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CONCERNING A CALCULATION
OF THE GRAND PARTITION FUNCTION
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OF A FLUID MODEL

The calculation method of the grand partition function of a simple fluid model in the frame
of a generalized lattice model, where each cell may contain a random number of particles,
is proposed. As an interaction potential between particles, the Morse potential is chosen. In
veourse of calculations, the summation over the number of particles and the integration over
their coordinates are performed. Using the simplest approximation, the equation of state valid
i a wide temperature range is obtained. At temperatures lower than the critical one, the
presence of horizontal plots on the pressure vs density curve is found.

Keywords: coexistence curve, collective variables, reference system, simple fluid, equation

of state.

1. Introduction

The behavior of many-particle systems in both
gaseous and liquid phases has been attracting atten-
tion of scientists for over a century. The task of the
microscopic description of such a behavior remains
vital even today. Especially urgent is the problem of
describing a fluid in a vicinity of and below the critical
temperature T.. Below T, two phases — gas at small
density and liquid at large density — can coexist. The
phenomenon of the transition of a system from the
state in one phase to that in another one is called the
first-order phase transition.

The significant contribution both to theoretical and
experimental researches of the critical behavior of lig-
uids was made by Leonid Bulavin. Particularly im-
portant results were received in experimental works,
for example in observing the influence of an ionic
admixture on the critical behavior of a binary mix-
ture [1], applying SANS (small-angle neutron scat-
tering) to explore the influence of a confinement on
the critical behavior of an individual fluid [2]. The
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outcomes of these investigations are presented in
books [3, 4]. The critical properties of fluids are in
the sphere of L. Bulavin’s interests [5], especially
the stratification processes in monotectic and eutec-
tic metal fusions [6]. His works devoted to the de-
velopment of the global isomorphism approach be-
tween the Lennard-Jones fluids and the lattice gas
(LG) model for calculating the loci of critical points
for such fluids [7] and deriving the explicit rela-
tions between the basic thermodynamic functions of
the LG model and the continuum fluid [8] are well-
known.

Nowadays, most approaches to the description of
phase transitions and critical phenomena in fluids are
based on scaling ideas, universality hypothesis, and
renormalization group methods. The following theo-
ries are worth mentioning: methods taking into ac-
count the fluctuations within the van der Waals the-
ory [9], field-theoretical approach, which appeared to
be very powerful in describing the magnetic systems;
complete scaling approach [10, 11|, which is essen-
tially a phenomenological theory; methods of inte-
gral equations, and, in particular, the self-consistent
Ornstein-Zernike approximation (SCOZA) [12, 13];
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Concerning a Calculation of the Grand Partition Function

perturbation series expansion, for example, the hi-
erarchic reference theory [14, 15]; non-perturbative
renormalization group approach [16]; collective vari-
ables method [17, 18], numerical methods, and com-
puter simulations.

The investigation of simple fluids is frequently car-
ried out, by using the concept of a reference sys-
tem. The system of hard spheres is often taken as
a reference system. The full pair-interaction poten-
tial is usually chosen in the form of a function that
does not possess the Fourier transform. The hard-
sphere potentia itselfl is such a function, as well as
the widely considered Lennard-Jones potential or the
more general Mie potential. However, the results can
be found in the literature for the systems of many par-
ticles interacting via a pair potential possessing the
Fourier transform. For instance, the Morse fluid has
already been studied: within the integral equation
approach [19] and by Monte Carlo simulations using
both the NpT plus test particle method [20] and the
grand-canonical transition matrix method [21]. The
usage of such potentials may be sufficient for some
purposes, for example, to describe the liquid-vapor
coexistence in liquid metals [19, 21]. The descrip-
tion of such systems does not need the hard-sphere
reference system. Consequently, all the interaction —
short- and long-ranged — can be accounted in the
framework of a unified approach within the collective
variables method.

The objective of this paper is to propose a new
method for calculating the grand partition func-
tion with interacting potential possessing the Fourier
transform.

2. Problem Statement

Consider a classical system of identical particles inter-
acting via a pairwise additive potential U(|R|), where
R is the distance in a three-dimensional space. It is
assumed that, first, the interaction can be decom-
posed into two parts
U(R) = ¥(R) - Ui(R), (2.1)
where U;(R) is the attractive part, and W(R) is the
repulsive one, and second, the full potential possesses
a well-behaved Fourier transform.

A physical observable dependent on the particle
coordinates is, in general, a functional of the micro-

ISSN 0372-400X. Yxp. ¢is. orcypn. 2015. T. 60, N 8

scopic particle density defined as [17, 18]

N
A(R) => §(R-R;), (2.2)
j=1

where R; is the coordinate of the j-th particle, IV the
number of particles in the system. Imposing bound-
ary periodic conditions, one can represent 7(R) in the
form of a Fourier series

AR = 1 3 e, (23)
k

where ), = ka Zky Zkzv k, = %’Tni, 1= x,Y,2;
n; is an integer, V = L3 is the periodicity volume
of all system’s properties, and fv A(R)dR = N. The
Fourier transform py has the form

N
Pk = Zexp(—ikRj), and pg—o = N. (2'4)

j=1

Let the system be open. The grand partition function
(GPF) of the system with the interaction potential Uy,
has the form

- w2 B 7 ~
== Z ﬁ/(dR) exp <_2Vzk:UkPkpk>~ (2.5)

N>0

Here, Uy, = [U(R)e™®RdR is the Fourier transform
of the interaction potential U(R), z = exp(Bu’)
is the activity, 8 is the inverse temperature, u' =
= p+ B~ In[(2rmB~1)3/2 /K3 + 75 >k Uy, where we
have used the equality U(0) = 3", Uy/V.

