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The problem of calculating the ion drag force acting on a charged macroparticle in collisionless
flowing plasma is studied by using an approach based on the direct numerical solution of the
Vlasov kinetic equations for plasma components. A uniform plasma flow past a spherical
macroparticle is considered. The computations are carried out for different particle sizes and
different flow velocities. On the basis of the obtained results the effect of particle size on the
ion drag force is analyzed. It is shown that when the particle size is much less than the Debye
length in plasma, the ion drag force can be calculated with good accuracy by means of the
conventional binary collision approach. A modified version of the binary collision approach is
proposed to calculate the ion drag force in the case where the particle size becomes comparable
to the Debye length in plasma. It is shown that there is a reasonable agreement between the
results obtained using the numerical solution of the kinetic equations and that obtained by the
modified binary collision approach.
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1. Introduction

A study of the drag force exerted on a charged
macroparticle by ions in flowing plasma (ion drag
force) is one of the important problems in the physics
of dusty plasmas. Accurate calculations of this force
are necessary for understanding the basic features of
dusty plasmas, such as the location and the config-
uration of dust structures [1–3], properties of low-
frequency waves in dusty plasmas [4–6], and interac-
tion between dust particles [7,8]. The problem of cal-
culating the ion drag force is rather complicated, be-
cause the value of this force is strongly affected by sev-
eral factors such as collisions between plasma compo-
nents, the distribution of the electric potential around
a charged particle, the degree of coupling between
ions and the particle, etc. As was shown recently
[9–11], the effect of collisions between plasma com-
ponents (mainly ion-neutral collisions) on the drag
force is probably the most important factor in this
case. However, despite the significance of this prob-
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lem, a comprehensive model for the ion drag force,
describing all regimes of interest, has not yet been
proposed, even for collisionless plasma.

The conventional method of calculating the ion
drag force in the collisionless limit is the binary col-
lision approach [1, 12–15]. This approach is based
on the study of ion scattering in the electric field of
a charged particle. The scattering process is usu-
ally characterized by the scattering parameter 𝛽 =
= 𝑞𝑒/𝑚𝑣2𝜆, where 𝑞 is the particle charge, 𝑚 is the
ion mass, 𝑣 is the average velocity of ions, and 𝜆 is
the screening length of the particle charge. In the
limit 𝛽 ≪ 1, the classical Coulomb scattering theory
can be used. Such an approach was first proposed
in [1] to describe the transport of dust particles in
glow-discharge plasmas. The extension of this ap-
proach to the case of moderate scattering parameters
(𝛽 ∼ 1) was proposed in [13, 15]. In spite of the fact
that this method is based on phenomenological argu-
ments, it shows very good agreement with numerical
calculations presented in [12] up to 𝛽 ∼ 5. In the
limit 𝛽 ≫ 1, the classical scattering theory is not ap-
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plicable, and the problem of calculating the ion drag
force requires a totally different approach, which was
proposed in [14].

It should be noted, however, that the binary col-
lisional approach developed in [1, 12–15] allows one
to calculate the ion drag force only when the char-
acteristic particle size 𝑎 is much less than the Debye
length 𝑟D in plasma. In this case, the electric po-
tential around a charged particle can be taken in the
well-known Yukawa form. On the other hand, it is
known that when the particle size becomes compara-
ble with the Debye length in plasma, the distribution
of the electric potential around a particle deviates
significantly from the Yukawa potential [16]. Gener-
ally, in order to obtain the distribution of the poten-
tial when 𝑎 ∼ 𝑟D, one has to solve the full nonlin-
ear screening problem. Note that the same problem
arises in calculating the floating potential of parti-
cles in plasma. In the limit 𝑎 ≪ 𝑟D, the floating
potential can be obtained, by using the conventional
orbital motion limited theory [17–19]. As was shown
in [20], this approach is intrinsically inconsistent, be-
cause it does not consider peculiarities of the electric
potential distribution around the particle. As a re-
sult, it cannot be used to calculate the floating po-
tential when 𝑎 ∼ 𝑟D. A modified version of the orbital
motion limited theory, which allows one to obtain the
floating potential in this case, was proposed recently
in [21]. However, as far as the author knows, the
problem of calculating the ion drag force for parti-
cles with radius 𝑎 ∼ 𝑟D has not yet been studied
in detail so far.

In the present paper, the problem of calculating the
ion drag force acting on a charged macroparticle in
collisionless flowing plasmas is studied, by using an
approach based on the direct numerical solution of
the Vlasov equations for plasma components. This
approach has been successfully used in our previous
works [22, 23] to study the charging and the screen-
ing of particles in plasma without flow. In this work,
a uniform flow of ions and electrons past a spherical
macroparticle is studied. The numerical computa-
tions are carried out for different particle sizes and
different flow velocities. On the basis of the obtained
results, the influence of the particle size on the ion
drag force is analyzed. It is also shown how the con-
ventional binary collisional approach can be extended
to calculate the ion drag force acting on particles with
radius comparable to the Debye length in plasma.

