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Conformable fractional derivative in

commutative algebrasVitalii S. Shpakivskyi
(Presented by V. Gutlyanskĭı)Abstra
t. In this paper, some analog of the 
onformable fra
tionalderivative is de�ned in an arbitrary �nite-dimensional 
ommutative as-so
iative algebra. Fun
tions taking values in the indi
ated algebras andhaving derivatives in the sense of a 
onformable fra
tional derivative are
alled ϕ-monogeni
. It is established a relation between the 
on
epts of

ϕ-monogeni
 and monogeni
 fun
tion in su
h algebras. We also proposetwo new de�nitions of the fra
tional derivative of fun
tions with valuesin �nite-dimensional 
ommutative asso
iative algebras.2010 MSC. 30G35, 57R35.Key words and phrases. Conformable fra
tional derivative, fra
tionalanalyti
 fun
tions, lo
al fra
tional derivative, α-di�erentiable fun
tions,
ϕ-monogeni
 fun
tions in 
ommutative algebras.

1. IntroductionThe idea of fra
tional derivative was �rst raised by L'Hospital in 1695.After introdu
ing this idea, many new de�nitions have been formulated.The most well-known ones are Riemann�Liouville, Caputo, Hadamard,Riesz, Gr�unwald�Letnikov, Mar
haud, et
. (see e. g., [1,2℄ and referen
estherein).Re
ently, Khalil et al. introdu
ed a new de�nition of fra
tional deriva-tive 
alled the 
onformable fra
tional derivative [3℄. Unlike other de�ni-tions, this new de�nition satis�es the formulas of derivative of produ
tand quotient of two fun
tions and has a simpler 
hain rule than otherde�nitions. In addition to the 
onformable fra
tional derivative de�ni-tion, the 
onformable integral de�nition, Rolle theorem, and Mean valuetheorem for 
onformable fra
tional di�erentiable fun
tions were given inliterature. In [4℄, Abdeljawad improves this new theory. For instan
e, def-initions of left and right 
onformable fra
tional derivatives and fra
tionalRe
eived 12.03.2023ISSN 1810 � 3200. © Iíñòèòóò ïðèêëàäíî¨ ìàòåìàòèêè i ìåõàíiêè ÍÀÍ Óêðà¨íè

https://doi.org/10.37069/1810-3200-2023-20-2-7



270 Conformable fractional derivative...integrals of higher order (i.e. of order α > 1), fra
tional power seriesexpansion, fra
tional Lapla
e transform de�nition, fra
tional integrationby parts formulas, 
hain rule and Gronwall inequality are provided byAbdeljawad.In the paper [5℄ the 
onformable partial derivative of the order α ∈
(0, 1] of several real variables and 
onformable gradient ve
tor are de�ned.In [6℄, two new results on homogeneous fun
tions involving their 
on-formable partial derivatives are introdu
ed, spe
i�
ally, the homogeneityof the 
onformable partial derivatives of a homogeneous fun
tion and the
onformable version of Euler's Theorem.In the paper [7℄ it is present a new general de�nition of lo
al fra
tionalderivative, that depends on an unknown kernel. It is establish a relationbetween this new 
on
ept and ordinary di�erentiation. Using su
h aformula, most of the fundamental properties of the fra
tional derivative
an be derived dire
tly.In [8�12℄ a theory of fra
tional analyti
 fun
tions in the 
onformablesense is developed. Namely, in [8℄ a fra
tional Cau
hy like theorem anda fra
tional Cau
hy like formula for fra
tional analyti
 fun
tions are es-tablished.In the paper [11℄, some interesting results of real fra
tional Cal
ulusare extended to the 
ontext of the 
omplex-valued fun
tions of a realvariable. Finally, using all obtained results, the 
omplex 
onformableintegral is de�ned, and some of its most important properties are estab-lished. In [12℄, the 
on
ept of fra
tional 
ontour integral has also beendeveloped. There is propose and prove some new results on 
omplex fra
-tional integration, and it is establish ne
essary and su�
ient 
onditionsfor a 
ontinuous fun
tion to have antiderivative in the 
onformable sense.Finally, in [12℄, some of the well-known Cau
hy's integral theorems willalso be the subje
t of the extension that we do in this paper.Independently of previous authors, in other papers the 
onformablefra
tional derivative of order α is de�ned in 
omplex plane. It is pro-posed analog of Cau
hy�Riemann 
onditions for α-di�erentiable fun
-tions. Moreover, a dis
uss about two 
omplex 
onformable di�erentialequations and solutions with their Riemann surfa
es are given.In short time, many studies about the theory and appli
ations of thefra
tional di�erential equations whi
h are based on 
onformable fra
tionalderivative were 
ondu
ted in many papers. See, for example, [13�20℄.The next natural step is to generalize the 
on
ept of a 
onformablefra
tional derivative to the 
ase of any multidimensional algebra, and �rstof all, to 
ommutative and asso
iative algebras.
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2. Conformable fractional derivative and

