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Abstract. In this paper, some analog of the conformable fractional
derivative is defined in an arbitrary finite-dimensional commutative as-
sociative algebra. Functions taking values in the indicated algebras and
having derivatives in the sense of a conformable fractional derivative are
called p-monogenic. It is established a relation between the concepts of
p-monogenic and monogenic function in such algebras. We also propose
two new definitions of the fractional derivative of functions with values
in finite-dimensional commutative associative algebras.
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1. Introduction

The idea of fractional derivative was first raised by L’Hospital in 1695.
After introducing this idea, many new definitions have been formulated.
The most well-known ones are Riemann-Liouville, Caputo, Hadamard,
Riesz, Griinwald-Letnikov, Marchaud, etc. (see e. g., [1,2] and references
therein).

Recently, Khalil et al. introduced a new definition of fractional deriva-
tive called the conformable fractional derivative [3]. Unlike other defini-
tions, this new definition satisfies the formulas of derivative of product
and quotient of two functions and has a simpler chain rule than other
definitions. In addition to the conformable fractional derivative defini-
tion, the conformable integral definition, Rolle theorem, and Mean value
theorem for conformable fractional differentiable functions were given in
literature. In [4], Abdeljawad improves this new theory. For instance, def-
initions of left and right conformable fractional derivatives and fractional
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integrals of higher order (i.e. of order a > 1), fractional power series
expansion, fractional Laplace transform definition, fractional integration
by parts formulas, chain rule and Gronwall inequality are provided by
Abdeljawad.

In the paper [5] the conformable partial derivative of the order a €
(0, 1] of several real variables and conformable gradient vector are defined.

In [6], two new results on homogeneous functions involving their con-
formable partial derivatives are introduced, specifically, the homogeneity
of the conformable partial derivatives of a homogeneous function and the
conformable version of Euler’s Theorem.

In the paper [7] it is present a new general definition of local fractional
derivative, that depends on an unknown kernel. It is establish a relation
between this new concept and ordinary differentiation. Using such a
formula, most of the fundamental properties of the fractional derivative
can be derived directly.

In [8-12] a theory of fractional analytic functions in the conformable
sense is developed. Namely, in [8] a fractional Cauchy like theorem and
a fractional Cauchy like formula for fractional analytic functions are es-
tablished.

In the paper [11], some interesting results of real fractional Calculus
are extended to the context of the complex-valued functions of a real
variable. Finally, using all obtained results, the complex conformable
integral is defined, and some of its most important properties are estab-
lished. In [12], the concept of fractional contour integral has also been
developed. There is propose and prove some new results on complex frac-
tional integration, and it is establish necessary and sufficient conditions
for a continuous function to have antiderivative in the conformable sense.
Finally, in [12], some of the well-known Cauchy’s integral theorems will
also be the subject of the extension that we do in this paper.

Independently of previous authors, in other papers the conformable
fractional derivative of order « is defined in complex plane. It is pro-
posed analog of Cauchy—Riemann conditions for a-differentiable func-
tions. Moreover, a discuss about two complex conformable differential
equations and solutions with their Riemann surfaces are given.

In short time, many studies about the theory and applications of the
fractional differential equations which are based on conformable fractional
derivative were conducted in many papers. See, for example, [13-20].

The next natural step is to generalize the concept of a conformable
fractional derivative to the case of any multidimensional algebra, and first
of all, to commutative and associative algebras.
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2. Conformable fractional derivative and
a-analytic functions

Definition 2.1. [3] For a given a function f : [0,00) — R, the con-
formable fractional derivative of f of order a is defined by

-y _
o)) it L) = T

5~>0 g
forallt > 0,0 < a<1. Iff is a-differentiable in some (0,b), b > 0,
and hm (T f)(t) exist, then it is defined as

(Taf)(0) := lim (Tof)(t).

(2.1)

See papers [3,4,11,15] for derivative properties.
Now consider the definition of a-differentiation in the complex plane.

