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On the best approximation of non-integer
constants by polynomials with
integer coefficients
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Abstract. In this paper, exact rate of decrease of best approximations
of non-integer numbers by polynomials with integer coefficients of grow-
ing degrees is found on a disk in the complex plane, on a cube in R?,
and on a ball in R?. While in the first two cases the sup-norm is used,
in the third one that in L,, 1 < p < oo, is applied.

Detailed comments are also given (two remarks in the end of the

paper).
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Introduction

At the first USSR mathematical congress (1930), S. N. Bernstein
raised the question of the best approximation of a non-integer number by
polynomials with integer coefficients of increasing degrees (see [1], v. I,
p. 468-471 and 519). Shortly after, R. O. Kuz’'min and L. V. Kantorovich
indicated some estimate of the approximation from above not depending
on the nature of a number [2]. The question was completely solved for
the interval [6,1 — ¢], § € (0,1/2) in [3] (see also [4], 5.4.16). Further,
in |5], four cases of exact rates of best approximations of constants were
indicated on the intervals [a, 8], 0 < a < 8 < 1, depending on the arith-
metic nature of both the number and interval. In the same paper, the
problems of approximation of both smooth functions and constants by
polynomials with positive integer coefficients (on a segment lying on the
negative semi-axis of R) were considered for the first time.
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It is clear that if some function different from a polynomial admits
uniform approximation by polynomials ¢, with integer coefficients (Z +
iZ) on a compactum K C C, then there exists a polynomial X with
integer coefficients such that

0 < max|X(2)] < 1.
zeK

Hence, the transfinite diameter of K is less than one (see, e. g., [6], 2.13,
13).

Here and in what follows p, is a polynomial of degree not greater
than n with arbitrary coefficients, while g, is the same but with integer
coefficients.

The Chebyshev polynomial C),(K) is defined by

|Ch(K)||co = min max |2" + pp—1(2)].
Pn—1 z€K
Then the Chebyshev constant always coinciding with the transfinite di-
ameter is equal to

1
A(K) = Tim [|Cy ()%

The existence of the limit follows from the well-known lemma: if 0 <
1

Tpgm < T - Ty, for any n and m, then there exists the limit lim x;; . Note
that for such sequences, the limit lim x;—:l may not exist.

For a disk, the Chebyshev constant is equal to the radius, and for an
ellipse, it is equal to the half-sum of semi-axes.

If p is the outer planar Lebesgue measure, then u(K) < 7(d(K))?
(see [20], Ch. YII, §2]).

For an interval [a,b] C R, the Chebyshev polynomial equals
b—a

Cr(z;a,b) :2< )n-Tn(aj;a,b),

where

2r—a—>

b—a
_ %{ <2xb—_aa— b n \/(233{)—_(1@— b)2 _ 1>
n (2;1:{)—_@@— b B \/(233&)—_(1&— b>2 B 1>n}

It has many extreme properties. Let us present one of them that will
essentially be used below.

T, (x;a,b) = cosn arccos




R. M. TrRIGUB 285

For any polynomial p, of x € R\ (a,b), we have

P ()] < [Tn(2;a,0)] s [Pn ()] (1)

Note also that if d(K) < 1, then there exists a polynomial X with
integer coefficients and the leading coefficient 1 for which max | X| < 1 as
well (see [12], p. 272). Such a polynomial X is crucial in many problems.
For example, if such a polynomial does exist, with the condition 0 <
| X (2)] <1 for any z € K, then every function that can be approximated
by polynomials p, with arbitrary coefficients admits approximation by
polynomials g, (it suffices to approximate the constant A = %), see ibid. If
there is at least one integer point (i.e., a point with integer coordinates) on
the compactum K or, more generally, integer algebraic numbers together
with their conjugates, then the function must satisfy certain arithmetic
conditions. For example, a real continuous function on [—1, 1] is the limit
of polynomials g, as n — oo if and only if £(0) and 1 (f(—=1)+ f(1)) € Z
(see, e. g., [7], Ch. 2, §4).

For the exact rate of best approximation in the uniform metrics of
individual constants on an interval of the real axis, see [23].

In this paper, we study the best approximations of constants in the
cases where the compactum K is a disk in C (§1, Theorem 1), a cube in
R? (§2, Theorem 2), and a ball and a cube in R? (§3, Theorem 3). In the
case of a ball and a cube centered at zero, both the integral metrics and
arithmetic conditions are dropped (d = 1, see [4], 5.4.16). The exact rate
of approximation is established to an individual constant in Theorem 3
and on the class in Theorems 1 and 2 (the latter means that there exist
both a constant and a compactum of the indicated form for which this
rate of approximation is exact).

The problem of the rate of decrease of the difference between the best
approximations of a continuous function by polynomials with arbitrary
coefficients and and that with only integer ones on a compactum without
integer points is also considered (see the second part of Theorem 1).

By ¢ we denote absolute positive constants, and by ¢(«, P) some pos-
itive values depending only on o and P.

