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Riemannian surfaces in terms of prime ends
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Abstract. We investigate non-homeomorphic mappings of Riemannian
surfaces of Sobolev class. There are obtained some estimates of distor-
tion of moduli of families of paths. We have proved that, under some
conditions, these mappings have a continuous extension to a boundary
of a domain in terms of prime ends.
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1. Introduction

Some important results concerning the boundary behavior of Sobolev
homeomorphisms between Riemannian surfaces were obtained in [15] and
[16]. In particular, in [15] the authors considered the case when the
domains under consideration are locally connected at their boundary,
while the paper [16] refers to domains of a more complex structure. In
the latter case, mappings, as a rule, do not have a pointwise continuous
boundary extension. However, the construction of prime ends, introduced
by Caratheodory, allows us to interpret this extension in another (more
successful) sense.

In this article, we intend to abandon the condition of the injectivity
of mappings, which significantly distinguishes it from [15] and [16]. We
will show that similar classes of open-closed discrete maps also have a
continuous boundary extension. Definitions and notions used below and
not mentioned in the text, may be found in [15,16] or [18].

In what follows, unless otherwise specified, the Riemannian surfaces
S and S, have hyperbolic type. In the following, ds; and dv, ds;— and
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dv, denote the elements of length and area on the Riemannian surfaces
S and S., respectively. We also use the notation h for the metric on the
surface S, in particular,

é(po,r) ={pesS: E(p,po) <r}, g(po,r) ={pesS: E(p,po) =r}

are a disk and a circle on the surface S centered at a point py and a radius
r > 0, respectively.

The following definitions refer to Caratheodory |2]|, see also [4,8] and
earlier papers related to prime ends ( [11,21]). Recall that, a continuous
mapping o : I — S, I = (0,1), is called the Jordan arc in S, if o(t;) #
o(ty) for t; # to. Next, we will sometimes use o for o(I), 7 for o(I) and
do for o(I) \ o(I). A cut of a domain D is called either the Jordan arc
o : 1 — D, ends of which belongs to 9D, or a closed Jordan path in D. A
sequence 01,09,...,0m,... of cuts of the domain D is called a chain if:

(i)osNoj =@ forany i # j, 4,5 =1,2,..;

(ii) oy, splits D, i.e. D\ o, consists from two components, one of
which contains op,—1, and another contains oy,41,

(iii) E(am) — 0 as m — oo, E(O’m) = sup h(p1,p2).
P1,p2€0m
By the definition, a chain {o,,} defines the sequence of domains d,, C

D such that dd,, "D C oy and d; Dde D ... Ddpy O .... Two chains
{om} and {0/} are called equivalent, if for any m = 1,2, ... the domain
dy, contains all dj, excepting a finite number and, on the other hand, for
any k =1,2,... the domain d;, contains all d,,, excepting a finite number,
as well. A prime end of D is a class of equivalent chains of cuts of D.

Let K be a prime end in D C R"™, and let {0,,,} and {0, } are chains in
K. In addition, let d,,, and d/, are corresponding domains with a respect
to oy, and o),. Then

m=1 m=1 m=1
and, thus,
o0 o0 _
) dm= () din -
m=1 m=1
i.e. the set -
1) = () @
m=1

depends only on K and does not depend on the chain {o,,}. A set I(K)
is said to be an impression of a prime end K. In what follows, by Ep
we denote the set of all prime ends in D, and Dp := D U Ep denotes
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the completion of D by its prime ends. Now, let us consider Dp as a
topological space in the following way. First of all, we consider that open
sets in D are also open in Dp. Next, we defined a based neighborhood of
P C Ep as a union of any domain d, which contains in some chain of P,
with the rest prime ends in d. In particular, in the topology mentioned
above, a sequence x, € D converges to P € Ep if and only if, for any
domain d,;,, belonging to a sequence of domains dj, ds, ds, . .., containing
in P, there is ng = ng(m) such that x,, € d,, for n > nyg.

