ients and the leading oe�ient 1 for whih max |X| < 1 aswell (see [12℄, p. 272). Suh a polynomial X is ruial in many problems.For example, if suh a polynomial does exist, with the ondition 0 <

|X(z)| < 1 for any z ∈ K, then every funtion that an be approximatedby polynomials pn with arbitrary oe�ients admits approximation bypolynomials qn (it su�es to approximate the onstant λ = 1
2); see ibid. Ifthere is at least one integer point (i.e., a point with integer oordinates) onthe ompatum K or, more generally, integer algebrai numbers togetherwith their onjugates, then the funtion must satisfy ertain arithmetionditions. For example, a real ontinuous funtion on [−1, 1] is the limitof polynomials qn as n→ ∞ if and only if f(0) and 1

2

(
f(−1)± f(1)

)
∈ Z(see, e. g., [7℄, Ch. 2, �4).For the exat rate of best approximation in the uniform metris ofindividual onstants on an interval of the real axis, see [23℄.In this paper, we study the best approximations of onstants in theases where the ompatum K is a disk in C (�1, Theorem 1), a ube in

R
d (�2, Theorem 2), and a ball and a ube in R

d (�3, Theorem 3). In thease of a ball and a ube entered at zero, both the integral metris andarithmeti onditions are dropped (d = 1, see [4℄, 5.4.16). The exat rateof approximation is established to an individual onstant in Theorem 3and on the lass in Theorems 1 and 2 (the latter means that there existboth a onstant and a ompatum of the indiated form for whih thisrate of approximation is exat).The problem of the rate of derease of the di�erene between the bestapproximations of a ontinuous funtion by polynomials with arbitraryoe�ients and and that with only integer ones on a ompatum withoutinteger points is also onsidered (see the seond part of Theorem 1).By c we denote absolute positive onstants, and by c(α,P ) some pos-itive values depending only on α and P .In §4 detailed omments are given in Remarks 1 and 2, in whihertain supplements, historial information and open problems an befound.



286 On the best approximation of non-integer constants...

1. Approximation of constants on a disk in CLet λ ∈ C be non-integer, that is, λ /∈ Z + iZ. Suppose that in thedisk
Kr = Kr(z0) =

{
z ∈ C : |z − z0| ≤ r

}there are no integer points, whih implies 0 < r <
1√
2
. Shifting by aninteger, we may assume that z0 ∈ Π0,1, where Π0,1 is the losed squarewith the verties at 0, 1, 1 + i, i. Suppose also that Π0, 1

2
= 1

2Π0,1. Bylinear transformation w = w(z) with integer oe�ients we an map thesquare Π0, 1
2
+ 1+i

2 (the algebrai sum) into Π0, 1
2
(w = 1+i−z), the square

Π0, 1
2
+ 1

2− into Π0, 1
2
(the omplex onjugation, w = 1− z), and Π0, 1

2
+ i

2into Π0, 1
2
(w = z−i). Sine the inverse transformation is also with integeroe�ients, without loss of generality, let us assume that the enter z0 isontained in Π0, 1

2
∪Π0, 1

2
.Theorem 1. Under the assumptions made, for any n ∈ N, we have

Een(λ;Kr) = min
qn

max
Kr

|λ− qn(z)| ≤ (n+ 1)ρn,where ρ = max{ρ1, ρ2} and ρ1 = r

|z0|
, ρ2 = |z0|+ r.In general, ρ annot be lessened.Moreover, if a funtion f is analyti in the losed disk KR(z0) ofradius R > r, with the same enter z0, then there holds the equality

Een(f ;Kr) = min
qn

max
Kr

∣∣f(z)− qn(z)
∣∣ = O

(( r
R

)n
+ (n+ 1)ρn

)
.

Proof. Since
(z − z0

−z0

)m
= 1−

m∑

k=1

akz
k,

we have

max
Kr

∣∣∣λ−
n∑

k=1

λakz
k
∣∣∣ ≤ |λ|

( r

|z0|
)n

= |λ|ρn1 .

Replacing λa1 with the nearest integer c1 and applying the same
inequality with n replaced by n − 1 to their difference (“the fractional
part”), we obtain

max
Kr

∣∣∣λ− c1z −
n∑

k=2

bkz
k
∣∣∣ ≤ |λ|ρn1 +

( r

|z0|
)n−1

max
Kr

|z| = |λ|ρn1 + ρn−1
1 ρ2.
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We assume |λ| ≤ 1, without loss of generality. Further, we single out the
integral part of the coefficient b1, and so on. Continuing in this manner
until all non-integer coefficients are corrected, we arrive at a polynomial
qn such that

max
Kr

|λ− qn(z)| ≤
n∑

k=0

ρn−k1 ρk2 ≤ (n+ 1)max
{
ρn1 , ρ

n
2

}
= (n+ 1)ρn,

as desired.

Clearly, for ρ1 6= ρ2, the factor (n + 1) can be replaced by a value
bounded in n.

Now, to estimate the approximation from below, we use the following
inequality: for any polynomial pn with |z − z0| > r, there holds (see,
e. g., [4]4.7.1]):

|pn(z)| ≤
( |z − z0|

r

)n
max
Kr

|pn(z)|.

For some polynomial qn, we have

Een(λ;Kr) = max
Kr

|λ− qn(z)| ≥ |λ− qn(0)|
( r

|z0|
)n

≥ c(λ)ρn1 .

This estimate of approximation from below is obtained for ρ1 ≥ ρ2.