2. Formulation of the Problem

Let us consider a spherical macroparticle of radius 𝑎
inserted in a uniform plasma flow. The plasma com-
prises of singly charged ions (i) and electrons (e). The
plasma flow far from the particle is characterized by
the velocity 𝑢, temperatures 𝑇𝛼0 and concentrations
𝑛𝛼0, where 𝛼 = i, e denotes the type of plasma par-
ticle. It is assumed, that the particle is charged by
plasma currents, and the particle surface is consid-
ered to be perfectly conducting. It also assumed that
the flow around the particle is steady-state and ax-
isymmetric.

The behavior of ions and electrons is described
on the basis of the Vlasov equations for collision-
less plasma. The problem for these equations is for-
mulated with the use the following coordinate sys-
tem. In the physical space, the cylindrical coordi-
nates (𝑥, 𝑟, 𝜃), where the axis 𝑥 is directed along the
flow velocity, and (𝑟, 𝜃) are the polar coordinates in
the plane perpendicular to the axis 𝑥. The center of
the particle is located at the origin of the coordinate
system. In the velocity space, one can use the cor-
responding rectangular coordinate system (𝜉𝑥, 𝜉𝑟, 𝜉𝜃),
where 𝜉𝑥 is the velocity directed along the 𝑥 axis, 𝜉𝑟
is the radial velocity, and 𝜉𝜃 is the azimuthal velocity.
However, as was shown in [24, 25], it is more relevant
to use a circular coordinate system for the radial and
azimuthal velocities for the numerical solution of ki-
netic equations. Thus, the polar coordinates (𝜉, 𝜔)
are used, where 𝜉𝑟 = 𝜉 cos𝜔, 𝜉𝜃 = 𝜉 sin𝜔.

Then the kinetic equations for ions and electrons
are as follows:{︂
𝐿𝑐 + 𝐿𝑖 +

𝑞𝛼
𝑚𝛼

𝐿𝑓

}︂
𝑓𝛼 = 0, 𝛼 = e, i. (1)

Here, 𝑓𝛼 is the velocity distribution function of the
plasma particles; 𝑞𝛼 is the particle electric charge; 𝑚𝛼

is the particle mass; and 𝐿𝑐, 𝐿𝑖, and 𝐿𝑓 are the con-
vective, inertia, and force terms, respectively. These
terms are

𝐿𝑐 = 𝜉𝑥
𝜕

𝜕𝑥
+ 𝜉 cos𝜔

𝜕

𝜕𝑟
, 𝐿𝑖 = −𝜉 sin𝜔

𝑟

𝜕

𝜕𝜔
, (2a)

𝐿𝑓 = −𝜕𝜙

𝜕𝑥

𝜕

𝜕𝜉𝑥
− 𝜕𝜙

𝜕𝑟

𝜕

𝜕𝜉𝑟
, (2b)

where 𝜙 is the self-consistent electric potential, and
the derivative 𝜕/𝜕𝜉𝑟 is given by
𝜕

𝜕𝜉𝑟
= cos𝜔

𝜕

𝜕𝜉
− sin𝜔

𝜉

𝜕

𝜕𝜔
.
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The Poisson equation for the self-consistent electric
potential reads

Δ𝜙 = −4𝜋𝑒 (𝑛i − 𝑛e), (3)

where 𝑛i and 𝑛e are the concentrations of ions and
electrons, respectively; and the Laplacian is given by

Δ =
𝜕2

𝜕𝑥2
+

1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕

𝜕𝑟

)︂
.

The basic macroscopic quantities of plasma particles
such as concentrations 𝑛𝛼, velocities u𝛼, and tem-
peratures 𝑇𝛼 are obtained by evaluating the velocity
moments of the distribution functions:

𝑛𝛼 = ⟨𝑓𝛼⟩, (4a)
𝑛𝛼u𝛼 = ⟨ 𝜉 𝑓𝛼 ⟩, (4b)

3 𝑘 𝑇𝛼𝑛𝛼 = ⟨𝑚𝛼 c 2
𝛼 𝑓𝛼 ⟩, (4c)

where 𝛼 = e, i denotes the type of the plasma particle;
𝜉 = (𝜉𝑥, 𝜉𝑟, 𝜉𝜃) is the molecular velocity; c𝛼 = 𝜉−u𝛼

is the relative velocity; and the following notation is
used:

⟨∙⟩ =
∞∫︁

−∞

∞∫︁
0

2𝜋∫︁
0

∙ 𝜉 𝑑𝜉𝑥 𝑑𝜉 𝑑𝜔 .

