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On the best approximation of non-integer

constants by polynomials with

integer coefficientsRoald M. TrigubAbstra
t. In this paper, exa
t rate of de
rease of best approximationsof non-integer numbers by polynomials with integer 
oe�
ients of grow-ing degrees is found on a disk in the 
omplex plane, on a 
ube in R
d,and on a ball in R

d. While in the �rst two 
ases the sup-norm is used,in the third one that in Lp, 1 ≤ p <∞, is applied.Detailed 
omments are also given (two remarks in the end of thepaper).2020 MSC. Primary 41A10; Se
ondary 30E10, 41A17, 41A25.Key words and phrases. Trans�nite diameter, Chebyshev polyno-mial, extreme properties of polynomials, best approximation, integeralgebrai
 numbers, q-adi
 fra
tions.
IntroductionAt the �rst USSR mathemati
al 
ongress (1930), S. N. Bernsteinraised the question of the best approximation of a non-integer number bypolynomials with integer 
oe�
ients of in
reasing degrees (see [1℄, v. I,p. 468�471 and 519). Shortly after, R. O. Kuz'min and L. V. Kantorovi
hindi
ated some estimate of the approximation from above not dependingon the nature of a number [2℄. The question was 
ompletely solved forthe interval [δ, 1 − δ], δ ∈

(
0, 1/2

) in [3℄ (see also [4℄, 5.4.16). Further,in [5℄, four 
ases of exa
t rates of best approximations of 
onstants wereindi
ated on the intervals [α, β], 0 < α < β < 1, depending on the arith-meti
 nature of both the number and interval. In the same paper, theproblems of approximation of both smooth fun
tions and 
onstants bypolynomials with positive integer 
oe�
ients (on a segment lying on thenegative semi-axis of R) were 
onsidered for the �rst time.Re
eived 09.05.2023ISSN 1810 � 3200. © Iíñòèòóò ïðèêëàäíî¨ ìàòåìàòèêè i ìåõàíiêè ÍÀÍ Óêðà¨íè
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284 On the best approximation of non-integer constants...It is 
lear that if some fun
tion di�erent from a polynomial admitsuniform approximation by polynomials qn with integer 
oe�
ients (Z +
iZ) on a 
ompa
tum K ⊂ C, then there exists a polynomial X withinteger 
oe�
ients su
h that

0 < max
z∈K

|X(z)| < 1.Hen
e, the trans�nite diameter of K is less than one (see, e. g., [6℄, 2.13,13).Here and in what follows pn is a polynomial of degree not greaterthan n with arbitrary 
oe�
ients, while qn is the same but with integer
oe�
ients.The Chebyshev polynomial Cn(K) is de�ned by
‖Cn(K)‖∞ = min

pn−1

max
z∈K

|zn + pn−1(z)|.Then the Chebyshev 
onstant always 
oin
iding with the trans�nite di-ameter is equal to
d(K) = lim

n→∞
‖Cn(K)‖

1
n∞ .The existen
e of the limit follows from the well-known lemma: if 0 <

xn+m ≤ xn ·xm for any n and m, then there exists the limit lim x
1
n
n . Notethat for su
h sequen
es, the limit lim xn+1

xn
may not exist.For a disk, the Chebyshev 
onstant is equal to the radius, and for anellipse, it is equal to the half-sum of semi-axes.If µ is the outer planar Lebesgue measure, then µ(K) ≤ π(d(K))2(see [20℄, Ch. YII, �2℄).For an interval [a, b] ⊂ R, the Chebyshev polynomial equals

Cn(x; a, b) = 2
(b− a

4

)n
· Tn(x; a, b),where

Tn(x; a, b) = cosn arccos
2x− a− b

b− a

=
1

2

{(
2x− a− b

b− a
+

√(2x− a− b

b− a

)2
− 1

)n

+

(
2x− a− b

b− a
−
√(2x− a− b

b− a

)2
− 1

)n}
.It has many extreme properties. Let us present one of them that willessentially be used below.



R. M. Trigub 285For any polynomial pn of x ∈ R \ (a, b), we have
|pn(x)| ≤ |Tn(x; a, b)| max

x∈[a,b]
|pn(x)|. (1)Note also that if d(K) < 1, then there exists a polynomial X withinteger 
oe�
ients and the leading 
oe�
ient 1 for whi
h max |X| < 1 aswell (see [12℄, p. 272). Su
h a polynomial X is 
ru
ial in many problems.For example, if su
h a polynomial does exist, with the 
ondition 0 <

|X(z)| < 1 for any z ∈ K, then every fun
tion that 
an be approximatedby polynomials pn with arbitrary 
oe�
ients admits approximation bypolynomials qn (it su�
es to approximate the 
onstant λ = 1
2); see ibid. Ifthere is at least one integer point (i.e., a point with integer 
oordinates) onthe 
ompa
tum K or, more generally, integer algebrai
 numbers togetherwith their 
onjugates, then the fun
tion must satisfy 
ertain arithmeti

onditions. For example, a real 
ontinuous fun
tion on [−1, 1] is the limitof polynomials qn as n→ ∞ if and only if f(0) and 1

2

(
f(−1)± f(1)

)
∈ Z(see, e. g., [7℄, Ch. 2, �4).For the exa
t rate of best approximation in the uniform metri
s ofindividual 
onstants on an interval of the real axis, see [23℄.In this paper, we study the best approximations of 
onstants in the
ases where the 
ompa
tum K is a disk in C (�1, Theorem 1), a 
ube in

R
d (�2, Theorem 2), and a ball and a 
ube in R

d (�3, Theorem 3). In the
ase of a ball and a 
ube 
entered at zero, both the integral metri
s andarithmeti
 
onditions are dropped (d = 1, see [4℄, 5.4.16). The exa
t rateof approximation is established to an individual 
onstant in Theorem 3and on the 
lass in Theorems 1 and 2 (the latter means that there existboth a 
onstant and a 
ompa
tum of the indi
ated form for whi
h thisrate of approximation is exa
t).The problem of the rate of de
rease of the di�eren
e between the bestapproximations of a 
ontinuous fun
tion by polynomials with arbitrary
oe�
ients and and that with only integer ones on a 
ompa
tum withoutinteger points is also 
onsidered (see the se
ond part of Theorem 1).By c we denote absolute positive 
onstants, and by c(α,P ) some pos-itive values depending only on α and P .In §4 detailed 
omments are given in Remarks 1 and 2, in whi
h
ertain supplements, histori
al information and open problems 
an befound.
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1. Approximation of constants on a disk in CLet λ ∈ C be non-integer, that is, λ /∈ Z + iZ. Suppose that in thedisk
Kr = Kr(z0) =

