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We study the gap generation in Weyl semimetals in a model with local four-fermion interac-
tion. It is shown that there exists a critical value of coupling constant separating the symmetric
and broken symmetry phases, and the corresponding phase diagram is described. The gap gen-
eration in a more general class of Weyl materials with small bare gap is studied, and the
quasiparticle energy spectrum is determined. It is found that, in this case, the dynamically
generated gap leads to the additional splitting of the quasiparticle energy bands.
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1. Introduction

The discovery of new materials with unique quantum-
mechanical properties is crucial for the progress in
condensed matter physics. Recently, such new mate-
rials as topological insulators, Dirac semimetals, and
Weyl semimetals attracted the attention of the con-
densed matter community and moved at the forefront
of theoretical and experimental studies [1-3]. Remar-
kable properties of these two-dimensional (2D) and
3D materials are connected with the unusual prop-
erties of their low energy quasiparticle excitations,
which are described by the Dirac or Weyl equa-
tion. Since 3D massless Dirac fermions can be rep-
resented as two copies of Weyl fermions of opposite
chirality, Weyl fermions can be considered as the most
elementary building blocks of these 3D materials. It
is important to note that while two Weyl nodes for
every particle (except neutrinos, which are perhaps
only left-handed fermions) in the elementary parti-
cle physics are located at k = 0 forming thus a Dirac
fermion, Weyl nodes in condensed matter physics are,
in general, located at different points in the momen-
tum space.
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As is well known, graphene is a 2D Dirac semi-
metal. Consequently, 3D Dirac semimetals may be
considered as 3D analogs of graphene. The first his-
torically known 3D Dirac material is bismuth [4-7],
whose electron states near the L point in the Brillouin
zone are described by the 3D Dirac massive equation
with sufficiently large Dirac mass. It is possible to de-
crease the Dirac mass by doping Bi with antimony.
As the antimony concentration reaches z = 0.03, al-
loy Bi;_,Sb, transforms into a Dirac semimetal with
massless Dirac point, realizing thus a 3D analog of
graphene. Using the ab initio calculations and the ef-
fective model analysis, it was further theoretically
suggested in Refs. [8, 9] that NagBi, K3Bi, RbsBi,
and CdsAs, are 3D Dirac semimetals. By investigat-
ing the electronic structure with angle resolved pho-
toemission spectroscopy, 3D Dirac fermions were ex-
perimentally discovered in NagBi in Ref. [10] and
CdsAs, in Refs. [11,12]. As to the Weyl semimetals,
the recent observation of negative magnetoresistiv-
ity in Big.g7Sbg.o3 provided an experimental evidence
for the existence of Weyl fermions Ref. [13]. To ob-
tain a Weyl semimetal from a Dirac semimetal, one
must break either the time reversal or inversion sym-
metry. This can be done, for example, by applying
an external magnetic field. As a result, the 3D Dirac
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point splits into two Weyl nodes of opposite chiral-
ities. A good example of the dynamical transforma-
tion of a Dirac semimetal into a Weyl one is given by
the dynamical generation of the chiral shift parameter
considered in Ref. [14].

Since the Coulomb interaction is not screened in
Weyl semimetals due to the vanishing of the density
of states at the Fermi surface, the electron-electron in-
teractions in these materials are very important and
may lead to the dynamical chiral symmetry breaking,
which is connected with the dynamical gap generation
due to the pairing of electrons and holes with differ-
ent chiralities. In this paper, we consider the dynami-
cal chiral symmetry breaking in Weyl semimetals in a
model with local four-fermion interaction with regard
for a small bare gap for quasiparticles. The gap gen-
eration in Weyl semimetals in the absence of a bare
gap was previously studied in Refs. [15-17].

This paper is organized as follows. In Section 2, we
introduce the model and set up the notation. The gap
equation for the case of the zero bare gap is derived
and solved. The dependence of the gap on the interac-
tion strength and the momentum space separation be-
tween the Weyl nodes is determined in Section 3. The
more general case of a nonzero bare gap is considered
in Section 4. Using perturbation theory, we derived
and solved gap equations. The energy spectrum was
obtained and described. The results are summarized,
and the conclusions are given in Section 5. For con-
venience, throughout this paper, we set i = 1.