To perform further calculations, let us consider the
volume V to be conditionally split into Np cells with
volume v = V/Np. Moreover, v = ¢3, where c is the
linear size of an elementary cell. Note that, in con-
trast to the lattice gas model (where it is assumed
that a cell can contain one particle or doesn’t con-
tain any particle), a cell can contain a random num-
ber of particles within this approach. The problem
of description of continuous systems (unlike lattice
systems) is related to the fact that the values of a
wave vector are not bounded from above, although
they change discretely. The latter fact is connected
with the restriction of a system to the space of coor-
dinates in the volume V. In much the same way as
in lattice systems (where the wave vector is discrete
and bounded), some restrictions to the values of a
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wave vector k < B are introduced in the majority of
works on the description of fluid systems at a certain
stage of calculations [25]. Herewith, the procedure of
selecting B is ambiguous, and different authors use
to choose B in different ways [18, 26].

The behavior of a system near the point of the
first-order phase transition (PT) is determined by
the interaction potential. When the latter tends to
zero, one has a non-interactive gas, where the PT is
absent. The Fourier transform of potential (2.1) has
to decrease with increase in the wave vector as k™",
where n > 4. That is why the value U(k) = ¥(k) —
— U, (k) is small enough for sufficiently large values
of k. So, let us consider the behavior of a system con-
taining N particles for some model potential UB(k),
which coincides with U(k) for k € [0, B) and equal
to zero for each &k > B. The value of B will be de-
fined subsequently. At this stage of calculations, let
us assume that B takes on a finite value.

The grand partition function with the interaction
potential Ug (k) has the form

2= ZN'/dRexp<—ZUB )

N>0 keB
(2.6)
The wave vector k takes on the values
Ba = dk = (has by )|y = =T 4 25 1
A= - z vy, vz i = c c NBi’
ni:1,2,..., NB,L; ’L =,Y,%; NB:NBENByNBZ}-
(2.7)

In the collective variables (CV) representation [23],
relation (2.6) can be written as

== Z /dR

N>0

_B >

N 3V UB(k)PkP—k
X (dp)"Be ~ *EBa

J(p - ;5);

where the function of transition to the CV py is es-
sentially a product of delta-functions

= 11 d(o— i) =

keBa
2mi >, vk(pk—pPk)
= /(dV)NBe

(2.8)

kEB)

(2.9)

The GPF in the form of (2.8) was originally
proposed in [24] for a many-particle system with
Coulomb interaction, but has not got enough atten-
tion since then. The calculation of (2.8) was made in
works [17, 27], by using hard-spheres as a reference
system. For this purpose, the hard-sphere repulsive
interaction potential was added to the interaction po-
tential (2.1). In the current work, any additional po-
tential of interaction is used.

Before proceeding the calculation of (2.8), let us
perform two identity transformations. The former is

e Nexp [B( — p* (14 7)) po).

Here, p* is some fixed value of chemical potential,
Be = (kT.)~! is some inverse temperature, for which
the identity 8. = 8(1 + 1) is valid, where

PN — (2.10)

T-T,
T = T (2.11)
In further calculations, the quantity po in (2.10) will
be substituted for pg, since expression (2.8) contains
the function J(p — p), which allows one to perform
this procedure.

The latter identity transformation consists in se-
lecting some part from the repulsive component of the
interaction potential by means of introducing some
parameter f € [0,1]:

Up(k) = —Uy(k) + fO(k) + (1 — f)T(k). (2.12)
Let us consider the term
Z Ug(k)prp—x = % Z Vi (k) prp—1 —
ﬁ keBA keBa
5= f Z U (k) prep—xc, (2.13)
keBa

where the effective potential V (k) takes the form
V(k)=Ui(k) — fO(k) +7(1— f)¥(k), (2.14)

and the value ¥(k) > 0. As in the case of the former
transformation, let us replace px by pix in the last
term of (2.13) and use the transformation

PP -k ~
L - e T 2 Prhx

Ea . (215)
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Here,

go= I

keBa

Be

<27TV(1 — f)\ff(k:))_l/Q. (2.16)

As a result of the identity transformations described
above, the grand partition function (2.8) takes on the

X Ben N 5 X V(k)prp-x
E=gu ) - /(dP)NBew KeEa x

N!
N=0 . | A
X/(dQD NBBQECkeZBA(lf)‘i’(k)/(dR)e%kEZBASOkPkX
27 v _
X/ (dv)Pe T (2.17)

To perform further calculations, it is convenient to
change variables

pk = /Nppi; ox = ¢/ V Np.

As a result, the representation of the grand partition
function in the space of collective variables can be
obtained in the form

E=gv /(dﬂ)NB x

Vk:l/ll{/ NB;

Bl —p* (14+0)po+5 > V(k)prp—x N
X e keBA (dv)™E x
1 PP —k .
“p 2 opum T2 2 vkpk
X/ (dp)Nee T xEEn < G(D),

(2.18)

where the “stresses” of new variables are omitted, and
the following notation is introduced:

V(k)=V(k) v,  Uk)=U(k)/v. (2.19)

The quantity gy has the form

P ~1/2
so=in/VNa= ] o= puw) . 20

keEBA

The value of G(P) is a result of the integration over
coordinates and the summation over the number of
particles in the expression

e ()Y e -
G(V)—Z N /(dR)eXp 27rzz epx|, (2.21)

N=0 keBa
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where the operator px is given in (2.4). For 7y, we
have

Vg = Vg — gﬁk/27T. (222)
It is possible to perform the precise calculation of ex-
pression (2.21), as we have already presented in [25].
For this purpose, one should use an evident form of
the operator Py expressed by (2.4). As a result, one
obtains the expression

. o (=2m)" o
G(V):exp Z TZ V Z Vkl...l/knévk1+'”+kn .
n=0 : k1...kn

It can be rewritten, by using the site representation
in the form

i)™

>t oy >
G(v) = en=0 r = exp [a* Z 62““’11, (2.23)
]

where
o = velt =z, (2.24)
For 7y, we have
v =uv — /2w, (2.25)
where

1 —ikl 1 —1kl
Vlzizuke , Y1 = Z(pke .

