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Conformable fractional derivative in

commutative algebrasVitalii S. Shpakivskyi
(Presented by V. Gutlyanskĭı)Abstrat. In this paper, some analog of the onformable frationalderivative is de�ned in an arbitrary �nite-dimensional ommutative as-soiative algebra. Funtions taking values in the indiated algebras andhaving derivatives in the sense of a onformable frational derivative arealled ϕ-monogeni. It is established a relation between the onepts of

ϕ-monogeni and monogeni funtion in suh algebras. We also proposetwo new de�nitions of the frational derivative of funtions with valuesin �nite-dimensional ommutative assoiative algebras.2010 MSC. 30G35, 57R35.Key words and phrases. Conformable frational derivative, frationalanalyti funtions, loal frational derivative, α-di�erentiable funtions,
ϕ-monogeni funtions in ommutative algebras.

1. IntroductionThe idea of frational derivative was �rst raised by L'Hospital in 1695.After introduing this idea, many new de�nitions have been formulated.The most well-known ones are Riemann�Liouville, Caputo, Hadamard,Riesz, Gr�unwald�Letnikov, Marhaud, et. (see e. g., [1,2℄ and referenestherein).Reently, Khalil et al. introdued a new de�nition of frational deriva-tive alled the onformable frational derivative [3℄. Unlike other de�ni-tions, this new de�nition satis�es the formulas of derivative of produtand quotient of two funtions and has a simpler hain rule than otherde�nitions. In addition to the onformable frational derivative de�ni-tion, the onformable integral de�nition, Rolle theorem, and Mean valuetheorem for onformable frational di�erentiable funtions were given inliterature. In [4℄, Abdeljawad improves this new theory. For instane, def-initions of left and right onformable frational derivatives and frationalReeived 12.03.2023ISSN 1810 � 3200. © Iíñòèòóò ïðèêëàäíî¨ ìàòåìàòèêè i ìåõàíiêè ÍÀÍ Óêðà¨íè

https://doi.org/10.37069/1810-3200-2023-20-2-7



270 Conformable fractional derivative...integrals of higher order (i.e. of order α > 1), frational power seriesexpansion, frational Laplae transform de�nition, frational integrationby parts formulas, hain rule and Gronwall inequality are provided byAbdeljawad.In the paper [5℄ the onformable partial derivative of the order α ∈
(0, 1] of several real variables and onformable gradient vetor are de�ned.In [6℄, two new results on homogeneous funtions involving their on-formable partial derivatives are introdued, spei�ally, the homogeneityof the onformable partial derivatives of a homogeneous funtion and theonformable version of Euler's Theorem.In the paper [7℄ it is present a new general de�nition of loal frationalderivative, that depends on an unknown kernel. It is establish a relationbetween this new onept and ordinary di�erentiation. Using suh aformula, most of the fundamental properties of the frational derivativean be derived diretly.In [8�12℄ a theory of frational analyti funtions in the onformablesense is developed. Namely, in [8℄ a frational Cauhy like theorem anda frational Cauhy like formula for frational analyti funtions are es-tablished.In the paper [11℄, some interesting results of real frational Calulusare extended to the ontext of the omplex-valued funtions of a realvariable. Finally, using all obtained results, the omplex onformableintegral is de�ned, and some of its most important properties are estab-lished. In [12℄, the onept of frational ontour integral has also beendeveloped. There is propose and prove some new results on omplex fra-tional integration, and it is establish neessary and su�ient onditionsfor a ontinuous funtion to have antiderivative in the onformable sense.Finally, in [12℄, some of the well-known Cauhy's integral theorems willalso be the subjet of the extension that we do in this paper.Independently of previous authors, in other papers the onformablefrational derivative of order α is de�ned in omplex plane. It is pro-posed analog of Cauhy�Riemann onditions for α-di�erentiable fun-tions. Moreover, a disuss about two omplex onformable di�erentialequations and solutions with their Riemann surfaes are given.In short time, many studies about the theory and appliations of thefrational di�erential equations whih are based on onformable frationalderivative were onduted in many papers. See, for example, [13�20℄.The next natural step is to generalize the onept of a onformablefrational derivative to the ase of any multidimensional algebra, and �rstof all, to ommutative and assoiative algebras.
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2. Conformable fractional derivative and