2. Model

We begin our study by considering the following low-
energy Hamiltonian (see, Ref. [14]):

H(W) == HéW) + Hint) (1)
where
1" = - [ drote) x
UFO'(iV + bo) Ao
% ( AO ’UFO’(—iV + bo) 1)[}(1‘) (2)

is the Hamiltonian of the free theory, and A is the
bare gap parameter. This Hamiltonian describes two
Weyl nodes of opposite chiralities separated by the
vector 2bg in the momentum space. The opposite chi-
ralities of Weyl nodes are required by the Nielsen—Ni-
nomiya theorem [18]. Following Refs. [14, 19, 20], we
call by the bare chiral shift parameter. Other nota-
tions: vp is the Fermi velocity, and o =(0,,0y,0;)
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are Pauli matrices associated with the band degrees
of freedom [14, 21]. In the general case, the interac-
tion Hamiltonian H;, describes the Coulomb interac-
tion,i.e.,

Huw = [ @' $E0 U 1) ()l (3)

In order to simplify our calculations, we will use a
model with a contact four-fermion interaction

—— = g8°(x), (4)

where g is a dimensionless coupling constant. As we
will see, this model interaction should be sufficient for
the general qualitative description of the gap gener-
ation in Weyl semimetals. Before proceeding further
with the analysis, it is convenient to introduce the
four-dimensional Dirac matrices in the chiral repre-
sentation:

() = (0)
— . 0.1.2.3 I 0 (5)
v =i’y —(0 _I),

where I is the two-dimensional unit matrix. Using the
Eq. (4) and Eq. (5), we can rewrite the full Hamilto-
nian Eq. (1) as follows:

/ d*ry(r)
+vr7075 (Ybo) + 70A) Y(r) +
+9 / A (0 (0) (0)(r). (6)

3. Gap Equation in Weyl
Semimetals without Bare Gap

(—ivr(YV) +

3.1. Derwvation of the gap equation

In this section, we derive the gap equation in Weyl
semimetals using the Cornwall-Jackiw—Tomboulis
formalism [22]. The Cornwall-Jackiw—Tomboulis ef-
fective action in the first order of perturbation theory
takes the form:

[(G) = —i Te[LnG™ + S7'G — 1] +
+ g /d4r (tr[G(r,r)G(r,r)] —

r)]tr[G(r, r)]), (7)
697
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where G is the full fermion propagator, and S is
the free fermion propagator. The trace and the loga-
rithm in the first term on the right-hand side of the
above equation are taken in the functional sense. The
Schwinger-Dyson equation for the fermion propa-
gator determines extrema of the Cornwall-Jackiw—
Tombolulis effective action and is given by

G~ ") = 87, ") +igs™ (r— ") (G — t[G]), (8)

where the trace is taken over spinor indices. The in-
verse free fermion propagator is given by

iST (r,r") = (i0; + ivpyo(y - V) —

—vr075(Y - bo)) 8% (r — 1), (9)
and the ansatz for the inverse full fermion propagator
is given by

iG7 (") = (i0; + ivpyo(y - V) — vryoys(y - b) —
— ole 2P T 5 (1 g, (10)

where b is a renormalized chiral shift, and
Ae~2i(P'T)7%5 g the general form of the gap term,
which can be understood as the chiral charge density
wave order parameter. This form of the chiral conden-
sation, where fermions (electrons) and antifermions
(holes) are paired in a state with total momentum
2b’, is reminiscent of the Larkin—Ovchinnikov—Fulde—
Ferrell (LOFF) [23, 24] state of pairing between elec-
trons with nonzero total momentum in the theory of
superconductivity. Obviously, this phase can be elim-
inated by the chiral transformation

g1 (7“, 7“’) — ei(b’-r)'y5ié—1 (7“, Tl)e—i(b’~r’)'y57

(11)

where

iG7 (") = (i0; + ivpyo (v - V) — vpy0y5(7 - b) —
—70A) 8*(r — 1) (12)
is the inverse fermion propagator with conventional

Dirac mass without chiral phase and b =b —b’. In
the momentum space, Eq. (12) takes the form

iG (w,k) =

w—vpo-(k—b A
_< FA( : w+vF0-(k+B)> (13)
698

Multiplying the Schwinger-Dyson equation (8) by
e~ 1)75 from the left and e/P"*')75 from the right,
we obtain the equation

Z.G_l(w:k) = iS_l(wak) - g(G - tI"[G]), (14)

where S~!(w, k) coincides with the inverse free prop-
agator with bg replaced by the relative chiral shift
by = by — b’. Multiplying Eq. (14) by 7°v®~ and
taking trace, we obtain the following equation for the
chiral shift parameter:

b=bg + I tr[’yofy5’yc_¥].