Note that, for the problem under consideration, the
distribution functions are even in 𝜔, i.e., 𝑓𝛼(𝜔) =
= 𝑓𝛼(−𝜔). Thus, the tangential component of the
macroscopic velocity 𝑢𝜃

𝛼 equals to zero, and the ve-
locity vector has only two nonzero components: u𝛼 =
= (𝑢𝑥

𝛼, 𝑢
𝑟
𝛼, 0).

Let us further describe the boundary conditions for
Eqs. (1) and (3). As in the theory of probes, the ions
and the electrons are assumed to be fully absorbed
by the particle. Hence, the boundary conditions for
the distribution functions on the particle surface are

𝑓𝛼 = 0, 𝛼 = e, i, (5)

for (𝜉 n) ≥ 0, where n is the outward unit normal to
the surface. The absorption of ions and electrons by
the particle leads to its charging. Since the surface
of a perfectly conducting particle must be equipoten-
tial, the following boundary condition for the electric
potential on the particle surface is used:

𝜙 = 𝜙𝑝. (6)

Here, 𝜙𝑝 is the floating potential. The value of float-
ing potential is constrained by the Gauss law:

4𝜋𝑞 = −
∫︁

∇𝜙n 𝑑𝑠, (7)

where 𝑞 is the particle charge and the integral is taken
over the whole particle surface.

The electric potential at large distances from the
particle may be assumed to be zero, i.e., the following
condition is used:

𝜙 → 0, (𝑥2 + 𝑟2)1/2 → ∞. (8)

The boundary condition for the electric potential
along the symmetry axis is

𝜕𝜙/𝜕𝑟 = 0, (9)

at 𝑟 = 0, 𝑥 ≤ −𝑎, and 𝑥 ≥ 𝑎. The distribution
functions of plasma components far from the particle
are given by

𝑀𝛼0 = 𝑛𝛼0 exp
(︀
−c 2

0 /𝑣2𝛼0
)︀
/(
√
𝜋𝑣𝛼0)

3,

(𝑥2 + 𝑟2)1/2 → ∞, (10)

where 𝛼 = e, i denotes the type of a plasma par-
ticle; c0 = 𝜉 − u0 is the relative velocity; u0 =
= (𝑢, 0, 0) is the velocity vector of the plasma flow;
and 𝑣𝛼0 =

√︀
2𝑘𝑇𝛼0/𝑚𝛼 are the thermal velocities in

the surrounding plasma. The boundary condition for
the distribution functions along the symmetry axis
reads

𝑓𝛼(𝜉𝑟) = 𝑓𝛼(−𝜉𝑟), 𝜉𝑟 ≥ 0, 𝛼 = e, i, (11)

at 𝑟 = 0, 𝑥 ≤ −𝑎, and 𝑥 ≥ 𝑎.
As was mentioned above, the distribution functions

𝑓𝛼 are even in 𝜔. Thus, the problem is considered
only in the half-space 0 ≤ 𝜔 ≤ 𝜋 (𝜉𝜃 ≥ 0), by using
the following symmetry boundary condition:

𝑓𝛼(𝜔) = 𝑓𝛼(−𝜔), 𝛼 = e, i (12)

for 𝜉 ≥ 0, −∞ < 𝜉𝑥 < ∞. In addition, one also has to
define the boundary conditions at infinity in the ve-
locity space. In this case, the following conventional
assumption is used:

𝑓𝛼 → 0, (𝜉2𝑥 + 𝜉2)1/2 → ∞, 𝛼 = e, i. (13)
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3. Numerical Method

Further, let us briefly describe the numerical proce-
dure used to solve Eqs. (1) and (3) with the boundary
conditions (5), (6), (8)–(13). To obtain the solution
of the steady-state kinetic equations (1), the author
proposes to consider the time-dependent equations{︂

𝜕

𝜕𝑡
+ 𝐿𝑐 + 𝐿𝑖 +

𝑞i
𝑚i

𝐿𝑓

}︂
𝑓i = 𝐽i, (14a){︂

𝜕

𝜕𝑡e
+ 𝐿𝑐 + 𝐿𝑖 +

𝑞e
𝑚e

𝐿𝑓

}︂
𝑓e = 𝐽e, , (14b)

where 𝑡e = 𝑡 𝑣i0/𝑣e0, and 𝑣i0, 𝑣e0 are the thermal
velocities of ions and electrons in the surrounding
plasma. The initial conditions for Eqs. (14) are given
by the Maxwell functions (10), and the boundary con-
ditions are given by Eqs. (5), (10), (11), (12), and
(13). The distribution of the electric potential at each
moment of time is calculated using the Poisson equa-
tion (3) with the boundary conditions (6), (8), and
(9). In order to obtain the particle charge, Eqs. (14)
are supplemented with the charging equation

𝑑𝑞/𝑑𝑡 = −
∫︁

j n𝑑𝑠, (15)

where j = 𝑒(𝑛iui − 𝑛eue) is the current density, and
the integral is taken over the whole particle surface.