In §4 detailed comments are given in Remarks 1 and 2, in which
certain supplements, historical information and open problems can be
found.
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1. Approximation of constants on a disk in C

Let A € C be non-integer, that is, A ¢ Z + iZ. Suppose that in the
disk
K, =Ky (%) ={2€C: |z— 2| <r}

1
there are no integer points, which implies 0 < r < 75 Shifting by an

integer, we may assume that zg € Il 1, where Ily; is the closed square
with the vertices at 0, 1, 1 4+ ¢, . Suppose also that Ho,% = %HOJ. By
linear transformation w = w(z) with integer coefficients we can map the
square HO,% + L (the algebraic sum) into Ho,% (w =141i—z), the square
HO,% + %— into m (the complex conjugation, w = 1 — z), and Ho,% + %
into m (w = z—1). Since the inverse transformation is also with integer
coefficients, without loss of generality, let us assume that the center zg is
contained in Ho,% U m.

Theorem 1. Under the assumptions made, for any n € N, we have

E5 (% Ky) = minmax |\ - ga(2)] < (n+ 1)p",
dn

T

T
where p = max{p1, p2} and p1 = ol p2 = |zo| + 7.

In general, p cannot be lessened.
Moreover, if a function f is analytic in the closed disk Kr(zo) of
radius R > r, with the same center 2y, then there holds the equality

Bi(f:1) = minmax |£() = 0u(2)] = O( () + (n+1p").
Proof. Since
m
zZ—2o\™ 1
( —Z0 ) =1 ;akz ’
we have .
max |\ - ;Aakzk\ < |A|(é)” = |\lp}-

Replacing Aa; with the nearest integer c; and applying the same
inequality with n replaced by n — 1 to their difference (“the fractional
part”), we obtain

n

r \n—1 _

A—clz—Zbkz’“( <At + (‘Z—O|) max |2 = [Ap} + o}~ pa.
k=2 ’

max
T
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We assume |A| < 1, without loss of generality. Further, we single out the
integral part of the coefficient b1, and so on. Continuing in this manner
until all non-integer coefficients are corrected, we arrive at a polynomial
qn such that

max [ = gn(2)] < Zp" “p5 < (n+1)max {p},p5} = (n+1)p",

as desired.
Clearly, for p; # pa, the factor (n + 1) can be replaced by a value
bounded in n.
Now, to estimate the approximation from below, we use the following
inequality: for any polynomial p, with |z — zp| > r, there holds (see,
g., [4]4.7.1)):

|z — 20|

r

1< (E22) o).

For some polynomial g,,, we have

r n
C(\: = — > [\ — — > .
B0 K) = max A = ()] 2 )= an(O)] ()" 2 ek

This estimate of approximation from below is obtained for p; > ps.

2
Let now po > p1,1. e, r < NA. We choose a number and a disk
— |20
for which the same estimate of the approximation from below hold true.
_1 1 _ 1
Put A = I,WherquNandq>2ZO O—E—W,T—W.
Then
E¢(\; K,) > min — (D) > min -2
AT = N g+ 1 an T oseZ |qg+1 g
=— 1
TESNG min |¢" — s(g +1)],
and this is not less than ﬁ)qn = q+1 (g +7)" = qulpg. Thus, there

exist a number A and a disk K, such that ps cannot be lessened too.
This means that the inequality is exact in the general case, i. e., on the
class. O

It is important that we can pass from approximation of constants
to approximation of arbitrary functions that admit approximation by
polynomials p,,.

Let us proceed to the proof of the second part of Theorem 1.
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Suppose that f is an analytic function in the closed disk Kg(zp) with
the same center zy for some radius R > r and that not all Taylor’s
coefficients at zy are integer. The point is that, as follows from the

o0

Cauchy-Hadamard formula, if f(z) = chzk , where all ¢; are integer,

k=0
then the radius of convergence of the series is not greater than one if the

function is not equal to a polynomial, and it is possible to use partial
sums of the series for the approximation.

Due to the Bernstein theorem (see, e. g., [4, 4.7.2]), there exists a
sequence {py} such that for 0 < v < s (s is the smallest number of a
non-integer Taylor’s coefficient) we get

max| ) (2) = p)(2)] < e R.5) (35)

This is the rate of best approximation. So, we can additionally suppose
that pi” (20) = ) (z0) for (0 < v < s).
Without loss of generality, we will also assume that

f(z) = Zak(z —2)", Z lag| - R¥ < oo.
k=0 k=0
Then
3 k<oo erk<rn+1°° Rk
max| 3 o= < Y el -B(F) < (F) DD lal-B-
k=n+1 k=n+1 k=n+1

It is crucial now that p, must be approximated by a polynomial ¢,. We
have

as(z — 29)° = as(—zo)s(z — Zo)s = as(—2)° (1 — 25: bkzk).
k=1

As above, we replace as(—zp)® by the nearest integer, and further increas-
ing the degree of z, we repeat the proof of the first part of the theorem.
Theorem 1 is proved. O

Similarly, we can consider the approximation on the ellipse containing

no integer points (with one of its axes less than 4 and the diameter less
than 1).
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2. Approximation of constants on a cube in R?