A (mazimal) dilatation of f at z is defined in local coordinates by the

relation ol 1
z z
B == (1)
for Jg(z) # 0, K¢(2) = 1 for ||f'(2)|| = 0 and Kf(z) = oo otherwise.
It is not difficult to see that, K; does not depend on local coordinates
because the transition mappings between two charts are conformal by the
definition of the Riemannian surface.

A mapping f: D — D, is called a mapping with finite distortion, if
fe I/Vli)cl (D) and, in addition, there is almost everywhere a finite function
K (z) such that ||f/(2)||> < K(2) - J¢(2) for almost all z € D. A mapping
f: D — D, is called discrete if the preimage f~!(y) of any point y € D,
consists of isolated points only. A mapping f : D — D, is called open
if the image of any open set U C D is an open set in D,. A mapping
f: D — D, is called closed if the image of any closed set U C D is an
closed set in D ..

Let pg € S and let ¢ : S — R be a function integrable in some
neighborhood U of the point pg with respect to the area v on S. Follow-
ing 10, Section 6.1, Ch. 6], we say that a function ¢ : S — R has a finite
mean oscillation at the point py € D, we write ¢ € FMO(py), if

1
limsup ———— / p) — @] do(p) < oo,
D B i) lp(p) — P:| dv(p)
B(p075)
where ©p, = L f ©(p) dv(p).

3(B(po,e)) Blro.e)

The main result of the paper is the following, cf. [17, Theorem 1].

Theorem 1.1. Let D and D, are domains in S and Sy, correspondingly,
which have compact closures D C S and D, C Sy, while 0D and 0D,
has a finite number of components, where all components of 0D, are
non-degenerate. Assume that, Q : S — (0,00) is a given function which
is measurable with a respect to the measure v on S, Q(p) =0 in S\ D.
Let f : D — D, be an open, discrete and closed mapping with a finite
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distortion of D onto Dy, such that K¢(p) < Q(p) for almost all p € D.
Then f has a continuous extension f : Dp — D,p, f(Dp) = D.p, if
one of the following conditions hold:

1) the relations

€0 €0

dt dt__
leie == Jlel®m

(1.2)

hold at any py € 0D, for some gy = €9(py) > 0 and any 0 < & < &g,
where |Q||(t) == [ Q(p)ds;(p) denotes the Ly-norm of the function
S(post)
Q owver the circle g(po,t),
2) the condition Q@ € FMO(OD) holds.

2. Preliminaries

In what follows, we need the following statement the proof of which
may be found in [18, Proposition 4.5], cf. [10, Lemma 7.4, Ch. 7].

Proposition 2.1. Let pg € S, let U be a normal neighborhood of pg, 0 <
r1 < ro < dist (pg, OU), let Q(p) be a measurable function with a respect
to the measure v, Q : S — [0,00], Q € LY(U). Set A= g(po,rl,rg) =
{peS:r <hlp,po) <r2}, IQI(r) = [ Qp) dsz(p),

S(po,r)
1
no(r) = ol (2.3)
where .
d
I = 1(po,71,72) 12/ m
Then B
[ aw .m0 di)
P07T1J’2
< [ QW Erm) ao) (2.4)
A(po,r1,m2)

for any Lebesgue measurable function n: (r1,r2) — [0, 00| such that

r2

/n(r)dr =1. (2.5)

T1
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Given a mapping f: D — S, and aset E C D C S, we put
C(f,E)={yeSi:3rx € E,xp€D:xp - x, f(zg) =y, k — o0}.
The following statement holds.

Proposition 2.2. Assume that, a domain D C S has a finite number of
boundary components I'y,I'y, ... '), C 0D. Then:

1) for any T';, i = 1,2,...,n there is a neighborhood U; C S and a
conformal mapping H of U :=U;ND onto R={z€C:0<r; <|z| <
1} such that v; == 0U;* N D is a closed Jordan path

C(H,v)={z€C:|z|=1}; C(H]I;)={2€C:|z| =nr},

while 7; = 0 if and only if I degenerates into a point. Moreover, H
extends to a homeomorphism of U_{*P onto R, see [16, Lemma 2J;

2) a space Dp is metrizable with some metric p DpxDp - R
such that, the convergence of any sequence x, € D, n=1,2,..., to some
prime end P € Ep is equivalent to the convergence x,, in one of spaces
U_Z-*P, see [16, Remark 2/;

3) any prime end P € Ep contains a chain of cuts op,, m =1,2,...,
which belong to spheres g(zo, Tm), 'm — 0 asm — oo, see [16, Remark 1];

4) for any P C Ep its impression I(P) is a continuum in 0D, while
there is some unique 1 < i < n such that I(P) C I';, see [16, Proposi-
tion 1, Remark 1].