Let now ρ2 > ρ1, i. e., r <
|z0|2

1− |z0|
. We choose a number and a disk

for which the same estimate of the approximation from below hold true.
Put λ = 1

q+1 , where q ∈ N and q ≥ 2, z0 = x0 = 1
q − 1

(q+1)2
, r = 1

(q+1)2
.

Then

Een(λ;Kr) ≥ min
qn

∣∣∣∣
1

q + 1
− qn(

1

q
)

∣∣∣∣ ≥ min
s∈Z

∣∣∣∣
1

q + 1
− s

qn

∣∣∣∣

=
1

(q + 1)qn
min
s∈Z

|qn − s(q + 1)|,

and this is not less than 1
(q+1)qn = 1

q+1(x0 + r)n = 1
q+1ρ

n
2 . Thus, there

exist a number λ and a disk Kr such that ρ2 cannot be lessened too.
This means that the inequality is exact in the general case, i. e., on the
class.It is important that we an pass from approximation of onstantsto approximation of arbitrary funtions that admit approximation bypolynomials pn.Let us proeed to the proof of the seond part of Theorem 1.



288 On the best approximation of non-integer constants...Suppose that f is an analyti funtion in the losed disk KR(z0) withthe same enter z0 for some radius R > r and that not all Taylor'soe�ients at z0 are integer. The point is that, as follows from theCauhy�Hadamard formula, if f(z) = ∞∑

k=0

ckz
k, where all ck are integer,then the radius of onvergene of the series is not greater than one if thefuntion is not equal to a polynomial, and it is possible to use partialsums of the series for the approximation.Due to the Bernstein theorem (see, e. g., [4, 4.7.2℄), there exists asequene {pn} suh that for 0 ≤ ν ≤ s (s is the smallest number of anon-integer Taylor's oe�ient) we get

max
Kr

∣∣∣f (ν)(z)− p(ν)n (z)
∣∣∣ ≤ c(r,R, s)

( r
R

)n
.This is the rate of best approximation. So, we an additionally supposethat p(ν)n (z0) = f (ν)(z0) for (0 ≤ ν ≤ s).Without loss of generality, we will also assume that

f(z) =
∞∑

k=0

ak(z − z0)
k,

∞∑

k=0

|ak| ·Rk <∞.Then
max
Kr

∣∣∣
∞∑

k=n+1

ak(z−z0)k
∣∣∣ ≤

∞∑

k=n+1

|ak| ·Rk
( r
R

)k
≤
( r
R

)n+1
∞∑

k=n+1

|ak| ·Rk.It is ruial now that pn must be approximated by a polynomial qn. Wehave
as(z − z0)

s = as(−z0)s
(z − z0

−z0

)s
= as(−z0)s

(
1−

s∑

k=1

bkz
k
)
.As above, we replae as(−z0)s by the nearest integer, and further inreas-ing the degree of z, we repeat the proof of the �rst part of the theorem.Theorem 1 is proved. �Similarly, we an onsider the approximation on the ellipse ontainingno integer points (with one of its axes less than 4 and the diameter lessthan 1).
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2. Approximation of constants on a cube in RdSuppose that x = (x1, ..., xd) ∈ R
d, xk =

d∏

j=1

x
kj
j for kj ∈ Z+, |k| =

d∑
j=1

kj , and a polynomial pn(x) = ∑
0≤kj≤nj

akx
k has the degree n =

d∑
j=1

nj .Moreover, let
K = Πa,b =

{
x ∈ R

d : xj ∈ [a, b], 1 ≤ j ≤ d
}
= [a, b]d.Sine the ube must not ontain integer points, we may assume, with-out loss of generality, that 0 < a < b ≤ 1 − a and O = (0, ..., 0) is theinteger point nearest to Πa,b.For λ ∈ (0, 1), we put

Een(λ; Πa,b) = min
qn

max
x∈Πa,b

|λ− qn(x)|.Theorem 2. Under the above assumptions, for any n ∈ N, we have
Een(λ; Πa,b) ≤ c(d)ndρn, ρ = max

{√
b−√

a√
b+

√
a
, b

}
,and ρ annot be taken smaller in general.

Proof. As is follows from (1) and the previous formula for Tn, if 0 < a,
we have

|Tn(0; a, b)| = θ

(√
b+

√
a√

b−√
a

)n
, θ ∈

(
0,

1

2

]
.

But

Tn(t; a, b) = Tn(0; a, b) − Tn(0; a, b)
n∑

k=1

akt
k,

and for t ∈ [a, b], there holds

∣∣∣1−
n∑

k=1

akt
k
∣∣∣ ≤

∣∣∣Tn(t; a, b)
Tn(0; a, b)

∣∣∣ ≤ 1

|Tn(0; a, b)|
.

Multiplying such inequalities with t = xj and nj (1 ≤ j ≤ d), for x ∈ Πa,b
and n =

∑
nj , we obtain

∣∣∣1−
∑

1≤|k|≤n
bkx

k
∣∣∣ ≤

d∏

j=1

1

|Tnj (0; a, b)|
≤ 2d

(√
b−√

a√
b+

√
a

)n
. (2)
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Let us multiply this inequality by λ ∈ (0, 1) and take into account that for
δk ∈ [0, 1), the equality λbk = [λbk] + δk holds. We need to approximate
monomials δxs for δ ∈ (0, 1) and sj ∈ [0, nj ], 1 ≤ j ≤ d, by polynomials
qn. To this end, we multiply inequality (2) by δxs, replacing n by n− s.
This yields

∣∣∣δxs−
∑

s+1≤|k|≤n
δbk−sx

k
∣∣∣=
∣∣∣δxs−

∑

1≤k≤n−s
δbkx

k+s
∣∣∣≤xs·2d

(√
b−√

a√
b+

√
a

)n−s
.