{
z ∈ C : |z − z0| ≤ r

}there are no integer points, whi
h implies 0 < r <
1√
2
. Shifting by aninteger, we may assume that z0 ∈ Π0,1, where Π0,1 is the 
losed squarewith the verti
es at 0, 1, 1 + i, i. Suppose also that Π0, 1

2
= 1

2Π0,1. Bylinear transformation w = w(z) with integer 
oe�
ients we 
an map thesquare Π0, 1
2
+ 1+i

2 (the algebrai
 sum) into Π0, 1
2
(w = 1+i−z), the square

Π0, 1
2
+ 1

2− into Π0, 1
2
(the 
omplex 
onjugation, w = 1− z), and Π0, 1

2
+ i

2into Π0, 1
2
(w = z−i). Sin
e the inverse transformation is also with integer
oe�
ients, without loss of generality, let us assume that the 
enter z0 is
ontained in Π0, 1

2
∪Π0, 1

2
.Theorem 1. Under the assumptions made, for any n ∈ N, we have

Een(λ;Kr) = min
qn

max
Kr

|λ− qn(z)| ≤ (n+ 1)ρn,where ρ = max{ρ1, ρ2} and ρ1 = r

|z0|
, ρ2 = |z0|+ r.In general, ρ 
annot be lessened.Moreover, if a fun
tion f is analyti
 in the 
losed disk KR(z0) ofradius R > r, with the same 
enter z0, then there holds the equality

Een(f ;Kr) = min
qn

max
Kr

∣∣f(z)− qn(z)
∣∣ = O

(( r
R

)n
+ (n+ 1)ρn

)
.

Proof. Since
(z − z0

−z0

)m
= 1−

m∑

k=1

akz
k,

we have

max
Kr

∣∣∣λ−
n∑

k=1

λakz
k
∣∣∣ ≤ |λ|

( r

|z0|
)n

= |λ|ρn1 .

Replacing λa1 with the nearest integer c1 and applying the same
inequality with n replaced by n − 1 to their difference (“the fractional
part”), we obtain

max
Kr

∣∣∣λ− c1z −
n∑

k=2

bkz
k
∣∣∣ ≤ |λ|ρn1 +

( r

|z0|
)n−1

max
Kr

|z| = |λ|ρn1 + ρn−1
1 ρ2.
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We assume |λ| ≤ 1, without loss of generality. Further, we single out the
integral part of the coefficient b1, and so on. Continuing in this manner
until all non-integer coefficients are corrected, we arrive at a polynomial
qn such that

max
Kr

|λ− qn(z)| ≤
n∑

k=0

ρn−k1 ρk2 ≤ (n+ 1)max
{
ρn1 , ρ

n
2

}
= (n+ 1)ρn,

as desired.

Clearly, for ρ1 6= ρ2, the factor (n + 1) can be replaced by a value
bounded in n.

Now, to estimate the approximation from below, we use the following
inequality: for any polynomial pn with |z − z0| > r, there holds (see,
e. g., [4]4.7.1]):

|pn(z)| ≤
( |z − z0|

r

)n
max
Kr

|pn(z)|.

For some polynomial qn, we have

Een(λ;Kr) = max
Kr

|λ− qn(z)| ≥ |λ− qn(0)|
( r

|z0|
)n

≥ c(λ)ρn1 .

This estimate of approximation from below is obtained for ρ1 ≥ ρ2.

Let now ρ2 > ρ1, i. e., r <
|z0|2

1− |z0|
. We choose a number and a disk

for which the same estimate of the approximation from below hold true.
Put λ = 1

q+1 , where q ∈ N and q ≥ 2, z0 = x0 = 1
q − 1

(q+1)2
, r = 1

(q+1)2
.

Then

Een(λ;Kr) ≥ min
qn

∣∣∣∣
1

q + 1
− qn(

1

q
)

∣∣∣∣ ≥ min
s∈Z

∣∣∣∣
1

q + 1
− s

qn

∣∣∣∣

=
1

(q + 1)qn
min
s∈Z

|qn − s(q + 1)|,

and this is not less than 1
(q+1)qn = 1

q+1(x0 + r)n = 1
q+1ρ

n
2 . Thus, there

exist a number λ and a disk Kr such that ρ2 cannot be lessened too.
This means that the inequality is exact in the general case, i. e., on the
class.It is important that we 
an pass from approximation of 
onstantsto approximation of arbitrary fun
tions that admit approximation bypolynomials pn.Let us pro
eed to the proof of the se
ond part of Theorem 1.



288 On the best approximation of non-integer constants...Suppose that f is an analyti
 fun
tion in the 
losed disk KR(z0) withthe same 
enter z0 for some radius R > r and that not all Taylor's
oe�
ients at z0 are integer. The point is that, as follows from theCau
hy�Hadamard formula, if f(z) = ∞∑

k=0

ckz
k, where all ck are integer,then the radius of 
onvergen
e of the series is not greater than one if thefun
tion is not equal to a polynomial, and it is possible to use partialsums of the series for the approximation.Due to the Bernstein theorem (see, e. g., [4, 4.7.2℄), there exists asequen
e {pn} su
h that for 0 ≤ ν ≤ s (s is the smallest number of anon-integer Taylor's 
oe�
ient) we get

max
Kr

∣∣∣f (ν)(z)− p(ν)n (z)
∣∣∣ ≤ c(r,R, s)