The technique for proving the main result is based on using modulus
of families of paths. Proceeding from this, we consider some (wider) class
of mappings for which the required distortion of modulus is satisfied.
Everywhere below, M(-) is the modulus of families of paths on S (see,
for example, [15-18]). Let p: S — [0,00] is a function measurable with
respect to the area v. We say that, p is extensively admissible for ', abbr.
p € extadm I, if the ratio

[ pdsio) =1

y

holds for all locally rectifiable paths v € I\ I'g, while M (I'g) = 0. The
following class is a generalization of quasiconformal mappings in Gehring
sense (see, e.g., [10, Chapter 9]). Let D and D, be domains in S and
S., respectively, and let Q: D — (0,00) be a measurable function with
a respect to v on S. We say that, f: D — D, is a lower Q-mapping at
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a point pg € D, if there is g9 = o(po) > 0, g9 < do = sup E(p,po), such
peD
that

2
gz e [ E8aw) e

Dﬂg(po,a,eo)

for any ring A(po, €, o) = {peS:e< E(p,po) < g0}, where X, denotes
the family of all intersections of circles S(pg,7) = {p € S : h(p,po) = r}
with D, r € (g,&9).

In many cases, we need to verify the property (2.6) without of a
verification of infinitely many inequalities. Such a possibility follows by
the following statement (cf. [L0, Theorem 9.2] and [7, Lemma 4.2]), the
proof of which may be found in [18, Lemma 2.3].

Lemma 2.1. Let D and D, be domains in'S and S, respectively, po € D
and Q: D — (0,00) be a given function. Then f: D — D, is a lower

Q-mapping at a point py if and only if there is 0 < dy < sup h(p,pg) such
peD
that

MW%D/R%SV%QWAwQM, (2.7)

where Y. denotes the family of all intersections §(p0,7“) with a domain
D, r € (g,20), in addition,

QI /Q@M@

) =
D(po,r)

denotes Ly-norm of the function Q over DN S(po,r) = D(po,7) = {p €
D : h(p,po) =}

The following lemma holds.

Lemma 2.2. Let D and D, be domains in S and Sy, correspondingly,
which have compact closures D C S and D, C S,, while 0D and 0D,
consist of finite boundary components, and all components of OD, are
non-degenerate. Assume that, f: D — D, f(D) = Dy, be a closed open
discrete mapping. Then:

1) C(f, P) is a continuum in 0D,, where

C(f,P)={yeSs:3ax€D:xyp— P, f(zx) >y, k — oo}

In particular, there is a unique component I' C 0D, such that C(f, P) C
L
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2)if P C Ep and di, k = 1,2,..., be a sequence of domains cor-
responding to P and U C S, be a neighborhood of T' from item 1) of
Proposition 2.2, then there is sg € N such that

fldg) cU* Vk=so, (2.8)
where U* := U N D,.
Proof. Let us to prove that C(f, P) is a continuum in dD,, where
C(f,P)={yeSs:Jax €D :xp — P, f(xx) = y, k — o0}.

