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On boundary extension of mappings on

Riemannian surfaces in terms of prime endsEvgeny Sevost'yanov, Oleksandr Dovhopiatyi,Nataliya Ilkevy
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(Presented by V. Gutlyanskĭı)Abstra
t. We investigate non-homeomorphi
 mappings of Riemanniansurfa
es of Sobolev 
lass. There are obtained some estimates of distor-tion of moduli of families of paths. We have proved that, under some
onditions, these mappings have a 
ontinuous extension to a boundaryof a domain in terms of prime ends.2010 MSC. 30C65, 31A15, 31B25.Key words and phrases. Riemannian surfa
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1. IntroductionSome important results 
on
erning the boundary behavior of Sobolevhomeomorphisms between Riemannian surfa
es were obtained in [15℄ and[16℄. In parti
ular, in [15℄ the authors 
onsidered the 
ase when thedomains under 
onsideration are lo
ally 
onne
ted at their boundary,while the paper [16℄ refers to domains of a more 
omplex stru
ture. Inthe latter 
ase, mappings, as a rule, do not have a pointwise 
ontinuousboundary extension. However, the 
onstru
tion of prime ends, introdu
edby Caratheodory, allows us to interpret this extension in another (moresu

essful) sense.In this arti
le, we intend to abandon the 
ondition of the inje
tivityof mappings, whi
h signi�
antly distinguishes it from [15℄ and [16℄. Wewill show that similar 
lasses of open-
losed dis
rete maps also have a
ontinuous boundary extension. De�nitions and notions used below andnot mentioned in the text, may be found in [15, 16℄ or [18℄.In what follows, unless otherwise spe
i�ed, the Riemannian surfa
es
S and S∗ have hyperboli
 type. In the following, ds

h̃
and dṽ, ds

h̃∗
andRe
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dṽ∗ denote the elements of length and area on the Riemannian surfa
es
S and S∗, respe
tively. We also use the notation h̃ for the metri
 on thesurfa
e S, in parti
ular,
B̃(p0, r) := {p ∈ S : h̃(p, p0) < r}, S̃(p0, r) := {p ∈ S : h̃(p, p0) = r}are a disk and a 
ir
le on the surfa
e S 
entered at a point p0 and a radius

r > 0, respe
tively.The following de�nitions refer to Caratheodory [2℄, see also [4,8℄ andearlier papers related to prime ends ( [11,21℄). Re
all that, a 
ontinuousmapping σ : I → S, I = (0, 1), is 
alled the Jordan arc in S, if σ(t1) 6=
σ(t2) for t1 6= t2. Next, we will sometimes use σ for σ(I), σ for σ(I) and
∂σ for σ(I) \ σ(I). A cut of a domain D is 
alled either the Jordan ar

σ : I → D, ends of whi
h belongs to ∂D, or a 
losed Jordan path in D. Asequen
e σ1, σ2, . . . , σm, . . . of 
uts of the domain D is 
alled a chain if:(i) σi ∩ σj = ∅ for any i 6= j, i, j = 1, 2, . . .;(ii) σm splits D, i.e. D \ σm 
onsists from two 
omponents, one ofwhi
h 
ontains σm−1, and another 
ontains σm+1,(iii) h̃(σm) → 0 as m→ ∞, h̃(σm) = sup

p1,p2∈σm
h̃(p1, p2).By the de�nition, a 
hain {σm} de�nes the sequen
e of domains dm ⊂

D su
h that ∂ dm ∩D ⊂ σm and d1 ⊃ d2 ⊃ . . . ⊃ dm ⊃ . . .. Two 
hains
{σm} and {σ ′

k} are 
alled equivalent, if for any m = 1, 2, . . . the domain
dm 
ontains all d ′

k ex
epting a �nite number and, on the other hand, forany k = 1, 2, . . . the domain d ′
k 
ontains all dm ex
epting a �nite number,as well. A prime end of D is a 
lass of equivalent 
hains of 
uts of D.LetK be a prime end in D ⊂ R

n, and let {σm} and {σ ′
m} are 
hains in

K. In addition, let dm and d ′
m are 
orresponding domains with a respe
tto σm and σ ′

m. Then
∞⋂

m=1

dm ⊂
∞⋂

m=1

d ′
m ⊂

∞⋂

m=1

dm ,and, thus,
∞⋂

m=1

dm =

∞⋂

m=1

d ′
m ,i.e. the set

I(K) =

∞⋂

m=1

dmdepends only on K and does not depend on the 
hain {σm}. A set I(K)is said to be an impression of a prime end K. In what follows, by EDwe denote the set of all prime ends in D, and DP := D ∪ ED denotes
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ompletion of D by its prime ends. Now, let us 
onsider DP as atopologi
al spa
e in the following way. First of all, we 
onsider that opensets in D are also open in DP . Next, we de�ned a based neighborhood of
P ⊂ ED as a union of any domain d, whi
h 
ontains in some 
hain of P,with the rest prime ends in d. In parti
ular, in the topology mentionedabove, a sequen
e xn ∈ D 
onverges to P ∈ ED if and only if, for anydomain dm, belonging to a sequen
e of domains d1, d2, d3, . . . , 
ontainingin P, there is n0 = n0(m) su
h that xn ∈ dm for n > n0.