( r
R

)n
.This is the rate of best approximation. So, we 
an additionally supposethat p(ν)n (z0) = f (ν)(z0) for (0 ≤ ν ≤ s).Without loss of generality, we will also assume that

f(z) =
∞∑

k=0

ak(z − z0)
k,

∞∑

k=0

|ak| ·Rk <∞.Then
max
Kr

∣∣∣
∞∑

k=n+1

ak(z−z0)k
∣∣∣ ≤

∞∑

k=n+1

|ak| ·Rk
( r
R

)k
≤
( r
R

)n+1
∞∑

k=n+1

|ak| ·Rk.It is 
ru
ial now that pn must be approximated by a polynomial qn. Wehave
as(z − z0)

s = as(−z0)s
(z − z0

−z0

)s
= as(−z0)s

(
1−

s∑

k=1

bkz
k
)
.As above, we repla
e as(−z0)s by the nearest integer, and further in
reas-ing the degree of z, we repeat the proof of the �rst part of the theorem.Theorem 1 is proved. �Similarly, we 
an 
onsider the approximation on the ellipse 
ontainingno integer points (with one of its axes less than 4 and the diameter lessthan 1).
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2. Approximation of constants on a cube in RdSuppose that x = (x1, ..., xd) ∈ R
d, xk =

d∏

j=1

x
kj
j for kj ∈ Z+, |k| =

d∑
j=1

kj , and a polynomial pn(x) = ∑
0≤kj≤nj

akx
k has the degree n =

d∑
j=1

nj .Moreover, let
K = Πa,b =

{
x ∈ R

d : xj ∈ [a, b], 1 ≤ j ≤ d
}
= [a, b]d.Sin
e the 
ube must not 
ontain integer points, we may assume, with-out loss of generality, that 0 < a < b ≤ 1 − a and O = (0, ..., 0) is theinteger point nearest to Πa,b.For λ ∈ (0, 1), we put

Een(λ; Πa,b) = min
qn

max
x∈Πa,b

|λ− qn(x)|.Theorem 2. Under the above assumptions, for any n ∈ N, we have
Een(λ; Πa,b) ≤ c(d)ndρn, ρ = max

{√
b−√

a√
b+

√
a
, b

}
,and ρ 
annot be taken smaller in general.

Proof. As is follows from (1) and the previous formula for Tn, if 0 < a,
we have

|Tn(0; a, b)| = θ

(√
b+

√
a√

b−√
a

)n
, θ ∈

(
0,

1

2

]
.

But

Tn(t; a, b) = Tn(0; a, b) − Tn(0; a, b)
n∑

k=1

akt
k,

and for t ∈ [a, b], there holds

∣∣∣1−
n∑

k=1

akt
k
∣∣∣ ≤

∣∣∣Tn(t; a, b)
Tn(0; a, b)

∣∣∣ ≤ 1

|Tn(0; a, b)|
.

Multiplying such inequalities with t = xj and nj (1 ≤ j ≤ d), for x ∈ Πa,b
and n =

∑
nj , we obtain

∣∣∣1−
∑

1≤|k|≤n
bkx

k
∣∣∣ ≤

d∏

j=1

1

|Tnj (0; a, b)|
≤ 2d

(√
b−√

a√
b+

√
a

)n
. (2)
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Let us multiply this inequality by λ ∈ (0, 1) and take into account that for
δk ∈ [0, 1), the equality λbk = [λbk] + δk holds. We need to approximate
monomials δxs for δ ∈ (0, 1) and sj ∈ [0, nj ], 1 ≤ j ≤ d, by polynomials
qn. To this end, we multiply inequality (2) by δxs, replacing n by n− s.
This yields

∣∣∣δxs−
∑

s+1≤|k|≤n
δbk−sx

k
∣∣∣=
∣∣∣δxs−

∑

1≤k≤n−s
δbkx

k+s
∣∣∣≤xs·2d

(√
b−√

a√
b+

√
a

)n−s
.

Further, we select the integral part [δbk−s] and apply the same in-
equality to the fractional part again, and so on up to s = n. We arrive
at the following inequality: for x ∈ Πa,b, there holds

|λ− qn(x)| ≤ 2d
n∑

s=0

xs

(√
b−√

a√
b+

√
a

)n−s
≤ 2d

n∑

s=0

bs

(√
b−√

a√
b+

√
a

)n−s

≤ 2dρncard
{
xk : |k| ≤ n

}
.

But, as is known (see, e. g., [9], Ch. IV, it. 2),

card
{
xk : |k| = s

}
=

(
d+ s− 1

d− 1

)
=
s(s+ 1)...(s + d− 1)

(d− 1)!
,

wherefrom

card
{
xk : |k| ≤ n

}
=

n∑

s=0

card
{
xk : |k| = s

}
≤ (n+ 1)

(
d+ n− 1

d− 1

)

≤ (n+ 1)(n + d− 1)d−1 ≤ c1(d)n
d.

The estimate for the approximation from above is proved.
To estimate the approximation from below, we use the following well-

known inequality ( [1], v. II, pp. 434-436):

|pn(0)| ≤ max
Πa,b

|pn(x)|
d∏

j=1

|Tnj (0; a, b)| ≤ max
Πa,b

|pn(x)|
(√

b+
√
a√

b−√
a

)n
.

Substituting the difference λ− qn, for pn, we obtain

Een(λ; Πa,b) ≥ min
c∈Z

|λ− c|
(√

b−√
a√

b+
√
a

)n
.

Hence, for a ≤ b
(
1−b
1+b

)2
or, which is the same, for b ≤

√
b−√

a√
b+

√
a
, we cannot

take smaller ρ.
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If a > b
(
1−b
1+b

)2
and b = 1

q (q ∈ N, q ≥ 2), then, for example, for d = 2,

we have

Een(λ; Πa,b) ≥ min
qn

max
x1∈[a, 1q ]

∣∣∣λ− qn

(
x1,

1

q

)∣∣∣.

Choose x1 = 1
q and take into account that qn(

1
q ,

1
q ) =

n∑
k=0

ck
1
qk
. But for

λ = 1
q+1 (see the end of the proof of the first part of Theorem 1), we

obtain ∣∣∣ 1

q + 1
−

n∑

k=0

ck
1

qk

∣∣∣ ≥ 1

q + 1
· 1

qn
=

bn

q + 1
.

Theorem 2 is proved.Similarly (see the proof of the 2nd part of Th. 1) we 
an 
onsiderapproximations of fun
tions by polynomials with integer 
oe�
ients onsome parallelepipeds without integer points.Note that in the 
ase of a 
ube Πa,b, 0 < a < b, of any size, the aboveargument yields exa
t estimates of the approximation of 
onstants andfun
tions by polynomials of the form
n∑

|k|=0

mk

q|k|
xk (mk ∈ Z, q > b).Using the similarity transformation, it su�
es to pass to approximationon Πα,β , 0 < α < β < 1, by polynomials with integer 
oe�
ients, andthen return to Πa,b(0 < a < b). Here the 
oe�
ients of polynomials arerational numbers with known denominators.

