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COX’S PARTICLE IN MAGNETIC

AND ELECTRIC FIELDS AGAINST THE BACKGROUND
OF EUCLIDEAN AND SPHERICAL GEOMETRIES

The generalized relativistic Klein—Fock—Gordon equation for Coxz’s mon-point scalar particle
with intrinsic structure is solved in the presemce of external uniform magnetic and electric
fields in the Minkowski space. Similar problems in the non-relativistic approrimation in a
closed spherical Riemann 3-space are examined. The complete separation of the variables in
the system of special cylindric coordinates in a curved model is performed. In the presence
of a magnetic field, the quantum problem in the radial variable is solved ezactly, and the
wave functions and the corresponding energy levels are found: the quantum motion in the z-
direction is described by a one-dimensional Schrodinger-like equation in an effective potential,
which turns out to be too difficult for the analytical treatment. In the presence of an electric
field against the background of the curved model, the situation is similar: the radial equation is
solved exactly in hypergeometric functions, but the equation in the z-variable can be examined
only qualitatively.

Keywords: Cox’s particle, generalized Schrédinger equation, magnetic field, electric field,
Minkowski space, Riemann space.

1. Solutions of Cox’s equation
in a magnetic field in the Minkowski
space-time

In 1982, W. Cox [1] proposed a special wave equation
for a scalar particle with a larger set of tensor compo-
nents, than the usual Proca approach includes: the
approach was based on the use of a scalar, 4-vector,
antisymmetric or (irreducible) symmetric tensor, thus
starting with a 20-component wave function. Such an
extension of the field variables allows one to describe
a spin zero particle with additional intrinsic structure,
which must manifest itself in the presence of external
electromagnetic fields.

The first aim of the present paper is to elabo-
rate several simple situations with electromagnetic
fields, when the generalized solutions for Cox’s scalar
particle can be found. Such exact solutions are con-

© K.V. KAZMERCHUK, E.M. OVSIYUK, 2015
ISSN 0372-400X. Yxp. dis. ocypn. 2015. T. 60, I 5

structed in the presence of uniform electric and mag-
netic fields. In particular, the non-trivial additional
structure of a particle modifies the frequency of a
quantum oscillator arising effectively in the presence
of an external magnetic field.

In addition, there arises additional question about
the interaction of Cox’s particle with a nontrivial
geometrical background. We analyze the behavior of
such a particle in the Riemann space with constant
positive curvature.

The extension of the two problems (in the presence
of a magnetic or electric field) to the case of a spher-
ical space is examined. In the presence of a magnetic
field, the quantum problem in the radial variable is
solved exactly; the quantum motion in the z-direction
is described by a 1-dimensional Schrédinger-like equa-
tion in an effective potential, which turns out to be
too difficult for the analytical treatment. In the pres-
ence of an electric field, the situation is similar. The
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general conclusion can be done: the effects of the
large-scale structure of the Universe depends greatly
on the form of basic equations for an elementary par-
ticle; any modifications of them lead to new physical
phenomena due to the non-Euclidean-geometry back-
ground.

First, let us consider the system of Cox’s equations
[1] in the Minkowski space. We will use a Proca-like
generalized system obtained after the elimination of
two second-rank tensors from the initial system of
Cox’s equations (note that p = mc)

(35 + AFS) @5 = (ihda — ZA,) @
1
(\/%_giham/_—g = —Aa> P = b, W

where the additional non-zero parameter \ is asso-
ciated with the intrinsic structure of the particle. In
a uniform magnetic field described in the cylindrical
coordinates as

dS* = 2dt* — dr* — r’d¢? — dz?, /=g =r,

Br? 2
Ay = —TT, Fs=0,As — 054, = —Br, ®

the first equation in (1) takes the form
h
M‘Po = Zzat(} H(Pz = zh@zlb,
1
p@,+AB- &, = ihd,®,
) e

§®s — ABro, = (ind, - EA¢,> ®
From two last equations, we obtain (let v = AB/u)

h/Mc 1 eB
P, = 10 —y— (10, P,

=1 [0 (e )|

h/Mc eB ,
T+ {’ym@ + <18¢+ e )} ®.

The second equation in (1) reads

by =

16,0y — i (ar n 1) o, —
c r
1 B . Mc

In Eq. (3), we substitute the expressions for the com-
ponents of the vector:

h/Mc

)i

— 6t 6t
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X i@r—'y% (i@,-{—%r)]q)—

eB ,\ h/Mc
_r_<a¢ 2 >1+72X

X |yridy + <i(3¢ + —Br2>} ®—

2h
ih Mc
—0,0=—¢ 4
Mc ~® R’ 4
so producing an extended equation for the scalar com-
ponent ®. Let us introduce the representation for the
wave function & = e~ 1Ft/heimecikz R(r), Then we de-
rive the radial equation (since A is purely imaginary,
we will make a formal change iy = ; we will apply
the notation eB/2hc = b)

E? M?32c?
2 2
[(1_7)<—F1202_— hZ_k>+

<a + )( T (- ) +

+i (m—er) (’yr@r — (m—br2))} R=0. (5)

r2

— 10,

In addition, we will use the notation
E? M?c? 9 9
(1-~ )<h2 7 —7—k> =w.