In the steady state, Eqs. (14) are reduced to the
stationary equations (1). Thus, in order to obtain
the solution of the flow problem under consideration,
Eqs. (14) are solved in time until a steady-state so-
lution is reached. Note that Eqs. (14) differ from the
conventional system of time-dependent Vlasov equa-
tions for plasma particles. One can see that the time
derivative term in the equation for electrons (14b) is
multiplied by the scaling factor 𝑣e0/𝑣i0. It is required
to overcome the difficulty caused by a great differ-
ence between the time scales for ions and electrons.
Equations (14) do not describe a real physical pro-
cess, but it can be viewed just as a tool for finding
the stationary solution of the problem, which is be-
lieved to be unique. It is worth noting that the same
technique for finding a steady-state solution of the ki-
netic equations was successfully used in our previous
works [22, 23] devoted to the study of the charging
and screening processes.

In the physical space, Eqs. (1) and (3) are solved
in a finite domain

Ω𝑝 =
{︁
𝑎 ≤ (𝑥2 + 𝑟2)1/2 ≤ 𝐴𝑅, 𝑟 ≥ 0

}︁
. (16)

In the velocity space, the kinetic equations for ions
and electrons are solved in finite domains Ωi

𝑣 and Ωe
𝑣,

respectively, where

Ω𝛼
𝑣 =

⎧⎪⎪⎨⎪⎪⎩
−𝐴𝛼

𝜉𝑥
≤ 𝜉𝑥 ≤ 𝐴𝛼

𝜉𝑥
,

0 ≤ 𝜉 ≤ 𝐴𝛼
𝜉 ,

0 ≤ 𝜔 ≤ 𝜋

⎫⎪⎪⎬⎪⎪⎭, 𝛼 = e, i. (17)

The sizes 𝐴𝑅, 𝐴𝛼
𝜉𝑥

, and 𝐴𝛼
𝜉 are chosen sufficiently

large to capture the boundary conditions (8), (10)
and (13). The basic equations are discretized using
a nonstructured nonuniform triangular mesh in the
physical space and uniform finite-volume meshes in
the velocity space. The nonuniform triangular mesh
is created using the approach proposed in [26].

The numerical procedure for solving Eqs. (14) is
based on the method of operator splitting. Below,
this method is described on the example of the ki-
netic equation for ions (14a). This equation is solved
by means of the following two-stage splitting scheme.
At the first stage, the action of the operator 𝐿𝑐 at
each discrete velocity node (𝜉

(𝑙)
𝑥 , 𝜉(𝑙), 𝜔(𝑙)) is consid-

ered, where 𝑙 denotes the number of the node. The
corresponding equation is{︂
𝜕

𝜕𝑡
+ 𝐿(𝑙)

𝑐

}︂
𝑓
(𝑙)
i = 0, (18)

where 𝑓
(𝑙)
i is the distribution function at the velocity

node, and the operator 𝐿
(𝑙)
𝑐 is given by

𝐿(𝑙)
𝑐 = 𝜉(𝑙)𝑥

𝜕

𝜕𝑥
+ 𝜉(𝑙) cos(𝜔(𝑙))

𝜕

𝜕𝑟
. (19)

Equation (18) with the boundary conditions (5), (10),
and (11), which are imposed at the respective bound-
aries of the computational domain Ω𝑝, is solved nu-
merically by the explicit MUSCL-type finite volume
scheme for nonstructured meshes proposed in [27]
(the maximum limited gradient scheme).

At the second stage, the action of the inertia and
force terms at each discrete node (𝑥(𝑗), 𝑟(𝑗)) in the
physical space is considered. Here, 𝑗 denotes the
number of the triangle, and (𝑥(𝑗), 𝑟(𝑗)) is the node
of a finite volume mesh located at the center of the
triangle. The corresponding equation reads{︂
𝜕

𝜕𝑡
+ 𝐿

(𝑗)
𝑖 + 𝐿

(𝑗)
𝑓

}︂
𝑓
(𝑗)
i = 0, (20)
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where 𝑓
(𝑗)
i is the distribution function at the discrete

node, and the operators 𝐿
(𝑗)
𝑖 and 𝐿

(𝑗)
𝑓 are given by

𝐿
(𝑗)
𝑖 = −𝜉 sin𝜔

𝑟(𝑗)
𝜕

𝜕𝜔
, (21a)

𝐿
(𝑗)
𝑓 = −

(︁𝜕𝜙
𝜕𝑥

)︁(𝑗) 𝜕

𝜕𝜉𝑥
−
(︁𝜕𝜙
𝜕𝑟

)︁(𝑗) 𝜕

𝜕𝜉𝑟
. (21b)

The derivatives of the potential at the center of a
triangle are calculated from the solution of the Pois-
son equation (3). Equation (20) with the boundary
conditions (12), (13) is solved numerically, by using
the explicit MUSCL-type finite volume scheme with
a superbee slope limiter [28].