α-analytic functions

Definition 2.1. [3] For a given a function f : [0,∞) → R, the con-
formable fractional derivative of f of order α is defined by

(Tαf)(t) := lim
ε→0

f(t+ εt1−α)− f(t)

ε
(2.1)

for all t > 0, 0 < α ≤ 1. If f is α-differentiable in some (0, b), b > 0,
and lim

t→0+0
(Tαf)(t) exist, then it is defined as

(Tαf)(0) := lim
t→0+0

(Tαf)(t).See papers [3, 4, 11, 15℄ for derivative properties.Now onsider the de�nition of α-di�erentiation in the omplex plane.
Definition 2.2. [8] A complex function f is called conformable fractional
differentiable (or α-analytic) at a point z ∈ C if there exists the following
limit

(Tαf)(z) := lim
ε→0

f(z + εz1−α)− f(z)

ε
(2.2)

for all z, and 0 < α < 1. The value (Tαf)(z) is called α-derivative. If
f is α-analytic in an open set U , and lim

z→0
(Tαf)(z) exists, then define

(Tαf)(0) := lim
z→0

(Tαf)(z).

Example 2.1. Let f(z) = z2 and α = 1
2 . Then

T1/2(z
2) = lim

ε→0

(
z + εz1−1/2

)2 − z2

ε
= 2z3/2.

It it obvious that T1/2(z
2) is holomorphic outside some cut connecting

the point 0 and ∞.

Remark 2.1. If the function f(z) is holomorphic on C then conformable
fractional derivative Tαf(z), generally speaking, is not holomorphic fun-
ction on C (but holomorphic outside some cut of the complex plane).The following theorem an be found in [8℄.
Theorem 2.1. Let α ∈ (0, 1], and f, g be α-analytic at a point z0. Then
1. Tα (c1f(z) + c2g(z)) = c1Tαf(z) + c2Tαg(z) for all c1, c2 ∈ C;
2. Tα(z

c) = czc−α for all c ∈ C;
3. Tα(µ) = 0 for all constant functions f(z) = µ;
4. Tα (f(z)g(z)) = f(z)Tαg(z) + g(z)Tαf(z);

5. Tα

(
f(z)
g(z)

)
= g(z)Tαf(z)−f(z)Tαg(z)

g2(z)
.

6. If, in additional, f is analytic, then Tαf(z)|z=z0 = z1−α0 f ′(z0).



272 Conformable fractional derivative...Complex onformable frational derivative of ertain omplex fun-tions are as follows:
Tα (e

cz) = cz1−αecz, c ∈ C;

Tα(sin cz) = cz1−α cos cz, c ∈ C;

Tα(cos cz) = −cz1−α sin cz, c ∈ C;

Tα

(
1

α
zα
)

= 1.For more results of α-analyti funtions in the sense of onformablefrational derivative see [8, 9, 11, 12℄.
3. Monogenic functions in commutative associative

algebrasLet A be an arbitrary n-dimensional (1 ≤ n < ∞) ommutative as-soiative algebra with unit over the �eld of omplex number C. E. Car-tan [21, p. 33℄ proved that in A there exist a basis {Ik}nk=1 suh that the�rst m basis vetors I1, I2, . . . , Im are idempotents and another vetors
Im+1, Im+2, . . . , In are nilpotents. The element 1 = I1 + I2 + · · · + Im isthe unit of A.In the algebra A we onsider the vetors e1, e2, . . . , ed, 2 ≤ d ≤ 2n.Let these vetors have the following deomposition in the basis of thealgebra:

ej =

n∑

r=1

ajr Ir , ajr ∈ C, j = 1, 2, . . . , d. (3.1)Throughout this paper, we will assume that at least one of the vetors
e1, e2, . . . , ed is invertible.For the element ζ = x1e1+x2e2+· · ·+xded , where x1, x2, . . . , xd ∈ R,the omplex numbers