3. Integral approximationsLet
Kr =

{
x = (x1, ..., xd) : |x| ≤ r

}be a Eu
lidean ball of radius r 
entered at the origin, and let
Π−r,r = [−r, r]d =

{
x = (x1, ..., xd) : |xj | ≤ r, 1 ≤ d

}be a 
ube.Theorem 3. Let λ ∈ R\Z, r ∈ (0, 2), p ∈ [1,+∞), and let the degreesof polynomials in all variables n tend to in�nity. We have
Een(λ;Kr)p = min

qn

(∫

Kr

|λ− qn(x)|pdx
) 1

p

≍ n
− d
p
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Een(λ; Π−r,r)p = min

qn

( ∫

Π−r,+r

|λ− qn(x)|pdx
) 1

p

≍ n
− d
p ,and for r ∈ (0, 1], we have

Een(λ; Π0,r)p ≍ n
− 2d
p ,(two-sided inequalities with positive 
onstants not depending on n).For r ≥ 2, we have

Een(λ; Π−r,r)p ≥ Een(λ;Kr)p ≥ c(λ, r, p) > 0.

Proof. To estimate the approximation from below, we need the following
result.

Lemma 1. For α > −1, p ∈ [1,+∞), r > 0 and any polynomial
{pn}, we have

r∫

0

tα|pn(t)|pdt ≥ c(α, p)r1+α|pn(0)|p
1

n2p+2αp
,

and for even polynomials pn, we have

r∫

0

tα|pn(t)|pdt ≥ c(α, p)r1+α|pn(0)|p
1

np+αp
.

Proof. Proving the first inequality for r = 1 will imply the general case.

If pn(t) =
n∑

k=0

akt
k, where a0 = pn(0), then for p = 1 and n ≥ 2, we

obtain

1∫

0

tα|pn(t)|dt ≥ max
[0,1]

∣∣∣
x∫

0

tαpn(t)dt
∣∣∣ =

= max
[0,1]

xα+1
∣∣∣
n∑

k=0

ak
xk

k + α+ 1

∣∣∣ ≥ 1

n2α+2
max[
1
n2
,1
]
∣∣∣
n∑

k=0

ak
xk

k + α+ 1

∣∣∣.

In view of the extreme property of Chebyshev’s polynomials Cn (the
growth of the norm of a polynomial when the interval expands, see (1)),
with the absolute constant c > 0, it is easy to check that

max
[0,1]

|pn(x)| ≤ c max[
1
n2
,1
] |pn(x)|. (3)
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Therefore,

1∫

0

tα|pn(t)|dt ≥
1

c
· 1

n2+2α
max
[0,1]

∣∣∣
n∑

k=0

ak
xk

k + α+ 1

∣∣∣ ≥ 1

c
· |a0|
n2+2α

.

It remains to apply the Hölder inequality:

1∫

0

tα|pn(t)|dt ≤
( 1

α+ 1

) 1
p′
( 1∫

0

tα|pn(t)|pdt
) 1
p
.

In the case of even polynomials, one obtains this after replacing t2 by t
with another α.

Lemma 1 is proved.

We will now prove the estimate of approximation from below for λ
on a ball and a cube, both centered at the origin.

By the symmetry of a ball with respect to the coordinate planes, for
some ck ∈ Z, we have

(Ee2n(λ;Kr)p)
p =

∫

Kr

|λ−
∑

|k|≤n
ckx

2k|pdx.

Let us pass to the spherical or polar coordinates at |x| = t ∈ (0, r]. For
example, if d = 2, where x1 = t sinϕ, x2 = t cosϕ, we get

2π∫

0

dϕ

r∫

0

t
∣∣∣λ−

∑

|k|≤n
ckt

2|k| sin2k1 ϕ cos2k2 ϕ
∣∣∣
p
dt.

Applying Lemma 1 for even polynomials, we derive that for any r > 0
this value is not less than

c(p)r2|λ− c0|
1

n2

2π∫

0

dϕ.

This holds for d = 2, while for d ≥ 3 the Jacobian equals td−1F (ϕ),
where F (ϕ) =

∏d−2
m=1(sinϕm)

d−2 and all ϕm ∈ [0, π2 ].
Consider the case p = 1 and then apply Hölder’s inequality:

(Ee2n(λ;Kr)1 =

r∫

0

td−1dt

∫

[0,π
2
]d−2

F (ϕ)
∣∣∣λ−

∑

|k|≤n
ckt

2k(F (ϕ))2k
∣∣∣dϕ.
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Since the absolute value of the integral of a function is not greater than
the integral of the absolute value of the function, this expression is not
less than

r∫

0

td−1dt
∣∣∣λ

∫

[0,π
2
]d−2

F (ϕ)−
∑

|k|≤n
ckt

2k

∫

[0,π
2
]d−2

(F (ϕ))2k+1dϕ
∣∣∣.

It remains to apply Lemma 1. The estimate of the approximation from
below is proved for r ∈ (0, 2), since we always have Een(λ; Π−r,r)p ≥
Een(λ;Kr)p.

Now we consider the case r ≥ 2.
By the Korkin–Zolotaryov inequality (see, e. g., [6], 2.9.31 or [4],

p. 223]), for m ∈ Z+, we have

b∫

a

tm
∣∣∣
n∑

k=0

akt
k
∣∣∣dt ≥ 4

(b− a

4

)n+m+1
|an|.

For d ≥ 2 and p ∈ [1,∞), we choose β ≥ − 1

p′
such that

1

p′

(d
2
− 1
)
+ β = m ∈ Z+.

Then, due to Hölder’s inequality, for any polynomial qn, there holds

4 ≤
4∫

0

tm|λ− qn(t)|dt ≤
( 4∫

0

t
d
2
−1|λ− qn(t)|pdt

) 1
p
( 4∫

0

tβp
′

dt
) 1
p′

.