The Poisson equation (3) with boundary condi-
tions (8) and (9) and the floating potential constraint
(6), (7) is solved by the finite element method with
quadratic Lagrangian elements [29]. The particle
charge is obtained, by using Eq. (15), which is solved
by the explicit Euler method. The kinetic equa-
tion for electrons (14b) is solved, by using the same
method, as was described above for the ions. In or-
der to hasten the computational process, the parallel
version of the proposed numerical method has been
developed, by using a shared-memory parallelization
technique. The method is parallelized as follows.
During the first stage of the splitting scheme [see
Eq. (18)], the computing threads operate on differ-
ent domains in the velocity space. During the second
step [see Eqs (20)], the threads operate on different
sets of triangles in the physical space. The proposed
algorithm was found to be very effective, because it
involves the parallelization both in the velocity and
physical spaces. The algorithm was implemented, by
using the OpenMP library.

4. Results and Discussions

In this section, the results of computations performed
by means of the proposed numerical method are sum-
marized and discussed. It should be noted that the
problem under consideration was solved in the di-
mensionless form, i.e., there is no need to specify
the values of background plasma parameters such as
𝑛𝛼0, 𝑇𝛼0 and 𝑢. For simplicity, the case of isother-
mal plasma flow was considered, i.e., it was assumed
that 𝑇e0 = 𝑇i0. The flow velocity was varied below
𝑣i0. The particle radius was chosen to be 𝑎 = 0.2𝑟D,
𝑎 = 0.5𝑟D, and 𝑎 = 𝑟D, where 𝑟D is the Debye length

in plasma:

𝑟−2
D = 4𝜋𝑒2 (𝑛e0/𝑘𝑇e0 + 𝑛i0/𝑘𝑇i0) . (22)

In all calculations, the dimension of the computa-
tional domain in the physical space 𝐴𝑅 was varied
around 20𝑟D. The number of triangles was varied
from 1500 to 2000, and the average number of nodes
on the particle surface was 20. The sizes of the com-
putational domains in the velocity space 𝐴𝛼

𝜉 and 𝐴𝛼
𝜉𝑥

were varied from 4𝑣𝛼0 to 6𝑣𝛼0, 𝛼 = e, i. The step sizes
of the finite-volume mesh in the velocity space were
Δ𝜉 = Δ𝜉𝑥 = 0.25 𝑣𝛼0, and the number of nodes on the
interval 0 ≤ 𝜔 ≤ 𝜋 was 20. The number of computing
threads was chosen to be 32 or 64. The total com-
putational time required to obtain the steady-state
solution of the flow problem under consideration was
varied from 2 to 4 h.

The main focus of this work is on the drag force
exerted on a particle by ions. Note that the electron
drag force can be usually neglected owing to the great
difference between the ion and electron masses. Ac-
cording to the conventional terminology, the ion drag
force F𝑑 is given by the sum of two components,

F𝑑 = F𝑚 + F𝑒, (23)

where F𝑚 is the force arising due to the mechanical
interaction between ions and the particle surface, and
F𝑒 is the force arising from the interaction of the par-
ticle charge with the flow-induced plasma anisotropy.
The first component is

F𝑚 = −
∫︁

𝒫i n 𝑑𝑠, (24)

where 𝑃i is the stress tensor for ions given by

𝒫i = 𝑚i

⟨
𝜉 ⊗ 𝜉 𝑓i

⟩
𝑟. (25)

The second component reads

F𝑒 =

∫︁
ℳn 𝑑𝑠, (26)

where ℳ is the Maxwell stress tensor

ℳ =
1

4𝜋

{︂
E⊗E− 1

2
E 2

}︂
, (27)

and E = −∇𝜙 is the vector of the electric field.
Since the flow around the particle is axisymmetric,
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Fig. 1. Distributions of the normalized charge density along
the axis of symmetry for 𝑢 = 0.5𝑣i0 and different particle sizes:
𝑎 = 0.2𝑟D (a), 0.5𝑟D (b), 𝑟D (c). The arrow shows the flow
direction. The normalized charge is given by Δ𝜌/𝜌i0, where
Δ𝜌 = 𝑒(𝑛i − 𝑛e) and 𝜌i0 = 𝑛i0𝑒. Note that, far from the
particle, the quasineutrality condition holds 𝑛i0 = 𝑛e0

the ion drag force is directed along the axis of symme-
try. Hence, one can consider only the 𝑥 component
of this force and denote, for brevity, 𝐹𝑑 ≡ (F𝑑)𝑥,
𝐹𝑒 ≡ (F𝑒)𝑥, 𝐹𝑚 ≡ (F𝑚)𝑥.