Further, we select the integral part [δbk−s] and apply the same in-
equality to the fractional part again, and so on up to s = n. We arrive
at the following inequality: for x ∈ Πa,b, there holds

|λ− qn(x)| ≤ 2d
n∑

s=0

xs

(√
b−√

a√
b+

√
a

)n−s
≤ 2d

n∑

s=0

bs

(√
b−√

a√
b+

√
a

)n−s

≤ 2dρncard
{
xk : |k| ≤ n

}
.

But, as is known (see, e. g., [9], Ch. IV, it. 2),

card
{
xk : |k| = s

}
=

(
d+ s− 1

d− 1

)
=
s(s+ 1)...(s + d− 1)

(d− 1)!
,

wherefrom

card
{
xk : |k| ≤ n

}
=

n∑

s=0

card
{
xk : |k| = s

}
≤ (n+ 1)

(
d+ n− 1

d− 1

)

≤ (n+ 1)(n + d− 1)d−1 ≤ c1(d)n
d.

The estimate for the approximation from above is proved.
To estimate the approximation from below, we use the following well-

known inequality ( [1], v. II, pp. 434-436):

|pn(0)| ≤ max
Πa,b

|pn(x)|
d∏

j=1

|Tnj (0; a, b)| ≤ max
Πa,b

|pn(x)|
(√

b+
√
a√

b−√
a

)n
.

Substituting the difference λ− qn, for pn, we obtain

Een(λ; Πa,b) ≥ min
c∈Z

|λ− c|
(√

b−√
a√

b+
√
a

)n
.

Hence, for a ≤ b
(
1−b
1+b

)2
or, which is the same, for b ≤

√
b−√

a√
b+

√
a
, we cannot

take smaller ρ.
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If a > b
(
1−b
1+b

)2
and b = 1

q (q ∈ N, q ≥ 2), then, for example, for d = 2,

we have

Een(λ; Πa,b) ≥ min
qn

max
x1∈[a, 1q ]

∣∣∣λ− qn

(
x1,

1

q

)∣∣∣.

Choose x1 = 1
q and take into account that qn(

1
q ,

1
q ) =

n∑
k=0

ck
1
qk
. But for

λ = 1
q+1 (see the end of the proof of the first part of Theorem 1), we

obtain ∣∣∣ 1

q + 1
−

n∑

k=0

ck
1

qk

∣∣∣ ≥ 1

q + 1
· 1

qn
=

bn

q + 1
.

Theorem 2 is proved.Similarly (see the proof of the 2nd part of Th. 1) we an onsiderapproximations of funtions by polynomials with integer oe�ients onsome parallelepipeds without integer points.Note that in the ase of a ube Πa,b, 0 < a < b, of any size, the aboveargument yields exat estimates of the approximation of onstants andfuntions by polynomials of the form
n∑

|k|=0

mk

q|k|
xk (mk ∈ Z, q > b).Using the similarity transformation, it su�es to pass to approximationon Πα,β , 0 < α < β < 1, by polynomials with integer oe�ients, andthen return to Πa,b(0 < a < b). Here the oe�ients of polynomials arerational numbers with known denominators.

3. Integral approximationsLet
Kr =

{
x = (x1, ..., xd) : |x| ≤ r

}be a Eulidean ball of radius r entered at the origin, and let
Π−r,r = [−r, r]d =

{
x = (x1, ..., xd) : |xj | ≤ r, 1 ≤ d

}be a ube.Theorem 3. Let λ ∈ R\Z, r ∈ (0, 2), p ∈ [1,+∞), and let the degreesof polynomials in all variables n tend to in�nity. We have
Een(λ;Kr)p = min

qn

(∫

Kr

|λ− qn(x)|pdx
) 1

p

≍ n
− d
p
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Een(λ; Π−r,r)p = min

qn

( ∫

Π−r,+r

|λ− qn(x)|pdx
) 1

p

≍ n
− d
p ,and for r ∈ (0, 1], we have

Een(λ; Π0,r)p ≍ n
− 2d
p ,(two-sided inequalities with positive onstants not depending on n).For r ≥ 2, we have

Een(λ; Π−r,r)p ≥ Een(λ;Kr)p ≥ c(λ, r, p) > 0.

Proof. To estimate the approximation from below, we need the following
result.

Lemma 1. For α > −1, p ∈ [1,+∞), r > 0 and any polynomial
{pn}, we have

r∫

0

tα|pn(t)|pdt ≥ c(α, p)r1+α|pn(0)|p
1

n2p+2αp
,

and for even polynomials pn, we have

r∫

0

tα|pn(t)|pdt ≥ c(α, p)r1+α|pn(0)|p
1

np+αp
.

Proof. Proving the first inequality for r = 1 will imply the general case.

If pn(t) =
n∑

k=0

akt
k, where a0 = pn(0), then for p = 1 and n ≥ 2, we

obtain

1∫

0

tα|pn(t)|dt ≥ max
[0,1]

∣∣∣
x∫

0

tαpn(t)dt
∣∣∣ =

= max
[0,1]

xα+1
∣∣∣
n∑

k=0

ak
xk

k + α+ 1

∣∣∣ ≥ 1

n2α+2
max[
1
n2
,1
]
∣∣∣
n∑

k=0

ak
xk

k + α+ 1

∣∣∣.