For this goal, let us to show that

[o.¢]
C(f,P)= () f(d), (2.9)
k=1
where di, £k = 1,2,..., is a sequence of domains of cuts corresponding

to a prime end P. Indeed, let y € C(f, P), then y = klim Yk, Y — P as
—00

k — oo. We may consider that yi = f(x), zx € di. Now, for any m € N
there is kg = ko(m) such that zj € d,, for k > kg, because the sequence
dy, is decreasing. It follows from this that, y € f(dg) for any k = 1,2,....

o0 e¢]
Thus C(f,P) C () f(dk). On the other hand, let y € [ f(dk). Then,
k=1

k=1
7(7/’;) (k)

, where Ym~ € f(dk)7 m =

for a given k € N, we obtain that y = lim v
m—0o0

1,2,.... Then there are 2 e d, m =1,2,..., such that f(:c,(fi)) Sy
as m — oo. Then, for a number 1/2"*’, there is m = my € N such that

E*(f(a:gaf,)c),y) < 1/2%. By the definition, a sequence a;%’ii converges to P

as k — oo and f(:z:,(ﬁ,)c) —yask — o0, le.,yeC(f,P). Thus, C(f,P) C
o0 o0
N fldgx), N fldx) € C(f,P) and, consequently, the relation (2.9) is
k=1 k=1
established. Then, by [9, Theorem 5.I1.5] C(f, P) is a continuum.

It remains to show that C(f, P) C 0D,. Observe that, C(f, P) # @

because D, is a compactum by the assumption. Let y € C(f, P), then
Y= klim Yk, Yo — P as k — oo and yi, = f(zk), 2% € di. Without loss of
—00

generality, by the compactness of D, we may consider that z;, converges

0o
to zp as k — oo. Then, by item 4) of Proposition 2.2, since xy € [ dk,

k=1
we have that xg € I(P) C dD. Since f is an open, discrete and closed
mapping, it is boundary preserving. Now, the sequence f(zy) = y, may
converges only to a boundary point as k — oo, i.e., y € OD,. The item 1)
of Lemma 2.2 is established.
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Let us to prove item 2). Let U C S, be a neighborhood of I' which
corresponds to item 1) of Proposition 2.2. In other words, there is a
conformal mapping H of U* := U N D, onto the ring R={z€ C:0<
r < |z| < 1} such that v:= 90U * N D is a closed Jordan path,

CH,y)={z€C:|z|=1}; CH,)={z€C:|z|=r}.

Let us to prove (2.8). Assume the contrary. Then there is an increas-
ing sequence of numbers k;, [ = 1,2,..., and a sequence y, € f(dy,)
such that yi, € D, \U* for any | € N. By the compactness of D, we may
assume that y;, converges to some point yg as | — oo. Then yo € I" by the
inclusion C(f, P) C I", where I' is some boundary component of D, (see
item 1)). Let e; > 0 be such that B(yp,e1) C U; this €1 exists because U
is a neighborhood of I'. Then yi, € B(yo,e1) N D, C U™ for large [ € N,
that contradicts with y;, € D, \U* for | € N. The contradiction obtained
above proves the relation (2.8). O

An analog of the following statement is proved for homeomorphisms
in [16, Lemma 4|, cf. [8, Lemma 3| and [5, Lemma 5.1].

Theorem 2.1. Let D and D, domains in S and Sy, correspondingly,
which have compact closures D C S and D, C S, while D and 0D,
consist of a finite number of components, and all components of 0D,
are non-degenerate. Assume that, Q : S — (0,00) is a given function
which is measurable with a respect to v on S, Q(p) = 0 in S\ D. Let
f:D — Dy, D, = f(D), be a lower Q-mapping at any point py € 0D,
and let f be an open, discrete and closed. Then f has a continuous
extension f: Dp — D,p, f(Dp) = Dyp, whenever one of the following
conditions hold:
1) either the relation

€0 €0
dt dt
< 00, =00 (2.10)
J lIQl) ) lel®
holds for any py € 0D, for some gy = €o(po) > 0 and all 0 < € < g,
where |Q||(t) == [ Q(p)ds;(p) denotes the Ly-norm of the function
S(pot)

Q over the circle §(p0,t),
2) or Q € FMO(OD,).