U

Suppose that = = (z1, ..., xq) € RY, 2* H % for kjeZy, |kl=

d d
> kj, and a polynomial p,(z) = Y.  apa® has the degree n = 3 n;.
J=1 0<k;<n; j=1
Moreover, let
K=T,,={zeR: z;€ab], 1 <j<d}=][a,b]"

Since the cube must not contain integer points, we may assume, with-
out loss of generality, that 0 < a < b <1 —a and O = (0,...,0) is the
integer point nearest to Il .

For A € (0,1), we put

E; (X1, 5) = min max |A — g, (x)].
’ qn CEGHab

Theorem 2. Under the above assumptions, for any n € N, we have

EZ()\;Ha,b) < c(d)ndpna p = max {%7 b}a

and p cannot be taken smaller in general.

Proof. As is follows from (1) and the previous formula for T,,, if 0 < a,

we have
D OV RSV AN 1

But
T,(t;a,b) = T,(0;a,b) — OabZaktk

and for ¢ € [a, b], there holds
‘1 — Z aktk ~
k=1

Multiplying such inequalities with ¢ = z; and n; (1 < j < d), forx € I,
and n =) _n;, we obtain

d 1 \/— \/_ n
R & =) KT

T,(t;a,b) ‘ < 1
b)| = |Tn(03a,0)|
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Let us multiply this inequality by A € (0,1) and take into account that for
d, € 10,1), the equality Aby = [Abi] + 0 holds. We need to approximate
monomials dz° for § € (0,1) and s; € [0,n;],1 < j < d, by polynomials
dn- To this end, we multiply inequality (2) by dz*, replacing n by n — s.

This yields

n—s

‘53:8— Z (5bk,sxk‘:‘5ws— Z Sbpakts| < zs.24 M
Vb + va

s+1<|k|<n 1<k<n—s

Further, we select the integral part [0bg_s] and apply the same in-
equality to the fractional part again, and so on up to s = n. We arrive
at the following inequality: for = € 1I,;, there holds

_ d Vb —a a Vb—a

Al '<QZ <f+f> QZ (f+f>
< 2dp”card{ack o |kl < n}.

But, as is known (see, e. g., [9], Ch. IV, it. 2),

d+s—1\  s(s+1).(s+d—-1)
card{m k| =s} = < do1 > = d—1) ;

wherefrom

card{az" : [k] <n} = Szocafd{xk Dkl =5} < (n+ 1>(d1;71 1)

<(n4+1D(n+d-1)"1 < e (d)n.

The estimate for the approximation from above is proved.
To estimate the approximation from below, we use the following well-
known inequality ( [1], v. II, pp. 434-436):

Vbt ya\
i-va)

(O] < max ()| [T Ty 050 < max o (@ >\(
a,b
> j=1

Substituting the difference A — g,, for p,, we obtain
n
h—
E¢(X\;I,p) > min |\ — ¢ Vb—va .
’ ceZ Vb +a

2
1-b Vb—+/a
Hence, for a < b(m) or, which is the same, for b < irva

, We cannot

take smaller p.
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Ifa > b(1+b) and b = % (¢ € N,q > 2), then, for example, for d = 2,
we have 1
Ef(X1gp) > min max ‘)\—qn(xl,()‘.

an  z1€|a, ]

n
Choose x1 = E and take into account that qn(; ;) = > ckqik. But for

k=0
A= m (see the end of the proof of the first part of Theorem 1), we
obtain
‘ 1 ‘ 1 r
g+1 poard qu “qg+1 ¢ q+1
Theorem 2 is proved. O

Similarly (see the proof of the 2nd part of Th. 1) we can consider
approximations of functions by polynomials with integer coefficients on
some parallelepipeds without integer points.

Note that in the case of a cube Il,;, 0 < a < b, of any size, the above
argument yields exact estimates of the approximation of constants and
functions by polynomials of the form

Using the similarity transformation, it suffices to pass to approximation
on Il 5, 0 < a < B < 1, by polynomials with integer coefficients, and
then return to I1, ;(0 < a < b). Here the coefficients of polynomials are
rational numbers with known denominators.

3. Integral approximations

Let
Ko = {o = (21,20 |2] <7}

be a Euclidean ball of radius r centered at the origin, and let
o, =[-r r]d — {x = (x1,...,2q) : |zj| <11 < d}

be a cube.