Then the radial equation takes the form

? 1d w,2_(m

We use the well-known spectrum resulting from the
solution of Eq. (6):

,2:4b<n+m+|;n|+1>,

so that )
w® = 4b (n + %) — 27b. (7)
Further, we find
E—2 B M202 B k2 B
h2c2 h? B
1 m+ | m|+1

=——— |4b — ) —27b|.

T [ o )

This represents the spectrum of a relativistic parti-
cle modified by its intrinsic (Cox’s) structure. In prin-
ciple, this formula provides us with a possibility to
test experimentally Cox’s particle intrinsic structure.
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2. Solutions of Cox’s
Equation in the Presence of an Electric
Field in the Minkowski Space-Time

We start again with the system of first-order equa-
tions in the form (1) in the cylindrical coordinates (2):

Ay=-Ez, Fj=-E, F’°=-E.
The first equation in (1) reads

h E
1®y — \E®, = <i—6t n e—z) ®,

c c
u®, — \E®y = ihd,®, ud, = ihd,d,
pq)¢ = lh@gﬂl’

From whence (we use the notation v = AE/p), it
follows:

_ h/Mc ([ ek .
®y = T2 ((zzat + h_Z> +7181> ®
_ h/Mc eE
,1,2_1_72 <16 +'y< 3t+h—z>><l> (9)

&, = (h/Mc)id,®,

By = (h/Mc)idy®
In turn, the second equation in (1) looks as

o) oni(o+ o

Me

’% P, — 0.8, = ——%. (10)

Then, using (9), we obtain the equation for ®:
1 ek 1 1 ek
1 et \ 1 /1 ek 9.) @ —
<zcat + chz> =2 (zcat + hcz—|—728>

. 1 . 1 eE

. 8 M?c?
—z<6 + > 10,® — 8¢<I>: 2 ®. (11)

From (11) with regard for the representation for the
wave function ® = e~ t/heimé R(r)Z(2), we arrive
at (instead of the electric field amplitude, it is conve-
nient to introduce a parameter v = eE/hc; instead of
the energy E', we will use the parameter e = E'/hc)

; ( + ) + + 2 _
1_72 € vz € vz ’)/Zaz
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M?3c?

.9 (.0
—ig (z& +’y(e—|—uz)>} RZ — 7RZ+

0 1\ 0 m?
+K§+;>§—T—2]RZ—O. (12)
The variables are separated:

& 1d 5  m?
(W+rdr+wl_r_2>R(r)_0’ (13)
+l/z — + ﬁz + zi -
72 hc he "%
d d
—z— z z +uz)>] Z(z)—
M202
S 2(2) =+l Z(2) (14

Let us make the formal change iy = v and use the
notation

M2c?
o+ (L4+97) (W] + 7) =w?
Then Eq. (14) reads
d2

+(e+v2)? —wl| Z =0, (15)

d2

which is an equation of the same structure for an ordi-
nary scalar relativistic particle in the uniform electric
field.

3. The Schrédinger Equation
in a Magnetic Field. Minkowski Space

In cylindrical coordinates, the uniform magnetic field
is described by

Fr¢ = —B’I“,
B3 =—-Br, B*=-Br~', B;B'= B>

We start with the Schrédinger wave equation for
Cox’s [1] particle in the form [2]

1 o x o * o %
De¥ = 5 (D1D1 + Dav™® Dy + DyD3) ¥, (16)
where
B
Dy = ihd,, Dy =ihdys + ETT’ Dy = ihd,,

1 e Br?
D1: ih <5r + —), Da2= ih6¢ + ——r,
r c 2
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1
Trrege (P - TBsDY) =

1 . I'B /. e Br?
“iires (mar T (”‘L% * ET))’

* 1
D= pape (D2 +TB: DY) =

1 e Br?
= ((ino, + €2 +inrBro, ),
1+F2B2<<Za"’+c 2)“ r8>
. (D5 +I2B% ByDs)

D3= Zhaz, Di=

= = ih.. 17
Ds 1+02B? 1o (a7
Below, we will use the notation
eB
=~ —b TB=~.
2hc ’ 7
We compute
1 es_ B
oM T T 2M(1+42)

[, 1
x 63—%;&"—%8r6¢+i'ybr6r+2i'yb},

1 o 12
L - 18
ot P2P2= “oarv 2 (18)

_1 g 92\ 2 g 2 1

x = (0 —ibr®)” + v (9y — ibr );6,,],
1 o s h?