ξu := x1a1u + x2a2u + · · ·+ xdadu, u = 1, 2, . . . ,mforms the spetrum of the point ζ.Consider in the algebra A a linear span
Ed := {ζ = x1e1 + x2e2 + · · · + xded : x1, x2, . . . , xd ∈ R}generated by the vetors e1, e2, . . . , ed of A.Next, the assumption is essential: for eah �xed u ∈ {1, 2, . . . ,m} atleast one of the numbers a1u, a2u, . . . , adu belongs to C \ R.We identify a domain S in the spae R

d with the domain
S := {ζ = x1e1 + x2e2 + · · · + xded : (x1, x2, . . . , xd) ∈ S} in Ed ⊂ A.
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Definition 3.1. [22] We will call a continuous function Φ : Ω → A

monogenic in a domain Ω ⊂ Ed if Φ is differentiable in the sense of
Gâteaux at every point of this domain, that is, if for each ζ ∈ Ω there
exists an element Φ′

G(ζ) ∈ A such that the equality

lim
ε→0+0

Φ(ζ + εh) − Φ(ζ)

ε
= hΦ′

G(ζ) ∀h ∈ Ed (3.2)

holds. The element Φ′
G(ζ) is called the Gâteaux derivative of the function

Φ at the point ζ.Consider the deomposition of the funtion Φ : Ω → A in the basis
{Ik}nk=1:

Φ(ζ) =

n∑

k=1

Uk(x1, x2, . . . , xd) Ik . (3.3)In the ase where the funtions Uk : Ω → C are R-di�erentiable inthe domain Ω, that is, for an arbitrary (x1, x2, . . . , xd) ∈ Ω,
Uk (x1 +∆x1, x2 +∆x2, . . . , xd +∆xd)− Uk(x1, x2, . . . , xd)

=

d∑

j=1

∂Uk
∂xj

∆xj + o



√√√√

d∑

j=1

(∆xj)2


 ,

d∑

j=1

(∆xj)
2 → 0 ,the funtion Φ is monogeni in the domain Ω if and only if the followinganalogues of the Cauhy�Riemann onditions are ful�lled at eah pointof the domain Ω:

∂Φ

∂xj
e1 =

∂Φ

∂x1
ej for all j = 2, 3, . . . , d.Note that the deomposition of the resolvent has the form [23℄:

(te1 − ζ)−1 =

m∑

u=1

1

t− ξu
Iu +

n∑

s=m+1

s−m+1∑

r=2

Qr,s
(t− ξus)

r Is , (3.4)

∀ t ∈ C : t 6= ξu , u = 1, 2, . . . ,m,where the oe�ients Qr,s are determined by the following reurrenerelations:
Q2,s = ξs , Qr,s =

s−1∑

q=r+m−2

Qr−1,qBq, s , r = 3, 4, . . . , s−m+ 1,



274 Conformable fractional derivative...

Bq,s :=

s−1∑

p=m+1

ξpΥ
p
q,s , p = m+ 2,m+ 3, . . . , n,with the struture onstants Υs
r,p ∈ C that de�ned by the equality IrIs =∑

p
Υs
r,pIp and the natural numbers us are de�ned by following rule:for any natural m+1 ≤ s ≤ n there exist a unique natural 1 ≤ us ≤ msuh that for all natural 1 ≤ r ≤ m:

IrIs =

{
0 if r 6= us ,

Is if r = us .It follows from relations (3.4) that the points (x1, x2, . . . , xd) ∈ R
dorresponding to the noninvertible elements ζ = d∑

j=1
xj ej form the set

Lu :

{
x1 Re a1u + x2Re a2u + · · · + xdRe adu = 0,

x1 Im a1u + x2 Im a2u + · · ·+ xd Im adu = 0,
u = 1, 2, . . . ,min the d-dimensional spae R

d.We say that a domain Ω ⊂ Ed is onvex with respet to the set ofdiretions Lu if Ω ontains the segment {ζ1 + α(ζ2 − ζ1) : α ∈ [0, 1]} forall ζ1, ζ2 ∈ Ω suh that ζ2 − ζ1 ∈ Lu.Denote
Du := {ξu = x1a1u+x2a2u+ · · ·+xdadu ∈ C : ζ ∈ Ω}, u = 1, 2, . . . ,m.In the next theorem we present a onstrutive desription of mono-geni funtions with values in the algebra A via holomorphi funtions ofa omplex variable.
Theorem 3.1. [23, 24] Let a domain Ω ⊂ Ed be convex with respect to
the set of directions Lu , u = 1, 2, . . . ,m, and let for all u = 1, 2, . . . ,m
at least one of the numbers a1u , a2u , . . . , adu belong to C\R. Then every
monogenic function Φ : Ω → A can be represented in the form