VNB (T, VNB 5,
(2.26)

Taking (2.23) into account, relation (2.18) yields

T

2 V(k)pxp—x
kEB,

X e J(p), (2.27)

where the expression for the Jacobian of the transi-
tion is

J(p) = /(dI/)NBeQM“EZBA Vkka(l/), (2.28)
where
P a0, D
(2.29)
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The notation of expression (2.29) is symbolic, since
¢k and v, must be understood as functions of the
variables ¢ and 1 according to the equalities (2.26).
It is worth to say that the expressions given below
are precise, since the integration over the particle co-
ordinates R; and the summation over the number of
particles NV are performed without using any interac-
tion potentials and don’t need any approximations.

3. Calculation
of the Jacobian of the Transition

To perform further calculations, the interaction po-
tential is to be specified. Let us choose (2.1) as the
Morse potential, where Uy (r) is the attractive part,

Ui (r) = 2ee~ " Fol/e, (3.1)
and Y(r) is the repulsive component:
U(r) = ee 2r—Ro)/e, (3.2)

Here, the value of € determines the interaction at
a distance Ry between particles, where the mini-
mal value of ®(r) can be reached, and the parame-
ter a describes the effective radius of attraction. The
widespread use and a large number of the results of
numerical calculations [19-21] became the reason for
the choice of U(r) exactly in such form. The Fourier
transform of this potential has the form

N = ez T+ aeh2/A

(3.3)

U1(0) = 16me (%)3 efo/a W(0) = er (%)3 2o/,
(3.4)

It should be noted that the sign of U(0) = ¥(0) —
—U;(0) depends on the parameter Ry/c. For each
In2 < Ry/a < 41n2, one has U(0) < 0, and, for
larger Ro/a, U(0) > 0.

One can find the Jacobian J(p) of the transition to
the collective variables from (2.28) after calculating
F(v). This can be performed approximately by sub-
stituting ¥ (k) in (2.33) by its average value ¥ (k), for
example, by the integral average

B
[ dkk?W (k)
0

B
[ dkk?
0

In principle, another averaging can be used. After this
operation, the expression for F'(v) becomes factorized

v)=[[F@) (3.6)
l
where
2
X exp [(;%_2”(”’_%)}. (3.7)

Expression (3.7) can be represented in the form

E(v) = /d(plewc(l ne Z *2”“”(”1*%),
—o0

where the representation e* = Y0 (Zo s
used. Obviously, the integration over ¢; in (3.8) can
be performed:

/ dipre™ %1 eimer — (7T/Cl>1/2 exp [—pm?], (3.9
where
p=B3(1~f)/2, (3.10)
and

-\ -1
a=(28.(1-f)¥) .
As a result, we have
Fv) = (o )' ePm’ g 2mimu (47Tp)1/2 (3.11)

m!
m=0

where the relation (7/a)'/? = (47p)'/? is used.
Expression (3.11) can be represented in the form of
a cumulant expansion

Fi(v) = exp [Z (2"

(3.12)
= n!

./\/lnulnl,

and the cumulants M,, can be found as functions
of a* and the parameter p. This calculation is to be
performed for each M,, according to the equalities

I"F(v)
oy

B o E(v)
N oy

(3.13)

l/l:0 V{ZO
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As a result, one obtains

Mo = (4mp) P Ty (o, p);

Mo = 3 In(dmp) + InT(ac, p),

My =TTy, Mo =T/Ty — M3,

M3z = T3 /Ty — M3 — 3M My,

My =TTy — M} — 6 M3 My — AM M3z — 3M3,
Ms =T5 /Ty — M3 —10M32 M3 — 10OMI My —
—15M M3 — MMy — 10MaMs,

Mg =Ts /Ty — MS —15MIMy — 20 M3 M3 —
—15M32 My — 45 M3 M3 — 60 M1 Mo M3z —

—6M i M; — 15M3 — 15 MMy — 10M3. (3.14)

Here, we used the special functions

(", p) = i (@) gmpm? (3.15)
n\&, P) = m! . .

m=0

They have form of a rapidly convergent series, since
the parameter p from (3.10) takes on only positive
values, and a* = vexp(B.p*).