B W A B 1Y)
oar D3Ds 2M(1+’y2)( +7°) 0

By using the representation for the wave function

) ) - 2mE
U= e—zEt/hezm(bezk/.R(T), € = 7;;’2

(1+7%), (19)

we obtain the radial Schrédinger equation

i +1d+2i b+
L - €
dr? = rdr 7

m — br2)?

For physical reasons [3], the parameter v must be
purely imaginary: v = —in. So, we obtain the radial
equation
d? 1d
T T _
dr? + rdr et
(m — br2)2

P - (1 - (21)

r
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With the notation € — (1 —n?)k? + 2nb = €, equation
(21) can be written as

d2

— +
[dr2
This equation coincides with the differential equation
arising in the usual problem of a Schrodinger parti-
cle in a magnetic field. Its solutions are known. We

present, here only the expression for the energy spec-
trum (turning from €’ to €)

1d  (m—0br?)?

——+€| =0. (22)

rdr r

m+ | m | +1

e:4b<n+ 5 >+(1—n2)k2—2nb. (23)

By translating (23) to the ordinary units, we find

_p 1 eB
2M  1-—n? Mc
><<n+m+|m|+l>_ﬂ 1 ﬁ.

2 21—-n2Mec

FE h x

(24)

With the notation

B
n=TB, I*=T, ¢

Mc

w =

the formula for the energy levels can be written as

P> wh

= T 1-(@B)yE

><n+m+|m|+1 _ wh TB
2 1-([TB)? 2

E

(25)

Thus, the intrinsic structure of Cox’s particle modifies
the frequency of a quantum oscillator

w eB

w:>(:):71_r2B2, w:m

(26)

4. Cox’s Particle in a Magnetic
Field in the Spherical Riemann Space

In the cylindric coordinate system of a spherical Rie-
mann space (for little r and z, the metric coincides
with the known one in the Minkowski space)
dS? = dt* — cos® z (dr2 + sin® r d¢)2) —dz?,

. ™ e
V—g =sinrcos’z, r€[0,7], z € [—5, +§];
we use dimensionless coordinates, % — r,% =z p
stands for the curvature radius of the spherical space).
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An analog of the uniform magnetic field is given by
the relations [4-6]:

Ay = Bp*(cosr — 1), F,s = Bpsinr,
B
B3 = Bpsinr, B®= — >
B psinrcost z
cost z

The question about the source for such a magnetic
field was not considered. However, even without any
clarity concerning the source, we can study the behav-
ior of classical and quantum-mechanical particles in
this field (see [4-6]). It should be noted that, in con-
trast to the flat space, the invariant of the magnetic
field B B; in the curved model depends on the coordi-
nate z and exhibits a singular behavior at the points
z = £7/2. These points are special in the geometrical
meaning as well, because g, and g4 tend to zero as
z — *m /2. These values of z will give singular points
in the resulting differential equations. These explana-
tions are also relevant in the case of an electric field
in the spherical model, which is studied in Section 8.

We start with an extended Schrédinger equation in
the form [2]

1 o 1 *
DV =
! 2M p? {Dl cos? z D+
o 1 * o %
+D2 —5———— D2+ D3D3} v, (27)
sin” r cos? z
where

Dy =ihd,, Do =ihdy— ZBpQ(cos r—1),

Dy =ihd., Di=ih (0, + ),

sin r

D= ihds—<Bp?(cos r—1), D= ik <az oM Z)
c cos 2
* (Dl — FBgDZ) 1
D1: — = — X
14+I2B%2cos %z 1+1I2B%cos %z
X [ih&n +T'Bsinrcos® 2 (ih8¢ - EBp2(cos r— 1))},
c
. (Dy+TBDY) 1 .
2T 140I2B2cos %z 1+12B2cos %z
I'Bssi
x [iha¢ — ZBp*(cos 1 — 1) — ih—— ]
c cos? z
1

14+12B2cos 4z

Ds= (D3 + T2B? ByDs) = ihd..
With the notation
eBp? I'B

he b, coslz 7(2),
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we obtain

1 o 11 5 _ n? X
oMz Pt YT oM o2z (1 +42(2))

-1
x |02+ 200, 4 iy (2 g,
sinr sinr
7(2) -
0,04 — b,

+ sinr ¢ () ]

1 5 29 5 _ h? X
2M p? 29 = 2Mp25in2rc0822(1+72(z))

X [0y + ib(cosr — 1)] x
X [0y + ib(cosrT — 1) — y(z) sinrdy],
2

5 sin z> 0.,

(28)

D3 g% D3= —— <8z -
p cos z

Using the representation

U = e BRI Z(\R(r), €= E/(h?/2Mp?),

we reduce the Schriédinger equation to the form (for
physical reasons [1, 3], the function y(z) must be
imaginary: iy(z) = v(z))

[ 2 <11— 72)