Φ(ζ) =

m∑

u=1

Iu
1

2πi

∫

Γu

Fu(t)(te1 − ζ)−1 dt+

+

n∑

s=m+1

Is
1

2πi

∫

Γus

Gs(t)(te1 − ζ)−1 dt, (3.5)
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where Fu and Gs are certain holomorphic functions in the domains Du

and Dus , respectively, and Γq is a closed Jordan rectifiable curve in
Dq which surrounds the point ξq and does not contain points ξℓ, ℓ, q =
1, 2, . . . ,m, ℓ 6= q.From representation (3.5) it follows that under the onditions of The-orem 3.1 eah monogeni in the domain Ω funtion Φ is di�erentiable ina strong sense, in partiular, in the sense of Lorh [25℄.
Definition 3.2. [25] A function Φ: Ω → A given in a domain Ω ⊂ Ed is
called differentiable in the sense of Lorch at a point ζ ∈ Ω if there exists
an element Φ′

L(ζ) ∈ A such that for each ε > 0 there exists δ > 0 such
that for all h ∈ Ed with ‖h‖ < δ the following inequality is fulfilled:

∥∥Φ(ζ + h)− Φ(ζ)− hΦ′
L(ζ)

∥∥ ≤ ‖h‖ ε . (3.6)

The element Φ′
L(ζ) is called the Lorch derivative of the function Φ at the

point ζ.The representation of the monogeni funtion Φ in form (3.5) isunique. It is proved in [23℄ (in R
3 see [24℄) that for every monogenifuntion Φ : Ω → A in an arbitrary domain Ω, the G�ateaux r-th deriva-tives ΦrG are monogeni funtions in Ω for all r.

Remark 3.1. Under the conditions of Theorem 3.1, a monogenic func-
tion Φ : Ω → A is differentiable in the sense of Lorch in Ω.Consider examples of representation (3.5) in some low-dimensionalommutative algebras.
Example 3.1. In n-dimensional semi-simple algebra An with multipli-
cation table

· I1 I2 . . . In

I1 I1 0 . . . 0

I2 0 I2 . . . 0
...

...
...

. . .
...

In 0 0 . . . In

representation (3.5) of monogenic function has the form [26]:

Φ(ζ) = F1(ξ1)I1 + F2(ξ2)I2 + . . .+ Fn(ξn)In ,

where ζ = ξ1 I1 + ξ2 I2 + · · · ξn In . In particular, in the algebra of
bicomplex numbers (or commutative Segre’s quaternions) BC = {ζ =
ξ1 I1 + ξ2 I2 : ξ1, ξ2 ∈ C} monogenic function has the form [27]

Φ(ζ) = F1(ξ1)I1 + F2(ξ2)I2. (3.7)
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Example 3.2. In the biharmonic algebra B with the basis {1, ρ}, ρ2 = 0,
representation (3.5) of monogenic function has the form [28]:

Φ(ζ) = F (ξ1) +
[
ξ2F

′(ξ1) + F0(ξ1)
]
ρ, (3.8)

where ζ = ξ1 + ξ2 ρ, ξ1, ξ2 ∈ C.

Example 3.3. In 3-dimensional algebra A3 with two-dimensional radical
and multiplication table

· 1 ρ ρ2

1 1 ρ ρ2

ρ ρ ρ2 0

ρ2 ρ2 0 0

representation (3.5) of monogenic function has the form [29]:

Φ(ζ) = F (ξ1) +
[
ξ2F

′(ξ) + F1(ξ1)
]
ρ+

+
[
ξ3F

′(ξ1) +
ξ21
2
F ′′(ξ1) + ξ2F

′
1(ξ1) + F2(ξ1)

]
ρ2, (3.9)

where ζ = ξ1 + ξ2 ρ+ ξ3 ρ
2, ξ1, ξ2, ξ3 ∈ C.