In view of (3.12), one can obtain the following ex-
pression for the Jacobian:

J(p) =] 2(o0), (3.16)
!
where
r 2miv, S (—2mi)" n
Ji(pr) = /dule Pt exp Z TMTLVZ h.
— 00 n=0
(3.17)

There is a polynomial in degrees of a real variable v
in the index of the exponent. The convergence of the
integral in this variable is provided by even powers. It
is easy to see, by representing (3.17) in the form

Ji(pr) = / dvie?™ 9 @) (cos|f (2)] — isinlfy ()],

(3.18)

4 6
M4£E — MG.’E N

M (2m)? (2m)0
27 2 2
Jw) = =25 Moa® + = 6!
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3 5
filx) =27 Mz — %Mglﬁ + %M;—,xs. (3.19)

Here, ng = 6 is assigned to provide the definite-
ness. So, the approximation used in [27] is applied.
Expression (3.18) can be represented in the form

_ 70 an
Ji(p1) = exp [— Z n,Pl]

n=0

(3.20)

as a result of the integration over vvariables
v;. Herewith, the coefficients a,, are real values and
have form

apg = 111(27'(') —hlI()7 a; = —J1/107 as = IQ/IO —i—(l%7

as = Jg/]@ 7(1? +3a1a2, (321)
ay = —1I/Io + af — 6atas + 4aiaz + 3a3.
Here, the following notations are used:
I, = / dza™ cos|[fi(z)]ef @,

% (3.22)
Jp = / dzz” sin[f1 (z)]ef .

— 00

As was said above, the convergence of the integrals
in (3.22) occurs for all values of
My >0, My<0, Mg>0. (3.23)
The condition Mg > 0 is sufficient for the existence
of the quantities I, (a*, p) and J,(a*, p). The results
of calculations show that My > 0 for any values of a*
and p. Note that o* = vefe#" and p from expression
(3.10) take on real positive values.

The cumulants My and Mg are real, but they may
take on both positive and negative values. The depen-
dence of these cumulants on o* and p is presented
in Fig. 1. It is easy to see that there exists the re-
gion of the values of parameters 0 < a* < 25 and
0.1 < p < 3, which satisfy condition (3.23). Here,
My < 0 and Mg > 0, which allows one to find the
corresponding values of a,.

An example of the values of cumulants M, and
the corresponding coefficients a,, for Ry/a = 3.71n2,
a* =11, and p = 0.11 is given below. The choice of
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H-
Fig. 1. Regions of the cumulant values Mg > 0 (white colour)
depending on o* and p

such values of parameters is associated with the pro-
cedure of self-consistency described in Appendix. We
take

Mo = 6.1362, M; = 4.1588, My = 2.2040,
M = 0.6023, M, = —0.1498, M5 = —0.0529,

Mg = 0.1523, (3.24)

ap = —0.1640, a; = —2.9664, as = 1.8402,
a3 = —2.3378, ay = 6.2845.

It should be noted that the obtained values of
coefficients (3.24) correspond to a pair of parame-
ters. One of them, namely the parameter p, is de-
fined by expression (3.10) and the value of f, which
determines the reference system, and by the criti-
cal temperature 8. = 1/kT.. So, if some value of f
(f = 0.1488) is set, and if T, is determined, one can
obtain only one fixed value of p (Appendix).

Summing up the calculations performed above, we
can write a functional representation of the grand par-
tition function of a fluid model. The substitution of
(3.20) in (2.27) gives

== g\ljeNBMO /(dp)NBevNBﬁ[#/*H*(1+T)]PO X

an n

X exp [g Zv(k)ﬁ’kp—k] H < = mpl’). (3.25)
k 1

814

Since p; = ﬁ > pre¥! is the site representation
%

of the collective variable py, one has

= gyeMom a0V /(dP)NB x

(1]

- lwmw ()] — an)po—

1(13

1
_Z d(k J—
2% (k) pxp—x 3!\/N—B><

X E pk1,~~,k36k1+m+k3 -

K1, ks
1 aq
_ENiB Z Pk,..., k45k1+--~+k4 . (326)
1y K
Here, d(k) = as — BV (k), (3.27)

where V (k) expressed by (2.19) is the Fourier trans-
form of some effective interaction potential.

The further calculation of (3.26) can be performed,
by using the method of calculation of the grand par-
tition function of the Ising model in an external field
proposed in [28]. Herewith, the role of an external
field is played by

h=pu —Bu*(1+7)—ai.

4. The Grand Partition Function
and the Thermodynamic Characteristics

(3.28)

Expression (3.26) allows one to calculate the depen-
dence of the pressure P on the temperature T and
the chemical potential p/, by applying the relation

PV =kTInE. (4.1)

The average number of particles N can be found, if
the grand partition function is known:

Jdln=
B
The latter expression allows one to express the chem-

ical potential in terms of the number of particles or
relative density

Do N (N,
T Ny \v/) 7
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Concerning a Calculation of the Grand Partition Function

where v is the volume of an elementary cell and a
parameter of the model in use.

Uniting equalities (4.1) and (4.2), one can find the
dependence of the pressure on the temperature T and
the relative density 7, which is to be the equation of
state of the model under study.

One of the methods of calculation of = consists in
the substitution of variables in (3.26):

Pk = Nk + N/ NBCSk- (44)
As a result, one obtains
= gq,eNB(Mo*ao+Eo(H))x
1 -

X /exp [M\/Ngno ~3 Z d(k)men—x —

a4 B

a0 /7 Z Ny -+ 7]k:45k1+ tka (d??) : (45)

4 4

Here, we introduced the notations
M = By — Bu* (1 +7) — a,
a1 = a1 +n.d(0) — ni’%,
d(k) = a — BV (k), (4.6)
@ =ay — 2.

2 2 ¢ 9

The value of shift
ne = —ag/ay. (4.7
For Ey(u), one obtains the expression

Qg 4

Eo(p) = Mn. + d(O) + 54 e (4.8)
In common with the former expression, we have
a1 = ay + d(0)n, + E“nd (4.9)

Let us consider the simplest approximation in the
calculation of Z expressed by (3.26), the so-called
zero-mode approximation (py = 0 for k # 0; pg # 0):

InZg = Ingy + N (Mo —ao+Eo(p)) +E(po), (4.10)

where Zy denotes the grand partition function (4.5)
in the approximation mentioned above, and

_ a4 4
E =
(p()) 24p0’
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Mpo — %d(()) (4.11)

where pg is a solution of the equation

M — d(O) O_FPO_O
If several solutions pg exist, the one leading to the
maximal value of E(py) in (4.11) should be chosen.