Theorem 3. Let A € R\Z,r € (0,2),p € [1,+00), and let the degrees
of polynomials in all variables n tend to infinity. We have

1
P
EC(\K,), = min (/ A qn(ac)\pdac> o
dn
Ky
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)
E:;u;n_r,»p:min( / |A—qn<x>\f’dx> <n7?,
qn

My 4r

and

=

and for r € (0,1], we have

2d

En (X Ilor)p <n” v,

(two-sided inequalities with positive constants not depending on n).
For r > 2, we have

En(MI, ), > EL (N Ky > (A, r,p) > 0.
Proof. To estimate the approximation from below, we need the following
result.

Lemma 1. For a > —1, p € [1,400),7 > 0 and any polynomial
{pn}, we have

T
1
[ 0P = clsp)r O iz
0

and for even polynomials p,, we have

T

/ € lpa(®)Pdt > c(c, p)r e pa(0))P
0

1
nptap’

Proof. Proving the first inequality for » = 1 will imply the general case.
n

If p,(t) = Zaktk, where ay = p,(0), then for p =1 and n > 2, we

k=0
obtain
1 T
/ta|pn(t)\dt > I[réjaﬁc‘/tapn(t)dt‘ =
0 0
n Sk . . "
= el 2 e g | ool

In view of the extreme property of Chebyshev’s polynomials C,, (the
growth of the norm of a polynomial when the interval expands, see (1)),
with the absolute constant ¢ > 0, it is easy to check that

max |p(z)| < ¢ max |pn ()] (3)

[0,1] 1
'n,2 71
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Therefore,
h 11 - zk 1 ag
a 0
R D e R
J -

It remains to apply the Holder inequality:

1 1
1

[ < (25)7 ([ ewaopa)’

0 0

In the case of even polynomials, one obtains this after replacing t? by t
with another a.
Lemma 1 is proved. O

We will now prove the estimate of approximation from below for A
on a ball and a cube, both centered at the origin.

By the symmetry of a ball with respect to the coordinate planes, for
some ¢ € Z, we have

(5, (A KL )y)P = / A= 3 e P,

Let us pass to the spherical or polar coordinates at |x| =t € (0,r]. For
example, if d = 2, where x1 = tsin p, xo = t cos ¢, we get

P
/dg@/ ‘/\— c/y%.tZ‘klsin%1 @cos?*2 p| dt.
k| <n

Applying Lemma 1 for even polynomials, we derive that for any r > 0
this value is not less than
21

1
e

0

This holds for d = 2, while for d > 3 the Jacobian equals t4~1F(yp),
where F(¢) = [1%2 (sinn)*2 and all ¢, € [0, Z).

Consider the case p = 1 and then apply Hélder’s inequality:

(BS, (A Kp)y = /td 1dt/ - F )\— >t (F(p))?F|de.

k|<n
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Since the absolute value of the integral of a function is not greater than
the integral of the absolute value of the function, this expression is not
less than

Ttd_ldt A Flo)— ) cpt™ (F () dep|.
O/ ( [07%4_2 @ K / @ @

k|< -
k| <n 0,Z]d-2

It remains to apply Lemma 1. The estimate of the approximation from
below is proved for r € (0,2), since we always have ES(\ 11, ), >
Ef (N Ky )p.

Now we consider the case r > 2.

By the Korkin-Zolotaryov inequality (see, e. g., [6], 2.9.31 or [4],
p. 223]), for m € Z, we have

b

n
b— +m+1
[tz o5
k=0

a

1
For d > 2 and p € [1,00), we choose 8 > —— such that
p

%(g—l)—kﬁ:mEZJr.

Then, due to Holder’s inequality, for any polynomial g,, there holds

4 4 4
1
1< [ gl < ([ - gora)” / o ar) "
0 0 0
This yields the desired estimate from below. O

The case d = 1 was considered in [4], p. 231].

Lemma 2. Ifa > —1, p € [1,400) and m € Z,, there ezists a
sequence of polynomials {pn}5°, pn(0) = 1, such that for some constant
c(a, p,m), there holds

1
1
e’ p [ —
[ lpatpde < clapom) -
0

and

(a(t) = Pa(0))(0) =0 (0 < v <m), and max [po(t)] < (e, p,m).

)



R. M. TrRIGUB 295

Proof. For p = 2, the corresponding problem was solved long ago. We
have (see [10], Ch. I, 14)

1 n 1 n
2 o o 12
min /ta‘1—§ aktk‘ dt = min/t2—§ apt® Tz | dt
{ak}m 3 k=m {ak}m 0 k=m
1 k 2 1 = a+1\-2
a+1H(k+a+1> a—i—1H<+ %
k=m k=m

But In(1 + z) = z + O(2?) as  — 0. Therefore,

- +1y2 a1 L
1nk11n(1+ak )2 2( 3 2 o) = a2 L o),

=m

and the desired inequality is proved for p = 2.
Let us deduce from it the boundedness of the extremal sequence {py, }
in the space C[0, 1].