Example 3.4. In 3-dimensional algebra A2 with one-dimensional radical
and multiplication table

· I1 I2 ρ

I1 I1 0 0

I2 0 I2 ρ

ρ 0 ρ 0

representation (3.5) of monogenic function has the form [29]:

Φ(ζ) = F1(ξ1)I1 + F2(ξ2)I2 +
[
ξ3F

′
2(ξ2) + F0(ξ2)

]
ρ,

where ζ = ξ1 I1 + ξ2 I2 + ξ3 ρ, ξ1, ξ2, ξ3 ∈ C.In the paper [30℄ for monogeni funtion given in a domain of a speialreal subspae Ed, 2 ≤ d ≤ 2n, of an arbitrary �nite-dimensional ommu-tative assoiative algebra, A, it is obtain analogues of the Cauhy integraltheorem, the Cauhy integral formula and the Morera theorem for a urvi-linear integral. This result in a subspae E3 is proved in [31℄. In [32℄ weprove an analogue of the Cauhy integral theorem for a surfae integralof hyperholomorphi funtions given in a domain of three-dimensional



V. Shpakivskyi 277spae and taking values in the algebra A. In the paper [33℄ the orre-spondene between a monogeni funtion in the algebra A and a �niteset of monogeni funtions in a speial ommutative assoiative algebrais obtained. In the work [34℄ it is proposed a relation between monogenifuntions taking values in n-dimensional ommutative assoiative algebraand monogeni funtions taking values in a speial (n + 1)-dimensionalalgebra. Finally, in the work [35℄, the previous results are applied to thesolution of the linear PDEs. Using monogeni funtions given in ertainsequenes of ommutative assoiative algebras with inreasing dimensionof these algebras, we substantiate a reurrene proedure for onstrutingin�nite-dimensional families of solutions of any partial di�erential equa-tion with onstant oe�ients in the form of omponents of the mentionedmonogeni funtions.
4. ϕ-monogenic functions in finite-dimensional

commutative associative algebrasLet us onsider the de�nition of ϕ-monogeni funtions in an arbitrary
n-dimensional (1 ≤ n <∞) ommutative assoiative algebra A with unitover the �eld of omplex number C.
Definition 4.1. Let fix a continuous function ϕ : Ω → A such that all
values of which are invertible in Ω ⊆ A .

We will call a continuous function Φ : Ω → A ϕ-monogenic in a
domain Ω ⊆ A if there exists an element Φ′

ϕ(ζ) ∈ A such that for all
h ∈ A the equality

lim
ε→0+0

Φ (ζ + εhϕ(ζ)) − Φ(ζ)

ε
= hΦ′

ϕ(ζ) (4.1)

holds. The element Φ′
ϕ(ζ) is called the ϕ-derivative of the function Φ at

a point ζ.

Remark 4.1. If ϕ(ζ)=ζ1−α, then ϕ-derivative coincides with α-deriva-
tive.

Example 4.1. For the function Φ(ζ) = ζ2 we have

lim
ε→0+0

(
ζ + εhϕ(ζ)

)2
− ζ2

ε
= lim

ε→0+0

(
2hζϕ(ζ) + εh2ϕ2(ζ)

)
= h · 2ζϕ(ζ).

Thus,
(
ζ2
)′
ϕ
= 2ζϕ(ζ).Real-valued analog of the next theorem was proved in paper [7℄.
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Theorem 4.1. A function Φ : Ω → A is ϕ-monogenic at a point ζ ∈ Ω
if and only if Φ is monogenic at ζ. In that case, we have the relation

Φ′
ϕ(ζ) = ϕ(ζ)Φ′

G(ζ). (4.2)

Proof. Sufficiency. We fix a point ζ. Let a function Φ : Ω → A is
monogenic at ζ. It means that there exists an element Φ′

G(ζ) of the
algebra A such that for each h ∈ A the equality (3.2) holds. Since ζ is
fixed, then ϕ(ζ) is an element of A. Since equality (3.2) is true for each
vector h ∈ A, then it is true for the vector h · ϕ(ζ) ∈ A, i.e., from (3.2)
we have

lim
ε→0+0

Φ(ζ + εhϕ(ζ)) − Φ(ζ)

ε
= hϕ(ζ)Φ′

G(ζ). (4.3)

Thus, by virtue of relation (4.1) a function Φ : Ω → A is ϕ-monogenic at
the point ζ and equality (4.2) fulfilled.