Proof. Let us firstly prove that f has a continuous extension f : Dp —
D, p. Let us consider the case 1), i.e., when the relations (2.10) hold. Put
P e FEp.
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1) By the item 1) of Lemma 2.2, the set C(f, P) is a continuum in
OD,. Then there is a component I' C 9D, which contains C(f, P). Let
U C Si be a neighborhood I' which corresponds to Proposition 2.2, and
let H be a corresponding conformal mapping of a domain U* := U N D,
onto the ring R={2€ C:0 <r < |z] <1} such that y:=0U*NDis a
closed Jordan path,

CH,y)={z€C:|z|=1}; CH,)={z€C:|z|=r}.

By Proposition 2.2 there is a chain of cuts o, corresponding to a prime
end P, which belongs to spheres S(po,7n), po € D, 1, — 0 as n — oo.
Let d,, n = 1,2,..., be a sequence of domains corresponding to cuts
oy By the inclusion (2.8) we may consider that f(d;) C U*. Now, we
set f:= flay, g:= Hof,g:d — R, g(di) C R. Observe that, R
is a domain, any point of which has a sufficiently small neighborhood
the intersection of which with R is quasiconformally equivalent to the
unit disk (besides the direct arguing, this statement may be obtained
by the corresponding Viisild’s result [23, Theorem 17.12], since R is
a union of two circles which are C'-manifolds. In this context, we also
mention [14, sect. 2.2] and [12, Remark 1.5]). Then, by [14, Theorem 4.1]
and due to [16, Remark 2], we may consider that Rp = R. In this case, for
the proof of Theorem, it is sufficient to establish the continuous extension
g:dyU{P} = R.

2) Moreover, by the compactness of R, it is sufficiently to prove that
the set

L=C(g,P):= {y S 8R:y:n}gnoog(pm),pm — P,py, € dl}

consists from a unique point yg € R. The mapping g, as usual, is open
and discrete in dj, but is not necessary closed. Let us to show that, ¢
satisfies the relation

Migeh) > [ uc;l% Vee(Oe), e (Or),  (211)

where X! denotes the family of all intersections of circles S(po, ) = {p €
S : h(p,po) = r} with di, r € (g,e1). To proof this fact, let us to show
that B B

S(po,7) N D > S(po,r) Ndy, 7 <71, (2.12)

(Here and below the notation I'y > T'y denotes that, for any dished

line a € T'y, a : Y(ai,b;)) — S, there is a dashed line § € I'y, where
i=1
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o [ee]
B U (air,bir) = S, U (air,bix) C (@i, i), &y p,) = B for any
ik=1 k=1
i=1,2,..., k=1,2,... and, besides that, at least one interval (a;x, b;t)

is not empty).

Indeed, we put 0 < r < r1. Then there is i € N such that r; < r.
Let 0; C §(p0,ri) N d; be a cut corresponding to a domain d;. Join
any point w € o; with a point w € o1 in D with a path «;, |a;| C D.
Without loss of generality, we may consider that «; belongs to d; instead
of its endpoint, because dd; N D C oy. Observe that || OE(QO, r)#£ O #
| |N(S\B(po, 1)), therefore, by [9, Theorem 1.1.5, § 46] |a; |NS (po, 1) # 2.
It follows from this that, g(po, r)Ndy # .

~ oo
Let now a := S(po,r) N D be a dished line a : |J (@i, b;) — D, where
i=1
there at least one non-empty interval in its system (a;, b;). By the proved
above, 8 = S (po,r) Ndy # @, therefore there is at most countable of

o
intervals (ck,dg), k = 1,2,..., such that 5 : |J (¢k,dix) — dy and the
k=1

interval (¢, di) is not empty at least for some k € N. By the definition, for

any k € N there is i € N such that (¢, dx) C (a;, b;). Denote (ak, bix) ==

(a;, b)) N (ck, dy), and observe that the interval (a;,b;x) is not empty at
o

least for some ¢ € N and k € N. Observe also that, |J (aik, bix) C (ai,b;)

and a|(q,, b,,) = B, that proves (2.12). =

It follows from (2.12) that f(S(po,r) N D) > f(S(po,r) Ndy) =
f(S(po,r) Ndy), where f := fla,- Let X be a family of all intersections
of circles g(p()N,r) ={pes: E(p,po) = r} with D. Then by [3, Theo-

rem 1(c)] M(f(2Ll)) > M(f(X.)) and, consequently, by Lemma 2.1

dr
| QII(r)