This yields the desired estimate from below.The 
ase d = 1 was 
onsidered in [4℄, p. 231℄.Lemma 2. If α > −1, p ∈ [1,+∞) and m ∈ Z+, there exists asequen
e of polynomials {pn}∞m , pn(0) = 1, su
h that for some 
onstant
c(α, p,m), there holds

1∫

0

tα|pn(t)|pdt ≤ c(α, p,m) · 1

n2p+2pαand
(pn(t)− pn(0))

(ν)(0) = 0 (0 ≤ ν ≤ m), and max
[0,1]

|pn(t)| ≤ c(α, p,m).
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Proof. For p = 2, the corresponding problem was solved long ago. We
have (see [10], Ch. I, 14)

min
{ak}nm

1∫

0

tα
∣∣∣1−

n∑

k=m

akt
k
∣∣∣
2
dt = min

{ak}nm

1∫

0

∣∣∣t
α
2 −

n∑

k=m

akt
k+α

2

∣∣∣
2
dt

=
1

α+ 1

n∏

k=m

( k

k + α+ 1

)2
=

1

α+ 1

n∏

k=m

(
1 +

α+ 1

k

)−2
.

But ln(1 + x) = x+O(x2) as x→ 0. Therefore,

ln

n∏

k=m

(
1+

α+ 1

k

)2
≥ 2
( n∑

k=m

α+ 1

k
+O(1)

)
= (2α+2) ln

n+ 1

m
+O(1),

and the desired inequality is proved for p = 2.

Let us deduce from it the boundedness of the extremal sequence {pn}
in the space C[0, 1].

Taking into account that tα ≥ 1

n2α
at t ∈

[
1
n2 , 1

]
(n ≥ 2), we have

max[
1
n2
,1
]

x∫

1
n2

p2n(t)dt ≤ c1(α,m) · 1

n2
.

Now, from Markov’s inequality for the derivative of a polynomial
( [6, 4.8(32)], [4, 5.4.6]) it follows that

max[
1
n2
,1
] p2n(x) ≤ c1(α,m)

(2n + 1)2

n2
· 2

1− 1
n2

≤ c2(α,m).

Further, we apply (3).

And this sequence {pn} (more precisely, {p2n}) may be used for any
p ∈ [1,+∞) since all the conditions at x = 0 are fulfilled.

Indeed, if a polynomial pn meets assumptions of Lemma 2 at p = 2
and (pn(x))

2 ≤M , then

1∫

0

tα(pn(t))
2pdt ≤Mp−1

1∫

0

tα(pn(t))
2dt ≤Mp−1c(α, 2,m) · 1

n2+2α
,

which completes the proof.



296 On the best approximation of non-integer constants...Lemma 3. Let p ∈ [1,+∞), m ∈ Z+ and {tν}s0 ⊂ [−r, r], where
t0 = 0. Then there exists a sequen
e of polynomials pn su
h that

‖1− pn‖Lp[−r,r] = O
( 1

n
1
p

)and
sup
n

‖pn‖C[−r,r] <∞, p(k)n (tν) = 0 (0 ≤ ν ≤ s, 0 ≤ k ≤ m).

Proof. By Lemma 2, at α = s = 0 there exists a sequence of even poly-
nomials pn such that

‖1− pn‖Lp[−2r,2r] = O

(
1

n
1
p

)
, p(k)n (0) = 0 (0 ≤ k ≤ m).

Then for tν 6= t0, we obtain

‖1− pn(· ± tν‖Lp[−r,r] ≤ ‖1− pn‖Lp[−2r,2r] = O
( 1

n
1
p

)
,

and new polynomials 1 − pn are bounded in the aggregate, and their
derivatives equal to zero at ±tν up to the order m. Both the equality

1− fg = g(1 − f) + (1− g)

and the inequality ‖g‖C[−r,r] ≤M imply that

‖1− fg‖Lp[−r,r] ≤M(2r)
1
p ‖1− f‖Lp[−r,r] + ‖1− g‖Lp[−r,r].

Thus, for s ≥ 1, we have

‖1− pn(·)pn(· ± t1)‖Lp[−r,r] = O
( 1

n
1
p

)
.

For s ≥ 2, adding all other points one by one in the same way, we arrive
at the inequality

‖1−
s∏

ν=0

pn(· ± tν)‖Lp[−r,r] = O
( 1

n
1
p

)
.

Lemma 3 is proved.In what follows we 
onsider d = 2.



R. M. Trigub 297Lemma 4. If {tν}s0 ⊂ [−r, r] and m ∈ Z+, then for any fun
tion
f ∈ C2[−r, r]2, there exists a sequen
e of polynomials {pn(x1, x2)} su
hthat

‖f − pn‖Lp[−r,r]2 = O
( 1

n
2
p

)and
∂kpn(x1, x2)

∂xk1
(tν , tµ) =

∂kpn(x1, x2)

∂xk2
(tν , tµ) = 0,for 0 ≤ ν, µ ≤ s and 0 ≤ k ≤ m.

Proof. If pn is a polynomial from Lemma 3, then for

p2n(x1, x2) = pn(x1) + pn(x2)− pn(x1) · pn(x2),

we have
1− p2n(x1, x2) = (1− pn(x1))(1 − pn(x2)),

and hence,

‖1− p2n‖Lp[−r,r]2 = ‖1− pn‖2Lp[−r,r] = O
( 1

n
2
p

)
.

We multiply now this inequality by the function f ∈ C2[−r, r]2, which is
approximated by polynomials due to Jackson’s theorem:

‖f − p̃n‖C[−r,r]2 = O
( 1

n2

)
.