In view of the extreme property of Chebyshev’s polynomials Cn (the
growth of the norm of a polynomial when the interval expands, see (1)),
with the absolute constant c > 0, it is easy to check that

max
[0,1]

|pn(x)| ≤ c max[
1
n2
,1
] |pn(x)|. (3)
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Therefore,

1∫

0

tα|pn(t)|dt ≥
1

c
· 1

n2+2α
max
[0,1]

∣∣∣
n∑

k=0

ak
xk

k + α+ 1

∣∣∣ ≥ 1

c
· |a0|
n2+2α

.

It remains to apply the Hölder inequality:

1∫

0

tα|pn(t)|dt ≤
( 1

α+ 1

) 1
p′
( 1∫

0

tα|pn(t)|pdt
) 1
p
.

In the case of even polynomials, one obtains this after replacing t2 by t
with another α.

Lemma 1 is proved.

We will now prove the estimate of approximation from below for λ
on a ball and a cube, both centered at the origin.

By the symmetry of a ball with respect to the coordinate planes, for
some ck ∈ Z, we have

(Ee2n(λ;Kr)p)
p =

∫

Kr

|λ−
∑

|k|≤n
ckx

2k|pdx.

Let us pass to the spherical or polar coordinates at |x| = t ∈ (0, r]. For
example, if d = 2, where x1 = t sinϕ, x2 = t cosϕ, we get

2π∫

0

dϕ

r∫

0

t
∣∣∣λ−

∑

|k|≤n
ckt

2|k| sin2k1 ϕ cos2k2 ϕ
∣∣∣
p
dt.

Applying Lemma 1 for even polynomials, we derive that for any r > 0
this value is not less than

c(p)r2|λ− c0|
1

n2

2π∫

0

dϕ.

This holds for d = 2, while for d ≥ 3 the Jacobian equals td−1F (ϕ),
where F (ϕ) =

∏d−2
m=1(sinϕm)

d−2 and all ϕm ∈ [0, π2 ].
Consider the case p = 1 and then apply Hölder’s inequality:

(Ee2n(λ;Kr)1 =

r∫

0

td−1dt

∫

[0,π
2
]d−2

F (ϕ)
∣∣∣λ−

∑

|k|≤n
ckt

2k(F (ϕ))2k
∣∣∣dϕ.
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Since the absolute value of the integral of a function is not greater than
the integral of the absolute value of the function, this expression is not
less than

r∫

0

td−1dt
∣∣∣λ

∫

[0,π
2
]d−2

F (ϕ)−
∑

|k|≤n
ckt

2k

∫

[0,π
2
]d−2

(F (ϕ))2k+1dϕ
∣∣∣.

It remains to apply Lemma 1. The estimate of the approximation from
below is proved for r ∈ (0, 2), since we always have Een(λ; Π−r,r)p ≥
Een(λ;Kr)p.

Now we consider the case r ≥ 2.
By the Korkin–Zolotaryov inequality (see, e. g., [6], 2.9.31 or [4],

p. 223]), for m ∈ Z+, we have

b∫

a

tm
∣∣∣
n∑

k=0

akt
k
∣∣∣dt ≥ 4

(b− a

4

)n+m+1
|an|.

For d ≥ 2 and p ∈ [1,∞), we choose β ≥ − 1

p′
such that

1

p′

(d
2
− 1
)
+ β = m ∈ Z+.

Then, due to Hölder’s inequality, for any polynomial qn, there holds

4 ≤
4∫

0

tm|λ− qn(t)|dt ≤
( 4∫

0

t
d
2
−1|λ− qn(t)|pdt

) 1
p
( 4∫

0

tβp
′

dt
) 1
p′

.

This yields the desired estimate from below.The ase d = 1 was onsidered in [4℄, p. 231℄.Lemma 2. If α > −1, p ∈ [1,+∞) and m ∈ Z+, there exists asequene of polynomials {pn}∞m , pn(0) = 1, suh that for some onstant
c(α, p,m), there holds

1∫

0

tα|pn(t)|pdt ≤ c(α, p,m) · 1

n2p+2pαand
(pn(t)− pn(0))

(ν)(0) = 0 (0 ≤ ν ≤ m), and max
[0,1]

|pn(t)| ≤ c(α, p,m).
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Proof. For p = 2, the corresponding problem was solved long ago. We
have (see [10], Ch. I, 14)

min
{ak}nm

1∫

0

tα
∣∣∣1−

n∑

k=m

akt
k
∣∣∣
2
dt = min

{ak}nm

1∫

0

∣∣∣t
α
2 −

n∑

k=m

akt
k+α

2

∣∣∣
2
dt

=
1

α+ 1

n∏

k=m

( k

k + α+ 1

)2
=

1

α+ 1

n∏

k=m

(
1 +

α+ 1

k

)−2
.

But ln(1 + x) = x+O(x2) as x→ 0. Therefore,

ln

n∏

k=m

(
1+

α+ 1

k

)2
≥ 2
( n∑

k=m

α+ 1

k
+O(1)

)
= (2α+2) ln

n+ 1

m
+O(1),

and the desired inequality is proved for p = 2.

Let us deduce from it the boundedness of the extremal sequence {pn}
in the space C[0, 1].

Taking into account that tα ≥ 1

n2α
at t ∈

[
1
n2 , 1

]
(n ≥ 2), we have

max[
1
n2
,1
]

x∫

1
n2

p2n(t)dt ≤ c1(α,m) · 1

n2
.

Now, from Markov’s inequality for the derivative of a polynomial
( [6, 4.8(32)], [4, 5.4.6]) it follows that

max[
1
n2
,1
] p2n(x) ≤ c1(α,m)

(2n + 1)2

n2
· 2

1− 1
n2

≤ c2(α,m).

Further, we apply (3).

And this sequence {pn} (more precisely, {p2n}) may be used for any
p ∈ [1,+∞) since all the conditions at x = 0 are fulfilled.