Top (15)

Further, multiplying Eq. (14) by v and taking trace,
we find the gap equation

A= %tr 1G] . (16)

Inverting Eq. (13), we obtain the full fermion propa-
gator

iG(w, k)N = wKy + vp (Kok — 20p(k - b)b) 7% +
+op [20p(k - b)k — (Ko — 2A%)b] 7°7% +

+ 203 (k - b)wy® + A (Ko — 20pb?) 7% +

+ 2ivE A([b x k] - v) — 2wAvpy° (v - b), (17)
where Ko = v (k> + b?) + A? — w? and N = K§ —
— 40 (A%b? + v} (k - b)?). We can integrate over the
frequency on the right-hand side of Egs. (15) and

(16). These integrals have a similar structure and can
be easily calculated

/dw Al + A2w2 _
(W2 + W) (w2 + W)
™ Al
= A + s
VWi + s < ? W1W2>

where Wi, = (A?2+03(k*+b?) ¥ /KZ—-N.
Thus, we obtain the following system of equations:

(18)

= / A’k T y
-9 (2m)* VW, + VWV,

,UZ(kZ —52)+A2
1+ - , 19

X( HIAT ) (19
— d’k m
b = by —

0 g/(277)4\/W1+\/W2X
y B+B(v%(52+k2)—A2) — 2kvi (b - k) (20)

WiWs ’
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3.2. Solution with chiral phase

In this case, fermions and antifermions are paired
with non-zero total momentum. One can easily prove
that b = 0 if we choose b’ = by, which leads to
by = 0. Then Eq. (19) equals

d*k
1=
g/ (2m)4 (/A2 +v2k2

A
2/ kde 1
=d4gm
) A2+vzk2
S A 2+1_
"~ Supm? vp A

2
B (A) svesinh (@)),
VR A A

where A = 7 is a momentum cutoff, and a is the lat-
tice spacing. Assuming that EFAA < 1, Eq. (21) sim-
plifies to the following one:

1 1 A2 A
- —— =~ ———(1+4+2In ,
9  Yer 16’0%7T2 2up A

87T2’I)F
Jer = T;

(21)

(22)

where g, is the critical value of coupling constant.

One can see from Eq. (22) and Fig. 1 that the cou-
pling constant g must exceed a critical value g, in or-
der to produce a non-trivial gap A. Of course, there is
also the trivial solution A = 0. To determine the solu-
tion with the lowest energy, we will calculate the value
of Cornwall-Jackiw—Tomboulis effective action at its
extrema, which gives the energy of the system. After
some calculations (for more details, see Appendix),
we find the energy density of the system

Aog AV AY
=_— 12— (=
¢ 8m? <’UFA> + <’UFA> *
AN fopA
+ (W—A> arcsinh (T) .
Since E(A #0) — E(A =0) <0 for UFAA < 1, a non-
trivial solution is always more favorable as soon as

it exists. Our results coincide with those obtained in
Refs. [15-17].

(23)
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3.3. Phase diagram

In this subsection, we compare three different phases
that can exist in the system. The solution with the
chiral phase was studied in the previous subsec-
tion. In the case of the Dirac phase, fermions and
antifermions are paired with zero total momentum
that means b’ = 0. Thus, we have the usual Dirac
mass term YA in Eq. (10), and there is no need in
the chiral transformation (11). Moreover, there is the
normal phase, where A = 0. For both normal and
Dirac phases, Eqgs. (19) and (20) retain their forms,
but with the replacement b — b. Without any loss of
generality, we can assume that by and b point in the
+z direction. Equations (19) and (20) were solved nu-
merically by using Mathematica and the iteration pro-
cedure with the following values of constants: vp =
=35x10°m/s, A = T =265 x 10°m™" (accord-
ing to Ref. [25], for Bip.gsSbo.12, a = 1.18 nm). The
domain of existence of the Dirac phase is plotted
in Fig. 2, where the Dirac phase exists to the right
from the critical line separating the symmetric nor-
mal phase and the Dirac phase with broken sym-
metry.