Taking into account that

f − p̃n · p2n = f(1− p2n) + f − p̃n + (p̃n − f) · (1− p2n) =

= O
( 1

n
2
p

)
+O

( 1

n2

)
+O

( 1

n2+
2
p

)
= O

( 1

n
2
p

)
,

we conclude that the polynomials P3n = p̃n · p2n are desired.
Lemma 4 is proved.To pass to approximation by polynomials qn, we note that for any
ompa
tum K in R with the trans�nite diameter less than one, thereexists a polynomial

P (x) = xm + ..., max
K

|P (x)| < 1.This implies that there exists a polynomial X with integer 
oe�
ientsand the leading 
oe�
ient one su
h that
0 < max

K
|X(x)| < 1.
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h a polynomial is sometimes 
alled fundamental for a given 
om-pa
tum.For example, for K = [0, 1] we 
an take X(t) = t(1− t), and for [0, 2]we 
an take X(t) = t(t − 1)2(t − 2) (see also a polynomial X for [0, 3]in �4). The number of zeros of su
h a polynomial in
reases inde�nitelyas the length of the segment tends to 4, and there are �nitely manyinteger algebrai
 numbers of di�erent degrees on the segment [0, 4] (zerosof Chebyshev's polynomials). For K = [−r, r], r ∈ (0, 2), the polynomial
X in question 
an be treated as even, and, after its squaring, as positive.Its zeros are integer algebrai
 numbers, some of whi
h may be foundout of [−r, r]. So, there exist even polynomials X1 and X2 with integer
oe�
ients and the leading 
oe�
ient one su
h that X2(t) > 0 for t ∈
[−r, r], X1(t) ≥ 0 and

X(t) = X1(t) ·X2(t), 0 ≤ X(t) ≤ ρ < 1 (t ∈ [−r, r]).In 
ase of the square [−r, r]2, r ∈ (0, 2), we take the produ
t X(x1)·X(x2)as X(x).Lemma 5. If
pn(x) = Xm(x) · p0,n1(x),then there exists a sequen
e of polynomials qn with integer 
oe�
ientssatisfying the inequality

‖pn − qn‖C[−r,r]2 = O
( 1

n2m

)
.

Proof. It is clear that any polynomial of t ∈ R can be represented as

pn =

N∑

k=0

akX
k(1−X)N−k,

where the degrees of polynomials ak less than the degree of X, and N is
the maximal positive integer such that the degree of the whole polynomial
is not greater than n.

A polynomial in two variables x1 and x2 is a polynomial of x1 with
coefficients that are polynomials of x2. By doing the same transformation
of polynomials of x2 we arrive at the following representation:

pn(x)=
N∑

k1=0

N∑

k2=0

ak1,k2X
k1(x1)(1 −Xk1(x1))

N−k1Xk2(x2)(1 −Xk2(x2))
N−k2 .

Now let
pn(x) = Xm(x) · p0,n1(x).
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Then we get

pn(x1, x2) =

N∑

k1=m

N∑

k2=m

ak1,k2X
k1(x1)(1−X(x1))

N−k1Xk2(x2)(1−X(x2))
N−k2 .

Replacing coefficients of polynomials ak1,k2 of a fixed degree by the near-
est integers (in this case, the polynomials themselves change by a value
bounded with respect to n), we obtain a polynomial qn. For x ∈ [−r, r]2,
we have

|pn(x)− qn(x)| ≤

≤ c(X)

N∑

k1=m

Xk1(x1)(1−X(x1))
N−k1

N∑

k2=m

Xk2(x2)(1−X(x2))
N−k2 .

For 0 ≤ X ≤ ρ < 1, we obtain

N∑

k=m

Xk(1−X)N−k =
N−m∑

k=m

Xk(1−X)N−k

+

N∑

k=N−m+1

Xk(1−X)N−k

≤ 1(
N
m

)
N−m∑

k=m

(
N

k

)
Xk(1−X)N−k +mρN−m+1

≤ 1(N
m

) +mρN−m+1 = O
( 1

nm

)
.

This implies the relation

|pn(x)− qn(x)| = O
( 1

n2m

)
.

Lemma 5 is proved.We will now prove the estimate of approximation of λ from above inTheorem 3 in the 
ase of a 
ube 
entered at the origin, and 
onsequentlyfor a ball.Let {tν}s0 be all zeros of an even polynomial X on [0, r], and let
X = X1 · X2, where X2 does not vanish on [−r, r]. Applying Lemma 4for f(x) = 1

Xm
2 (x1)Xm

2 (x2)
, we get

‖f − pn‖Lp[−r,r] = O
( 1

n
2
p

)
.
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onditions on partial derivatives of pn at the points {tν}s0, thispolynomial is divided byXm
1 (x1)X

m
1 (x2).Multiplying byXm

2 (x1)X
m
2 (x2),we get a good approximation of the unit by polynomials that are dividedby Xm. For d = 2, when one 
an take m = 1, it remains to multiply thisratio by λ and then apply Lemma 5.We now pro
eed to the proof of Theorem 3 in the 
ase of a 
ube

[0, r]d, r ∈ (0, 1] where there are no integer points inside it, for d = 2.We have
Ee2n(; Π0,r)p = min

{ck}

(
r∫

0

dx1

r∫

0

∣∣∣λ−
∑

0≤k1,k2≤n
ckx

k1
1 x

k2
2

∣∣∣
p
dx2
) 1
p .To estimate approximation from below, we �rst apply Lemma 1 at α = 0with respe
t to x2 and then with respe
t to x1. As in the proof of Lemma4, the estimate of approximation from above is implied by the 
ase d = 1[4℄, 5.4.15.Theorem 3 is 
ompletely proved. �

4. CommentsRemark 1.In the above proofs (see Se
tions 2 and 3), theorems on the growthof the norm of polynomials pn outside the given 
ompa
tum in C and
R
d play an essential role in estimating approximation of λ from below.What is the maximal growth of |pn(x0)| with respe
t to n at x0 /∈ K if

max
x∈K

|pn(x)| = 1?In the 
omplex plane C and a �good" 
ompa
tum K, a desired valueis determined by the level line of a fun
tion that 
onformably and uni-laterally maps, under a spe
ial normalization, the exterior of K to theexterior of the unit 
ir
le. The point x0 is on this line (see, e. g., [8℄, Ch.IX). Based on this, the following result was obtained for a part of the
ir
le [15℄.Let r ∈ (0, 1), α ∈
(
0, π2

), and let
Kr,α =

{
x ∈ C : |z| ≤ r, Re z ≤ −r cosα

}
.Then for any λ ∈ R \ Z and r ≤ 2 sin

πα

2(2π − α)
with positive integer
oe�
ients, there holds

lim
n→∞

min
{ck}∈Z+

max
Kr,α

∣∣∣λ−
n∑

k=0

ckz
k
∣∣∣
1
n
= 2 sin

πα

2(2π − α)
.
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πα

2(2π − α)
(in parti
ular, r = 1

2) and λ is not a dyadi
rational number, then the same limit equals 1

2
.It is noteworthy that on the line R the problem of the growth of normswas solved for sets of the positive Lebesgue measure long ago.E. Ya. Remez (1936) proved that for h ∈ (0, 2), there holdsmeas{x ∈ [−1, 1] : |pn(x)| ≤ 1