MF(EY) >/ Vee (0e), &1 € (0,r1). (2.13)

In this case, (2.11) follows by (2.13), because g = Ho f and H is a confor-
mal mapping preserving the family of paths with a respect to Lebesgue
measure on the plane (see, e.g., [23, Theorem 8.1], see also the corre-
sponding result about equality of the moduli of families of paths in the
hyperbolic and Euclidean metrics and measures [19, Remark 5.2]. On
this occasion we also mention on [24, Remark 1], where the notion of the
modulus of families of paths is given in some another (equivalent) way.

Put § € (0,71) andset T2 := |J g(S(po,”)Ndy), where the union
r€(rn,0)

must be understood not in the theoretical-set sense, but namely as a

family of paths “from 7, to 6”. By (2.13) and due to (2.10) it follows



E. SEvosT’yANOV, O. DOVHOPIATYI, N. ILKEVYCH, V. KALENSKA251

that
M(T0) = o0, n— oo. (2.14)

n

3) Let us prove by contradiction, i.e., assume that g has no a limit as
p — P. Then we may find at least two sequences p,,,p,, € dp,,n=1,2,...,
and two points y # y«, ¥,ys € R such that g(p,) — v and g(p)) — ys«
as n — oo. Join the points p, and p) by a path =, in a domain d,.
Let r¢ := |y — y«| and Uy := B(y,ro/2). Observe that, a boundary of
R is strongly accessible since R has a finite number of components and
is a finitely connected on the boundary (see, e.g., [13, Theorem 6.2 and
Corollary 6.8]). Therefore, for a neighborhood Uy of y there is an another
neighborhood V' C Uy of this point, a compactum K C R and a number
& > 0 such that the relation

M(D(E,K,R)) >§ (2.15)

holds for any continuum £ C R, ENOU # & # ENJV.

Let C), := g(|yn]). Observe that, OU N |C,,| # @ for sufficiently large
n € N, see [9, Theorem 1.1.5, §46] (as usually, |C,,| denotes the locus of
a path C,). Then, by the condition (2.15) we obtain that

for sufficiently large n.
Let us to show that
I(|Cnl, K, R) > T(g(on), K, R) (2.17)

for sufficiently large n € N, where o, denotes the cut of D, which
corresponds to a domain d,. Due to the relation (2.9) and item 1) of

Lemma 2.2, C(f,P) = C(f,P) = () f(dg) C 8D, , therefore, f(dy,) N
K* = @ for sufficiently large n € IQT éind any compactum K* C D,. In
this case, under some nyg € N and all n > ng, we obtain that f(d,) N
HY(K) = @. Since H is a homeomorphism and f(d,,) = f(dy) for
such n € N, it follows that g(d,) N K = &, g = H o f. Let now
v € I'(|Cy], K, R). Since |Cy,| C g(d,), by the proven above |v|Ng(dy,) #
@ # |y N(C\ g(dy)). In this case, by [9, Theorem 1.1.5, §46]

71 (Dg(dn) N R) £ & . (2.18)
Let us now establish that

8g(dn) N R C g(om). (2.19)
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First of all, by (2.18) it follows that dg(d,,) "R # @. Let (o € dg(d,) N R.
Then we may find a sequence (i € g(d,) such that { — (p as k — oo.
Since ( € g(dy), we may find & € d,, such that g(§;) = (k. Since by
the assumption D is a compactum in S, we may consider that & is a
convergent sequence &, — & € dy, k — oo. If & € d,,, then (y is an
inner point of g(d,) by the openness of g, that contradicts the choice
of (o. Thus § € dd,,. Observe also that, o € D. Indeed, if & € 9D,
then f(&) = f(&) may converge to the boundary point of D, by the
closeness of f, however, f(&) = H ~(g(¢&)) = H ~*((x) converges to an
inner point H ~*((y) € D, because (, — (o € Ras k — oo and H is a
homeomorphism of U * onto R. The contradiction obtained above shows
that & € dd, N D, i.e., & € o,. Then g(§) = (o € g(o,). Then the
inclusion (2.19) is established.