Necessity. Since a function Φ : Ω → A is ϕ-monogenic at a point
ζ ∈ Ω, then equality (4.1) is true for every direction h ∈ A. Taking into
account the invertibility of ϕ, we conclude that equality (4.1) is also true

for the direction h ·
(
ϕ(ζ)

)−1 ∈ A. Therefore, from (3.2) we have

lim
ε→0+0

Φ(ζ + εh)− Φ(ζ)

ε
= h

(
ϕ(ζ)

)−1
Φ′
ϕ(ζ). (4.4)

Thus, a function Φ : Ω → A is monogenic at the point ζ and Φ′
G(ζ) =(

ϕ(ζ)
)−1

Φ′
ϕ(ζ).Thus, we have, for example, (eζ)′ϕ = ϕ(ζ) eζ , (sin ζ)′ϕ = ϕ(ζ) cos ζet.In view of Remark 3.1, we have the following statement.

Corollary 4.1. Under the conditions of Theorem 3.1, a function Φ :
Ω → A is ϕ-monogenic at a point ζ ∈ Ω if and only if Φ is differentiable
in the sense of Lorch at ζ. In that case, we have the relation

Φ′
ϕ(ζ) = ϕ(ζ)Φ′

L(ζ) = ϕ(ζ)Φ′
G(ζ).

Remark 4.2. From equality (4.2) follows the relation

ejΦ
′
ϕ(ζ) = ϕ(ζ)

∂Φ

∂xj
, j = 1, 2, . . . , d.

In additional, when es is an invertible for some s ∈ {1, 2, . . . , d} , then

Φ′
ϕ(ζ) = ϕ(ζ)e−1

s

∂Φ

∂xs
.
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Proposition 4.1. If a function Φ is ϕ-monogenic and ψ-monogenic,
and at least one of the vectors es , s ∈ {1, 2, . . . , d}, is an invertible, then
the following equalities are true:

1. Φ′
ϕ +Φ′

ψ = Φ′
ϕ+ψ ;

2. Φ′
ϕ·ψ = ϕΦ′

ψ = ψΦ′
ϕ .

5. Alternative approaches to defining fractional

differentiations in commutative associative algebras

5.1.Suppose that e1 is invertible, and a funtion Φ of a variable ζ =
x1e1+x2e2+ · · ·+xded , where x1, x2, . . . , xd ∈ R, is monogeni. For any
α ∈ R, we de�ne the power funtion ζα in the algebra A as follows

ζα := exp(α ln ζ),where ln ζ are de�ned in the paper [25, p. 422℄.Then for natural n we have the equalities
Φ′
G(ζ) =

∂Φ

∂x1
e−1
1 , Φ′′

G(ζ) =
∂2Φ

∂x21
e−2
1 , . . .

Φ
(n)
G (ζ) =

∂nΦ

∂xn1
e−n1 , where e−n1 :=

(
e−1
1

)n
.The following de�nition is natural.

Remark 5.1. Let α ∈ R. The derivative of order α of the function Φ at
a point ζ is called the product

Φ(α)(ζ) :=
∂αΦ

∂xα1
· e−α1 , (5.1)

where the real fractional partial derivative ∂αΦ
∂xα1

defined in some sense

exists at the point x1.We note that in relation (5.1) a real frational partial derivative ∂αΦ
∂xα1is not de�ned. Considering di�erent meanings of a real derivative ∂αΦ
∂xα1

,we will get di�erent meanings for the derivative Φ(α).
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5.2.The following de�nition is based on Cauhy's idea in using the integralrepresentation. We will use integral representation (3.5).
Remark 5.2. Let α ∈ R. The derivative of order α of the function Φ at
a point ζ is called the product

Φα(ζ) =
m∑

u=1

Iu
Γ(α+ 1)

2πi

∫

Γu

Fu(t)
(
(te1 − ζ)−1

)α+1
dt+

+
n∑

s=m+1

Is
Γ(α+ 1)

2πi

∫

Γus

Gs(t)
(
(te1 − ζ)−1

)α+1
dt, (5.2)

where Γ(α+ 1) is the Euler’s function. In this case, the integrand must
be correctly defined.De�nitions (4.1), (5.1) and (5.2) are of di�erent nature. Therefore,the question of the relations between these de�nitions is not simple andrequires further researh.
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