In order to clarify the nature of the electric compo-
nent 𝐹𝑒, the distributions of the normalized charge
density along the axis of symmetry are shown in
Fig. 1 for 𝑢 = 0.5𝑣i0 and different particle sizes. The
normalized charge density is given by Δ𝜌/𝜌i0, where
Δ𝜌 = 𝑒 (𝑛i0 − 𝑛e) and 𝜌i0 = 𝑒𝑛i0. In Fig. 1 one can
observe anisotropy in the distribution of the charge
density around the particle. It can be seen that the
charge density in the wake region behind the particle
(𝑥 > 𝑎) is higher than the charge density in front of
the particle (𝑥 < −𝑎). Taking into account that the
particle charge is usually negative due to the much
higher mobility of electrons than that of ions in the
plasma, one can conclude that there exists a non-zero
force 𝐹𝑒 acting on a particle from the anisotropic elec-
tric field. It is clear from Fig. 1 that this force is usu-
ally positive, i.e., it is directed along the plasma flow.
One can also see that the anisotropy in the distribu-
tion of the charge density becomes less pronounced as
the particle size increases. Hence, the force 𝐹𝑒 should
decrease, as the ratio 𝑎/𝑟D increases. It is also worth
noting that, in typical laboratory dusty plasmas, the
electric force 𝐹𝑒 is usually much higher than the me-
chanical force 𝐹𝑚.

Further, let us discuss the dependence of the ion
drag force on the particle size. As was mentioned in
the introduction, the ion drag force can be calculated
in the case where 𝑎 ≪ 𝑟D by means of the binary
collision approach [1, 12–15]. According to this ap-
proach, the ion drag force 𝐹𝑏𝑐 is given by the sum of
two components,

𝐹𝑏𝑐 = 𝐹 𝑐
𝑏𝑐 + 𝐹 𝑜

𝑏𝑐, (28)

where 𝐹 𝑐
𝑏𝑐 is the collection part associated with the

momentum transfer from the ions that collide with
the particle, and 𝐹 𝑜

𝑏𝑐 is the orbital part, which is due
to the momentum transfer from the ions that are scat-
tered in the electric field of the particle. The collec-
tion component 𝐹 𝑐

𝑏𝑐 is calculated by the conventional
orbital motion limited theory:

𝐹 𝑐
𝑏𝑐 =

√
𝜋𝑎2𝑝i0�̂�

−2

{︃
�̂�
(︀
1 + 2�̂�2 + 2𝜙𝑝

)︀
𝑒−�̂�2

+

+
[︀
4�̂�4 + 4�̂�2 − 1− 2

(︀
1− 2�̂�2

)︀
𝜙𝑝

]︀ √𝜋

2
erf(�̂�)

}︃
, (29)

where 𝜙𝑝 = |𝜙𝑝|/𝑘𝑇i0 is the normalized particle po-
tential, and �̂� = 𝑢/𝑣i0 is the normalized flow veloc-
ity. The orbital component is calculated, by using the
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modified Coulomb scattering theory:

𝐹 𝑜
𝑏𝑐 = 8𝜋 𝑛i0

𝑞2i 𝜙𝑝
2

𝑚i𝑣2i0
𝑎2𝐺 (𝑢/𝑣i0) lnΛ, (30)

where

𝐺(𝑥) ≡
[︁√

𝜋 erf(𝑥)/2− 𝑥 𝑒−𝑥2
]︁
/(
√
𝜋𝑥2)

is the Chandrasekhar function; and ln Λ is the modi-
fied Coulomb logarithm given by the relation

ln Λ = ln

[︂
𝑏𝑠 + 𝜆𝑠

𝑏𝑠 + 𝑎

]︂
, (31)

where
𝑏𝑠 = 𝑎 𝑒 |𝜙𝑝|/

(︀
2𝑇i0 +𝑚i𝑢

2
)︀
,

𝜆2
𝑠 = 𝑟2De

/
[︀
1 + 𝑇e0/

(︀
𝑇i0 +𝑚i𝑢

2
)︀]︀
,

𝑟−2
De

= 4𝜋𝑒2𝑛e0/𝑘𝑇e0. (32)

In Fig. 2, the dependence of the normalized ion
drag force on the normalized flow velocity 𝑢/𝑣i0 is
shown for 𝑎 = 0.2𝑟D. The normalized ion drag force
is defined as 𝐹𝑑/𝑝i0𝑎

2, where 𝑝i0 = 𝑛i0𝑘𝑇i0. The
filled symbols on this figure (∙) indicate the present
results obtained by the numerical solution of the ki-
netic equations. The solid line (1) shows the results
obtained using the conventional binary collisional ap-
proach, i.e., by Eqs. (28), (29), and (30). Since the
ratio 𝑎/𝑟D is sufficiently small in this case, the binary
collisional theory is expected to give accurate results.
In fact, one can see from Fig. 2 that there is the good
agreement between the kinetic results and those ob-
tained by the binary collision approach. However, the
situation changes as the particle size increases.