α-analytic functions

Definition 2.1. [3] For a given a function f : [0,∞) → R, the con-
formable fractional derivative of f of order α is defined by

(Tαf)(t) := lim
ε→0

f(t+ εt1−α)− f(t)

ε
(2.1)

for all t > 0, 0 < α ≤ 1. If f is α-differentiable in some (0, b), b > 0,
and lim

t→0+0
(Tαf)(t) exist, then it is defined as

(Tαf)(0) := lim
t→0+0

(Tαf)(t).See papers [3, 4, 11, 15℄ for derivative properties.Now 
onsider the de�nition of α-di�erentiation in the 
omplex plane.
Definition 2.2. [8] A complex function f is called conformable fractional
differentiable (or α-analytic) at a point z ∈ C if there exists the following
limit

(Tαf)(z) := lim
ε→0

f(z + εz1−α)− f(z)

ε
(2.2)

for all z, and 0 < α < 1. The value (Tαf)(z) is called α-derivative. If
f is α-analytic in an open set U , and lim

z→0
(Tαf)(z) exists, then define

(Tαf)(0) := lim
z→0

(Tαf)(z).

Example 2.1. Let f(z) = z2 and α = 1
2 . Then

T1/2(z
2) = lim

ε→0

(
z + εz1−1/2

)2 − z2

ε
= 2z3/2.

It it obvious that T1/2(z
2) is holomorphic outside some cut connecting

the point 0 and ∞.

Remark 2.1. If the function f(z) is holomorphic on C then conformable
fractional derivative Tαf(z), generally speaking, is not holomorphic fun-
ction on C (but holomorphic outside some cut of the complex plane).The following theorem 
an be found in [8℄.
Theorem 2.1. Let α ∈ (0, 1], and f, g be α-analytic at a point z0. Then
1. Tα (c1f(z) + c2g(z)) = c1Tαf(z) + c2Tαg(z) for all c1, c2 ∈ C;
2. Tα(z

c) = czc−α for all c ∈ C;
3. Tα(µ) = 0 for all constant functions f(z) = µ;
4. Tα (f(z)g(z)) = f(z)Tαg(z) + g(z)Tαf(z);

5. Tα

(
f(z)
g(z)

)
= g(z)Tαf(z)−f(z)Tαg(z)

g2(z)
.

6. If, in additional, f is analytic, then Tαf(z)|z=z0 = z1−α0 f ′(z0).
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onformable fra
tional derivative of 
ertain 
omplex fun
-tions are as follows:
Tα (e

cz) = cz1−αecz, c ∈ C;

Tα(sin cz) = cz1−α cos cz, c ∈ C;

Tα(cos cz) = −cz1−α sin cz, c ∈ C;

Tα

(
1

α
zα
)

= 1.For more results of α-analyti
 fun
tions in the sense of 
onformablefra
tional derivative see [8, 9, 11, 12℄.
3. Monogenic functions in commutative associative

algebrasLet A be an arbitrary n-dimensional (1 ≤ n < ∞) 
ommutative as-so
iative algebra with unit over the �eld of 
omplex number C. E. Car-tan [21, p. 33℄ proved that in A there exist a basis {Ik}nk=1 su
h that the�rst m basis ve
tors I1, I2, . . . , Im are idempotents and another ve
tors
Im+1, Im+2, . . . , In are nilpotents. The element 1 = I1 + I2 + · · · + Im isthe unit of A.In the algebra A we 
onsider the ve
tors e1, e2, . . . , ed, 2 ≤ d ≤ 2n.Let these ve
tors have the following de
omposition in the basis of thealgebra:

ej =

n∑

r=1

ajr Ir , ajr ∈ C, j = 1, 2, . . . , d. (3.1)Throughout this paper, we will assume that at least one of the ve
tors
e1, e2, . . . , ed is invertible.For the element ζ = x1e1+x2e2+· · ·+xded , where x1, x2, . . . , xd ∈ R,the 
omplex numbers