A (maximal) dilatation of f at z is de�ned in lo
al 
oordinates by therelation
Kf (z) =

|fz|+ |fz|
|fz| − |fz|

(1.1)for Jf (z) 6= 0, Kf (z) = 1 for ‖f ′(z)‖ = 0 and Kf (z) = ∞ otherwise.It is not di�
ult to see that, Kf does not depend on lo
al 
oordinatesbe
ause the transition mappings between two 
harts are 
onformal by thede�nition of the Riemannian surfa
e.A mapping f : D → D ∗ is 
alled a mapping with finite distortion, if
f ∈W 1,1

loc (D) and, in addition, there is almost everywhere a �nite fun
tion
K(z) su
h that ‖f ′(z)‖2 6 K(z) · Jf (z) for almost all z ∈ D. A mapping
f : D → D ∗ is 
alled discrete if the preimage f−1(y) of any point y ∈ D ∗
onsists of isolated points only. A mapping f : D → D ∗ is 
alled openif the image of any open set U ⊂ D is an open set in D ∗. A mapping
f : D → D ∗ is 
alled closed if the image of any 
losed set U ⊂ D is an
losed set in D ∗.Let p0 ∈ S and let ϕ : S → R be a fun
tion integrable in someneighborhood U of the point p0 with respe
t to the area ṽ on S. Follow-ing [10, Se
tion 6.1, Ch. 6℄, we say that a fun
tion ϕ : S → R has a finite
mean oscillation at the point p0 ∈ D, we write ϕ ∈ FMO(p0), if

lim sup
ε→0

1

ṽ(B̃(p0, ε))

∫

B̃(p0, ε)

|ϕ(p)− ϕε| dṽ(p) <∞ ,where ϕε = 1

ṽ(B̃(p0,ε))

∫

B̃(p0,ε)

ϕ(p) dṽ(p).The main result of the paper is the following, 
f. [17, Theorem 1℄.
Theorem 1.1. Let D and D∗ are domains in S and S∗, correspondingly,
which have compact closures D ⊂ S and D∗ ⊂ S∗, while ∂D and ∂D∗
has a finite number of components, where all components of ∂D∗ are
non-degenerate. Assume that, Q : S → (0,∞) is a given function which
is measurable with a respect to the measure ṽ on S, Q(p) ≡ 0 in S \D.
Let f : D → D∗ be an open, discrete and closed mapping with a finite
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distortion of D onto D∗, such that Kf (p) 6 Q(p) for almost all p ∈ D.
Then f has a continuous extension f : DP → D∗P , f(DP ) = D∗P , if
one of the following conditions hold:

1) the relations

ε0∫

ε

dt

‖Q‖(t) <∞ ,

ε0∫

0

dt

‖Q‖(t) = ∞ , (1.2)

hold at any p0 ∈ ∂D, for some ε0 = ε0(p0) > 0 and any 0 < ε < ε0,
where ‖Q‖(t) :=

∫

S̃(p0,t)

Q(p) ds
h̃
(p) denotes the L1-norm of the function

Q over the circle S̃(p0, t),
2) the condition Q ∈ FMO(∂D) holds.

2. PreliminariesIn what follows, we need the following statement the proof of whi
hmay be found in [18, Proposition 4.5℄, 
f. [10, Lemma 7.4, Ch. 7℄.
Proposition 2.1. Let p0 ∈ S, let U be a normal neighborhood of p0, 0 <
r1 < r2 < dist (p0, ∂U), let Q(p) be a measurable function with a respect
to the measure ṽ, Q : S → [0,∞], Q ∈ L1(U). Set Ã = Ã(p0, r1, r2) =
{p ∈ S : r1 < h̃(p, p0) < r2}, ‖Q‖(r) =

∫

S̃(p0,r)

Q(p) ds
h̃
(p),

η0(r) :=
1

I · ‖Q‖(r) , (2.3)

where

I = I(p0, r1, r2) :=

r2∫

r1

dr

‖Q‖(r) .

Then
1

I
=

∫

Ã(p0,r1,r2)

Q(p) · η20(h̃(p, p0)) dṽ(p)

6

∫

Ã(p0,r1,r2)

Q(p) · η2(h̃(p, p0)) dṽ(p) (2.4)

for any Lebesgue measurable function η : (r1, r2) → [0,∞] such that

r2∫

r1

η(r)dr = 1 . (2.5)
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C(f,E) = {y ∈ S∗ : ∃x ∈ E, xk ∈ D : xk → x, f(xk) → y, k → ∞} .The following statement holds.