1
Taking into account that t* > —-atl € [#, 1] (n > 2), we have
n

x

1
max /pi(t)dt <ec(a,m) - —.
19 n
n2’ 1
v

Now, from Markov’s inequality for the derivative of a polynomial
(6, 4.8(32)], [4, 5.4.6]) it follows that

2n+1)2 2
max p2(z) < cl(a,m)( n—i; ) . T < ca(a,m)
1.1] n 1-22

Further, we apply (3).

And this sequence {p,} (more precisely, {p2}) may be used for any
p € [1,400) since all the conditions at z = 0 are fulfilled.

Indeed, if a polynomial p,, meets assumptions of Lemma 2 at p = 2
and (p,(z))? < M, then

1 1
1
[ e wateyrar <2 [ o) < el 2m) -
n
0

0

which completes the proof. ]
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Lemma 3. Let p € [1,+00), m € Zy and {t,}§ C [—r,r], where
to = 0. Then there exists a sequence of polynomials p, such that

1
11 = pallzy (s = O( )
ne
and
Sup HanC[—r,r} < o0, pgzk)(tu) =0 0<v<s, 0<k<m).

Proof. By Lemma 2, at « = s = 0 there exists a sequence of even poly-
nomials p,, such that

1
1 = pnllL,~2r2n = O <_;> , PP0)=0 (0<k<m).
ne
Then for ¢, # ty, we obtain

1

1= Pl by < 1= allry 22 = O(— )

ne
and new polynomials 1 — p,, are bounded in the aggregate, and their
derivatives equal to zero at +t, up to the order m. Both the equality

1—-fg=9g1-f)+(1—-g)

and the inequality [|g||¢[—y, < M imply that

1
Hl - ngLp[fr,r} < M(27”)P ||1 - fHLp[fr,r} + Hl - gHLp[fr,r]'
Thus, for s > 1, we have

1
1= aCIpal 1)y = O(— )
ne
For s > 2, adding all other points one by one in the same way, we arrive
at the inequality

1= TLon % )y = ().

v=0 ne
Lemma 3 is proved. O

In what follows we consider d = 2.
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Lemma 4. If {t,}{ C [-r,r] and m € Zy, then for any function
f € C?[—r,r)?, there exists a sequence of polynomials {p,(x1,72)} such
that

1
Hf _anLP[fr,r}2 = O(ﬂ/}z})
" 9% pn ) 9" pn )
Dn\T1, T2 Dn(Z1, T2
—(ty, ty) = —————=(t,, t,) =0,

forO0<v,u<sand 0 <k <m.

Proof. If p, is a polynomial from Lemma 3, then for

pon (21, 22) = pp(21) + Pn(22) — Pu(21) - Pul2),
we have
1 — pon(x1,22) = (1 — pr(z1))(1 — pn(22)),
and hence,
1
||1 _p2n||Lp[fr,r]2 = Hl _an%p[—r,r] = O<_2)
ne

We multiply now this inequality by the function f € C?[—r,r]?, which is
approximated by polynomials due to Jackson’s theorem:

- 1
1 =Pullerrme = O(=3)-
Taking into account that

f = Dn P2 = f(l _p2n) +f_ﬁn+(ﬁn _f) ’ (1 _p2n) =
1 1 1 1
o) +o(l) +o(k) -o(%)
nr n n*te nr
we conclude that the polynomials P, = p,, - p2,, are desired.

Lemma 4 is proved. O

To pass to approximation by polynomials g,, we note that for any
compactum K in R with the transfinite diameter less than one, there
exists a polynomial

P(z)=a2m+ .., max |P(z)| < 1.

This implies that there exists a polynomial X with integer coefficients
and the leading coefficient one such that

0 < max|X(z)| < 1.
K
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Such a polynomial is sometimes called fundamental for a given com-
pactum.

For example, for K = [0, 1] we can take X (¢) = ¢(1 —t), and for [0, 2]
we can take X(t) = t(t — 1)%(t — 2) (see also a polynomial X for [0, 3]
in §4). The number of zeros of such a polynomial increases indefinitely
as the length of the segment tends to 4, and there are finitely many
integer algebraic numbers of different degrees on the segment [0, 4] (zeros
of Chebyshev’s polynomials). For K = [—r,r], r € (0,2), the polynomial
X in question can be treated as even, and, after its squaring, as positive.
Its zeros are integer algebraic numbers, some of which may be found
out of [—r,r]. So, there exist even polynomials X; and X, with integer
coefficients and the leading coefficient one such that Xs(¢) > 0 for ¢t €
[—r,r], Xi(t) >0 and

X(t) = X1(t)- Xa(t), 0<X(t)<p<1l (tel[-rr).

In case of the square [—7, 72,7 € (0,2), we take the product X (z1)- X (z2)
as X (x).
Lemma 5. If
pu(x) = X™(2) - po.ny (2),

then there exists a sequence of polynomials q, with integer coefficients
satisfying the inequality

ln = dullop e = O( ).

Proof. 1t is clear that any polynomial of ¢ € R can be represented as

N
pn =Y apX*(1 - X)NF,
k=0

where the degrees of polynomials aj less than the degree of X, and N is
the maximal positive integer such that the degree of the whole polynomial

is not greater than n.