12
" <83 Loosr 5, [m + b(?oz r=1P b’y(z)) N
sin sin” r
e+ (az — o Z) az} R(r)Z(z) = 0.
Cos 2

Separating the variables
cosrT d  [m+b(cos r—1)]?
sin r dr

iy (G =) R +

1 2 220 (= v(2) c
+Z(Z)cos z (1=~ ))< coszz(l—'yz(z))+ +

sin 2
.~ 2 ) Z(2) =0, P
+ <8 os z) 6) (2)=0 (29)
we have
@ eosrd
dr?  sinr dr ,
b -1
- eosr 2 D8 4 A mey =0, (30)
sin” r
& _QSinzi B by(2) B
dz? cosz dz cos? z (1 — ~2(z))
— Z 1
oz (1 -2 2 =0 (31)

the last equation can be reduced to the form (note
that v = BI)

d2
— 2
(dz2

sinz d by + Acos? z

) Z(z) = 0. (32)

cosz dz costz — 2
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5. Analysis of the Equation in Variable z

Excluding the term with the first derivative in (32),
we obtain the equation with the effective potential

1 d?
26) = o 1) (o +et1-U0)) 1) =0
_ by+Acos’z o by+A
U(Z)—m, U(Z—O)—l_,yw (33)
m b
U(z 2) 5
The expression for the effective force looks
F. = —ﬂ = —2coszsinz X
dz
XAcos4z+2b7coszz—|—72A; (34)

(cost z — 42)?

the points of vanishing force (or of a local extremum)
are z = 0 and the roots of the quadratic equation

Acost z + 2bycos® 2z + PA =0 =

b b2
= (cos®z) |12 = —K'yj: (F - )72. (35)

Due to the inequality A? > b2 (see Section 6), the
quantity under the square root is negative. Therefore,
in the physical region of the variable z, we have no
other force-vanishing points in addition to z = 0. In
the new variable cos? z = y, the differential equation
(32) takes the form

£ (31,11 Yd e |
dy> 2y 2y—-1)dy 4yly—-1)
by + Ay ]
Z(y) = 0.
(y =7y +7)4y(y—1) )

(36)

The behavior near five singular points can be found
straightforwardly:

y~1(z—0)
d? 1 1\d

[d_zﬂ * <§ﬁ> T

€ by + A 3 (37)
4(y — 1) + (1—~2)4(y — 1)} Z(y) =0,

Z(y) = expl£ /Ay ~ D), A=e- ’f_%
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y~0
d? 3 d € b
&2 2 N g0) =

<dy2 + 2y dy + 4y + 4fyy> (y) =0,

exp[++/Cy] b

Z(Z/)ZT; CZ—G—;;

(38)

Yy~o0

d? 2d €
4 2 Vg =
<dy2 * y dy 4y2> (2)=0,

—li\/e-i—l.
2 )

(39)
Z:yD’ =
Yy~ +y

dy? 2 \yv ~-1)dy

A+b 1

or

2

[(y—v)d—lﬂ+M(y—v)d%+N] Z(y) =0,
A+b

1/3 1
FEEYCONET R S
2(7 y-1 8y(1—7)

Changing the variable —M (y — v) = x, we get
N

d? d

o= _alZ=0 -
(“’ Az~ Cda ) YT
which is a confluent hypergeometric equation of the
special form

2
(x%-{—(o—m)% — )ZZO,

~0 N A+
R VAR T Y
Its general solution looks as Z = eyM(a + 1,2,y) +
+CQU(a+ 1727y)

Now, let us consider the case y ~ —7:

103 1N,
dy?2 \-yv —-vy—-1/ dy

A—b 1
- 8(—7)(1+7)y+ 7} Zw) =0
or, shorter,
2 d
=+ M=)+ N 2 =0
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Cox’s particle in Magnetic and Electric Fields

d
—M’(y+')/) =T, <$7 —x—w —OéI>Z:0, G,I = M,

which is a confluent hypergeometric equation of the
special form

d? d
[ —_ —_— Z = =
<a: e + (c—x) I ) 0=0,
0 N’ A=b
c= == —"
’ M 4(3+4y)’
its general solution is Z =1 M(a+1,2,y) + c2U(a +
+1,2,y).
The further analytical treatment of the differential
equation (36) is very difficult because of the complex-
ity of this equation.

6. Solutions of the Radial Equation

Now, let us consider the radial equation (30)

d? cosr d

dr? ' sinr dr
— 112
B [m+b(fzozsr )] +A| B =0,
sin” r

for definiteness, let the magnetic field be directed in
the negative direction of the axis z: b=—-B, B > 0.
Then

d? R 1 dR [m+ B(1 —cosr)]

2

2
- AR =0.
dr? tanr dr sin“r R+AR=0

With the new variable 1 — cos r = 2z, we obtain

d? d

—EG§-431+@%2%Q)+A}R:a (40)
With the substitution R = 2%(1 — 2)° F, for
a:i%,b:imzﬂa

Eq. (40) yields

z(1=2)F" +[(2a+1)—2(a+ b+ 1)z] F' —
—[ala+1)+2ab+b(b+1)— B> —A]F =0, (41)

which can be identified with the hypergeometric-type
equation

z2(1—2)F+[y—(a+ B+ 1)z]F' —afF =0.