In Figs. 3–4, the dependence of the normalized ion
drag force on the normalized flow velocity is shown
for 𝑎 = 0.5𝑟D and 𝑎 = 𝑟D, respectively. Once again,
the filled symbols (∙) indicate the present results ob-
tained by the numerical solution of the kinetic equa-
tions, and the solid line (1) shows the results obtained
by the binary collisional approach, i.e., by Eqs. (28),
(29), and (30). One can see from these figures that
the conventional binary collision theory becomes in-
applicable, as the ratio 𝑎/𝑟D increases. In author’s
opinion, it can be explained by the following two
facts. First, the binary collision approach does not
consider the effect of a particle size on the distribu-
tion of the electric potential around a particle. As
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Fig. 2. Velocity dependence of the ion drag force for 𝑎 =

= 0.2𝑟D. Symbols ∙ show the present results. Solid line (1)
shows the results obtained by the conventional binary collision
approach [see Eqs. (28), (29), and (30)]
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Fig. 3. Velocity dependence of the ion drag force for 𝑎 =

= 0.5𝑟D. Symbols ∙ show the present results. Solid line (1)
shows the results obtained by the conventional binary collision
approach [see Eqs. (28), (29), and (30)]. Solid line (2) shows
the results obtained by the modified binary collision approach
[see Eqs. (33), (29), and (34)]

was mentioned before, this approach is based on the
assumption that the distribution of the potential has
the well-known Yukawa form. It is known, however,
that the potential of particles with radius 𝑎 ∼ 𝑟D de-
cays more slowly than the Yukawa potential. Second,
the binary collision theory does not consider the effect
of the particle size on the screening length 𝜆𝑠 [see Eq.
(32)]. However, as it was shown in [30], the screening
length becomes greater than that obtained from the
solution of the linearized problem, as the ratio 𝑎/𝑟D
increases.
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Fig. 4. Velocity dependence of the ion drag force for 𝑎 = 𝑟D.
Symbols ∙ show the present results. Solid line (1) shows the
results obtained by the conventional binary collision approach
[see Eqs. (28), (29) and (30)]. Solid line (2) shows the results
obtained by the modified binary collision approach [see Eqs.
(33), (29), and (34)]

In order to extend the binary collision approach to
the case of particles with radius comparable to the
Debye length in plasma, the author proposes a modi-
fied version of this method, which takes the disadvan-
tages mentioned above into account. The modified
expression for the ion drag force reads

𝐹𝑏𝑐 = 𝐹 𝑐
𝑏𝑐 + 𝐹 𝑜

𝑏𝑐, (33)

where the collection part 𝐹 𝑐
𝑏𝑐 is given by Eq. (29),

and the orbital part is given by

𝐹 𝑜
𝑏𝑐 = 8𝜋 𝑛i0

𝑞2i 𝜙𝑝
2

𝑚i𝑣2i0
𝑎2𝐺 (𝑢/𝑣i0) lnΛ, (34)

where 𝜙𝑝 is the modified surface potential. The
Coulomb logarithm is given by

ln Λ = ln

[︃
𝑏𝑠 + �̃�𝑠

𝑏𝑠 + 𝑎

]︃
, (35)

where

�̃�2
𝑠 = 𝑎2 + 𝑟2De

/
[︀
1 + 𝑇e0/

(︀
𝑇i0 +𝑚i𝑢

2
)︀]︀
. (36)

The modified surface potential is chosen in such a
way that the product 𝜙𝑝𝑎 is equal to the actual par-
ticle charge 𝑞. Note that the linear relation 𝑞 = 𝑎𝜙𝑝,
which is valid in the limit 𝑎/𝑟D → 0, does not hold
for sufficiently large particles (𝑎 ∼ 𝑟D). As the ratio
𝑎/𝑟D increases, the particle charge becomes higher

than 𝑎𝜙𝑝. This effect can be taken into account
with the use of a modified value of surface poten-
tial (𝜙𝑝 = 𝑞/𝑎) in Eq. (34). Moreover, the use of
the adjusted surface potential allows one to account
for the fact that the particle potential decays more
slowly than the Yukawa potential. The value of the
actual particle charge can be obtained, for example,
by means of the nonlinear collisionless model pro-
posed in [16]. In addition, the author proposes to
use the modified screening length given by Eq. (36),
which allows one to account for the effect of the parti-
cle size on the screening length of the particle charge
in the plasma.