Proposition 2.2. Assume that, a domain D ⊂ S has a finite number of
boundary components Γ1,Γ2, . . . ,Γn ⊂ ∂D. Then:

1) for any Γi, i = 1, 2, . . . , n there is a neighborhood Ui ⊂ S and a
conformal mapping H of U∗

i := Ui ∩D onto R = {z ∈ C : 0 6 ri < |z| <
1} such that γi := ∂U ∗

i ∩D is a closed Jordan path

C(H, γi) = {z ∈ C : |z| = 1}; C(H,Γi) = {z ∈ C : |z| = ri},

while ri = 0 if and only if Γ degenerates into a point. Moreover, H
extends to a homeomorphism of U ∗

i P onto R, see [16, Lemma 2];

2) a space DP is metrizable with some metric ρ : DP × DP → R

such that, the convergence of any sequence xn ∈ D, n = 1, 2, . . . , to some
prime end P ∈ ED is equivalent to the convergence xn in one of spaces
U ∗
i P , see [16, Remark 2];

3) any prime end P ∈ ED contains a chain of cuts σm, m = 1, 2, . . . ,
which belong to spheres S̃(z0, rm), rm → 0 asm→ ∞, see [16, Remark 1];

4) for any P ⊂ ED its impression I(P ) is a continuum in ∂D, while
there is some unique 1 6 i 6 n such that I(P ) ⊂ Γi, see [16, Proposi-
tion 1, Remark 1].The te
hnique for proving the main result is based on using modulusof families of paths. Pro
eeding from this, we 
onsider some (wider) 
lassof mappings for whi
h the required distortion of modulus is satis�ed.Everywhere below, M(·) is the modulus of families of paths on S (see,for example, [15�18℄). Let ρ : S → [0,∞] is a fun
tion measurable withrespe
t to the area ṽ.We say that, ρ is extensively admissible for Γ, abbr.
ρ ∈ ext admΓ, if the ratio

∫

γ

ρ ds
h̃
(p) > 1holds for all lo
ally re
ti�able paths γ ∈ Γ \ Γ0, while M(Γ0) = 0. Thefollowing 
lass is a generalization of quasi
onformal mappings in Gehringsense (see, e.g., [10, Chapter 9℄). Let D and D ∗ be domains in S and

S∗, respe
tively, and let Q : D → (0,∞) be a measurable fun
tion witha respe
t to ṽ on S. We say that, f : D → D ∗ is a lower Q-mapping at



246 On boundary extension of mappings...

a point p0 ∈ D, if there is ε0 = ε0(p0) > 0, ε0 < d0 = sup
p∈D

h̃(p, p0), su
hthat
M(f(Σε)) > inf

ρ∈ext admΣε

∫

D∩Ã(p0,ε,ε0)

ρ2(p)

Q(p)
dṽ(p) (2.6)for any ring Ã(p0, ε, ε0) = {p ∈ S : ε < h̃(p, p0) < ε0}, where Σε denotesthe family of all interse
tions of 
ir
les S̃(p0, r) = {p ∈ S : h̃(p, p0) = r}with D, r ∈ (ε, ε0).In many 
ases, we need to verify the property (2.6) without of averi�
ation of in�nitely many inequalities. Su
h a possibility follows bythe following statement (
f. [10, Theorem 9.2℄ and [7, Lemma 4.2℄), theproof of whi
h may be found in [18, Lemma 2.3℄.

Lemma 2.1. Let D and D ∗ be domains in S and S∗, respectively, p0 ∈ D
and Q : D → (0,∞) be a given function. Then f : D → D ∗ is a lower
Q-mapping at a point p0 if and only if there is 0 < d0 < sup

p∈D
h̃(p, p0) such

that

M(f(Σε)) >

ε0∫

ε

dr

‖Q‖(r) ∀ ε ∈ (0, ε0) , ε0 ∈ (0, d0) , (2.7)

where Σε denotes the family of all intersections S̃(p0, r) with a domain
D, r ∈ (ε, ε0), in addition,

‖Q‖(r) =
∫

D(p0,r)

Q(p) ds
h̃
(p)

denotes L1-norm of the function Q over D ∩ S̃(p0, r) = D(p0, r) = {p ∈
D : h̃(p, p0) = r}.The following lemma holds.
Lemma 2.2. Let D and D∗ be domains in S and S∗, correspondingly,
which have compact closures D ⊂ S and D∗ ⊂ S∗, while ∂D and ∂D∗
consist of finite boundary components, and all components of ∂D∗ are
non-degenerate. Assume that, f : D → D∗, f(D) = D∗, be a closed open
discrete mapping. Then:

1) C(f, P ) is a continuum in ∂D∗, where

C(f, P ) = {y ∈ S∗ : ∃xk ∈ D : xk → P, f(xk) → y, k → ∞} .

In particular, there is a unique component Γ ⊂ ∂D∗ such that C(f, P ) ⊂
Γ;
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2) if P ⊂ ED and dk, k = 1, 2, . . . , be a sequence of domains cor-
responding to P and U ⊂ S∗ be a neighborhood of Γ from item 1) of
Proposition 2.2, then there is s0 ∈ N such that

f(dk) ⊂ U∗ ∀ k > s0 , (2.8)

where U∗ := U ∩D∗.

Proof. Let us to prove that C(f, P ) is a continuum in ∂D∗, where

C(f, P ) = {y ∈ S∗ : ∃xk ∈ D : xk → P, f(xk) → y, k → ∞} .