}
≤ 2− h ⇒ max

[−1,1]
|pn(x)| ≤ Tn

(2 + h

2− h

)
,where Tn is Chebyshev's polynomial for the interval [−1, 1], and the in-equality is sharp (see the proof of the theorem in [7℄, Ch. 2, it. 7℄).Note also that at approximately the same time G. P�olya proved asimilar result for the maximum of absolute value of p(n)n , i. e., for theleading 
oe�
ient of pn (see [6℄, 2.9.13). Re
ently a sharp inequality forthe growth of norms for sets of positive measure on the 
ir
le has beenobtained [11℄. A list of earlier papers on Remez-type inequalities forpolynomials in several real variables is given there.Remark 2 (on polynomials with integer 
oe�
ients in analysis).First problem.Let K be a 
ompa
tum in R, C or Rd, with the norm in C or Lp.What is the �integer" trans�nite diameter

q(K) = lim
n→∞

min
qn 6≡0

‖qn‖
1
n ?In view of Nikol'skii's inequality of di�erent metri
s for polynomials [6℄,4.9(36)℄, for instan
e, q(K) in Lp[a, b] is independent of p > 0.This problem was su

essfully dealt with by L. Krone
ker, H. Min-kowski, D. Hilbert, I. S
hur, M. Fekete, A. O. Gelfond�L. G. Shnirelman,D. S. Gorshkov, E. Aparisio, the author (see a survey paper [12℄ in whi
htheorems by the mentioned mathemati
ian are given with proofs, and[13℄ with referen
es therein), and also by F. Amoroso, B. S. Kashin,G. V. Chudnovskii, P. Borwein, T. Erdelyi, C. G. Pinner, I. E. Pritsker;see also [16, Ch. 10℄.Both this list of authors as well as the following one are 
hronologi
alregarding the time of publi
ation.The idea of Gelfond�Shnirelman to use the information about thesmallest non-zero norms max

[0,1]
|qn(x)| has failed to give the proof of theasymptoti
 law of distribution of prime numbers. The reason was thatit turned out that q([0, 1]) > 1

e
(Gorshkov, see, e.g., [13℄). However,
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han
e that this 
an be done after passing to polynomials inmany variables as K. Roth (1955) did in the problem of approximationof algebrai
 numbers by rational ones (see [21℄, Ch. YI). The latter ideaappeared in the author's survey [12℄; it was also dis
ussed in [19℄, Ch. II℄with the referen
e to this survey.Note also that Chebyshev's polynomial of degree n in Lp[a, b] (withthe leading 
oe�
ient one and the smallest norm) is only known if p = ∞(Chebyshev's polynomial), p = 2 (Legendre's polynomial), and p = 1(Chebyshev's polynomial of se
ond kind).Due to the inequality of di�erent metri
s (see also [18℄) Chebyshev's
onstant for the interval [a, b] is the same for any p > 0: b−a
4 . In addition,

q([a, b]) for polynomials with integer 
oe�
ients in Lp does not dependon p > 0, depends 
ontinuously on the interval but is not known for anyinterval. It follows from the Gilbert-Fekete theorem that for b − a < 4,there holds q([a, b]) ≤ ( b−a4 ) 1
2 , and this inequality 
annot be strengthenedfor small b− a [12℄, p. 317℄, see also [13℄.Se
ond problem (on approximation of fun
tions by polynomials qn).It is about the possibility of approximation and its rate depend-ing on both a fun
tion and degree of polynomials. Among the peo-ple who 
ontributed to this problem were I. P�al, S. Kakeya, I. Okada,I. N. Khlodovskii, R. O. Kuz'min, L. V. Kantorovi
h, M. Fekete, G. Szeg�o,I. N. Sanov, E. Aparisio, A. O. Gelfond, H. Matts, E. Hewitt-H. Zu
ker-man, the author, S. Ya. Al'per, L. B. O. Ferquson, and M. von Golits
hek(see the survey in [12℄).If a fun
tion admits approximation by polynomials pn on a 
om-pa
tum K ⊂ C, then for the approximation by polynomials qn, it su�
esto approximate the 
onstant λ = 1

2 . For this, it is ne
essary and su�-
ient a polynomial X to exist with integer 
oe�
ients and satisfying theinequality
0 < |X(z)| < 1 (z ∈ K).In the general 
ase, if at least one fun
tion di�erent from a polynomialadmits approximation by polynomials qn, then there exists a polynomial

X with the 
ondition
0 < max

K
|X(z)| < 1.One may assume that its leading 
oe�
ient is one (Kakeya).Thus, we get the �rst ne
essary 
ondition: the trans�nite diameter of

K is less than one. If su
h polynomials X have 
ompulsory zeros on K(integer algebrai
 numbers along with their 
onjugates), then ne
essaryarithmeti
 
onditions on a fun
tion appear (in 
ontrast to the integralmetri
s, seen Theorem 3 above). The 
riterion for the approximation of
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ontinuous fun
tion is known, i.e., the ne
essary and su�
ient 
onditionsimultaneously (see, e. g., [7℄, Ch. 2, �4). A strengthening of the well-known M�unz 
riterion for [0, 1] is also found (see [7℄, 6.5).In [3℄, a s
heme of a proof for dire
t theorems for smooth fun
tionson an interval [a, b] ⊂ R has been elaborated. If, for example, in theparti
ular 
ase where X has zeros only on K ⊂ R, 0 ≤ X(x) < 1 on K,then we approximate a fun
tion by polynomials pn that are divided by X(using arithmeti
 
onditions on the fun
tion), and then by polynomialsdivided by Xm (see Lemma 5 above or [4℄, 5.4.14).Dire
t theorems on approximation by polynomials pn on 
ompa
ta in
C were obtained long ago (see [8℄, Ch. IX). On the other hand, the passageto approximation by polynomials qn is established only for the square
[0, 1]2 [22℄. Note that in the 
ase of fun
tions of several real variables,where the question of divisibility of polynomials be
omes mu
h more
ompli
ated (see [14℄), dire
t theorems were obtained only for Cartesianprodu
ts of one-dimensional 
ompa
ta (see [12℄, �1.4℄).We now present one of the dire
t theorems in an asymptoti
ally ex-a
t form on the 
lass [5℄: Let for some r ∈ N, the derivative f (r−1) beabsolutely 
ontinuous and |f (r)(x)| ≤ 1 a. e. on [0, 1], and let f(ν)(0)