The method of steepest descent is used for the cal-
culation of (4.10). That is why the second derivative
of E(po) has to be negative, and, consequently, every
solution py has to satisfy the condition

- 1/2
. ( 2d(0)>
Po > poo, pPoo = (——— .

(4.12)

(4.13)
aq

Such situation takes place barely if T' < T, where pgo
is a real value. For all T' > T, Eq. (4.12) has only one
solution.

5. Thermodynamic Potential
of a Simple Fluid in Frames
of the Simplest Approximation

All further calculations concern the case where the
fluctuation effects are not considered. So, the zero
model approximation is in use. In view of equality
(4.12), it should be noted that, in case of M =0, the
critical temperature 1. is determined from the condi-
tion

d(0 = 0. 5.1
ol,_, (5.1)
Using (4.6), one can find
al Vv (0, T¢)

= kT, = ——°~. 5.2
b= V.1 % 2
For T # T,, one obtains

- T By , 16~ o/ — 1

(O) = agm, where as = GQW. (53)

5.1. The case T =T,

It should be noted at once that the correct inves-
tigation of the behavior of a simple fluid at 7 = 0
should be carried out, by considering the fluctuation
effects, which cause the emergence of the renormal-
ization group symmetry. But even in frames of a sim-
plified consideration, the value T, should be fixed (at
least approximately), and then, only, the behavior of
the system at temperatures different from 7, should
be examined.
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Assigning d(0) = 0 and using (4.1), one obtains

PV = kT, InZ., (5.4)

where
In=.= lng\(l,)—&-NB(Mo—ao-*-EoC( )+Ec(poc)- (5.5)

Here,

0,4_4

a4
4 24p00

EOC(IU’) 24 07

=M.+

EC(ﬁO) = Mcpoc —

The value po. is determined, by using (4.12). In the
case of 7 = 0, one can find

) <6Mc)1/ s

Poc = .
a4

The average number of particles in the case of 7 =0

can be found, by using (4.2) and (4.3), where expres-
sion (5.5) is used as E.. One has

(5.6)

n = ne+ Poe- (5.7)

So, one can find an evident dependence of the chemi-
cal potential M, on the density at T' = T, from equal-
ities (5.6) and (5.7):

as
6

Let us find the grand thermodynamic potential
Q(To, ) of a fluid:

M, = — (7 —n.)>. (5.8)

Q=—-kThZE. (5.9)
In the case of T'= T, one has the expression
Q= —kTNp |f. + M, — o M5 nc)‘*}, (5.10)
where

1
f.= N—Blngq;+/\/lo ao—i-jn4 (5.11)

The chemical potential M, can be excluded from ex-
pression (5.10), by using equality (5.8). In this case,

21(11 ne)t|. (5.12)

The equation of state at T' = T, can be found, by
using (5.4) and excluding the chemical potential M.:

Pv a4 _
LY

816

Q=—kTNpg | f.+ —n(n ne)®—

—(n—mn)t (5.13)

Let us find the free energy F' = Q4 uN of a fluid. The
grand thermodynamic potential is a function of the
temperature, volume, and chemical potential:

dQ = —SdT — PdV — Ndj. (5.14)

The pressure calculated in frames of this representa-
tion has the form

o0
F=- (8‘/>T7 /,l,.

The free energy is a function of the temperature, vol-
ume, and average number of particles:

(5.15)

dF = —Sdr — PdV + pudN. (5.16)

That is why the pressure is given by the expression

P=- or : (5.17)
oV Jr &

According to (4.6), one has

Bu' =M + B (1+7) — . (5.18)

So, at T'=T,, one can find F = Q + Npnay or
_ v - G4 4
F = kT~ [fc + faeli = 51 (A = o), (5.19)
where
foe = a1 — Bep™ (5.20)

The calculation of the pressure P with regard for
(5.17) and (5.19) results in (5.13). As should be ex-
pected, the calculation of the equation of state at
T = T, is not dependent on the way it was deduced
(formulas (5.15) and (5.17)) and has the form (5.13).

The critical value of pressure can be found, by using
(5.13) and the relation 7 = n.. So, one has

kT.f.
v )

P = (5.21)

where the value of f. is given in (5.11).

5.2. The case T > T,

According to (4.10), the expression for the simplest
approximation of the grand partition function at 7' >
> T, has the form

In=y=Ingy+Np (Mo —ag + Eo(/L)-i-E(ﬁo)), (522)
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where

a4 4
- — 5.23
24[)0, ( )

a4 4
2"

1~
E(po) = Mpo — 5d(0)p}

1.
Eo() = Mn, + =d(0)n? +

5 (5.24)

and pg is the solution of Eq. (4.12). The uniqueness
of the solution of this equation, which is written in
reduced form as

Po + ppo +q =0, (5.25)
where
6d(0 6M
a4 aq

is provided with the positive discriminant (here,
d(0) > 0)

~ 3 2
o- (- (3
a4 ayq

It should be noted that the sign of @ doesn’t depend
on the sign of the chemical potential. Among all the
solutions, only one is real:

1/3 1/3
m:(”ﬂ Q) +(3M—¢é) |
a4 ay

This equation defines (with respect to (5.7)) the de-
pendence of the chemical potential M on the density
and the temperature.