For this goal, let us to show that

C(f, P ) =

∞⋂

k=1

f(dk) , (2.9)

where dk, k = 1, 2, . . . , is a sequence of domains of cuts corresponding
to a prime end P. Indeed, let y ∈ C(f, P ), then y = lim

k→∞
yk, yk → P as

k → ∞. We may consider that yk = f(xk), xk ∈ dk. Now, for any m ∈ N

there is k0 = k0(m) such that xk ∈ dm for k > k0, because the sequence
dm is decreasing. It follows from this that, y ∈ f(dk) for any k = 1, 2, . . . .

Thus C(f, P ) ⊂
∞⋂
k=1

f(dk). On the other hand, let y ∈
∞⋂
k=1

f(dk). Then,

for a given k ∈ N, we obtain that y = lim
m→∞

y
(k)
m , where y

(k)
m ∈ f(dk), m =

1, 2, . . . . Then there are x
(k)
m ∈ dk, m = 1, 2, . . . , such that f(x

(k)
m ) → y

as m → ∞. Then, for a number 1/2 k, there is m = mk ∈ N such that

h̃∗(f(x
(k)
mk), y) < 1/2 k. By the definition, a sequence x

(k)
mk converges to P

as k → ∞ and f(x
(k)
mk) → y as k → ∞, i.e., y ∈ C(f, P ). Thus, C(f, P ) ⊂

∞⋂
k=1

f(dk),
∞⋂
k=1

f(dk) ⊂ C(f, P ) and, consequently, the relation (2.9) is

established. Then, by [9, Theorem 5.II.5] C(f, P ) is a continuum.
It remains to show that C(f, P ) ⊂ ∂D∗. Observe that, C(f, P ) 6= ∅

because D∗ is a compactum by the assumption. Let y ∈ C(f, P ), then
y = lim

k→∞
yk, yk → P as k → ∞ and yk = f(xk), xk ∈ dk. Without loss of

generality, by the compactness of D, we may consider that xk converges

to x0 as k → ∞. Then, by item 4) of Proposition 2.2, since x0 ∈
∞⋂
k=1

dk,

we have that x0 ∈ I(P ) ⊂ ∂D. Since f is an open, discrete and closed
mapping, it is boundary preserving. Now, the sequence f(xk) = yk may
converges only to a boundary point as k → ∞, i.e., y ∈ ∂D∗. The item 1)
of Lemma 2.2 is established.
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Let us to prove item 2). Let U ⊂ S∗ be a neighborhood of Γ which
corresponds to item 1) of Proposition 2.2. In other words, there is a
conformal mapping H of U∗ := U ∩D∗ onto the ring R = {z ∈ C : 0 <
r < |z| < 1} such that γ := ∂U ∗ ∩D is a closed Jordan path,

C(H, γ) = {z ∈ C : |z| = 1}; C(H,Γ) = {z ∈ C : |z| = r} .

Let us to prove (2.8). Assume the contrary. Then there is an increas-
ing sequence of numbers kl, l = 1, 2, . . . , and a sequence ykl ∈ f(dkl)
such that ykl ∈ D∗ \U∗ for any l ∈ N. By the compactness of D∗ we may
assume that ykl converges to some point y0 as l → ∞. Then y0 ∈ Γ by the
inclusion C(f, P ) ⊂ Γ, where Γ is some boundary component of D∗ (see
item 1)). Let ε1 > 0 be such that B(y0, ε1) ⊂ U ; this ε1 exists because U
is a neighborhood of Γ. Then ykl ∈ B(y0, ε1) ∩D∗ ⊂ U ∗ for large l ∈ N,
that contradicts with ykl ∈ D∗ \U∗ for l ∈ N. The contradiction obtained
above proves the relation (2.8).An analog of the following statement is proved for homeomorphismsin [16, Lemma 4℄, 
f. [8, Lemma 3℄ and [5, Lemma 5.1℄.
Theorem 2.1. Let D and D∗ domains in S and S∗, correspondingly,
which have compact closures D ⊂ S and D∗ ⊂ S∗, while ∂D and ∂D∗
consist of a finite number of components, and all components of ∂D∗
are non-degenerate. Assume that, Q : S → (0,∞) is a given function
which is measurable with a respect to ṽ on S, Q(p) ≡ 0 in S \ D. Let
f : D → D∗, D∗ = f(D), be a lower Q-mapping at any point p0 ∈ ∂D,
and let f be an open, discrete and closed. Then f has a continuous
extension f : DP → D∗P , f(DP ) = D∗P , whenever one of the following
conditions hold:

1) either the relation

ε0∫

ε

dt

‖Q‖(t) <∞ ,

ε0∫

0

dt

‖Q‖(t) = ∞ (2.10)

holds for any p0 ∈ ∂D, for some ε0 = ε0(p0) > 0 and all 0 < ε < ε0,
where ‖Q‖(t) :=

∫

S̃(p0,t)

Q(p) ds
h̃
(p) denotes the L1-norm of the function

Q over the circle S̃(p0, t),
2) or Q ∈ FMO(∂D).