ISSN 0372-400X. Vxp. ¢iz. orcypn. 2015. T. 60, o &

We will search for the solutions describing the
bound states; in this case, the parameters a and b
should be positive:

z= sin2%, z €[0,+1], r €[0,+n],

Im| | | (42)
+|m +|m+2B
R:(sing) (cosg) F (a,,[?,y;—sin2 g),
for (a, B8,7), we have
+2B
7:+|m|+1,a:+m’b:+w,
2 2

1 1
a=a+b+ - —/B2+ - +A, (43)

2 4

1 1
B:a+b+§+ B2+Z+A.

The polynomial condition is

1 / 1
a:a+b+§— B2+Z+A:—n:0,—1,....

From whence, we obtain the quantization rule

1 ) 1V
A+3=-B+(a+b+s+n

and the corresponding radial functions

ryHIml r\+Im+2B|
R= (sin—) (cos —) Fx

2 2
X (—n,| m|+| m+2B |+l+n,|m |+1—sin2%>. (44)

While examining the boundary properties of

the functions, we should consider features of the
parametrized spherical space S3, the sphere
u%+u%+u§+u§ =1,

by the coordinates (r, ¢, z). In particular,

r=0, w3 =0, us=0, wug=sinz,

ug = +cosz, zE€[—n/2,+m/2],

ug = — COS z,
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A B A
e l/ >
=

—2B
Fig. 1. Orientation B > 0

m =0 m

this means that the complete curve u? + uZ = 1 in
Ss3 is given by two parts:

{(r =0,¢is mute, z) + (r = 7, ¢ is mute, 2)}.

Correspondingly, we must require

at non-zero m.
First, let us consider the case m = 0:

a=0, b=+B8B,

=2B(n+1/2)+ (n+1/2)> = A > B,
(46)

+2B r
R= (cos 5) Y(—n,2B+n+1,1; —sinzi),

R, o= 1, R, =0.

For m = 0, the function ¥ does not depend on ¢, be-
ing continuous and single-valued. From (46), we ob-
tain

A=B+2Bn+n*+n > B. (47)

Now, let us consider the case

m m+ 2B
m > 0, a:-i—E, b=+ SEE

A+i:2B(n+m+1/2)+

+(n+m+1/2)2 = A > B,

+m m+2B
R= (sin %) (cos g) X

(48)

xF(—n,2B+2m+n+1,m+1; — sin? g)
R.0=0, R,,;=0.

It follows from (48) that

A=B+2B(n+m)+ (n+m)>+ (n+m)> B.
396

Now, let us consider the possibility

m m+ 2B

—2B =——, b=-—

m < , a 5 5
1

A+Z:—2B(n—m+1/2)+(n—m+1/2)2:
=(Mn-m+1/2)(n—m+1/2-2B) >0,

R . m\m r\—(m+2B) 7
= (SIHE) (COS 5) X
x (—n, 9m —2B+1+n,—m+1; —Sng),

R, 0 = 0> R,z =0.

>0,

(49)

One of the relations (49) yields
A=B-2B(n—m)—-2B+ (n—m)*+ (n—m) >
>B+mn—m)+m+ (n—m)?+(n-m)=
=B+n®+n-2nm > B.

Now, let us examine the case —2B < m <0,

m m + 2B
=TS0 b=
=73 2

A+i =2B(n+1/2)+ (n+1/2)* > B,

>0,

v @) e o
= — — X
sin 5 oS 5
X F (—n,2B +n+1,—-m+1; —sin2%),
Ry 0=0, Ry,,=0.

From the expression for A, we derive the restriction

A=B+2Bn+n*+n>B. (51)

Now, the last possibility is
m=-2B, a=+B, b=0,
1
A+-=2B 1/2 1/2)?
+ 7 =2B(n+1/2) + (0 +1/2)%, 2
R = sin?P gY (—n, 9B +n+1,-B+1; —sinzg),
Rr—H—O =0, Rr—>+7r =1

These solutions are discontinuous, because the wave
functions depend on ¢ as r — .
Let us collect the results together (see also Fig. 1).

(4), m>0,
1
A+Z:(n+1/2+m)(n+1/2+m+2B);
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(A", m < -2B,

A+i:(n+1/2—m)(n+1/2—m—23);

(B), —2B<m <0,

A+ i =(mn+1/2)(n+1/2 -2B).