To obtain the full phase diagram, it is important to
compare the energy density of the chiral (or LOFF-
like) phase £(b' # 0, A # 0), with the energy density
of the normal £(A = 0) and Dirac £(b' = 0,A # 0),
phases, using the expression for the energy density
given by Eq. (A10) in Appendix. In this subsection,
we will use g = 1.05g.,. Using Egs. (A10) and (17),
we calculate the energy densities of these phases as
functions of by. The difference of the energy densities
of the normal and chiral phases and the difference of

A
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Fig. 1. Gap as a function of ger/g
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Fig. 2. Domain of existence of the Dirac phase

Exormal = Echiral
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Fig. 3. Difference of the energy densities Enormal — €Chiral @S
a function of bg

the energy densities of the Dirac and chiral phases are
plotted in Figs. 3 and 4, respectively.

We found that the phase diagram of the system is
simple. For g > g.r, the chiral phase has a lower ener-
gy compared to that of the normal and Dirac phases.
The phase diagram of the system is plotted in Fig. 5.

4. Gap Equation in Weyl
Semimetals with Bare Gap Ay

4.1. Derivation of the gap equation

Let us consider a more general case of Weyl se-
mimetal-like materials with bare gap Ag. This case
is of interest from the theoretical and experimental
viewpoints. For example, quasiparticle excitations in
Bi;_,Sb, are described by massless Dirac fermions
only at one point x = 0.03; otherwise, a non-ze-

700
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Fig. 5. Phase diagram of the system

ro mass for Dirac quasiparticles is present. Using
Eq. (6), it is easy to obtain the inverse free propa-
gator

iS™Hr,r") = (i0; + ivpyo(y -V —
—vr7075(Y - bo) = 70A0) 8 (r — 7). (24)

As to the inverse full fermion propagator, the general-
ization of ansatz (13) to the case under consideration
is given by

inl(r, ') = (i0; + ivryo (v - V) — vry0s5(y - b) —
—70(A1 + Ae 2P 1)) 54—yl (25)

To proceed further with the Schwinger-Dyson equa-
tion (8), we must calculate the fermion propaga-
tor. However, due to Ag and A; terms in the in-
verse full fermion propagator (25), the chiral phase
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factor e~2{P" 1) cannot be removed by the chiral

transformation (11). Therefore, we cannot proceed
as straightforwardly as in Section 3. Since we assume
that Ag is small, and A; is proportional to Ag, we
use perturbation theory in A;. We have

Gi(r,r") = G(r,r") + A F(r, '), (26)

where G(r,r') is the fermion propagator, which cor-
responds to the case A; = 0. To find F(r,r'), we use
the equation

/d4r'Gf1(r, MG, ") = 6*(r — ). (27)
In the first order in Ay, we find
YiG(r, ") + /d4r'G71(r, rE(r',r") = 0. (28)

It is convenient to factor out the chiral phase in the
inverse full and full fermion propagators
G (r,r") =e* G (r,r')e ",

(r,r') ’ ( ’) (20)
G(r,r") = e*G(r,r")e ",

where G(r,r') is the fermion propagator without the
chiral phase, and = = i(b’ - r)ys, o’ = i(b" - r')7s.
Multiplying Eq. (28) by —ie® G(r"',r)e™® and inte-
grating over r, we obtain

/d47“e G r)e e G(r,r")e " =
_ ZF n Il) (30)

The Schwinger-Dyson equation (8) takes the follow-
ing form:

iGH(r, ) — %AW (r — r')ezz’ =
=e %S (r,r")e” — goW(r — ') (7(7", r') +
+Ae " F(r,r')e" —e ™™ tr[Gl]e“”’). (31)

Multiplying Eq. (31) by « and taking trace, we have
4A; cos2(b’ - r) + 4A = 4Agcos2(b’ - ) +
+gtx[Go(r,r)70] + “UF(r,m)e" o)

The equation for A is the same as in Section 3 and
can be easily written in the explicit form. Now, we
can proceed with the F' term:

gA; trfe (32)

trle i F (r,r)e"y) =
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= tr [/ d*r'G(r, r')efzzﬁg@(r’,r)'yo]. (33)