Proof. Let us firstly prove that f has a continuous extension f : DP →
D∗P . Let us consider the case 1), i.e., when the relations (2.10) hold. Put
P ∈ ED.
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1) By the item 1) of Lemma 2.2, the set C(f, P ) is a continuum in
∂D∗. Then there is a component Γ ⊂ ∂D∗ which contains C(f, P ). Let
U ⊂ S∗ be a neighborhood Γ which corresponds to Proposition 2.2, and
let H be a corresponding conformal mapping of a domain U∗ := U ∩D∗
onto the ring R = {z ∈ C : 0 < r < |z| < 1} such that γ := ∂U ∗ ∩D is a
closed Jordan path,

C(H, γ) = {z ∈ C : |z| = 1}; C(H,Γ) = {z ∈ C : |z| = r} .

By Proposition 2.2 there is a chain of cuts σn, corresponding to a prime
end P, which belongs to spheres S̃(p0, rn), p0 ∈ ∂D, rn → 0 as n → ∞.
Let dn, n = 1, 2, . . . , be a sequence of domains corresponding to cuts
σn. By the inclusion (2.8) we may consider that f(d1) ⊂ U∗. Now, we
set f̃ := f |d1 , g := H ◦ f̃ , g : d1 → R, g(d1) ⊂ R. Observe that, R
is a domain, any point of which has a sufficiently small neighborhood
the intersection of which with R is quasiconformally equivalent to the
unit disk (besides the direct arguing, this statement may be obtained
by the corresponding Väisälä’s result [23, Theorem 17.12], since R is
a union of two circles which are C1-manifolds. In this context, we also
mention [14, sect. 2.2] and [12, Remark 1.5]). Then, by [14, Theorem 4.1]
and due to [16, Remark 2], we may consider that RP = R. In this case, for
the proof of Theorem, it is sufficient to establish the continuous extension
g : d1 ∪ {P} → R.

2) Moreover, by the compactness of R, it is sufficiently to prove that
the set

L = C(g, P ) :=
{
y ∈ ∂R : y = lim

m→∞
g(pm), pm → P, pm ∈ d1

}

consists from a unique point y0 ∈ ∂R. The mapping g, as usual, is open
and discrete in d1, but is not necessary closed. Let us to show that, g
satisfies the relation

M(g(Σ1
ε)) >

ε1∫

ε

dr

‖Q‖(r) ∀ ε ∈ (0, ε1) , ε1 ∈ (0, r1) , (2.11)

where Σ1
ε denotes the family of all intersections of circles S̃(p0, r) = {p ∈

S : h̃(p, p0) = r} with d1, r ∈ (ε, ε1). To proof this fact, let us to show
that

S̃(p0, r) ∩D > S̃(p0, r) ∩ d1, r < r1 . (2.12)

(Here and below the notation Γ1 > Γ2 denotes that, for any dished

line α ∈ Γ1, α :
∞⋃
i=1

(ai, bi) → S, there is a dashed line β ∈ Γ2, where
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β :
∞⋃

i,k=1

(aik, bik) → S,
∞⋃
k=1

(aik, bik) ⊂ (ai, bi), α|(aik ,bik) = β for any

i = 1, 2, . . . , k = 1, 2, . . . and, besides that, at least one interval (aik, bik)
is not empty).

Indeed, we put 0 < r < r1. Then there is i ∈ N such that ri < r.
Let σi ⊂ S̃(p0, ri) ∩ d1 be a cut corresponding to a domain di. Join
any point ω ∈ σi with a point w ∈ σ1 in D with a path αi, |αi| ⊂ D.
Without loss of generality, we may consider that αi belongs to d1 instead
of its endpoint, because ∂d1∩D ⊂ σ1. Observe that |αi|∩B̃(p0, r) 6= ∅ 6=
|αi|∩(S\B̃(p0, r)), therefore, by [9, Theorem 1.I.5, § 46] |αi|∩S̃(p0, r) 6= ∅.
It follows from this that, S̃(p0, r) ∩ d1 6= ∅.

Let now α := S̃(p0, r)∩D be a dished line α :
∞⋃
i=1

(ai, bi) → D, where

there at least one non-empty interval in its system (ai, bi). By the proved
above, β := S̃(p0, r) ∩ d1 6= ∅, therefore there is at most countable of

intervals (ck, dk), k = 1, 2, . . . , such that β :
∞⋃
k=1

(ck, dk) → d1 and the

interval (ck, dk) is not empty at least for some k ∈ N. By the definition, for
any k ∈ N there is i ∈ N such that (ck, dk) ⊂ (ai, bi). Denote (aik, bik) :=
(ai, bi) ∩ (ck, dk), and observe that the interval (aik, bik) is not empty at

least for some i ∈ N and k ∈ N. Observe also that,
∞⋃
k=1

(aik, bik) ⊂ (ai, bi)

and α|(aik ,bik) = β, that proves (2.12).