ξu := x1a1u + x2a2u + · · ·+ xdadu, u = 1, 2, . . . ,mforms the spe
trum of the point ζ.Consider in the algebra A a linear span
Ed := {ζ = x1e1 + x2e2 + · · · + xded : x1, x2, . . . , xd ∈ R}generated by the ve
tors e1, e2, . . . , ed of A.Next, the assumption is essential: for ea
h �xed u ∈ {1, 2, . . . ,m} atleast one of the numbers a1u, a2u, . . . , adu belongs to C \ R.We identify a domain S in the spa
e R

d with the domain
S := {ζ = x1e1 + x2e2 + · · · + xded : (x1, x2, . . . , xd) ∈ S} in Ed ⊂ A.
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Definition 3.1. [22] We will call a continuous function Φ : Ω → A

monogenic in a domain Ω ⊂ Ed if Φ is differentiable in the sense of
Gâteaux at every point of this domain, that is, if for each ζ ∈ Ω there
exists an element Φ′

G(ζ) ∈ A such that the equality

lim
ε→0+0

Φ(ζ + εh) − Φ(ζ)

ε
= hΦ′

G(ζ) ∀h ∈ Ed (3.2)

holds. The element Φ′
G(ζ) is called the Gâteaux derivative of the function

Φ at the point ζ.Consider the de
omposition of the fun
tion Φ : Ω → A in the basis
{Ik}nk=1:

Φ(ζ) =

n∑

k=1

Uk(x1, x2, . . . , xd) Ik . (3.3)In the 
ase where the fun
tions Uk : Ω → C are R-di�erentiable inthe domain Ω, that is, for an arbitrary (x1, x2, . . . , xd) ∈ Ω,
Uk (x1 +∆x1, x2 +∆x2, . . . , xd +∆xd)− Uk(x1, x2, . . . , xd)

=

d∑

j=1

∂Uk
∂xj

∆xj + o



√√√√

d∑

j=1

(∆xj)2


 ,

d∑

j=1

(∆xj)
2 → 0 ,the fun
tion Φ is monogeni
 in the domain Ω if and only if the followinganalogues of the Cau
hy�Riemann 
onditions are ful�lled at ea
h pointof the domain Ω:

∂Φ

∂xj
e1 =

∂Φ

∂x1
ej for all j = 2, 3, . . . , d.Note that the de
omposition of the resolvent has the form [23℄:

(te1 − ζ)−1 =

m∑

u=1

1

t− ξu
Iu +

n∑

s=m+1

s−m+1∑

r=2

Qr,s
(t− ξus)

r Is , (3.4)

∀ t ∈ C : t 6= ξu , u = 1, 2, . . . ,m,where the 
oe�
ients Qr,s are determined by the following re
urren
erelations:
Q2,s = ξs , Qr,s =

s−1∑

q=r+m−2

Qr−1,qBq, s , r = 3, 4, . . . , s−m+ 1,
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Bq,s :=

s−1∑

p=m+1

ξpΥ
p
q,s , p = m+ 2,m+ 3, . . . , n,with the stru
ture 
onstants Υs
r,p ∈ C that de�ned by the equality IrIs =∑

p
Υs
r,pIp and the natural numbers us are de�ned by following rule:for any natural m+1 ≤ s ≤ n there exist a unique natural 1 ≤ us ≤ msu
h that for all natural 1 ≤ r ≤ m:

IrIs =

{
0 if r 6= us ,

Is if r = us .It follows from relations (3.4) that the points (x1, x2, . . . , xd) ∈ R
d
orresponding to the noninvertible elements ζ = d∑

j=1
xj ej form the set

Lu :

{
x1 Re a1u + x2Re a2u + · · · + xdRe adu = 0,

x1 Im a1u + x2 Im a2u + · · ·+ xd Im adu = 0,
u = 1, 2, . . . ,min the d-dimensional spa
e R

d.We say that a domain Ω ⊂ Ed is 
onvex with respe
t to the set ofdire
tions Lu if Ω 
ontains the segment {ζ1 + α(ζ2 − ζ1) : α ∈ [0, 1]} forall ζ1, ζ2 ∈ Ω su
h that ζ2 − ζ1 ∈ Lu.Denote
Du := {ξu = x1a1u+x2a2u+ · · ·+xdadu ∈ C : ζ ∈ Ω}, u = 1, 2, . . . ,m.In the next theorem we present a 
onstru
tive des
ription of mono-geni
 fun
tions with values in the algebra A via holomorphi
 fun
tions ofa 
omplex variable.
Theorem 3.1. [23, 24] Let a domain Ω ⊂ Ed be convex with respect to
the set of directions Lu , u = 1, 2, . . . ,m, and let for all u = 1, 2, . . . ,m
at least one of the numbers a1u , a2u , . . . , adu belong to C\R. Then every
monogenic function Φ : Ω → A can be represented in the form