The diagram of the dependence of py on M is pre-
sented in Fig. 2 at T > T..

Note that the region M > 0 is referred to the pos-
itive values of pg = 7 — n.. At 7 < n., one obtains
M < 0. The conversion of the chemical potential M
into zero takes place at 1 = n..

The dependence of the chemical potential M on the
density at T' > T, can be defined directly from (5.25),
taking into account that pp = n — n.. Then

(5.27)

(5.28)

M = d(0)(R — ne) + 2 (7 — no)®.

; (5.29)

In contrast to (5.8), the linear term in the density
is present here, and it becomes a main one in the
high-temperature region. As T' — T,, the cubic de-
pendence of M on the density is obtained (Fig. 3).

ISSN 0372-400X. Yxp. ¢is. orcypn. 2015. T. 60, N 8

0.5

Fig. 2. Dependence of the solution pp on the chemical poten-
tial M at T > T, in the case where Ro/a = 3.7 In 2, a* = 11,
and p =0.11

The grand thermodynamic potential of a fluid at
T > T, has the form

d(o
Q=—kTNg|f.+ (T)”2 + Mn—
d(O) = 2 G4, 4
- (7 —ne)” — 24(n —n)*|, (5.30)
where
1 ag 4 1s 2
fe= o Ingy + Mo —ao + o1t + §d(0)nc' (5.31)

Corresponding to (5.30), the free energy doesn’t
contain the chemical potential and has the form

F =¥ Je+ fol — @ni —
v 2
d(o) ag
- T(n - nc)2 — ﬂ(n - nc)4], (5.32)
where
fo=a1—Bp (1+7). (5.33)

The equation of state at T > T, can be found, by
using (5.30) and substituting the value M expressed
by (5.29):

Pv Az T o

ﬁ:f6+?1+7n *
Qg N3 _ 04 .- \4
+ 5 (n —mne) 24(71 ne)”. (5.34)
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0.3 3

0.2

0.1

N]|

0.1

Fig. 3. Dependence of M on the density n at T" > T, for
temperatures 71 = 0.01 (curve 1), 72 = 0.1 (curve 2), 13 =1
(curve 3)

The dependence of the pressure on the density 7 at
temperatures T' > T, is presented in Fig. 4.

Expression (5.34) allows one to depict a 3-
dimensional diagram of the pressure as a function of
the average density and the reduced temperature 7
in the region T > T, (Fig. 5).

The equation of state expressed by (5.34) can be
represented in a reduced form. For this purpose, the
following values are introduced:

P T n

P=—, t=—, n=—. 5.35
P 7 T (5.35)
Then (5.34) takes on the form
P=14P(t-1D)n*+P(1+3n)(n-173  (536)
where the following notations are used:
P ~ 4
asn asn
P = £ Py = <. 5.37
o BT (537)

The curve of dependence (5.36) of the pressure on the
density 1 has the inflexion point at n =1 and T =T,
and reaches its minimum at =0, which follows from
the relations

0 0.1 0.2 0.3 0.4 0.5 0.6

n
Fig. 4. Dependence of the pressure P on the density 7 at
7 =0 (curve 1), 7 = 0.01 (curve 2), 7 = 0.1 (curve 3), and
7 =15 (curve 4)

Fig. 5. Dependence of the pressure P on the average density
n and the reduced temperature 7 in the region 7" > T,
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OP

o = 2n (Py(t — 1) + 6Py (n — 1)), (5.38)
>*P )

T = 2P (t — 1) + 12P(1 — 4n + 3n?). (5.39)

It is easy to see that, for all t > 1, the first derivative
turns into zero at n = 0 only. In the case of t = 1,
there is an additional inflexion point 7 = 1. Indeed,
at t = 1 and n = 1, the second derivative also turns
into zero.

6. Equation of State at T' < T

As was shown above, the pressure P expressed in
(5.36) is a gradually increasing function of the density
1 in the temperature region 1" > T,. It is expected to
observe the first-order phase transition at tempera-
tures T' < T, that must show to turn the susceptibil-
ity into infinity for the certain values of density.

Let us calculate the grand partition function (4.5)
in the simplest approximation at T' < T,. The follow-
ing expression is valid:

InZo=1In g4 Np (Mo —ao+Eo(1)) + N E(po;).-

ISSN 0372-400X. Yxp. ¢is. orcypn. 2015. T. 60, Ne 8
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Here,
_ _ az T o a4 4
Eo(poi) = Mpoi — — ——=Po; — 5 Pois 2
0(poi) Po 2T lpm 24Pm (6.2)
herewith pg; are solutions of the equation
- T _ a4 _3
M — —poi — —pa: = 0. .
(27— Poi = 5P 0 (6.3)

Unlike the case of T' > T, Eq. (6.3) can possess more
than one real root. In this case for F(py;) in expres-
sion (6.2), one should choose pg; corresponding to the
maximal value of E(py;), since the calculation of (6.1)
is performed, by using the method of steepest descent,
which foresees such a condition.

Equation (6.3) can be written in a reduced form:

po; + poi +q =0, (6.4)

where the coefficients p and ¢ are defined in (5.26).