Indeed, if a polynomial pn meets assumptions of Lemma 2 at p = 2
and (pn(x))

2 ≤M , then

1∫

0

tα(pn(t))
2pdt ≤Mp−1

1∫

0

tα(pn(t))
2dt ≤Mp−1c(α, 2,m) · 1

n2+2α
,

which completes the proof.



296 On the best approximation of non-integer constants...Lemma 3. Let p ∈ [1,+∞), m ∈ Z+ and {tν}s0 ⊂ [−r, r], where
t0 = 0. Then there exists a sequene of polynomials pn suh that

‖1− pn‖Lp[−r,r] = O
( 1

n
1
p

)and
sup
n

‖pn‖C[−r,r] <∞, p(k)n (tν) = 0 (0 ≤ ν ≤ s, 0 ≤ k ≤ m).

Proof. By Lemma 2, at α = s = 0 there exists a sequence of even poly-
nomials pn such that

‖1− pn‖Lp[−2r,2r] = O

(
1

n
1
p

)
, p(k)n (0) = 0 (0 ≤ k ≤ m).

Then for tν 6= t0, we obtain

‖1− pn(· ± tν‖Lp[−r,r] ≤ ‖1− pn‖Lp[−2r,2r] = O
( 1

n
1
p

)
,

and new polynomials 1 − pn are bounded in the aggregate, and their
derivatives equal to zero at ±tν up to the order m. Both the equality

1− fg = g(1 − f) + (1− g)

and the inequality ‖g‖C[−r,r] ≤M imply that

‖1− fg‖Lp[−r,r] ≤M(2r)
1
p ‖1− f‖Lp[−r,r] + ‖1− g‖Lp[−r,r].

Thus, for s ≥ 1, we have

‖1− pn(·)pn(· ± t1)‖Lp[−r,r] = O
( 1

n
1
p

)
.

For s ≥ 2, adding all other points one by one in the same way, we arrive
at the inequality

‖1−
s∏

ν=0

pn(· ± tν)‖Lp[−r,r] = O
( 1

n
1
p

)
.

Lemma 3 is proved.In what follows we onsider d = 2.



R. M. Trigub 297Lemma 4. If {tν}s0 ⊂ [−r, r] and m ∈ Z+, then for any funtion
f ∈ C2[−r, r]2, there exists a sequene of polynomials {pn(x1, x2)} suhthat

‖f − pn‖Lp[−r,r]2 = O
( 1

n
2
p

)and
∂kpn(x1, x2)

∂xk1
(tν , tµ) =

∂kpn(x1, x2)

∂xk2
(tν , tµ) = 0,for 0 ≤ ν, µ ≤ s and 0 ≤ k ≤ m.

Proof. If pn is a polynomial from Lemma 3, then for

p2n(x1, x2) = pn(x1) + pn(x2)− pn(x1) · pn(x2),

we have
1− p2n(x1, x2) = (1− pn(x1))(1 − pn(x2)),

and hence,

‖1− p2n‖Lp[−r,r]2 = ‖1− pn‖2Lp[−r,r] = O
( 1

n
2
p

)
.

We multiply now this inequality by the function f ∈ C2[−r, r]2, which is
approximated by polynomials due to Jackson’s theorem:

‖f − p̃n‖C[−r,r]2 = O
( 1

n2

)
.

Taking into account that

f − p̃n · p2n = f(1− p2n) + f − p̃n + (p̃n − f) · (1− p2n) =

= O
( 1

n
2
p

)
+O

( 1

n2

)
+O

( 1

n2+
2
p

)
= O

( 1

n
2
p

)
,

we conclude that the polynomials P3n = p̃n · p2n are desired.
Lemma 4 is proved.To pass to approximation by polynomials qn, we note that for anyompatum K in R with the trans�nite diameter less than one, thereexists a polynomial

P (x) = xm + ..., max
K

|P (x)| < 1.This implies that there exists a polynomial X with integer oe�ientsand the leading oe�ient one suh that
0 < max

K
|X(x)| < 1.



298 On the best approximation of non-integer constants...Suh a polynomial is sometimes alled fundamental for a given om-patum.For example, for K = [0, 1] we an take X(t) = t(1− t), and for [0, 2]we an take X(t) = t(t − 1)2(t − 2) (see also a polynomial X for [0, 3]in �4). The number of zeros of suh a polynomial inreases inde�nitelyas the length of the segment tends to 4, and there are �nitely manyinteger algebrai numbers of di�erent degrees on the segment [0, 4] (zerosof Chebyshev's polynomials). For K = [−r, r], r ∈ (0, 2), the polynomial
X in question an be treated as even, and, after its squaring, as positive.Its zeros are integer algebrai numbers, some of whih may be foundout of [−r, r]. So, there exist even polynomials X1 and X2 with integeroe�ients and the leading oe�ient one suh that X2(t) > 0 for t ∈
[−r, r], X1(t) ≥ 0 and

X(t) = X1(t) ·X2(t), 0 ≤ X(t) ≤ ρ < 1 (t ∈ [−r, r]).In ase of the square [−r, r]2, r ∈ (0, 2), we take the produt X(x1)·X(x2)as X(x).Lemma 5. If
pn(x) = Xm(x) · p0,n1(x),then there exists a sequene of polynomials qn with integer oe�ientssatisfying the inequality

‖pn − qn‖C[−r,r]2 = O
( 1

n2m

)
.

Proof. It is clear that any polynomial of t ∈ R can be represented as

pn =

N∑

k=0

akX
k(1−X)N−k,

where the degrees of polynomials ak less than the degree of X, and N is
the maximal positive integer such that the degree of the whole polynomial
is not greater than n.