A polynomial in two variables 1 and x2 is a polynomial of x1 with
coefficients that are polynomials of x5. By doing the same transformation
of polynomials of x5 we arrive at the following representation:

N N

Pa(@)= D > an o XM (1) (1= XF (@) VRN () (1 = XF2 () VR
k1=0 k2=0

Now let
pn(z) = X™(2) - pon, ().
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Then we get

n (71, 72) Z Z ey s X (1) (1= X (a0)) V9 X2 () (1= X ()Y 0.

kl—m k)z m

Replacing coefficients of polynomials ay, 1, of a fixed degree by the near-

est integers (in this case, the polynomials themselves change by a value

bounded with respect to n), we obtain a polynomial ¢,. For x € [—r,7]?,

we have

‘pn(x) - Qn(x)| <
N N

<e(X) Y XM (@)1= X (@) YT XP (@) (1 - X (a)) VP

ki=m ko=m

For 0 < X < p < 1, we obtain

N N—m
k=m k=m

N
+ Z Xk(l o X)N—k
k=N-m+1
N—m
< % <ZZ>XI€(1 X)N k + pN m+1
(m) k=m

This implies the relation

pal@) ~ 4a(@) = O35 ).

Lemma 5 is proved. O

We will now prove the estimate of approximation of A from above in
Theorem 3 in the case of a cube centered at the origin, and consequently
for a ball.

Let {t,}{ be all zeros of an even polynomial X on [0,7], and let
X = Xj - Xy, where Xo does not vanish on [—r,r]. Applying Lemma 4

for f(l‘) = W, we get

17 =Pl = O( ).

ne
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Due to the conditions on partial derivatives of p,, at the points {t, }§, this
polynomial is divided by X7"(x1)X{"(x2). Multiplying by X" (x1) X" (x2),
we get a good approximation of the unit by polynomials that are divided
by X™. For d = 2, when one can take m = 1, it remains to multiply this
ratio by A and then apply Lemma 5.

We now proceed to the proof of Theorem 3 in the case of a cube
[0,7]9, 7 € (0,1] where there are no integer points inside it, for d = 2.
We have

T T
i k1, .k
Egn(; HO,r)p = I{Iilch}l (([dxl (/ ‘)\ — Z Ck:$11$22

0<k1,k2<n

pdig) % .

To estimate approximation from below, we first apply Lemma 1 at « =0
with respect to 2o and then with respect to x1. As in the proof of Lemma
4, the estimate of approximation from above is implied by the case d = 1
[4], 5.4.15.

Theorem 3 is completely proved. O

4. Comments

Remark 1.

In the above proofs (see Sections 2 and 3), theorems on the growth
of the norm of polynomials p, outside the given compactum in C and
R? play an essential role in estimating approximation of A from below.
What is the maximal growth of |p,(z¢)| with respect to n at xp ¢ K if

=17
ma ()

In the complex plane C and a “good" compactum K, a desired value
is determined by the level line of a function that conformably and uni-
laterally maps, under a special normalization, the exterior of K to the
exterior of the unit circle. The point x( is on this line (see, e. g., [8], Ch.
IX). Based on this, the following result was obtained for a part of the
circle [15].

Let r € (0,1), a€ (0,%), and let

Kpo= {x €C: |z2/|<r, Rez < —rcosa}.

Then for any A € R\ Z and r < 2sin with positive integer

T
22 — @)
coefficients, there holds

e
202 — )

3=

= 2sin

Iim min max
n—00 {Ck}EZJ,_ Kr,a

n
A— Z ckzk
k=0



R. M. TrRIGUB 301

Ifr> 2sin2(+cia) (in particular, r = %) and A is not a dyadic

1
rational number, then the same limit equals —.

It is noteworthy that on the line R the problem of the growth of norms
was solved for sets of the positive Lebesgue measure long ago.

E. Ya. Remez (1936) proved that for h € (0,2), there holds
2+ h)

meas{r € -1 1]+ [pa(e)| 1} 2= h = max ()] < T (50

where T, is Chebyshev’s polynomial for the interval [—1,1], and the in-
equality is sharp (see the proof of the theorem in [7], Ch. 2, it. 7]).
Note also that at approximately the same time G. Pdélya proved a
similar result for the maximum of absolute value of pS;”), i. e., for the
leading coefficient of p,, (see [6], 2.9.13). Recently a sharp inequality for
the growth of norms for sets of positive measure on the circle has been
obtained [11]. A list of earlier papers on Remez-type inequalities for

polynomials in several real variables is given there.
Remark 2 (on polynomials with integer coefficients in analysis).

First problem.
Let K be a compactum in R, C or R¢, with the norm in C or L,.
What is the “integer" transfinite diameter

1
q(K) = lim min [lgp[|=?
In view of Nikol’skii’s inequality of different metrics for polynomials [6],
4.9(36)], for instance, ¢(K) in Ly[a,b] is independent of p > 0.