Let us find the marginal value of the chemical po-
tential |M,|, at which the equality @ = 0 is fulfilled.
According to (5.27), one has

2d(0)\"”
%=“§<§-
3 aq
For all values of |M| > M,, the discriminant @ > 0,
and Eq. (6.4) has the single real root. In the case of
|M| < My (Q < 0), there are three real solutions.
Let us consider the case of @ > 0 at T' < T, where

the single root exists, in detail. Using (5.28) at |M| =
= My, one can find

24 1/3
Por :(Mq) .
a4

Since pg; = 7 — n¢, the value of density n., which
realizes at the value of the chemical potential |M| =
= My, can be found as

(6.5)

(6.6)

n2 :nc+ng7 (6.7)
where
- 1/2
8as T
=|—— . 6.8
Mg ( ay T—|—1> ( )

In the course of a further increase in the chemical
potential M (|M| > M,) at T < T, the density can
be defined from the relation
1/3
Q%) :

sM N\? /3Mm
n=n.+ (+Q2) +( (6.9)
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ay4 Q4

Fig. 6. Accordance between the density of a fluid and the
values of chemical potential M; the gaseous phase — solid line
1; the liquid phase — 2

The equation of state of a fluid at T" < T, for all
M > M, has the form (5.34), where the value 7 <
< 0. Under such conditions, the fluid exists in a liquid
state (at T < T.), where the following dependence
of the chemical potential M = M, on the density
(i > ng) occurs (see Fig. 6, solid line 2):

_ GoT A4, N3
M2—1+T(n nc)+6(n ne)”.

(6.10)

In the case of the large negative values of chemical
potential M (M < —DM,), the average density ni,
expressed below, corresponds to the value M = —M,:

Ny = Ne — Ng. (6.11)
For all 7 < nq, the gaseous phase of a fluid occurs
and realizes for all M < —M, (Fig. 6, solid line 1).

The region n; < . < ny corresponds to the chem-
ical potential |[M| < M,, where @ < 0. Equation
(5.25) has three real roots in this case:

B «
po1 = 2por COS 3

_ a
Po2 = —2por COS (§ + g)’ (6.12)
_ a 7
P03 = —2por COS (g - §>7
where
2d(0))
ay
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7 0.002

-0.02 et 0 001 0.02

T T M

Fig. 7. Dependence of roots (6.12) on the chemical potential
|M| < My, curve I corresponds to the solution poi, curve 2 —
po2, curve 8 — po3

0.04

0.02

N |

-0.02 1

—0.04

Fig. 8. Dependence of the function E(pg;) on the chemical
potential M

and the angle « is defined from the condition cos o =
= % and is equal to
q

M
a = arccos M, (6.14)
In the case of M = M, one has o = 0. So,
~ /

. [ 8aoT _
Mll)r_anpm B ( aq(1 —|—7')> ="
MEI_an po2 = EIPMQ po3 = (6.15)
_ 0 (__bar

2 as(1+71))
820

Comparing (6.15) with (6.8), one can find that the

solution pg+) coincides with n, and corresponds to

the density of a liquid phase ns.
The case where M = —M, gives o = 7. Herewith,

_ 1/2
(<) _ () _ - _ (__ 267
P1 = P2 Ps < a4(1+7)> s

_ . _ +
7 iy, o= i = -

(6.16)

At M = —M,, the solution po3 results in the density
(6.17)

Ny = Ne — Ng.
In the general case, the dependence of roots pg; from
(6.12) on the values of chemical potential in the re-
gion |M| < M, is depicted in Fig. 7. Herewith, the
solutions pp; and pg3 have both positive and negative
branches and coincide at M = 0. The root ppo takes
on negative values only.

The dependences po; = poi(M) are presented in
Fig. 8. It is easy to see that the root pg; corresponds
to the maximum of E(py;), as far as the chemical po-
tential decreases from M, to zero. When M changes
from zero to —M,, the maximal value of E(py;) occurs
at ﬁ03.

So, the equation of state in the temperature range
T < T, has to be written in the form

n=nc+ po1O(M) + po3O(—M), (6.18)

where ©(M) is the Heaviside function. It should be
noted that equality (6.12) foresees the existence of
two marginal values of roots pg;, when the chemical
potential M approaches zero. We have

n("") = lim n = Ne + lim ﬁ[)l =N¢+ T, (619)
M—0 M—0
where 1/2
6&27
=2 ) 6.20
Tt < as(1+ T)) ( :

When the chemical potential approaches zero from
below, one has

n(=) = lim (6.21)

n=n.+ lim 003 = Ne — Ny
M——-0 ¢ M—>—Op ¢

So, the change of the sign of the chemical potential
M in the temperature range T' < T, tends to the fluid

density leap, which has a size
A =nH) —p(5) =2p,. (6.22)
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It should be noted that at temperatures T > T,
such leap is absent, since there exists only the sin-
gle root pp, at which the value of E(py) reaches its
maximum. The change of the sign of the chemical po-
tential M converts the value of py into itself.

The expression for the grand thermodynamic po-
tential at temperatures T' < T, where the first-order
phase transition occurs, has the form
n? GoT

Q=—kTNp | fot—<
g Bl:f+2].—7'

+ncM+D13(M)] . (6.23)

Here, the chemical potential |M| < M,, and the fol-
lowing expression holds:

a T as
Dy3(M) = (22ng1 - 21/%1) O(M-)—

ELQ T 9 a4 4
— (= - — O(—M).
( B 1+7p03 24P03) ( )

Using the Laplace transformation F' = Q4 puN, it is
possible to find the free energy of a fluid in the region
of the first-order phase transition, which corresponds
to (6.8):

(6.24)

%4 TL2 dQT
F=—kT—|f, + e

v Jet 21471

asT
+n (f2 — nclj—T) + D13(7_l)‘|, (625)
where
fo=a, — BCM*(I + T). (626)
For Di3(n), one has
N (G2 T o N2, 04 NG o) oy

Dy3(n) (2 1+T(n ne) —|—4! (n n5)>@(n —n)