Then, by (2.18) it follows that |y| N g(on) # @. Therefore, the re-
lation (2.17) is also proved. By (2.17) and due to [3, Theorem 1(c)] it
follows that M (I'(|Cy|, K, R)) < M(I'(g9(oy), K, R)). But now, by (2.16)
is also follows that

M(T(g(on),K,R)) 26, n=ng, (2.20)
see Figure 1 on this occasion.
A
f8p, N D)

T'(9(0) K, R)
; g:Hof
9, fHAa

9, nN D)

Figure 1: To the proof of Theorem 2.1

4) Let us to show that the condition (2.20) contradicts with (2.14).
For this goal, let us to estimate M(T'?) in (2.14) from above, using
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the Ziemer equality and the connection between joining and separating
paths [25]. Let us show that, there exists £; > 0 such that

Kng(B(po,r)Ndy) =@ Vre(0e). (2.21)

Assume the contrary. Then, for any k € N there is some ¢ € K N
9(B(po,1/k) Ndy). Since qi € g(B(po,1/k) Ndy), there is a sequence
qrl € g(g(po,l/k) N dy) such that g — qx as | — oo. Since g €
g(B(po, 1/k) N dy), there is a sequence Cy € B(po, 1/k) N dy such that
9(Cki) = qxi- Put k € N and choose I}, > 0 such that |gr, — x| < 1/2F.
Without loss of generality, we may assume that g converges to zg as
k — oo. Then by the triangle inequality

19(Crty,) — 20| < |9(Chr) — arl + |k — 20| =
= |art, — @l + gk — 20] < 1/2" +]gr — 20| 2 0, k—o0. (2.22)

It follows from (2.22) that zp € OR. Indeed, if zp € R, by the continuously
of H =1 we obtain that

B (H H(g(Ga))s H "M (20)) = B (F (Gt ), H H(20)) = 0,k — oo,

where h, is a corresponding metric on S,. The last contradicts with
the closeness of f in D, because H ~*(z) € C(f,po) C 0D, (see [18,
Proposition 4.3]). At the same time, H ~!(2g) is an inner point of D,
by the assumption zg € R. Thus, zg € OR, that contradicts with the
condition g — zg € OR as k — oo and because g, € K, where K is a
compactum in R. The obtained contradiction proves (2.21). Then

K C R\ g(B(po,r)Nd1), re(0,e1). (2.23)
In particular, (2.23) implies that K and g¢(oy,) are disjoint for n > n; >
ng, where n; € N is such that r,, <e;.

5) Let n > nj. Observe that, for any r € (rp,e1), the set A, :=

9(g(B(po,T) Ndy)) N R separates K from g(o,) in R. Indeed,

R=B,UA.UC, Vo1 (ra,e1),

where B, := g(B(pg,r)Nd1) and C, := R\ g(B(po,r) Ndy) are open sets
in R, g(oy,) C By, K C C, and A, is closed in R.

Let ¥, be a family of all sets separating g(o,,) from K in R. Let us
establish that

(09(B(po,r) Nd1)) N R C g(S(po,r)Nd1), 0<r<ry. (2.24)
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Indeed, let ¢y € (g(B(po,r) Nd1)) N R. Then there is a sequence (; €
g(B(po, r) Ndy) such that { — (o as k — oo, where (, = g(&), & €
B (po, ) Ndy. Without loss of generality, we may assume that & — &
as k — oo. If & € 0D, then by the closeness of f in D the sequence
f(&) may converge only to some boundary point z; € D,, however,
“g(&)) = f(&) converges to some inner point of D, because H is
a homeomorphism, ¢, = g(&) and ¢ — (o € R as k — oo. Therefore,
o€ D. If & € Ody, then & € 01 C g(po,rl), that is impossible because
&k € E(poﬂ“) by the assumption, & — &y as k — oo and r < ry. Thus,
§o € dy. B
Now two situations are possible: 1) {y € B(po,r) Ndy and 2) & €
S (po,r) N dy. Observe that, the case 1) is impossible because, in this
case, (&) = (o and (o is an inner point of the set g(B(po,r) N dy), that
contradicts with the choice of (p. Thus, the inclusion (2.24) is established.
Here and below the unions of the form |J 9g(B(po,r) Nd1) N R