A polynomial in two variables x1 and x2 is a polynomial of x1 with
coefficients that are polynomials of x2. By doing the same transformation
of polynomials of x2 we arrive at the following representation:

pn(x)=
N∑

k1=0

N∑

k2=0

ak1,k2X
k1(x1)(1 −Xk1(x1))

N−k1Xk2(x2)(1 −Xk2(x2))
N−k2 .

Now let
pn(x) = Xm(x) · p0,n1(x).
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Then we get

pn(x1, x2) =

N∑

k1=m

N∑

k2=m

ak1,k2X
k1(x1)(1−X(x1))

N−k1Xk2(x2)(1−X(x2))
N−k2 .

Replacing coefficients of polynomials ak1,k2 of a fixed degree by the near-
est integers (in this case, the polynomials themselves change by a value
bounded with respect to n), we obtain a polynomial qn. For x ∈ [−r, r]2,
we have

|pn(x)− qn(x)| ≤

≤ c(X)

N∑

k1=m

Xk1(x1)(1−X(x1))
N−k1

N∑

k2=m

Xk2(x2)(1−X(x2))
N−k2 .

For 0 ≤ X ≤ ρ < 1, we obtain

N∑

k=m

Xk(1−X)N−k =
N−m∑

k=m

Xk(1−X)N−k

+

N∑

k=N−m+1

Xk(1−X)N−k

≤ 1(
N
m

)
N−m∑

k=m

(
N

k

)
Xk(1−X)N−k +mρN−m+1

≤ 1(N
m

) +mρN−m+1 = O
( 1

nm

)
.

This implies the relation

|pn(x)− qn(x)| = O
( 1

n2m

)
.

Lemma 5 is proved.We will now prove the estimate of approximation of λ from above inTheorem 3 in the ase of a ube entered at the origin, and onsequentlyfor a ball.Let {tν}s0 be all zeros of an even polynomial X on [0, r], and let
X = X1 · X2, where X2 does not vanish on [−r, r]. Applying Lemma 4for f(x) = 1

Xm
2 (x1)Xm

2 (x2)
, we get

‖f − pn‖Lp[−r,r] = O
( 1

n
2
p

)
.



300 On the best approximation of non-integer constants...Due to the onditions on partial derivatives of pn at the points {tν}s0, thispolynomial is divided byXm
1 (x1)X

m
1 (x2).Multiplying byXm

2 (x1)X
m
2 (x2),we get a good approximation of the unit by polynomials that are dividedby Xm. For d = 2, when one an take m = 1, it remains to multiply thisratio by λ and then apply Lemma 5.We now proeed to the proof of Theorem 3 in the ase of a ube

[0, r]d, r ∈ (0, 1] where there are no integer points inside it, for d = 2.We have
Ee2n(; Π0,r)p = min

{ck}

(
r∫

0

dx1

r∫

0

∣∣∣λ−
∑

0≤k1,k2≤n
ckx

k1
1 x

k2
2

∣∣∣
p
dx2
) 1
p .To estimate approximation from below, we �rst apply Lemma 1 at α = 0with respet to x2 and then with respet to x1. As in the proof of Lemma4, the estimate of approximation from above is implied by the ase d = 1[4℄, 5.4.15.Theorem 3 is ompletely proved. �

4. CommentsRemark 1.In the above proofs (see Setions 2 and 3), theorems on the growthof the norm of polynomials pn outside the given ompatum in C and
R
d play an essential role in estimating approximation of λ from below.What is the maximal growth of |pn(x0)| with respet to n at x0 /∈ K if

max
x∈K

|pn(x)| = 1?In the omplex plane C and a �good" ompatum K, a desired valueis determined by the level line of a funtion that onformably and uni-laterally maps, under a speial normalization, the exterior of K to theexterior of the unit irle. The point x0 is on this line (see, e. g., [8℄, Ch.IX). Based on this, the following result was obtained for a part of theirle [15℄.Let r ∈ (0, 1), α ∈
(
0, π2

), and let
Kr,α =

{
x ∈ C : |z| ≤ r, Re z ≤ −r cosα

}
.Then for any λ ∈ R \ Z and r ≤ 2 sin

πα

2(2π − α)
with positive integeroe�ients, there holds

lim
n→∞

min
{ck}∈Z+

max
Kr,α

∣∣∣λ−
n∑

k=0

ckz
k
∣∣∣
1
n
= 2 sin

πα

2(2π − α)
.
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πα

2(2π − α)
(in partiular, r = 1

2) and λ is not a dyadirational number, then the same limit equals 1

2
.It is noteworthy that on the line R the problem of the growth of normswas solved for sets of the positive Lebesgue measure long ago.E. Ya. Remez (1936) proved that for h ∈ (0, 2), there holdsmeas{x ∈ [−1, 1] : |pn(x)| ≤ 1