Expressing G(r,7') through its Fourier transform in
the momentum space and integrating over r, we find

dw1d3k1 dWngkQ
(2m)*  (2m)*
)4(5(0.)1 — (JJQ)(S(kl — k2 — 2bl’)/5) X

trfe i F(r, r)e" o] = tr{ /
% G(ewn, k) (2

x et (wi—we)—ir(ea—k1) o Gy, k2)70}, (34)

where 6(k; — ks + 2b'75) is a matrix 4 x 4 which can
be written as:
1
5(ki — ks — 2b'ys) = 2500, — ey — 2b') +
]_ —

+—— B 5(k; — ks + 2b).
Integrating over w; and ki, Eq. (34) can be rewritten
as follows:

3 G
trfe” i F'(r,7)e 0] = tr{/ %

X (G(WQ,kQ + 2b’)P+ + G(WQ,kQ — Qb’)P_) X

x e**G(ws, —kz)], (36)

where Py = &% Equation (36) gives contributions
only with the cos2(b’ - r) and sin 2(b’ - r) terms. The
sine term is approximately by 8 orders smaller than
the leading cosine term and will be neglected. This
term is related to the approximations that were used
in the derivation of the gap equation. Thus, the gap
equation (32) is equivalent to the following system of
equations:
Ap = Ag + %Al trle” “F(r,r)e" o],

(37)

To obtain the equation for the chiral shift parameter,
we multiply Eq. (31) by 7v°°~ and take trace

b="by+ %tr[7075'}'(;’0(r, )]+

A
+ 94—1 tr[y0y°ye “F(r,7)e"].
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Fig. 6. Dependence of A; on the coupling constant and the
chiral shift parameter

Further,
/ / dw, d®k-
tr[y' P ye i F(r', 7 )e" | = tr [75'7/ 7?;2271_)4 2

X (G(Wz,kg + 2b’)P+ + G(WQ,kQ — QbI)P_) X

x e G(w,, —kz)}. (39)

This term also can generate only the sine and cosine
terms. Therefore, in order to be consistent with the
initial ansatz for the fermion propagator Eq. (26), we
should neglect them in the equation for the chiral shift
parameter. So, we have

en

= by + [y (), (40)

which is equivalent to Eq. (15). Further, using

Eq. (17) and performing the Wick rotation, we can
obtain the following equation for Aj:

dwpd®k
A1=Ao+/WE749A1><

(03 +up)? = A .
Ky (wg, k) K (wg, k — 2b") K (wg, k + 2b')

40203 (k*vi cos (26) — W2 + A?) (41)
Ky (on, K) K1 (won, K — 20/ Ky (o, k + 2b7) )

where K (wg, k) = vik? + A? + wi. It is worth men-
tioning that the equations for A and b given by
Egs. (37) and (40) coincide with Egs. (19) and (20).

702

4.2. Solutions

Equation (41) is solved numerically in the case of
b’ = by and by = {0,0,b0}, by using Mathemat-
ica. Further, we use the following values of constants:
vop =3.5x10° m/s, A = =2.65x10°m~" (accord-
ing to Ref. [25], for Bi0.888b0.12; a =118 nm), and
Ag = 0.021 eV (according to Ref. [25]). Numerical

solutions of Eq. (41) are plotted in Fig. 6.

4.3. Quasiparticle energy spectrum

In the previous subsection, we have found A; and A.
Let us determine the energy spectrum of the system
with the dynamically generated A; and A. Assuming
without any loss of generality that by points in the
+2z direction and performing the chiral transforma-
tion (11), we can rewrite the Hamiltonian of the sys-
tem as follows:

H = 'UF’YO(’Yka + 'Yyky) - iUFP)/O’Y/:az +

+ ")/()A + p),OAle?iboZ’Ys' (42)
The last term is periodic and has a small ampli-
tude, so we have a standard situation similar to
the model of nearly free electron in the solid-state
physics. Thus, the quasiparticle energy zone splits
into additional zones near the boundaries of a new
Brillouin zone. According to Ref. [26], we can write
the quasiparticle energy spectrum in the first order of
perturbation theory (A; < A), ie.,

€) = £4/v2k? +02k2 + A2,
(43)

+el_ 1 2
i = T b () - )+ AUKU

where K = 2bg is the inverse lattice vector of a new
Brillouin zone and,

b

|

bo

b . o
Uy = o / dzefsz,yoAleZZbozwg, —
™
~ 3y
—4A1b0")/0 . Km %
= —Ssm | —
™ 2b0

1 1
P P
<+K—2b0+

X

K+ 2b0> -
= —2A17 (Py0K 200 + P-0K,—2b,)- (44)
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k)
A Vg