Φ(ζ) =

m∑

u=1

Iu
1

2πi

∫

Γu

Fu(t)(te1 − ζ)−1 dt+

+

n∑

s=m+1

Is
1

2πi

∫

Γus

Gs(t)(te1 − ζ)−1 dt, (3.5)
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where Fu and Gs are certain holomorphic functions in the domains Du

and Dus , respectively, and Γq is a closed Jordan rectifiable curve in
Dq which surrounds the point ξq and does not contain points ξℓ, ℓ, q =
1, 2, . . . ,m, ℓ 6= q.From representation (3.5) it follows that under the 
onditions of The-orem 3.1 ea
h monogeni
 in the domain Ω fun
tion Φ is di�erentiable ina strong sense, in parti
ular, in the sense of Lor
h [25℄.
Definition 3.2. [25] A function Φ: Ω → A given in a domain Ω ⊂ Ed is
called differentiable in the sense of Lorch at a point ζ ∈ Ω if there exists
an element Φ′

L(ζ) ∈ A such that for each ε > 0 there exists δ > 0 such
that for all h ∈ Ed with ‖h‖ < δ the following inequality is fulfilled:

∥∥Φ(ζ + h)− Φ(ζ)− hΦ′
L(ζ)

∥∥ ≤ ‖h‖ ε . (3.6)

The element Φ′
L(ζ) is called the Lorch derivative of the function Φ at the

point ζ.The representation of the monogeni
 fun
tion Φ in form (3.5) isunique. It is proved in [23℄ (in R
3 see [24℄) that for every monogeni
fun
tion Φ : Ω → A in an arbitrary domain Ω, the G�ateaux r-th deriva-tives ΦrG are monogeni
 fun
tions in Ω for all r.

Remark 3.1. Under the conditions of Theorem 3.1, a monogenic func-
tion Φ : Ω → A is differentiable in the sense of Lorch in Ω.Consider examples of representation (3.5) in some low-dimensional
ommutative algebras.
Example 3.1. In n-dimensional semi-simple algebra An with multipli-
cation table

· I1 I2 . . . In

I1 I1 0 . . . 0

I2 0 I2 . . . 0
...

...
...

. . .
...

In 0 0 . . . In

representation (3.5) of monogenic function has the form [26]:

Φ(ζ) = F1(ξ1)I1 + F2(ξ2)I2 + . . .+ Fn(ξn)In ,

where ζ = ξ1 I1 + ξ2 I2 + · · · ξn In . In particular, in the algebra of
bicomplex numbers (or commutative Segre’s quaternions) BC = {ζ =
ξ1 I1 + ξ2 I2 : ξ1, ξ2 ∈ C} monogenic function has the form [27]

Φ(ζ) = F1(ξ1)I1 + F2(ξ2)I2. (3.7)
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Example 3.2. In the biharmonic algebra B with the basis {1, ρ}, ρ2 = 0,
representation (3.5) of monogenic function has the form [28]:

Φ(ζ) = F (ξ1) +
[
ξ2F

′(ξ1) + F0(ξ1)
]
ρ, (3.8)

where ζ = ξ1 + ξ2 ρ, ξ1, ξ2 ∈ C.

Example 3.3. In 3-dimensional algebra A3 with two-dimensional radical
and multiplication table

· 1 ρ ρ2

1 1 ρ ρ2

ρ ρ ρ2 0

ρ2 ρ2 0 0

representation (3.5) of monogenic function has the form [29]:

Φ(ζ) = F (ξ1) +
[
ξ2F

′(ξ) + F1(ξ1)
]
ρ+

+
[
ξ3F

′(ξ1) +
ξ21
2
F ′′(ξ1) + ξ2F

′
1(ξ1) + F2(ξ1)

]
ρ2, (3.9)

where ζ = ξ1 + ξ2 ρ+ ξ3 ρ
2, ξ1, ξ2, ξ3 ∈ C.