It follows from (2.12) that f(S̃(p0, r) ∩ D) > f(S̃(p0, r) ∩ d1) =
f̃(S̃(p0, r) ∩ d1), where f̃ := f |d1 . Let Σε be a family of all intersections

of circles S̃(p0, r) = {p ∈ S : h̃(p, p0) = r} with D. Then by [3, Theo-
rem 1(c)] M(f̃(Σ1

ε)) >M(f(Σε)) and, consequently, by Lemma 2.1

M(f̃(Σ1
ε)) >

ε1∫

ε

dr

‖Q‖(r) ∀ ε ∈ (0, ε1) , ε1 ∈ (0, r1) . (2.13)

In this case, (2.11) follows by (2.13), because g = H ◦f̃ and H is a confor-
mal mapping preserving the family of paths with a respect to Lebesgue
measure on the plane (see, e.g., [23, Theorem 8.1], see also the corre-
sponding result about equality of the moduli of families of paths in the
hyperbolic and Euclidean metrics and measures [19, Remark 5.2]. On
this occasion we also mention on [24, Remark 1], where the notion of the
modulus of families of paths is given in some another (equivalent) way.

Put δ ∈ (0, r1) and set Γ δ
n :=

⋃
r∈(rn,δ)

g(S̃(p0, r)∩ d1), where the union

must be understood not in the theoretical-set sense, but namely as a
family of paths “from rn to δ”. By (2.13) and due to (2.10) it follows
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that

M(Γ δ
n) → ∞ , n→ ∞. (2.14)

3) Let us prove by contradiction, i.e., assume that g has no a limit as
p→ P. Then we may find at least two sequences pn, p

′
n ∈ dn, n = 1, 2, . . . ,

and two points y 6= y∗, y, y∗ ∈ R such that g(pn) → y and g(p ′
n) → y∗

as n → ∞. Join the points pn and p ′
n by a path γn in a domain dn.

Let r0 := |y − y∗| and U0 := B(y, r0/2). Observe that, a boundary of
R is strongly accessible since R has a finite number of components and
is a finitely connected on the boundary (see, e.g., [13, Theorem 6.2 and
Corollary 6.8]). Therefore, for a neighborhood U0 of y there is an another
neighborhood V ⊂ U0 of this point, a compactum K ⊂ R and a number
δ > 0 such that the relation

M(Γ(E,K,R)) > δ (2.15)

holds for any continuum E ⊂ R, E ∩ ∂U 6= ∅ 6= E ∩ ∂V.
Let Cn := g(|γn|). Observe that, ∂U ∩ |Cn| 6= ∅ for sufficiently large

n ∈ N, see [9, Theorem 1.I.5, § 46] (as usually, |Cn| denotes the locus of
a path Cn). Then, by the condition (2.15) we obtain that

M(Γ(|Cn|,K,R)) > δ (2.16)

for sufficiently large n.

Let us to show that

Γ(|Cn|,K,R) > Γ(g(σn),K,R) (2.17)

for sufficiently large n ∈ N, where σn denotes the cut of D, which
corresponds to a domain dn. Due to the relation (2.9) and item 1) of

Lemma 2.2, C(f̃ , P ) = C(f, P ) =
∞⋂
k=1

f(dk) ⊂ ∂D∗ , therefore, f(dn) ∩
K∗ = ∅ for sufficiently large n ∈ N and any compactum K∗ ⊂ D∗. In
this case, under some n0 ∈ N and all n > n0, we obtain that f(dn) ∩
H −1(K) = ∅. Since H is a homeomorphism and f̃(dn) = f(dn) for
such n ∈ N, it follows that g(dn) ∩ K = ∅, g = H ◦ f̃ . Let now
γ ∈ Γ(|Cn|,K,R). Since |Cn| ⊂ g(dn), by the proven above |γ| ∩ g(dn) 6=
∅ 6= |γ| ∩ (C \ g(dn)). In this case, by [9, Theorem 1.I.5, § 46]

|γ| ∩ (∂g(dn) ∩R) 6= ∅ . (2.18)

Let us now establish that

∂g(dn) ∩R ⊂ g(σn) . (2.19)
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First of all, by (2.18) it follows that ∂g(dn)∩R 6= ∅. Let ζ0 ∈ ∂g(dn)∩R.
Then we may find a sequence ζk ∈ g(dn) such that ζk → ζ0 as k → ∞.
Since ζk ∈ g(dn), we may find ξk ∈ dn such that g(ξk) = ζk. Since by
the assumption D is a compactum in S, we may consider that ξk is a
convergent sequence ξk → ξ0 ∈ dn, k → ∞. If ξ0 ∈ dn, then ζ0 is an
inner point of g(dn) by the openness of g, that contradicts the choice
of ζ0. Thus ξ0 ∈ ∂dn. Observe also that, ξ0 ∈ D. Indeed, if ξ0 ∈ ∂D,
then f(ξk) = f̃(ξk) may converge to the boundary point of D∗ by the
closeness of f, however, f(ξk) = H −1(g(ξk)) = H −1(ζk) converges to an
inner point H −1(ζ0) ∈ D∗, because ζk → ζ0 ∈ R as k → ∞ and H is a
homeomorphism of U ∗ onto R. The contradiction obtained above shows
that ξ0 ∈ ∂dn ∩ D, i.e., ξ0 ∈ σn. Then g(ξ0) = ζ0 ∈ g(σn). Then the
inclusion (2.19) is established.