0 + —
T& T & T &

a

Fig. 7. Quasiparticle energy spectrum in the first order of perturbation theory for the chiral shift bp = 0.6 x A as a function
of: (a) k. with k = 0, (b) k with k. = bg. Solid lines correspond to e,j, dashed lines to ¢, , and dotted lines to the zero order of

perturbation theory

To plot the energy spectrum of quasiparticles,
we can use the following numerical values: wvp =
~ 3.5 % 10°m/s, g = 1.2ger, A = 0.64¢V. For the
given g, the gap in Fig. 6 is well fitted by A; =
= % x (Avp) with fitting parameters ¢; =
=78, ¢ =191, ¢c3 = 74, ¢4, = 106.8, c5 = 453.2,
and y = bKO We plot the energy spectrum in Fig. 7.

5. Discussion and Summary

We have studied the gap generation in Weyl semime-
tals, by using a model with local Coulomb interac-
tion. We have showed that there is a critical value of
coupling constant g.., which separates the symmet-
ric phase and the phase with broken symmetry. The
phase diagram of the system is displayed in Fig.5 in
the plane of coupling constant and chiral shift pa-
rameter. Further, the gap generation in Weyl semi-
metals-like materials with small bare gap was stud-
ied. The non-zero bare gap considerably complicates
the analysis, because the chiral phase in the ansatz
for the inverse full fermion propagator cannot be re-
moved by the chiral transformation. The solution in
this case is displayed in Fig. 6. Obviously, the chiral
shift parameter inhibits the gap generation, because
the larger |bg|, the smaller the gap A;. Further, the
quasiparticle energy spectrum was determined, and
it is found that the simultaneous presence of gaps A
and Ae~2%0%75 Jeads to the additional splitting of the
quasiparticle energy bands shown in Fig. 7.
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In the present study, we have analyzed a simple
model with two Weyl nodes and a contact four-fer-
mion interaction. In real materials, such as tellurium,
bismuth, and antimony heterostructures, the more re-
alistic Coulomb interaction and the anisotropy should
be taken into account. The corresponding analysis
will be done and reported elsewhere. However, we be-
lieve that our qualitative results will survive in the
case of more realistic models.

The author is grateful to E.V. Gorbar for helpful
discussions.

APPENDIX
Free energy density

In this Appendix, we will focus on the derivation of the free en-
ergy density. Since the Schwinger-Dyson equation (8) implies
that

9 _
9 /d4r (tr[G(r,7)G(r,7)] — tr[G(r,7)]|tr[G(r,T)]) =

i

:75(175*%;), (A1)
the energy density can be rewritten as follows:
1
E=1iTr (LnG’l + 5(5’1G - 1)) =
7 d 1
=i [ Z1y {LnG‘l + (876 - 1)} =
2w 2
—0o0
T d oG=1 1
=i [ 99 @y s wiew) -1 (az)
27 ow 2
— 00
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Using the relation
0iG~ Y (w;r, ')

=46(r—1'), (A3)
ow
we find
E=1i / d—wtr [iwG(w; 0) +
2
L[ os o1y, .
+ 5 d°rS, " (w;r)G(w; —r)| — o, (A4)

where £ is the energy density. It is convenient to perform the
Fourier transformation
dwd®k 1
&= 7,/ Ltr {sz(w, k) + =S Hw; k)G(w; k):| — &o. (AB)
(2m)4 2
Using Eq. (17) and assuming that b = 0 and bg points in the
+2z direction, we obtain
£ = Qi/ dwd®k v%kz +w?
(2m)4 v2k? — w2 4+ A2

_ Ap (A)2+1 ,(A)Z N

T 8w2 vp A vp A
AN A .

+ (_’UFA) arcsinh (—UFA ):| — &o,

where the constant 5‘0 can be omitted.

In the case b # 0, there are some subtleties in the deter-
mination of the energy density of the system. Performing the
chiral transformation (11), one must be careful with the in-
tegral boundaries. To account for this fact, we can represent

q. (A5) in the terms of the left- and right-hand sides:

dwd3k
e=if G
+(PL+ PR)%S’l(w; k)G (w; k)] = &L + &r.