ν! and
f(ν)(1)
ν! ∈ Z for 0 ≤ ν ≤ r − 1 (these arithmeti
 
onditions are also ne
es-sary). Then for any n ≥ 4r + 2, there exists a polynomial qn su
h thatfor any x ∈ [0, 1]

|f(x)− qn(x)| ≤ Kr

(√x(1− x)

n

)r
+ c(r)

(√
x(1− x)

)r−1

nr+1
,where the 
onstant 
annot be taken smaller than the known Eiler�Bernulli
onstant

Kr =
4

π

∞∑

k=0

(−1)k(r+1)

(2k + 1)r+1
,as it was 
alled by Bernstein ( [1℄, Ch. II, 61 (1935)) before Favard'spaper and the following ones on this topi
.A dire
t theorem on approximation by polynomials with positive inte-ger 
oe�
ients on the interval [−2, 0] with sharp arithmeti
 
onditions ona fun
tion was also proved in [5℄. It is not known how a similar theoremlooks like for [−3, 0], for example, when the polynomial X is known:

max
[−3,0]

∣∣x(x+ 1)(x+ 2)(x+ 3)
(
x2 + 3x+ 1

)∣∣ = 45

64
.This also implies the form of the polynomialX for the interval [−√

3,+
√
3](see [13℄).
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t theorem along with interpolation.If f ∈ C[0, 1], f(0) and f(1) ∈ Z, and ψ ∈ C[0, 1] and stri
tly in-
reases from zero to one, then for any n ∈ N, there exists a polynomial
qn su
h that for x ∈ [0, 1] we have
|f(x)−qn(ψ(x))| ≤ c

(
ω(foψ−1;

√
ψ(x)(1 − ψ(x))

n
)+

√
ψ(x)(1 − ψ(x))

n

)
,where ω is the modulus of 
ontinuity.For ψ(x) = x, this theorem is in [17℄, and it immediately impliesthe presented result. If ψ(x) = xγ , γ > 0, then we arrive at the �rststrengthening of M�unz's theorem, in a parti
ular 
ase but with the rateof 
onvergen
e indi
ated.For approximation of fun
tions analyti
 in a neighborhood of on a
ompa
tum K ⊂ C, the Bernshtein�Walsh theorem ( [4℄, 4.7.2) is known:

En(f ;K) = O(ρn) for some ρ < 1. A similar theorem holds in the 
aseof polynomials qn [12℄.Let X(z) be a polynomial with integer 
oe�
ients and the leading
oe�
ient 1, and let zν be all its zeros. Let a fun
tion f be analyti
 withinthe lemnis
ate |X(z)| = 1, and the Hermitian interpolation polynomialde�ned by
p(s)(zν) = f (s)(zν) (s ∈ [0, r])be a polynomial with integer 
oe�
ients for any r ∈ Z+ (this is also ne
-essary). Then the relation Een(f ;K) = 0(ρn) holds for any 
ompa
tumwithin the lemnis
ate,where ρ ∈ (0, 1) and depends on K (see [12℄,p. 300).Exa
t theorems on approximation of fun
tions by polynomials qn inthe Lp metri
s, p ∈ (0, 1), 
an be proved in a similar way.Note also that in 
ontrast to approximation by polynomials qn, in thequestion of approximation by integral-valued polynomials whi
h, by def-inition, take integer values at all integer points, the size of a 
ompa
tum

K is not essential. Thus, for a 
ompa
tum lying on (0,m), m ∈ N, one
an take
X(x) =

(x− 1)(x− 2)...(x −m+ 1)

(m− 1)!
(|X(x)| < 1).On the other hand, for example, in the 
ase of an interval [a, b], 0 < a < b,it is possible to get rid of arithmeti
 
onditions on a fun
tion as notlose the rate of approximation if instead of qn polynomials of the form

n∑
k=0

mk
qk
xk (mk ∈ Z, q ∈ N, q > b) be taken, sin
e for α = a

q , β = b
q andfor the known ρ = ρ(α, β) < 1, there holds

Een(f ; [α, β]) = O(ρn).
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Een(f ; [a, b]) = ‖f − q∗n(f)‖C ,then for f(x) = max{1−2x, 0} and n ∈ [0, 2], there holds Een(f ; [0, 1]) =

1, with q∗0 ≡ 0, q∗0 ≡ 1; for n = 1, there additionally holds q∗1(x) = 1− 2xand q∗1(x) = x, and for n = 2 there additionally holds q∗2(x) = (2x− 1)x.It is 
lear that for any n, a number of polynomials q∗n(f) is �nite forany fun
tion.In [23℄, it is proved that for any n ∈ N and natural q ≥ 2, there holds
Een

(
1

q
;

[
1

q + 1
,
q + 2

q(q + 1)

])
=

1

q(q + 1)n
.

Conjecture: For n ∈ N and q ≥ 3, the polynomial q∗n is unique.In 
on
lusion, let us mention two simple fa
ts on the relation between
Een(f ; [a, b]) and q([a, b]).If there exists an m ∈ N su
h that Een+m(f ; [a, b]) < Een(f ; [a, b]) forin�nitely many n, then

0 < ‖q∗n − q∗n+m‖ ≤ Een(f ; [a, b]) + Een+m(f ; [a, b]) ≤ 2Een(f ; [a, b]).Therefore,
q([a, b]) ≤ lim

n→∞

(
Een(f ; [a, b])

) 1
n .Here the known asymptoti
s of best approximation to fun
tions analyti
on the segment may be useful (see [6℄, 7.5). To prove the above inequality,one 
an also use polynomials qn(f) with approximation of the best rateinstead of q∗n(f), and there are many su
h polynomials in C and Lp(see Se
tions 1-2 above). If the trans�nite diameter of a 
ompa
tum

K is less than one and for any small ǫ > 0 and large n, there holds
‖qn‖ < (q(K) + ǫ)n, then for the analyti
 fun
tion

f(x) =

∞∑

k=0

qk(x)we obtain
lim
n→∞

(
Een(f ;K)

) 1
n ≤ q(K) + ε.
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