}
≤ 2− h ⇒ max

[−1,1]
|pn(x)| ≤ Tn

(2 + h

2− h

)
,where Tn is Chebyshev's polynomial for the interval [−1, 1], and the in-equality is sharp (see the proof of the theorem in [7℄, Ch. 2, it. 7℄).Note also that at approximately the same time G. P�olya proved asimilar result for the maximum of absolute value of p(n)n , i. e., for theleading oe�ient of pn (see [6℄, 2.9.13). Reently a sharp inequality forthe growth of norms for sets of positive measure on the irle has beenobtained [11℄. A list of earlier papers on Remez-type inequalities forpolynomials in several real variables is given there.Remark 2 (on polynomials with integer oe�ients in analysis).First problem.Let K be a ompatum in R, C or Rd, with the norm in C or Lp.What is the �integer" trans�nite diameter

q(K) = lim
n→∞

min
qn 6≡0

‖qn‖
1
n ?In view of Nikol'skii's inequality of di�erent metris for polynomials [6℄,4.9(36)℄, for instane, q(K) in Lp[a, b] is independent of p > 0.This problem was suessfully dealt with by L. Kroneker, H. Min-kowski, D. Hilbert, I. Shur, M. Fekete, A. O. Gelfond�L. G. Shnirelman,D. S. Gorshkov, E. Aparisio, the author (see a survey paper [12℄ in whihtheorems by the mentioned mathematiian are given with proofs, and[13℄ with referenes therein), and also by F. Amoroso, B. S. Kashin,G. V. Chudnovskii, P. Borwein, T. Erdelyi, C. G. Pinner, I. E. Pritsker;see also [16, Ch. 10℄.Both this list of authors as well as the following one are hronologialregarding the time of publiation.The idea of Gelfond�Shnirelman to use the information about thesmallest non-zero norms max

[0,1]
|qn(x)| has failed to give the proof of theasymptoti law of distribution of prime numbers. The reason was thatit turned out that q([0, 1]) > 1

e
(Gorshkov, see, e.g., [13℄). However,



302 On the best approximation of non-integer constants...there is a hane that this an be done after passing to polynomials inmany variables as K. Roth (1955) did in the problem of approximationof algebrai numbers by rational ones (see [21℄, Ch. YI). The latter ideaappeared in the author's survey [12℄; it was also disussed in [19℄, Ch. II℄with the referene to this survey.Note also that Chebyshev's polynomial of degree n in Lp[a, b] (withthe leading oe�ient one and the smallest norm) is only known if p = ∞(Chebyshev's polynomial), p = 2 (Legendre's polynomial), and p = 1(Chebyshev's polynomial of seond kind).Due to the inequality of di�erent metris (see also [18℄) Chebyshev'sonstant for the interval [a, b] is the same for any p > 0: b−a
4 . In addition,

q([a, b]) for polynomials with integer oe�ients in Lp does not dependon p > 0, depends ontinuously on the interval but is not known for anyinterval. It follows from the Gilbert-Fekete theorem that for b − a < 4,there holds q([a, b]) ≤ ( b−a4 ) 1
2 , and this inequality annot be strengthenedfor small b− a [12℄, p. 317℄, see also [13℄.Seond problem (on approximation of funtions by polynomials qn).It is about the possibility of approximation and its rate depend-ing on both a funtion and degree of polynomials. Among the peo-ple who ontributed to this problem were I. P�al, S. Kakeya, I. Okada,I. N. Khlodovskii, R. O. Kuz'min, L. V. Kantorovih, M. Fekete, G. Szeg�o,I. N. Sanov, E. Aparisio, A. O. Gelfond, H. Matts, E. Hewitt-H. Zuker-man, the author, S. Ya. Al'per, L. B. O. Ferquson, and M. von Golitshek(see the survey in [12℄).If a funtion admits approximation by polynomials pn on a om-patum K ⊂ C, then for the approximation by polynomials qn, it su�esto approximate the onstant λ = 1

2 . For this, it is neessary and su�-ient a polynomial X to exist with integer oe�ients and satisfying theinequality
0 < |X(z)| < 1 (z ∈ K).In the general ase, if at least one funtion di�erent from a polynomialadmits approximation by polynomials qn, then there exists a polynomial

X with the ondition
0 < max

K
|X(z)| < 1.One may assume that its leading oe�ient is one (Kakeya).Thus, we get the �rst neessary ondition: the trans�nite diameter of

K is less than one. If suh polynomials X have ompulsory zeros on K(integer algebrai numbers along with their onjugates), then neessaryarithmeti onditions on a funtion appear (in ontrast to the integralmetris, seen Theorem 3 above). The riterion for the approximation of



R. M. Trigub 303a ontinuous funtion is known, i.e., the neessary and su�ient onditionsimultaneously (see, e. g., [7℄, Ch. 2, �4). A strengthening of the well-known M�unz riterion for [0, 1] is also found (see [7℄, 6.5).In [3℄, a sheme of a proof for diret theorems for smooth funtionson an interval [a, b] ⊂ R has been elaborated. If, for example, in thepartiular ase where X has zeros only on K ⊂ R, 0 ≤ X(x) < 1 on K,then we approximate a funtion by polynomials pn that are divided by X(using arithmeti onditions on the funtion), and then by polynomialsdivided by Xm (see Lemma 5 above or [4℄, 5.4.14).Diret theorems on approximation by polynomials pn on ompata in
C were obtained long ago (see [8℄, Ch. IX). On the other hand, the passageto approximation by polynomials qn is established only for the square
[0, 1]2 [22℄. Note that in the ase of funtions of several real variables,where the question of divisibility of polynomials beomes muh moreompliated (see [14℄), diret theorems were obtained only for Cartesianproduts of one-dimensional ompata (see [12℄, �1.4℄).We now present one of the diret theorems in an asymptotially ex-at form on the lass [5℄: Let for some r ∈ N, the derivative f (r−1) beabsolutely ontinuous and |f (r)(x)| ≤ 1 a. e. on [0, 1], and let f(ν)(0)

ν! and
f(ν)(1)
ν! ∈ Z for 0 ≤ ν ≤ r − 1 (these arithmeti onditions are also nees-sary). Then for any n ≥ 4r + 2, there exists a polynomial qn suh thatfor any x ∈ [0, 1]

|f(x)− qn(x)| ≤ Kr

(√x(1− x)

n

)r
+ c(r)