This problem was successfully dealt with by L. Kronecker, H. Min-
kowski, D. Hilbert, I. Schur, M. Fekete, A. O. Gelfond-L. G. Shnirelman,
D. S. Gorshkov, E. Aparisio, the author (see a survey paper [12]| in which
theorems by the mentioned mathematician are given with proofs, and
[13] with references therein), and also by F. Amoroso, B. S. Kashin,
G. V. Chudnovskii, P. Borwein, T. Erdelyi, C. G. Pinner, I. E. Pritsker;
see also [16, Ch. 10].

Both this list of authors as well as the following one are chronological
regarding the time of publication.

The idea of Gelfond—Shnirelman to use the information about the
smallest non-zero norms r[%aﬁ(\qn(a;)\ has failed to give the proof of the

)

asymptotic law of distribution of prime numbers. The reason was that
1

it turned out that ¢([0,1]) > — (Gorshkov, see, e.g., [13]). However,
e
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there is a chance that this can be done after passing to polynomials in
many variables as K. Roth (1955) did in the problem of approximation
of algebraic numbers by rational ones (see [21], Ch. YI). The latter idea
appeared in the author’s survey [12]; it was also discussed in [19], Ch. II]
with the reference to this survey.

Note also that Chebyshev’s polynomial of degree n in Ly[a,b] (with
the leading coefficient one and the smallest norm) is only known if p = oo
(Chebyshev’s polynomial), p = 2 (Legendre’s polynomial), and p = 1
(Chebyshev’s polynomial of second kind).

Due to the inequality of different metrics (see also [18]) Chebyshev’s
constant for the interval [a, b] is the same for any p > 0: bZ—“. In addition,
q(la, b]) for polynomials with integer coefficients in L, does not depend
on p > 0, depends continuously on the interval but is not known for any
interval. It follows from the Gilbert-Fekete theorem that for b —a < 4,

1
there holds g([a, b]) < (%52)2, and this inequality cannot be strengthened
for small b — a [12], p. 317], see also [13].

Second problem (on approximation of functions by polynomials ¢,,).

It is about the possibility of approximation and its rate depend-
ing on both a function and degree of polynomials. Among the peo-
ple who contributed to this problem were I. Pdl, S. Kakeya, I. Okada,
. N. Khlodovskii, R. O. Kuz'min, L. V. Kantorovich, M. Fekete, G. Szego,
[. N. Sanov, E. Aparisio, A. O. Gelfond, H. Matts, E. Hewitt-H. Zucker-
man, the author, S. Ya. Al'per, L. B. O. Ferquson, and M. von Golitschek
(see the survey in [12]).

If a function admits approximation by polynomials p, on a com-
pactum K C C, then for the approximation by polynomials g, it suffices
to approximate the constant A = % For this, it is necessary and suffi-
cient a polynomial X to exist with integer coefficients and satisfying the
inequality

0<|X(2)| <1 (z€K).

In the general case, if at least one function different from a polynomial
admits approximation by polynomials g,, then there exists a polynomial
X with the condition

0< m}z{mx\X(zﬂ < 1.

One may assume that its leading coefficient is one (Kakeya).

Thus, we get the first necessary condition: the transfinite diameter of
K is less than one. If such polynomials X have compulsory zeros on K
(integer algebraic numbers along with their conjugates), then necessary
arithmetic conditions on a function appear (in contrast to the integral
metrics, seen Theorem 3 above). The criterion for the approximation of
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a continuous function is known, i.e., the necessary and sufficient condition
simultaneously (see, e. g., [7], Ch. 2, §4). A strengthening of the well-
known Miinz criterion for [0, 1] is also found (see [7], 6.5).

In [3], a scheme of a proof for direct theorems for smooth functions
on an interval [a,b] C R has been elaborated. If, for example, in the
particular case where X has zeros only on K C R, 0 < X(z) <1 on K,
then we approximate a function by polynomials p,, that are divided by X
(using arithmetic conditions on the function), and then by polynomials
divided by X™ (see Lemma 5 above or [4], 5.4.14).

Direct theorems on approximation by polynomials p,, on compacta in
C were obtained long ago (see [8], Ch. IX). On the other hand, the passage
to approximation by polynomials ¢, is established only for the square
[0,1]? [22]. Note that in the case of functions of several real variables,
where the question of divisibility of polynomials becomes much more
complicated (see [14]), direct theorems were obtained only for Cartesian
products of one-dimensional compacta (see [12], §1.4]).