Definition 2.2. [8] A complex function f is called conformable fractional
differentiable (or a-analytic) at a point z € C if there exists the following

limit
-y .
(Tof)(2) == lim flz+ez%) — f(2)

e—0

€
for all z, and 0 < o < 1. The value (T f)(2) is called a-derivative. If
f is a-analytic in an open set U, and lirr%)(Taf)(z) exists, then define
zZ—r

(Taf)(o) = liL%(Taf)(Z)'
Example 2.1. Let f(z) = 2% and a = 1. Then

1-1/2\2 _ .2
o (z+ez ) =z
fi27) = Iy :

(2.2)

= 223/2,

It it obvious that T} /2(22) is holomorphic outside some cut connecting
the point 0 and oco.

Remark 2.1. If the function f(z) is holomorphic on C then conformable
fractional derivative Ty, f(z), generally speaking, is not holomorphic fun-
ction on C (but holomorphic outside some cut of the complex plane).

The following theorem can be found in [8].

Theorem 2.1. Let a € (0,1], and f,g be a-analytic at a point zo. Then

To(c1f(2) +c2g(2)) = a1Taf(2) + c2Tog(2) for all ¢1,co € C;
To(2°) = c2¢7% for all c € C;

To () = 0 for all constant functions f(z) = p;

To (f

(2)9(2)) = [(2)Tag(2) + 9(2) T f(2);
T M) 9()Taf(2) [ ()Tag(2)
*\g(z) 9%(2)
If, in additional, f is analytic, then Tof(2)|s=z = 25~ 1 (20)-

S F’Tf\?’@?@t“
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Complex conformable fractional derivative of certain complex func-
tions are as follows:

T, (e%) = cz' 7%, ceC;

Ty (sincz) = ez %coscz, ceC;

To(coscz) = —cz' ™ *sincz, c€ C;

1
T, (—za> =1.
«

For more results of a-analytic functions in the sense of conformable
fractional derivative see [8,9,11,12].

3. Monogenic functions in commutative associative
algebras

Let A be an arbitrary n-dimensional (1 < n < 0o) commutative as-
sociative algebra with unit over the field of complex number C. E. Car-
tan [21, p. 33| proved that in A there exist a basis {I}}}_; such that the
first m basis vectors Iy, Io,..., I, are idempotents and another vectors
L1, Imya, ..., I, are nilpotents. The element 1 =11 +Io + - + I, is
the unit of A.

In the algebra A we consider the vectors e, es,...,eq, 2 < d < 2n.
Let these vectors have the following decomposition in the basis of the
algebra:

n
ejzzaerT, ajr,€C, j=1,2,....d (3.1)
r=1

Throughout this paper, we will assume that at least one of the vectors
e1,es,...,¢eq is invertible.

For the element ( = x1e1+x9ea2+- - -+x4eq, where x1,x2,..., 24 € R,
the complex numbers

fuZ:$1a1u+$2a2u—|—“~+l‘dadu, u=1,2,....,m

forms the spectrum of the point (.
Consider in the algebra A a linear span

Eq:={(=mxe1 +x0e2 + -+ 2464 : T1,%2,...,24 € R}

generated by the vectors eq, es,...,eq of A.
Next, the assumption is essential: for each fixed v € {1,2,...,m} at
least one of the numbers ayy, agy, - - -, aq, belongs to C\ R.

We identify a domain S in the space R? with the domain

S = {<:$161+$262+~~~+$d€d2(.1‘1,.1‘2,...,.1‘65) ES} in E; C A.
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Definition 3.1. [22] We will call a continuous function ® : Q@ — A
monogenic in a domain Q) C Eg if ® is differentiable in the sense of
Gateaux at every point of this domain, that is, if for each { € Q there
exists an element ®(¢) € A such that the equality

. O(C+eh) —
lim
e—040 e

2O _holc) vher, (3.2)

holds. The element ®(C) is called the Gateaux derivative of the function
P at the point C.