In the usual measure units, these formulas read

(A), m >0,
N 1 eB , 2
pA0+Z:+25p (n+m+1/2)+ (n+m+1/2)%
B

A 987 2
(A7), m < =2-—p7,

1 B
p2A0+Z:—2eh—cp2(n—m+1/2)+(n—m+1/2)2;

B
(B), —26,1—0;? <m <0,

L 9B 2 1/2) 4 (n +1/2)2

2
A
p 0+4 e

The transition to the limit in the Minkowski space
is attained accordingly to ( p = o0)

B
m<0, Ap= 2€h—(n+ 1/2);
T £
m > 0, A0:+2%(n+m+1/2),
where ,
. 2M P
Jim Ao = 75 (’“m)

Thus, we have the well-known result

2
P?  eBh <m+ | m | (54)

—m—m 9 +TL+1/2>.

7. Cox’s particle in an Electric
Field. Minkowski Space

The Schrodinger equation for Cox’s particle in an
electric field has the form [2]

I2E,Eiu+TED, 1 o
Dy — )=
< LT+ 2B EY) ) oar Dk
1+T2E;E¢ '

(55)

X gkj |:Dj +
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We use the notation:

Ayg = —eEz, E; = (Fy,Fys, Fos),

gllEl — El, g22E2 — E2, 933E3 — EB,

zh@t - €A0 = Dt,
in_o
/_g ok

In the cylindric coordinates, the field is characterized
by

ihdy, = Dy,

V=9 =D

Es=E, E’=-E, E3E’=-FE°.
First, we get (let TE = )

F2EZEZ,U, + FEij
Dt —C - -
2(1+ [2E;E)

2
_ Y 'p+ D3
= zh@t +eFEz+c W (56)
Next, we consider the Hamiltonian
H=-"|D D+ Dy~Dy+

oM [T

o wy

D .

+D3< 3+1_72>:| (57)

In the explicit form, the extended Schrédinger
equation looks as follows (to allow for imaginary =,
we make the formal change iy — 7):

( Mc*y? ol
<zh8t+eEz—2(1+72) 2(1+72)h082>\11_
h? 2 1 655 2 (mc/h)'y

With the representation ¥ = e~#Wt/"eime 7(5)R(t)
and the notation

M?c? 1 2M 2M
o e o e
we obtain
1 d? 1 42
1 2 1 m?
+ m (W + ;6r - T‘_2> R(T) (59)
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After the separation of the variables (w; > 0 stands
for the separation constant), we have

d? 1d m?
<d_7“22 + ;5 - T‘_Z +’U)L> R(T’) = 0, (60)
d—+uz+w' Z(z) =0,
dz?
I __
R D e

In fact, (60) and (61) coincide with the well-known
ones for an ordinary particle in a uniform electric
field. The equation in the variable z looks as a 1-
dimensional Schrédinger equation with the potential
U(z)=—vz, v>0:

<d_2 N yz> Z(z) = 0. (62)

dz?
The form of the curve U(z) indicates that any par-
ticle moving from the right must be reflected by this

’
w

barrier in a vicinity of the point zo = —*- (we assume
that the electric force acts in the positive direction of
the axis z).

The solution of Eq. (62) can be presented in term
of the Airy function. Indeed, in (62), let us change

the variable
2 p

vz+w' = az, (@ + ﬁx> Z(x) = 0;

let it be (for definiteness, v > 0)

—=-1, a=-1*"?
1/2 ) )
, , (63)
_vztw 1/3 w
—2/3 2T 2
Then we arrive at the Airy equation
d2

to the turning point zg = —w'/v, there corresponds
the value zo = 0. Moreover, Eq. (64) can be related
to the Bessel equation. Indeed, let us introduce the
variable

2 3
¢=30°0  w=3E0, (65)

then the Airy equation gives
1d d?
——+——-1)Z=0.
<3£ a " ag )
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Applying the substitution Z = /3 f(¢), we arrive at
the Bessel equation [8]

d? 1d 1/9 _
(e g1 @) 10 =0 %)
with two linearly independent solutions
f1(§) = J+1/3(if): f2(8) = J—1/3(i§)- (67)

Thus, the general solutions of the Airy equation can
be constructed as linear combinations of

Zy(z) = 30,1 3(i€),  Za(z) = €130, 5(i€),

where

- w3
zf—zT(z+7) :

With the use of the known relation [§]
W/2)" iy 1 :
= — F -2 1,2
Ju(y) F(lt+1)el 1 u+2, w+ 1,24y

and with the notation y = i, p = +1/3,—-1/3, we
express two independent solutions of the Schrédinger
equation as

(i€/2)"
DurD
X 1F1 <+,u + é, +2,U, + 1, _2£>7

. i€/2) +

1
X lFl (—,U/—{— 57_2M+17_2£>

Zy = €0 Tys(i€) = €117

8. Cox’s particle in Electric
Field in the Spherical Model

In the cylindrical coordinate system,
dS® = dt* — cos® z (dr® + sin® rd¢®) — dz,

the external electric field along the axis z is given by

E
Ag = —Eptanz, FE3= 5
cos? z
F3=——— E3F%=— )
cos? z cos? z

Note that the infinite values for E? at z = +m/2
have no metrical sense, and everything is correct in
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the resulted differential equation in the z-variable
(see (75)).