Then, by (2.18) it follows that |γ| ∩ g(σn) 6= ∅. Therefore, the re-
lation (2.17) is also proved. By (2.17) and due to [3, Theorem 1(c)] it
follows that M(Γ(|Cn|,K,R)) 6M(Γ(g(σn),K,R)). But now, by (2.16)
is also follows that

M(Γ(g(σn),K,R)) > δ , n > n0 , (2.20)

see Figure 1 on this occasion.

S p , r( )0 D

S p , r( )0 D)f(

f

p0

D

U*

D*

g(  )

d1

d1f( )

n

R

1

r

K

H

( (   ) )g ,K, Rn

S p , r( )0 D)g(

ng(  )

nf(  )

g=H f

f=f|d1

Figure 1: To the proof of Theorem 2.1

4) Let us to show that the condition (2.20) contradicts with (2.14).
For this goal, let us to estimate M(Γ δ

i ) in (2.14) from above, using
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the Ziemer equality and the connection between joining and separating
paths [25]. Let us show that, there exists ε1 > 0 such that

K ∩ g(B̃(p0, r) ∩ d1) = ∅ ∀ r ∈ (0, ε1) . (2.21)

Assume the contrary. Then, for any k ∈ N there is some qk ∈ K ∩
g(B̃(p0, 1/k) ∩ d1). Since qk ∈ g(B̃(p0, 1/k) ∩ d1), there is a sequence
qkl ∈ g(B̃(p0, 1/k) ∩ d1) such that qkl → qk as l → ∞. Since qkl ∈
g(B̃(p0, 1/k) ∩ d1), there is a sequence ζkl ∈ B̃(p0, 1/k) ∩ d1 such that
g(ζkl) = qkl. Put k ∈ N and choose lk > 0 such that |qklk − qk| < 1/2k.
Without loss of generality, we may assume that qk converges to z0 as
k → ∞. Then by the triangle inequality

|g(ζklk)− z0| 6 |g(ζklk)− qk|+ |qk − z0| =

= |qklk − qk|+ |qk − z0| < 1/2k + |qk − z0| → 0 , k → ∞ . (2.22)

It follows from (2.22) that z0 ∈ ∂R. Indeed, if z0 ∈ R, by the continuously
of H −1 we obtain that

h̃∗(H
−1(g(ζklk)),H

−1(z0)) = h̃∗(f(ζklk),H
−1(z0)) → 0 , k → ∞ ,

where h̃∗ is a corresponding metric on S∗. The last contradicts with
the closeness of f in D, because H −1(z0) ∈ C(f, p0) ⊂ ∂D∗ (see [18,
Proposition 4.3]). At the same time, H −1(z0) is an inner point of D∗
by the assumption z0 ∈ R. Thus, z0 ∈ ∂R, that contradicts with the
condition qk → z0 ∈ ∂R as k → ∞ and because qk ∈ K, where K is a
compactum in R. The obtained contradiction proves (2.21). Then

K ⊂ R \ g(B̃(p0, r) ∩ d1) , r ∈ (0, ε1) . (2.23)

In particular, (2.23) implies that K and g(σn) are disjoint for n > n1 >
n0, where n1 ∈ N is such that rn1 < ε1.

5) Let n > n1. Observe that, for any r ∈ (rn, ε1), the set Ar :=
∂(g(B̃(p0, r) ∩ d1)) ∩R separates K from g(σn) in R. Indeed,

R = Br ∪Ar ∪ Cr ∀ r ∈ (rn, ε1) ,

where Br := g(B̃(p0, r)∩d1) and Cr := R\g(B̃(p0, r) ∩ d1) are open sets
in R, g(σn) ⊂ Br, K ⊂ Cr and Ar is closed in R.

Let Σn be a family of all sets separating g(σn) from K in R. Let us
establish that

(∂g(B̃(p0, r) ∩ d1)) ∩R ⊂ g(S̃(p0, r) ∩ d1), 0 < r < r1 . (2.24)
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Indeed, let ζ0 ∈ (∂g(B̃(p0, r) ∩ d1)) ∩ R. Then there is a sequence ζk ∈
g(B̃(p0, r) ∩ d1) such that ζk → ζ0 as k → ∞, where ζk = g(ξk), ξk ∈
B̃(p0, r) ∩ d1. Without loss of generality, we may assume that ξk → ξ0
as k → ∞. If ξ0 ∈ ∂D, then by the closeness of f in D the sequence
f(ξk) may converge only to some boundary point z1 ∈ D∗, however,
H −1(g(ξk)) = f(ξk) converges to some inner point of D∗ because H is
a homeomorphism, ζk = g(ξk) and ζk → ζ0 ∈ R as k → ∞. Therefore,
ξ0 ∈ D. If ξ0 ∈ ∂d1, then ξ0 ∈ σ1 ⊂ S̃(p0, r1), that is impossible because
ξk ∈ B̃(p0, r) by the assumption, ξk → ξ0 as k → ∞ and r < r1. Thus,
ξ0 ∈ d1.