Consider the decomposition of the function ® : {2 — A in the basis
{Letios:

() =Y Uklar,2a,...,7a) It - (3.3)

In the case where the functions U : Q — C are R-differentiable in
the domain Q, that is, for an arbitrary (x1,z2,...,24) € £,

Uk (1 + Az, 20 + Axg, ... ,xq + Axg) — Ug(x1, 22, ..., 2q)

d

d
d (A2 |, ) (Az)? =0,

Jj=1 J=1

d
oU
= E —kAa:j +o0
— 63:j
7j=1

the function ® is monogenic in the domain €2 if and only if the following
analogues of the Cauchy—Riemann conditions are fulfilled at each point
of the domain 2:

0d 0P

87]'61:8—‘%16]' for all ]:273,7(1

Note that the decomposition of the resolvent has the form [23]:

n s—m+1
Qr s

(ter =7 =) —F fuI + > Z ey (3.4)

u=1 s=m+1 r=2
VteC:t#&, u=12....,m,

where the coefficients @), s are determined by the following recurrence
relations:

s—1
Q2,s:§Sa Qr,s: Z Qr—Lqu,g, r=3,4,...,s —m+1,

q=r+m—2
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s—1
By, = Z &Y, p=m+2,m+3,...,n,
p=m-+1
with the structure constants 17, € C that defined by the equality I, 15 =
> Y5 ,1p and the natural numbers us are defined by following rule:
P

for any natural m+1 < s < n there exist a unique natural 1 < us < m
such that for all natural 1 <r < m:

0 if r# ug,
MS:{ # us

I, if r=uy.

It follows from relations (3.4) that the points (z1,z2,...,7q) € R?
d
corresponding to the noninvertible elements ¢ = > x; e; form the set
j=1

1 Reay, + 9 Reagy + -+ + x4Reag, =0,
L, : u=1,2,...,m

rz1Imay, + 22 Imasg, + - +2x4Imag, =0,

in the d-dimensional space R%.

We say that a domain QQ C Ej is conver with respect to the set of
directions L, if © contains the segment {(1 + a(¢2 — (1) : @ € [0,1]} for
all (1,(o € Q2 such that (o — (1 € L.

Denote

Dy = {y = 21010 + 2202y + -+ 2400, €C: (€Q}, u=1,2,...,m.

In the next theorem we present a constructive description of mono-
genic functions with values in the algebra A via holomorphic functions of
a complex variable.

Theorem 3.1. [23,24] Let a domain Q C E; be convex with respect to
the set of directions L, , w = 1,2,...,m, and let for all u =1,2,...,m
at least one of the numbers ayy, , a2y , - - -, gy belong to C\R. Then every
momnogenic function ® : Q0 — A can be represented in the form

B(0) = 3" hgrr [ Fultlter O et
u=1

Ly

Y g / Gu(t)(ter — ¢) dt, (3.5)
Tug

s=m-+1
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where Fy, and G are certain holomorphic functions in the domains D,
and D, , respectively, and I'y is a closed Jordan rectifiable curve in
D, which surrounds the point &, and does not contain points &, £,q =
1,2,...,m, L #q.

From representation (3.5) it follows that under the conditions of The-
orem 3.1 each monogenic in the domain €2 function @ is differentiable in
a strong sense, in particular, in the sense of Lorch [25].

Definition 3.2. [25] A function ®: Q — A given in a domain 2 C Ey is
called differentiable in the sense of Lorch at a point ¢ € ) if there exists
an element @', () € A such that for each € > 0 there exists § > 0 such
that for all h € Eg with ||h]| <& the following inequality is fulfilled:

(¢ + 1) = () = h®L(Q)|| < IR e. (3.6)

The element @ () s called the Lorch derivative of the function ® at the
point C.

The representation of the monogenic function ® in form (3.5) is

unique. It is proved in [23] (in R?® see [24]) that for every monogenic

function ® : Q — A in an arbitrary domain {2, the Gateaux r-th deriva-
tives @, are monogenic functions in €2 for all r.

Remark 3.1. Under the conditions of Theorem 3.1, a monogenic func-
tion @ : () — A is differentiable in the sense of Lorch in ).

Consider examples of representation (3.5) in some low-dimensional
commutative algebras.