The solid line (2) in Figs. 2 and 3 shows the results
obtained by the modified binary collision approach
described above. One can observe that there is a rea-
sonable agreement between the results obtained with
the use of the numerical solution of the kinetic equa-
tions and those obtained by Eqs. (33)–(36). Thus,
one can conclude that the modified binary collision
approach proposed in this paper is more accurate
than the conventional binary collision approach and
allows one to calculate the ion drag force in the case
where the particle size is comparable to the Debye
length in plasma. It should be noted that the au-
thor do not expect this approach to work in the limit
𝑎/𝑟D → ∞. In this case, however, the electric part of
the ion drag force becomes negligibly small, and the
value of ion drag force is completely determined by
its mechanical part.

5. Conclusion

The present work is devoted to the problem of calcu-
lating the drag force exerted on a charged macropar-
ticle by ions in flowing plasma (ion drag force). The
problem is studied by using an approach based on the
direct numerical solution of the Vlasov kinetic equa-
tions for plasma components. The author considers
a uniform flow of plasma consisting of ions and elec-
trons past a spherical macroparticle, which is charged
by plasma currents. The computations were per-
formed for different particle sizes and different flow
velocities. Using the obtained results, the influence
of the particle size on the ion drag force is analyzed.
It is shown that, for sufficiently small particles, i.e.,
when 𝑎 ≪ 𝑟D, the ion drag force can be calculated
with good accuracy by the conventional binary colli-
sion approach. As the ratio 𝑎/𝑟D increases, the results
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obtained with the use of this method deviates notice-
ably from that obtained by means of the numerical
solution of the kinetic equations. It is explained by
the fact that the conventional binary collisional ap-
proach does not consider the effect of the particle size
on the distribution of the electric potential around
the particle and the screening length of the particle
charge in plasma. In order to account for the effect of
the particle size, a modified version of the binary col-
lision approach is proposed. It is shown that there is
a reasonable agreement between the results obtained
by the solution of the kinetic equations and those ob-
tained by the modified binary collision approach in
the case where the particle size becomes comparable
to the Debye length in plasma.
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National Academy of Sciences of Ukraine and the
Russian Fund of Fundamental Researches.
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I.Л. Семенов

IОННА СИЛА ОПОРУ, ЩО ДIЄ
НА ЗАРЯДЖЕНУ МАКРОЧАСТИНКУ
В БЕЗЗIТКНЮВАЛЬНIЙ ПЛАЗМI

Р е з ю м е

Проблема обчислення iонної сили опору, що дiє на заря-
джену макрочастинку в потоцi беззiткнювальної плазми,
дослiджується на основi прямого чисельного розв’язку си-
стеми кiнетичних рiвнянь Власова для компонент плазми.
Розглянуто процес обтiкання сферичної мiкрочастинки рiв-
номiрним потоком плазми. Розрахунки проводяться для рi-
зних розмiрiв частинок та рiзних значень швидкостi пото-
ку плазми. На основi отриманих результатiв, дослiджується
вплив розмiру частинки на величину iонної сили опору. По-
казано, що коли розмiр частинки набагато менший за дов-
жину Дебая в плазмi, iонну силу опору можна обчислити
з гарною точнiстю за допомогою вiдомої теорiї парних зi-
ткнень. Для обчислення iонної сили опору у випадку, ко-
ли розмiр частинки стає порiвняним iз довжиною Дебая
в плазмi, запропоновано модифiковану теорiю парних зi-
ткнень. Показано, що результати, отриманi шляхом чисель-
ного розв’язку кiнетичних рiвнянь, добре узгоджуються iз
результатами, якi отриманi за допомогою модифiкованої те-
орiї парних зiткнень.
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И.Л. Семенов

ИОННАЯ СИЛА
СОПРОТИВЛЕНИЯ, ДЕЙСТВУЮЩАЯ
НА ЗАРЯЖЕННУЮ МАКРОЧАСТИЦУ
В БЕССТОЛКНОВИТЕЛЬНОЙ ПЛАЗМЕ

Р е з ю м е

Проблема вычисления ионной силы сопротивления, дей-
ствующей на заряженную макрочастицу в потоке бесстол-
кновительной плазмы, исследуется на основе прямого чи-
сленного решения системы кинетических уравнений Вла-
сова для компонент плазмы. Рассматривается процесс об-
текания сферической микрочастицы равномерным потоком
плазмы. Расчеты проводятся для разных размеров частиц

и разных значений скорости потока плазмы. На основе по-
лученных результатов, исследуется влияние размера ча-
стицы на величину ионной силы сопротивления. Показано,
что когда размер частицы намного меньше длины Дебая
в плазме, ионная сила сопротивления может быть вычи-
слена с хорошей точностью с помощью известной теории
парных столкновений. Для вычисления ионной силы со-
противления в случае, когда размер частицы становится
сравним с длиной Дебая в плазме, предложена модифи-
цированная теория парных столкновений. Показано, что
результаты, полученные путем численного решения кине-
тических уравнений, хорошо согласуются с результатами,
полученными с помощью модифицированной теории пар-
ных столкновений.
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