We now present one of the direct theorems in an asymptotically ex-
act form on the class [5]: Let for some r € N, the derivative f0—1 be

(0
V!

absolutely continuous and |f)(x)| <1 a. e. on [0,1], and let and

(v) E . .
fy—,(l) €Z for 0 <v <r—1 (these arithmetic conditions are also neces-

saré/). Then for any n > 4r + 2, there exists a polynomial q, such that
for any x € [0,1]

( x(1— ;1:))7“71

nr+1 ’

Vel Z ) $)>r + c(r)

n

F(@) = anl@)] < K,

where the constant cannot be taken smaller than the known Eiler—Bernulli
constant 4o k1)
K=ty CUT
™ (2k+ 1)+
as it was called by Bernstein ( [1], Ch. II, 61 (1935)) before Favard’s
paper and the following ones on this topic.

A direct theorem on approximation by polynomials with positive inte-
ger coefficients on the interval [—2, 0] with sharp arithmetic conditions on
a function was also proved in [5]. It is not known how a similar theorem
looks like for [—3, 0], for example, when the polynomial X is known:

45
[111?%3 lz(z +1)(z +2)(z +3)(2” + 3z + 1)| = 61

This also implies the form of the polynomial X for the interval [—\/g, —|—\/§]
(see [13]).
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Let us add one more direct theorem along with interpolation.

If f € C[0,1], f(0) and f(1) € Z, and ¢ € CI0,1] and strictly in-
creases from zero to one, then for any n € N, there exists a polynomial
qn such that for x € [0,1] we have

Fou s V(@)1 — () )+ V(@)1 - w(x»)’

n n

@) =an(@(@))] < e

where w is the modulus of continuity.

For ¢(z) = =z, this theorem is in [17], and it immediately implies
the presented result. If ¢(z) = 27, ~ > 0, then we arrive at the first
strengthening of Miinz’s theorem, in a particular case but with the rate
of convergence indicated.

For approximation of functions analytic in a neighborhood of on a
compactum K C C, the Bernshtein-Walsh theorem ( [4], 4.7.2) is known:
E.(f; K) = O(p") for some p < 1. A similar theorem holds in the case
of polynomials ¢, [12].

Let X(z) be a polynomial with integer coefficients and the leading
coefficient 1, and let z,, be all its zeros. Let a function f be analytic within
the lemniscate | X (z)| = 1, and the Hermitian interpolation polynomial
defined by

P (z) = fO(z) (s €(0,7])
be a polynomial with integer coefficients for any r € Z (this is also nec-
essary). Then the relation ES(f; K) = 0(p™) holds for any compactum
within the lemniscate,where p € (0,1) and depends on K (see [12],
p. 300).

Exact theorems on approximation of functions by polynomials ¢, in
the L, metrics, p € (0,1), can be proved in a similar way.

Note also that in contrast to approximation by polynomials g, in the
question of approximation by integral-valued polynomials which, by def-
inition, take integer values at all integer points, the size of a compactum
K is not essential. Thus, for a compactum lying on (0,m), m € N, one
can take

(x=1)(x—2).c(z —m+1)
X(zx) = X <1).
(v) — (1X(@) < 1)
On the other hand, for example, in the case of an interval [a,b], 0 < a < b,
it is possible to get rid of arithmetic conditions on a function as not
lose the rate of approximation if instead of g, polynomials of the form
n
%ajk (my € Z,q € N,q > b) be taken, since for o = %, 8= g and
k=0
for the known p = p(«, 8) < 1, there holds

EL(f; e B]) = O(p").




R. M. TrRIGUB 305

One example of polynomials of best approximation is in order. If

EL(fila; b)) = If = an(Hlle,

then for f(x) = max{l -2z, 0} and n € [0, 2], there holds E<(f;[0,1]) =
1, with ¢§ =0, ¢ = 1; for n = 1, there additionally holds ¢j(z) =1 — 2z
and ¢ (z) = z, and for n = 2 there additionally holds ¢;(z) = (2z — 1)z.
It is clear that for any n, a number of polynomials ¢ (f) is finite for
any function.
In [23], it is proved that for any n € N and natural ¢ > 2, there holds

I
"\a’ la+1"q(g+1) a(g +1)"

Conjecture: For n € N and ¢ > 3, the polynomial ¢ is unique.

In conclusion, let us mention two simple facts on the relation between
E5(f5[a,b]) and q([a, b]).

If there exists an m € N such that £y (f;la,b]) < Ef(f;]a,b]) for
infinitely many n, then

0 < llgn = nymll < EL(S3 la, b)) + E5 (S5 [0, 0]) < 2E7(F; [a, b]).
Therefore, )
a(la, ) < T (B5(F[a, 1)

Here the known asymptotics of best approximation to functions analytic
on the segment may be useful (see [6], 7.5). To prove the above inequality,
one can also use polynomials g, (f) with approximation of the best rate
instead of ¢};(f), and there are many such polynomials in C' and L,
(see Sections 1-2 above). If the transfinite diameter of a compactum
K is less than one and for any small € > 0 and large n, there holds
llgn|| < (g(K) + €)™, then for the analytic function

f@)=> ()
k=0

we obtain o )
lim (E5(f; K))" < q(K)+e.

n—oo
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