Example 3.1. In n-dimensional semi-simple algebra A,, with multipli-
cation table

-Hll\fg\...\ln\
LlLlo]...]o0
Lllo|L]...]o0
L Tolol [

representation (3.5) of monogenic function has the form [26]:

O(¢) = F1(&1) 1 + Fa() o + ... + Fu(§n)In,

where ( = &1 + &1y + -+ &, 1,. In particular, in the algebra of
bicomplex numbers (or commutative Segre’s quaternions) BC = {¢ =
&1 + & 1y &1,& € C} monogenic function has the form [27]

®(¢) = Fi(&) 1 + Fa(&2) Lo (3.7)
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Example 3.2. In the biharmonic algebra B with the basis {1, p}, p?> = 0,
representation (3.5) of monogenic function has the form [28]:

O(¢) = F(&) + [&F' (&) + Fo(&) | p, (3.8)

where ¢ = &1 +&p, &1,6 €C.

Example 3.3. In 3-dimensional algebra A3 with two-dimensional radical
and multiplication table

L1l [e?]
L]1]p][p
pll p|p] 0
P>l 0]0

representation (3.5) of monogenic function has the form [29]:

®(¢) = F(&) + [sz/(f) + Fl(fl)}p—k

2
HerE) + LFE) T eR@) + he)s  (39)

where ( =& +&p+ & p%,  &,6,& € C

Example 3.4. In 3-dimensional algebra Ay with one-dimensional radical
and multiplication table

| h[B]e]
L || 0|0
L |0 |L|p
pll O p]|0O

representation (3.5) of monogenic function has the form [29]:

(C) = Fi(&)h + Fa(&)s + |&F3(&) + Fo(€2)]

where ( =& 1 + & +E&3p,  &1,8,8 € C

In the paper [30] for monogenic function given in a domain of a special
real subspace Eg, 2 < d < 2n, of an arbitrary finite-dimensional commu-
tative associative algebra, A, it is obtain analogues of the Cauchy integral
theorem, the Cauchy integral formula and the Morera theorem for a curvi-
linear integral. This result in a subspace Es is proved in [31]. In [32] we
prove an analogue of the Cauchy integral theorem for a surface integral
of hyperholomorphic functions given in a domain of three-dimensional
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space and taking values in the algebra A. In the paper [33] the corre-
spondence between a monogenic function in the algebra A and a finite
set of monogenic functions in a special commutative associative algebra
is obtained. In the work [34] it is proposed a relation between monogenic
functions taking values in n-dimensional commutative associative algebra
and monogenic functions taking values in a special (n + 1)-dimensional
algebra. Finally, in the work [35], the previous results are applied to the
solution of the linear PDEs. Using monogenic functions given in certain
sequences of commutative associative algebras with increasing dimension
of these algebras, we substantiate a recurrence procedure for constructing
infinite-dimensional families of solutions of any partial differential equa-
tion with constant coefficients in the form of components of the mentioned
monogenic functions.

4. @-monogenic functions in finite-dimensional
commutative associative algebras

Let us consider the definition of ¢p-monogenic functions in an arbitrary
n-dimensional (1 < n < c0) commutative associative algebra A with unit
over the field of complex number C.

Definition 4.1. Let fiz a continuous function ¢ : Q@ — A such that all
values of which are invertible in  C A .

We will call a continuous function ® : Q@ — A p-monogenic in a
domain Q C A if there exists an element ®(,(C) € A such that for all
h € A the equality

R h(Q) ~ B()
e—040 I3

— hd,(() (4.1)

holds. The element @:O(C) is called the p-derivative of the function ® at
a point C.

Remark 4.1. If o(¢)=¢'"%, then ¢-derivative coincides with a-deriva-
tive.

Example 4.1. For the function ®(¢) = ¢? we have

2
¢ +ehp(()) —¢?
lim ( - ) = lim (2h¢p(¢) +eh?0?(()) = h-2¢p(C).

e—040 £ e—040

Thus, ()., = 2¢o(C).