(√
x(1− x)

)r−1

nr+1
,where the onstant annot be taken smaller than the known Eiler�Bernullionstant

Kr =
4

π

∞∑

k=0

(−1)k(r+1)

(2k + 1)r+1
,as it was alled by Bernstein ( [1℄, Ch. II, 61 (1935)) before Favard'spaper and the following ones on this topi.A diret theorem on approximation by polynomials with positive inte-ger oe�ients on the interval [−2, 0] with sharp arithmeti onditions ona funtion was also proved in [5℄. It is not known how a similar theoremlooks like for [−3, 0], for example, when the polynomial X is known:

max
[−3,0]

∣∣x(x+ 1)(x+ 2)(x+ 3)
(
x2 + 3x+ 1

)∣∣ = 45

64
.This also implies the form of the polynomialX for the interval [−√

3,+
√
3](see [13℄).



304 On the best approximation of non-integer constants...Let us add one more diret theorem along with interpolation.If f ∈ C[0, 1], f(0) and f(1) ∈ Z, and ψ ∈ C[0, 1] and stritly in-reases from zero to one, then for any n ∈ N, there exists a polynomial
qn suh that for x ∈ [0, 1] we have
|f(x)−qn(ψ(x))| ≤ c

(
ω(foψ−1;

√
ψ(x)(1 − ψ(x))

n
)+

√
ψ(x)(1 − ψ(x))

n

)
,where ω is the modulus of ontinuity.For ψ(x) = x, this theorem is in [17℄, and it immediately impliesthe presented result. If ψ(x) = xγ , γ > 0, then we arrive at the �rststrengthening of M�unz's theorem, in a partiular ase but with the rateof onvergene indiated.For approximation of funtions analyti in a neighborhood of on aompatum K ⊂ C, the Bernshtein�Walsh theorem ( [4℄, 4.7.2) is known:

En(f ;K) = O(ρn) for some ρ < 1. A similar theorem holds in the aseof polynomials qn [12℄.Let X(z) be a polynomial with integer oe�ients and the leadingoe�ient 1, and let zν be all its zeros. Let a funtion f be analyti withinthe lemnisate |X(z)| = 1, and the Hermitian interpolation polynomialde�ned by
p(s)(zν) = f (s)(zν) (s ∈ [0, r])be a polynomial with integer oe�ients for any r ∈ Z+ (this is also ne-essary). Then the relation Een(f ;K) = 0(ρn) holds for any ompatumwithin the lemnisate,where ρ ∈ (0, 1) and depends on K (see [12℄,p. 300).Exat theorems on approximation of funtions by polynomials qn inthe Lp metris, p ∈ (0, 1), an be proved in a similar way.Note also that in ontrast to approximation by polynomials qn, in thequestion of approximation by integral-valued polynomials whih, by def-inition, take integer values at all integer points, the size of a ompatum

K is not essential. Thus, for a ompatum lying on (0,m), m ∈ N, onean take
X(x) =

(x− 1)(x− 2)...(x −m+ 1)

(m− 1)!
(|X(x)| < 1).On the other hand, for example, in the ase of an interval [a, b], 0 < a < b,it is possible to get rid of arithmeti onditions on a funtion as notlose the rate of approximation if instead of qn polynomials of the form

n∑
k=0

mk
qk
xk (mk ∈ Z, q ∈ N, q > b) be taken, sine for α = a

q , β = b
q andfor the known ρ = ρ(α, β) < 1, there holds

Een(f ; [α, β]) = O(ρn).



R. M. Trigub 305One example of polynomials of best approximation is in order. If
Een(f ; [a, b]) = ‖f − q∗n(f)‖C ,then for f(x) = max{1−2x, 0} and n ∈ [0, 2], there holds Een(f ; [0, 1]) =

1, with q∗0 ≡ 0, q∗0 ≡ 1; for n = 1, there additionally holds q∗1(x) = 1− 2xand q∗1(x) = x, and for n = 2 there additionally holds q∗2(x) = (2x− 1)x.It is lear that for any n, a number of polynomials q∗n(f) is �nite forany funtion.In [23℄, it is proved that for any n ∈ N and natural q ≥ 2, there holds
Een

(
1

q
;

[
1

q + 1
,
q + 2

q(q + 1)

])
=

1

q(q + 1)n
.

Conjecture: For n ∈ N and q ≥ 3, the polynomial q∗n is unique.In onlusion, let us mention two simple fats on the relation between
Een(f ; [a, b]) and q([a, b]).If there exists an m ∈ N suh that Een+m(f ; [a, b]) < Een(f ; [a, b]) forin�nitely many n, then

0 < ‖q∗n − q∗n+m‖ ≤ Een(f ; [a, b]) + Een+m(f ; [a, b]) ≤ 2Een(f ; [a, b]).Therefore,
q([a, b]) ≤ lim

n→∞

(
Een(f ; [a, b])

) 1
n .Here the known asymptotis of best approximation to funtions analytion the segment may be useful (see [6℄, 7.5). To prove the above inequality,one an also use polynomials qn(f) with approximation of the best rateinstead of q∗n(f), and there are many suh polynomials in C and Lp(see Setions 1-2 above). If the trans�nite diameter of a ompatum

K is less than one and for any small ǫ > 0 and large n, there holds
‖qn‖ < (q(K) + ǫ)n, then for the analyti funtion

f(x) =

∞∑

k=0

qk(x)we obtain
lim
n→∞

(
Een(f ;K)

) 1
n ≤ q(K) + ε.
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