Below, we use the operators (and the dimensionless
coordinate tc/p — t)

ih/p
k> /—_g 8Z’k

We start with the extended form of the Schrédinger
equation [2]
F2E1El,u + FEij
D, — . =
2(1 + I?E; EY)

lo)k (—gkj)
=2tV I /D,
2M p? it

i@Bt—er = Dt, Z}—iak =D
p p

1+T2E;E¢

)m. (70)

After the needed calculation, we get representation
for the wave equation

h el
c<8t+ ptanz+
P hic/p

1M 1
1Mep +*(2) 1 v(2) i0.) ¥ =
2 h 1—9%(z) 21-—7%(2)
h? 1 cosT o
- = 62 a [
2Mp? [cos?2z \ " + sinr * sin? r *

i 1—292 M )
4 (o, - o Sinz vy (Z)ﬁz _ Mcep in(z) v
cosz)\ 1 —~2%(z) A 1—9%(2)
Note that two terms proportional to iy(z)d, compen-

sate each other. In addition in view of physical rea-
sons, we perform the formal change iy — ~:

h E 1M
—c<i5t+utanz cp’yi()>\p:
p he/p 2 h 1+7%(2)
h? 1 5  COST 93
T 2Mp? | cos? z O + sinr O+ sin? r *
N az_2sinz 1+272(z)az _
cos z) \ 1+ 7%(2)
_Mcp 0 ~(2) Mep  7(z) sin z

}\Il. (71)

h 0z14+~%(z) h 1+4+~2%(z) cosz

With the representation

U =e WemPR(MZ(2), w= @,
he
and the notation
he 1 Mpc 1
= —_— =eFE
W=w oy =2 VT B
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0 °
——V—=9=Ds-

Lo L _Mpc
W2J2Mp? h2 =i,
we arrive at
cos? z <W +vtanz — p? 1 +’5 22)> R(r)Z(z)+
2
5, COST ., m
+ (024 200 - ) RZG) +
: 2
+ o Z—QSIHZ 142y (2)62 3
cosz) \ 14+ ~2(z)
0  ~(z) ~v(2) sin z

} R(r)Z(z)=0.
(72)

_“£1+72(z) 14+ v2(%) cosz

After the separation of the variable, we obtain
d2
(= +
and
i_2sinz 1+292(z) d
dz cosz) \1+72(2) dz
~v(2) sin z

d  v(2)
dz 14 ~2(z) 1++2(z) cosz
] Z(z) =0.

2
cosr d m2 +A> R(r) = 0

sin“r

sinr dr (73)

+ W+

2
7 (2) A

tanz — p? -
+vtanz — p T5+2(2)  cosz

(74)

Remember that v(z) = 7 cos™2

can be translated to the form
(cos4 2+ 272 d?

z. The last equation

sin 2
costz +42 dz?
v2costz + 2yt 4+ cos® 2 d
(cost z + 42)2 dz

5 sinzcosz

cos z
cos?z d

TR st +92dz

+ 4y 5 + W +vtanz —

(cos* z + 7?)
z> Z(z) =0.

N G
costz++2  cos?
We could not proceed further with this differential
equation because of its complexity.

(75)

9. Conclusion

The generalized relativistic Klein—Fock—Gordon
equation for Cox’s scalar particle with intrinsic
structure has been investigated and solved in the
presence of the external uniform magnetic and
electric fields in the Minkowski space.
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Similar problems in the non-relativistic approxima-
tion for the case of a closed spherical Riemann 3-space
have been examined as well. The complete separation
of the variables in the system of special cylindric co-
ordinates in the curved model has performed for both
cases. In the presence of a magnetic field, the quan-
tum problem in the radial variable has been solved
exactly, and the wave functions and the correspond-
ing energy levels have been found: the quantum mo-
tion in the z-direction is described by a 1-dimensional
Schridinger-like equation with an effective potential,
which turns out to be too difficult for the analytical
treatment. In the presence of an electric field against
the background of the curved model, the situation is
similar: the radial equation is solved exactly in hy-
pergeometric functions, whereas the equation in the
z-variable can be treated only qualitatively.