Example 3.4. In 3-dimensional algebra A2 with one-dimensional radical
and multiplication table

· I1 I2 ρ

I1 I1 0 0

I2 0 I2 ρ

ρ 0 ρ 0

representation (3.5) of monogenic function has the form [29]:

Φ(ζ) = F1(ξ1)I1 + F2(ξ2)I2 +
[
ξ3F

′
2(ξ2) + F0(ξ2)

]
ρ,

where ζ = ξ1 I1 + ξ2 I2 + ξ3 ρ, ξ1, ξ2, ξ3 ∈ C.In the paper [30℄ for monogeni
 fun
tion given in a domain of a spe
ialreal subspa
e Ed, 2 ≤ d ≤ 2n, of an arbitrary �nite-dimensional 
ommu-tative asso
iative algebra, A, it is obtain analogues of the Cau
hy integraltheorem, the Cau
hy integral formula and the Morera theorem for a 
urvi-linear integral. This result in a subspa
e E3 is proved in [31℄. In [32℄ weprove an analogue of the Cau
hy integral theorem for a surfa
e integralof hyperholomorphi
 fun
tions given in a domain of three-dimensional
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e and taking values in the algebra A. In the paper [33℄ the 
orre-sponden
e between a monogeni
 fun
tion in the algebra A and a �niteset of monogeni
 fun
tions in a spe
ial 
ommutative asso
iative algebrais obtained. In the work [34℄ it is proposed a relation between monogeni
fun
tions taking values in n-dimensional 
ommutative asso
iative algebraand monogeni
 fun
tions taking values in a spe
ial (n + 1)-dimensionalalgebra. Finally, in the work [35℄, the previous results are applied to thesolution of the linear PDEs. Using monogeni
 fun
tions given in 
ertainsequen
es of 
ommutative asso
iative algebras with in
reasing dimensionof these algebras, we substantiate a re
urren
e pro
edure for 
onstru
tingin�nite-dimensional families of solutions of any partial di�erential equa-tion with 
onstant 
oe�
ients in the form of 
omponents of the mentionedmonogeni
 fun
tions.
4. ϕ-monogenic functions in finite-dimensional

commutative associative algebrasLet us 
onsider the de�nition of ϕ-monogeni
 fun
tions in an arbitrary
n-dimensional (1 ≤ n <∞) 
ommutative asso
iative algebra A with unitover the �eld of 
omplex number C.
Definition 4.1. Let fix a continuous function ϕ : Ω → A such that all
values of which are invertible in Ω ⊆ A .

We will call a continuous function Φ : Ω → A ϕ-monogenic in a
domain Ω ⊆ A if there exists an element Φ′

ϕ(ζ) ∈ A such that for all
h ∈ A the equality

lim
ε→0+0

Φ (ζ + εhϕ(ζ)) − Φ(ζ)

ε
= hΦ′

ϕ(ζ) (4.1)

holds. The element Φ′
ϕ(ζ) is called the ϕ-derivative of the function Φ at

a point ζ.

Remark 4.1. If ϕ(ζ)=ζ1−α, then ϕ-derivative coincides with α-deriva-
tive.

Example 4.1. For the function Φ(ζ) = ζ2 we have

lim
ε→0+0

(
ζ + εhϕ(ζ)

)2
− ζ2

ε
= lim

ε→0+0

(
2hζϕ(ζ) + εh2ϕ2(ζ)

)
= h · 2ζϕ(ζ).

Thus,
(
ζ2
)′
ϕ
= 2ζϕ(ζ).Real-valued analog of the next theorem was proved in paper [7℄.
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Theorem 4.1. A function Φ : Ω → A is ϕ-monogenic at a point ζ ∈ Ω
if and only if Φ is monogenic at ζ. In that case, we have the relation

Φ′
ϕ(ζ) = ϕ(ζ)Φ′

G(ζ). (4.2)

Proof. Sufficiency. We fix a point ζ. Let a function Φ : Ω → A is
monogenic at ζ. It means that there exists an element Φ′

G(ζ) of the
algebra A such that for each h ∈ A the equality (3.2) holds. Since ζ is
fixed, then ϕ(ζ) is an element of A. Since equality (3.2) is true for each
vector h ∈ A, then it is true for the vector h · ϕ(ζ) ∈ A, i.e., from (3.2)
we have

lim
ε→0+0

Φ(ζ + εhϕ(ζ)) − Φ(ζ)

ε
= hϕ(ζ)Φ′

G(ζ). (4.3)

Thus, by virtue of relation (4.1) a function Φ : Ω → A is ϕ-monogenic at
the point ζ and equality (4.2) fulfilled.