Real-valued analog of the next theorem was proved in paper [7].
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Theorem 4.1. A function ® : Q — A is p-monogenic at a point € §2
if and only if ® is monogenic at (. In that case, we have the relation

@, (¢) = (O) PG (C)- (4.2)

Proof. Sufficiency. We fix a point (. Let a function ® : Q@ — A is
monogenic at . It means that there exists an element ®({) of the
algebra A such that for each h € A the equality (3.2) holds. Since ( is
fixed, then ¢(() is an element of A. Since equality (3.2) is true for each
vector h € A, then it is true for the vector h - ¢(¢) € A, i.e., from (3.2)

e e D¢+ ehp(Q)) ~ 2(¢)

. +ehyp —

lim — hip(Q) @5 (C). (4.3)

e—0+0 £
Thus, by virtue of relation (4.1) a function ® :  — A is ¢-monogenic at
the point ¢ and equality (4.2) fulfilled.
Necessity. Since a function ¢ : Q@ — A is ¢-monogenic at a point

¢ € Q, then equality (4.1) is true for every direction h € A. Taking into
account the invertibility of ¢, we conclude that equality (4.1) is also true

for the direction A - (@(C))_l € A. Therefore, from (3.2) we have

LR eh) ()
e—0+0 £

= h(p(0)) T 2L(C). (4.4)

Thus, a function ® : @ — A is monogenic at the point ¢ and ®(() =
~1
((Q)  @L(0)- O

Thus, we have, for example, (eC):O = ¢(¢) €S, (sin €)= ¢(C) cos¢
etc.
In view of Remark 3.1, we have the following statement.

Corollary 4.1. Under the conditions of Theorem 3.1, a function ® :
Q — A is p-monogenic at a point ( € Q if and only if ® is differentiable
in the sense of Lorch at (. In that case, we have the relation

0, (¢) = p(Q)PL(C) = p() P (C)-
Remark 4.2. From equality (4.2) follows the relation

0d )
€j¢;(C)=¢(C)87j7 j=1,2,....d.

In additional, when e is an invertible for some s € {1,2,...,d}, then

L 0P
5 Oz

P),(¢) = ¢(Q)e
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From Remark 4.2 follows the next properties.

Proposition 4.1. If a function ® is p-monogenic and -monogenic,
and at least one of the vectors es, s € {1,2,...,d}, is an invertible, then
the following equalities are true:
/ ! !/ .
1 @y + Py =Py
!/ _ A !/
2. Oy =Py =P, .

5. Alternative approaches to defining fractional
differentiations in commutative associative algebras

5.1.

Suppose that e; is invertible, and a function ® of a variable { =
xr1e1+ Taes + - - - +x4€q , where x1, s, ..., gy € R, is monogenic. For any
a € R, we define the power function (¢ in the algebra A as follows

¢* = exp(aln ¢),

where In( are defined in the paper [25, p. 422].
Then for natural n we have the equalities

0P 0*®
P’ _ 9% P _ -2
G(C) 8%1 €1 G(C) 633% €
n oe _, . B
‘P(G)(C) = a7 e;", where " := (e 1)”,

The following definition is natural.

Remark 5.1. Let o« € R. The derivative of order « of the function ® at
a point ( is called the product

00
N Oz

() :

e 9, (5.1)

where the real fractional partial derivative gan defined in some sense
1

exists at the point x.
We note that in relation (5.1) a real fractional partial derivative g;?

is not defined. Considering different meanings of a real derivative g‘jﬁ,
1

we will get different meanings for the derivative ®(®.
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5.2.

The following definition is based on Cauchy’s idea in using the integral
representation. We will use integral representation (3.5).

Remark 5.2. Let o € R. The derivative of order « of the function ® at
a point ( is called the product

ZI (o + D /Fu(t) ((ter — )N dt+

+ zn: ISM/Gs(t) ((ter — )1 at, (5.2)

where I'(a + 1) is the Euler’s function. In this case, the integrand must
be correctly defined.

Definitions (4.1), (5.1) and (5.2) are of different nature. Therefore,
the question of the relations between these definitions is not simple and
requires further research.
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