If we perform the chiral transformation (11), then we must
redefine the limits of integration as follows:

— & =

(A6)

[(PL + PR)ZLUG(LU, k) +

(A7)

A A+bg
&L /dk - / dks, Er: /dkzﬂ / dk.. (A8)
—A—bg —A —A+bg

For the integral over w, one can use Eq. (A7) and Eq. (17). We
have the typical integral

dwEd3k w4E ~+ w%A2 + Ay _
/ @m)t (W + WG + Wa)
_ [ dwgd®k wi (Ag — W1 — Wo) + Ay — WiW>
_/ (2m)* ( B (W2 + W) (wd + Wa) >
where A; and As some functions of the dynamical parameters
and k (since they are rather cumbersome, we don’t present
them here). As we are interested in the difference of energy den-
sities, we can neglect the first term in the brackets in the equa-
tion above. Further, using Eq. (18), we can integrate over wg

wef T
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» (A9)

kdk dk 1 N
27T2 VWi +/Wo 2

Al(kz)—W1W2:|
S - Wy 2R L2
1 2+ Wi,
+bo
7/ / kdkdkz 1 { Sk
+ z
0 —A%bg
Al(*kz)*WlVVz}
— Wy — W: Al0
1 >+ T, ( )

where Wi » = (AZ +v (k2 + bz)) F 2upby/AZ + kgv%.
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11.0. Cyzavos

I'EHEPAIIA HIJIMHU
V BEMJIIBCbKNX HAIIIBMETAJIAX 3 JIOKAJIBHOO
YOTUPBOX®EPMIOHHOIO BBAEMO/IIEIO

Peswowme

JlocutiipKeHo reHepalliio IJINHE Y BeilJIiBCbKUX HalliBMeTaJsax 3
JIOKAJIBHOIO 90THPLOX(pEpPMiOHHOIO B3aemoziero. Ilokazano, mo
iCHy€ KpUTHYHE 3HAYEHHSI KOHCTAHTH 3B’si3Ky, siKe BiIOKpeM-
o€ cuMeTpudHy da3y Ta da3y 3 HOPYUIEHOK CUMETpPI€Ho i
onucaHa BignosigHa da3osa giarpama. BuB4eHo renepaitito mii-
JUHA B OLIBIOI 3arajbHOMY KJIaci BeiJIiBCBKUX HAIliBMETAJIiB 3
MaJIOI0 MMOYATKOBOIO IMiJTMHOIO Ta OTPUMAHO KBa3i4aCTHHKOBU

ISSN 0372-400X. Vxp. ¢is. ocypn. 2014. T. 59, N 7

enepreTuvHuii cnekrp. [lokazano, mo B bOMY BHIIQIKy JIHHA-
MiYHO 3reHepOBaHa, IIIJIMHA MOXE IIPUBECTU 0 J0JATKOBOIO
POBIIeNJeHHs] KBa319aCTUHKOBUX €HEePreTHYHUX 30H.

II.A. Cyzaués

TEHEPAIIIS IIEJTA
B BEMJIEBCKUX IIOJIYMETAJIJIAX C JIOKAJILHBIM
YETBHIPEXOEPMUOHHBIM B3AUMO/IEICTBUEM

Pesmowme

VccnenoBana reHepanus INeJd B BEHIEBCKHUX IIOJIyMeTaJlIax
C JIOKQJIBHBIM 9eTBIPExdepMuoHHbIM B3aumozeiictsueMm. IToka-
3aHO, UTO CyIIeCTBYeT KPUTHYIECKOe 3HAUYEeHUe KOHCTAHTHI CBS-
34, KOTOPOE pa3/IMi4aeT CUMMETPpUYHyI ¢a3y u a3y ¢ Ha-
PYLIEHHOIl CHMMeTpHeil M OImHMCaHAa COOTBETCTBYMOIas (az3o-
Bas guarpamma. V3ydena remepamus mesnu B 60Jiee MIHPOKOM
KJlacCe BeJIEBCKUX MaTepHaJIOB C MAJION Ha9aJbHOH IIeIbI0 U
[IOJIy9€H COOTBETCTBYIONUN KBa3UIACTUIHBIN SHepreTHIeCKui
crexkTp. [lokazaHo, 9TO B 3TOM Ciiydae JUHAMUYECKU CreHEepU-
pOBaHHAs IeJIb MOXKET IPUBECTH K JOIOJHUTEJIHLHOMY PacIie-
IJICHUIO KBA3UYIACTUYIHBIX 9HEPTeTUICCKUX 30H.
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