So, the additional Cox’s intrinsic structure of a
spin-zero particle turns out to be very sensitive to
the external geometrical background of a space-time
model.
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YACTUHKA KOKCA
Y MATHITHOMY I EJIEKTPUYHOMY IIOJIAX
HA TJII EBKJIIZIOBOT I COEPUYHOI TEOMETPIT

Pesmowme

V3aranbHeHe penasaTuBicTchbke piBHaHHS Kieitna—Poka—T'opmo-
Ha [UIst HeTo4edHOl ckassipHol dacTuaku Kokca 3 BHY TPIIIHBOIO
CTPYKTYPOIO PO3B’S3aHO B IIPUCYTHOCTI 30BHIITHIX OJHOPITHUX
MAar"iTHOro #i eJeKTPUTIHOrO HOJIIB y BHIAAKY mpocropy Mim-
KOBCBHKOTO. AHAJIOTIUHI 3aBJIAHHS PO3IVISHYTO B HEPEJISITUBICT-
CbKOMY HADJIMKEHHI JJIs BHOAJKY 3aMKHYTOrO C(hepuaIHOro
TpuBuMipHOro mpocropy Pimanma. Buxonamo mosme po3mimen-
H 3MIHHHUX Yy CHeIliaJIbHiil cucTeMi IMUIIHAPUIHAX KOOPIAMHAT
B 000X BHmajgkax. Y MOPHCYTHOCTI MArHITHOrO MOJIS KBAHTO-
Ba 3a/a4a JJIs paIiaJibHOI 3MIHHOT BUPIIIEHO TOYHO, 3HAMIEHO
xBuIbOBI (pyHKIT i Bigmosigui pisui exeprii. KBanrosuit pyx y
Z-HAIPSAMKY OMHUCYETHCS OFHOBHMipHUM piBHsHHAM THIY LlIpe-
niHrepa B eeKTUBHOMY MIOTEHINiaJi, SKe BUABISIETHCS 3aHAITO
CKJIAJHUM JIJIsi QHAJIITUYHOrO PO3B’si3aHHs1. Y IPUCYTHOCTI eJie-
KTPHAYHOrO IIOJISI HA TJIi BUKDPUBJIEHOT MOJEJ CHTYyallisd aHaJo-
riuHa: pajgiajgbHe PIiBHSAHHS BHPIIIEHO TOYHO B rimepreoMerpu-
9HUX (PYHKIiSX, PIBHSIHHSA B 2-3MIHHOI MOXKe OYTH JTOCTIiI2KEHO
TIIBKU SKICHO.

K.B. Kasmepuyx, E.M. Oscurok

YACTUIIA KOKCA

B MATHUTHOM U QJIEKTPUTYECKOM
IIOJIAX HA ®OHE EBKJIMJIOBOI

U COEPUYECKON 'EOMETPUIL

Pesmowme

O600meHHOe petITUBUCTCKOe ypaBHeHue Kireitna—Poka—ITop-
JIOHA I HETOYEeYHOM CKaJisApHOil gacTuipsl Kokca ¢ BHyTpeH-
Hell CTPYKTYPOU peIeHo B IPUCYTCTBUHU BHEITHAX OJHOPOJHBIX
MAarHATHOI'O U 3JIEKTPUYECKOT'O IOJIEil B CIydae MPOCTPAHCTBA
MWUHKOBCKOr0. AHaJIOrMYHbIE 332494 PACCMOTPEHBI B HEPEJIsi-
THUBHCTCKOM IPUOIMKEHUHU JJIsI CIydasl 3aMKHYTOro cdepude-
CKOT'O TPEXMEPHOI0 HpOCTpaHCTBa Pumana. Brimosneno mosi-
HOE pa3jeieHne IMepPEeMEeHHBIX B CIeHAJIbHOI CHCTeMe ITUJINH-
JPUYECKUX KOOPAMHAT B 000MX Ciydasix. B mpucyrcrBum Ma-
THHATHOTO IIOJIsI KBAHTOBAS 33/1a4a 110 PAIAATIBLHON IepeMeHHOit
pelIeHa TOYHO, HaliIeHbl BOJTHOBbIE (DYHKIIMH U COOTBETCTBYIO-
mye ypoBHH dHepruu. KBaHTOBOE JBUKEHHE B Z-HAIPABJICHUN
OIHUCHIBAETCS OJHOMEPHBIM ypaBHeHHeM Tuna lllpemgunrepa B
3 heKTUBHOM MOTEHIMAJEe, KOTOPOE OKA3bIBAETCS CJIUIIKOM
CJIOXKHBIM JJIs1 aHAJTUTHIECKOrO peleHusi. B npucyTcTBuu sie-
KTPUYIECKOr'0 IIOJIsA Ha (i)OHe HCKpHBJIeHHOﬁ MOJen CUTyallusad
aHAJIOTMYHA: PAJUa/IbHOE yDaBHEHUE DEIIEHO TOYHO B T'UIIEp-
reoMeTpuvYecKux (YHKIHAX, YPABHEHHE B Z-IEPEMEHHOH MO-
KeT 6bITb UCCJIEJOBAHO TOJIBKO Ka4Y€CTBEHHO.
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