Necessity. Since a function Φ : Ω → A is ϕ-monogenic at a point
ζ ∈ Ω, then equality (4.1) is true for every direction h ∈ A. Taking into
account the invertibility of ϕ, we conclude that equality (4.1) is also true

for the direction h ·
(
ϕ(ζ)

)−1 ∈ A. Therefore, from (3.2) we have

lim
ε→0+0

Φ(ζ + εh)− Φ(ζ)

ε
= h

(
ϕ(ζ)

)−1
Φ′
ϕ(ζ). (4.4)

Thus, a function Φ : Ω → A is monogenic at the point ζ and Φ′
G(ζ) =(

ϕ(ζ)
)−1

Φ′
ϕ(ζ).Thus, we have, for example, (eζ)′ϕ = ϕ(ζ) eζ , (sin ζ)′ϕ = ϕ(ζ) cos ζet
.In view of Remark 3.1, we have the following statement.

Corollary 4.1. Under the conditions of Theorem 3.1, a function Φ :
Ω → A is ϕ-monogenic at a point ζ ∈ Ω if and only if Φ is differentiable
in the sense of Lorch at ζ. In that case, we have the relation

Φ′
ϕ(ζ) = ϕ(ζ)Φ′

L(ζ) = ϕ(ζ)Φ′
G(ζ).

Remark 4.2. From equality (4.2) follows the relation

ejΦ
′
ϕ(ζ) = ϕ(ζ)

∂Φ

∂xj
, j = 1, 2, . . . , d.

In additional, when es is an invertible for some s ∈ {1, 2, . . . , d} , then

Φ′
ϕ(ζ) = ϕ(ζ)e−1

s

∂Φ

∂xs
.
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Proposition 4.1. If a function Φ is ϕ-monogenic and ψ-monogenic,
and at least one of the vectors es , s ∈ {1, 2, . . . , d}, is an invertible, then
the following equalities are true:

1. Φ′
ϕ +Φ′

ψ = Φ′
ϕ+ψ ;

2. Φ′
ϕ·ψ = ϕΦ′

ψ = ψΦ′
ϕ .

5. Alternative approaches to defining fractional

differentiations in commutative associative algebras

5.1.Suppose that e1 is invertible, and a fun
tion Φ of a variable ζ =
x1e1+x2e2+ · · ·+xded , where x1, x2, . . . , xd ∈ R, is monogeni
. For any
α ∈ R, we de�ne the power fun
tion ζα in the algebra A as follows

ζα := exp(α ln ζ),where ln ζ are de�ned in the paper [25, p. 422℄.Then for natural n we have the equalities
Φ′
G(ζ) =

∂Φ

∂x1
e−1
1 , Φ′′

G(ζ) =
∂2Φ

∂x21
e−2
1 , . . .

Φ
(n)
G (ζ) =

∂nΦ

∂xn1
e−n1 , where e−n1 :=

(
e−1
1

)n
.The following de�nition is natural.

Remark 5.1. Let α ∈ R. The derivative of order α of the function Φ at
a point ζ is called the product

Φ(α)(ζ) :=
∂αΦ

∂xα1
· e−α1 , (5.1)

where the real fractional partial derivative ∂αΦ
∂xα1

defined in some sense

exists at the point x1.We note that in relation (5.1) a real fra
tional partial derivative ∂αΦ
∂xα1is not de�ned. Considering di�erent meanings of a real derivative ∂αΦ
∂xα1

,we will get di�erent meanings for the derivative Φ(α).
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5.2.The following de�nition is based on Cau
hy's idea in using the integralrepresentation. We will use integral representation (3.5).
Remark 5.2. Let α ∈ R. The derivative of order α of the function Φ at
a point ζ is called the product

Φα(ζ) =
m∑

u=1

Iu
Γ(α+ 1)

2πi

∫

Γu

Fu(t)
(
(te1 − ζ)−1

)α+1
dt+

+
n∑

s=m+1

Is
Γ(α+ 1)

2πi

∫

Γus

Gs(t)
(
(te1 − ζ)−1

)α+1
dt, (5.2)

where Γ(α+ 1) is the Euler’s function. In this case, the integrand must
be correctly defined.De�nitions (4.1), (5.1) and (5.2) are of di�erent nature. Therefore,the question of the relations between these de�nitions is not simple andrequires further resear
h.
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