re(ry,ra)
are understood as families of sets. Denote by 3, the family of all sets

which separate K from g(o,,) in R (see [25, section 2.3]). Then, by (2.24),
we obtain that

ME)=M| | 09Blpo,r)nd)NR| >

re(rn,e1)

>M | U 9(Spo,r)ndy) (2:25)

re(rn,e1)

for n > nq, where n; is defined in item 4).
By (2.25) and (2.14), putting 6 = €1, we obtain that

M(%,) — oo, n— o0o. (2.26)

On the other hand, by the Ziemer and Hesse equalities (see [25, Theo-
rem 3.10] and [6, Theorem 5.5]), we obtain that

1
- M(T(9(0n), K. R))

(2.27)

Now, the relations (2.27) and (2.26) imply that
M([T(g(on), K,R)) — 0, n— oo,

that contradicts with (2.20). The contradiction obtained above proves
the statement of the theorem in the case, when the relations (2.10) hold.
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Let us consider the case 2), namely, assume that Q € FMO(ID).
Let p: S = R, p(x) =0 for x € D, be a nonnegative function which has
a finite mean oscillation at a point pg € D C S. By [1, Theorem 7.2.2] a
surface S is locally 2-regular by Alhfors, so that by [20, Lemma 3]

(p) dv(p) _ 1
/ (ﬁ(pzo)l - )2 =0 <loglog E) (2.28)

e<h(p,po)<&o h(p,po)

as ¢ — 0 for some 0 < g9 < dist(po,aU) where U is some normal
neighborhood of py. Set 0 < ¥(t) = ﬁ Observe that 1(t) > %

t log +
for sufficiently small € > 0, therefore I(e,&p) := f Y(t)dt = lo g

log

Set n(t) := ¥(t)/1(e,€p). Then, due to the relatlon (2.28), we may ﬁnd
a constant C' > 0 such that

/ Q) - 72 (h(p.po)) di(p) =
A(po,e £0)
1 Q(p) dv(p) .
- IP(e,6) (ﬁ(pp Jlog —1 )2 h
e<h(p,po)<&o ' F0 1(p,po)
log L -
<C.<1Og gg) —0, 0. (2.29)
logg

Then the relations (2.4) and (2.29) imply the conditions (1.2), so that
the desired conclusion follows directly by Theorem 2.1.

To complete the proof we may to establish the equality f(Dp) = R.
Obviously, f(Dp) C R. Let us to show the inverse inclusion. Let ¢y € R.
If (o is an inner point of R, then obviously there is £, € D such that
f(&) = (o and, consequently, {y € f(D). Let now (y € OR. Then there
is a sequence (, € R, ¢, = f(&n), &, € D, such that ¢, — (p as n — oo.
Since Dp is a compactum, see item 2) of Proposition 2.2, we may consider
that &, — Py, where Py is some prime end in Dp. Then also (s € f(Dp).
The inclusion R C f(Dp) is proved and, therefore, f(Dp) = R. Theorem
is proved. O

Proof of Theorem 1.1. Observe that, N(f, D) < oo (see [22, Theo-
rem 5.5]), because f is an open, discrete and closed mapping. Note also
that, an open discrete mapping f : D — D, with a finite distortion for
which N(f,D) < oo,

N(f,D) = sup N(y, f,D),

YES«
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N(y,f,D) = card {p€ E: f(p) =y} ,

is a lower Q-mapping at any point pg € D for Q(p) = ¢- N(f,D) -
K¢(p), where ¢ > 0 is some constant depending only on py and D, and
K is defined in (1.1). In this case, the desired conclusion follows from
Theorem 2.1. a
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