Now two situations are possible: 1) ξ0 ∈ B̃(p0, r) ∩ d1 and 2) ξ0 ∈
S̃(p0, r) ∩ d1. Observe that, the case 1) is impossible because, in this
case, g(ξ0) = ζ0 and ζ0 is an inner point of the set g(B̃(p0, r) ∩ d1), that
contradicts with the choice of ζ0. Thus, the inclusion (2.24) is established.

Here and below the unions of the form
⋃

r∈(r1,r2)
∂g(B̃(p0, r) ∩ d1) ∩R

are understood as families of sets. Denote by Σn the family of all sets
which separate K from g(σn) in R (see [25, section 2.3]). Then, by (2.24),
we obtain that

M(Σn) >M




⋃

r∈(rn,ε1)
∂g(B̃(p0, r) ∩ d1) ∩R


 >

>M




⋃

r∈(rn,ε1)
g(S̃(p0, r) ∩ d1)


 (2.25)

for n > n1, where n1 is defined in item 4).
By (2.25) and (2.14), putting δ = ε1, we obtain that

M(Σn) → ∞ , n→ ∞ . (2.26)

On the other hand, by the Ziemer and Hesse equalities (see [25, Theo-
rem 3.10] and [6, Theorem 5.5]), we obtain that

M(Σn) =
1

M(Γ(g(σn),K,R))
. (2.27)

Now, the relations (2.27) and (2.26) imply that

M(Γ(g(σn),K,R)) → 0 , n→ ∞ ,

that contradicts with (2.20). The contradiction obtained above proves
the statement of the theorem in the case, when the relations (2.10) hold.
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Let us consider the case 2), namely, assume that Q ∈ FMO(∂D).
Let ϕ : S → R, ϕ(x) = 0 for x 6∈ D, be a nonnegative function which has
a finite mean oscillation at a point p0 ∈ D ⊂ S. By [1, Theorem 7.2.2] a
surface S is locally 2-regular by Alhfors, so that by [20, Lemma 3]

∫

ε<h̃(p,p0)<ε̃0

ϕ(p) dṽ(p)
(
h̃(p, p0) log

1

h̃(p,p0)

)2 = O

(
log log

1

ε

)
(2.28)

as ε → 0 for some 0 < ε̃0 < dist(p0, ∂U), where U is some normal
neighborhood of p0. Set 0 < ψ(t) = 1

(t log 1
t )
. Observe that ψ(t) > 1

t log 1
t

for sufficiently small ε > 0, therefore I(ε, ε̃0) :=
ε̃0∫
ε
ψ(t) dt > log

log 1
ε

log 1
ε̃0

.

Set η(t) := ψ(t)/I(ε, ε̃0). Then, due to the relation (2.28), we may find
a constant C > 0 such that

∫

Ã(p0,ε,ε̃0)

Q(p) · η2(h̃(p, p0)) dṽ(p) =

=
1

I2(ε, ε̃0)

∫

ε<h̃(p,p0)<ε̃0

Q(p) dṽ(p)
(
h̃(p, p0) log

1

h̃(p,p0)

)2 6

6 C ·
(
log

log 1
ε

log 1
ε̃0

)−1

→ 0 , ε→ 0 . (2.29)

Then the relations (2.4) and (2.29) imply the conditions (1.2), so that
the desired conclusion follows directly by Theorem 2.1.

To complete the proof we may to establish the equality f(DP ) = R.
Obviously, f(DP ) ⊂ R. Let us to show the inverse inclusion. Let ζ0 ∈ R.
If ζ0 is an inner point of R, then obviously there is ξ0 ∈ D such that
f(ξ0) = ζ0 and, consequently, ζ0 ∈ f(D). Let now ζ0 ∈ ∂R. Then there
is a sequence ζn ∈ R, ζn = f(ξn), ξn ∈ D, such that ζn → ζ0 as n → ∞.
SinceDP is a compactum, see item 2) of Proposition 2.2, we may consider
that ξn → P0, where P0 is some prime end in DP . Then also ζ0 ∈ f(DP ).
The inclusion R ⊂ f(DP ) is proved and, therefore, f(DP ) = R. Theorem
is proved.

Proof of Theorem 1.1. Observe that, N(f,D) < ∞ (see [22, Theo-rem 5.5℄), be
ause f is an open, dis
rete and 
losed mapping. Note alsothat, an open dis
rete mapping f : D → D ∗ with a �nite distortion forwhi
h N(f,D) <∞,

N(f,D) = sup
y∈S∗

N(y, f,D) ,
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N(y, f,D) = card {p ∈ E : f(p) = y} ,is a lower Q-mapping at any point p0 ∈ D for Q(p) = c · N(f,D) ·
Kf (p), where c > 0 is some 
onstant depending only on p0 and D ∗, and
Kf is de�ned in (1.1). In this 
ase, the desired 
on
lusion follows fromTheorem 2.1. 2
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[2] Caratheodory, C. (1913). Über die Begrenzung der einfachzusammenhängender
Gebiete. Mathematische Annalen, 73, 323–370.

[3] Fuglede, B. (1957). Extremal length and functional completion. Acta Math., 98,
171–219.

[4] Gol’dshtein, V., Ukhlov, A. (2016). Traces of functions of L1
2 Dirichlet spaces on
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