(B e+ S n o). 621

In such a way, a simple fluid stays in the gaseous
or liquid state, as far as the chemical potential in-
creases. This depends on its value. As was shown
above, at T < T, and the negative values of M <
< —M,, only the single root of Eq. (6.4) occurs. This
situation corresponds to the densities 1 < n; (ny =
= n. — ng, and ng is expressed by (6.8)). This
range of densities corresponds to the pure gaseous
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Fig. 9. Relation between the density ranges of a simple fluid
at T' < T, and the values of chemical potential M = Su — Bpue

0.1714
P 047
0.169

0.168

0.167

0.166
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0.164 1
0 0.1 0.2 0.3 0.4 0.5 0.6

n

Fig. 10. Dependence of the pressure P on the density n at
7 = 0 (curve 1), 7 = —0.01 (curve 2), 7 = —0.05 (curve 3),
7= —0.1 (curve 4), 7 = —0.15 (curve 5), 7 = —0.2 (curve 6)

phase (Fig. 9). As far as the chemical potential in-
creases —M, < M <0, Eq. (6.4) has three real solu-
tions. However, only one of them py3 realizes. This
can be seen from the inequalities

E(pos) > E(po2), (6.28)

P03 > Po2-
This situation is just for all ny < 7 < n(=).

The density n{~) is the largest value for a fluid at
M < 0 and temperatures T' < T.

The transition of M from —0 to +0 causes the den-
sity leap from n(=) to n(*). For all n*) < 7 < ny,
the chemical potential takes on the values 0 < M <
< M,. There are three real roots of Eq. (6.4) for these
values of M, with pg; expressed in (6.12). We have
E(po1) > E(po2);

E(po1) > E(pos)- (6.29)
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T/T,

0 0.5 1 15 2 25
n/n

Fig. 11. Binodal (1) and spinodal (2) in the reduced tempe-
rature-density coordinates

This situation takes place for all n{t) < 7 < ny. The
stable liquid phase with densities 7 > no corresponds
to the case of M > M,.

The generalized equation of state of a fluid has the
form

Pv ag T o

KT Jet 2117t

+ %ﬁ(ﬁ —ne)? — ;—Z(ﬁ — nc)“] X
x[@mFL4n+@m—nHﬂ, (6.30)
where

n) =n.—n,, 2 =n.+n, (6.31)

At T >T., ny; =0, whereas, at T' < T,, one has

. (_ 6T )1/2
e ag(1+71))

It should be noted that, in the case of ny = 0, the
sum of theta-functions in (6.15) turns into unity:

(6.32)

On,—n)+0([m —n.) =1 (6.33)

The transition occurs between the gaseous and lig-
uid phases characterized by densities that maximize
expression (6.30). Their values can be found from the
condition

O(Pv/kT)

o =0, (6.34)

M=0,T

822

which leads to the equation

asT a
1i#ﬁ—m%%€@—mﬁ:& (6.35)
The solutions
_ 6&27’ 1/2

=n.t |—————— 6.36
e < as(1+7 )) (6.36)

satisfy the condition of maximum of expression
(6.30). Solving Eq. (6.36) with respect to the temper-
ature allows one to obtain the expression

T, 6o
T. 6as + asn2(n/n. —1)2’

(6.37)

which can serve as the base for the binodal construc-
tion (the coexistence curve) in the temperature-den-
sity coordinates, which is presented in Fig. 11. The
equation for the spinodal or the curve of marginal
states of the system, defining the boundaries of the
instability region, can be found from the extremum
condition for the equation of state (6.30):

O(Pv/kT)
—— =0, 6.38
on ( )
which leads to the equation
- 1/2
= ne+ (—W) (6.39)
a4(1 + 7')
or
T 2a
a2 (6.40)

T. - 2as + agne(i/ne — 1)2

From whence, the spinodal curve can be obtained. It
is presented in Fig. 11.

7. Conclusions

Using the general principles of statistical mechanics
in frames of the grand canonical ensemble, the cal-
culation method of the grand partition function of a
simple fluid is proposed. A system of N particles in a
volume V with periodic boundary conditions is con-
cerned. As an interaction potential between particles,
the Morse potential was chosen.

In the course of calculating the grand partition
function, the reference system formed from a part of
the repulsive component of the interaction potential
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was used. It is established that, due to the selection of
the reference system, one can perform the summation
over the number of particles N and the integration
over their coordinates. As a result, the evident form
of the Jacobian of the transition from a set of vari-
ables, characterizing individual particles, to the col-
lective variables, whose average values are connected
with the order parameter of the first-order phase tran-
sition, is obtained. Coefficients of the Jacobian of the
transition, which is a polynomial over a series of col-
lective variables in the exponent expressed via the
special functions T,,(a*,p), are introduced. The lat-
ter are represented in the form of rapidly convergent
series. The arguments of special functions a* and p
are real positive values. The former «* is related to
some fixed value of chemical potential p*, the latter
argument p is proportional to the reference system
potential.

We have obtained a representation of the grand
partition function corresponding to some lattice
model. But, in contrast to the lattice gas model, it
foresees that a cell can contain a random number
of particles. The representation is general and valid
both far from the critical point and directly in its
vicinity.

We have considered the simplest approximation,
which is valid out of a vicinity of the critical
point. The equation of state obtained in this work
describes a behavior of a simple fluid system in wide
temperature ranges below and above the critical tem-
perature T,.. At temperatures T' < T, the presence of
rectilinear plots at the pressure vs density curve is
established. It describes a density jump at the first-
order phase transition. A curve circumflex these rec-
tilinear plots allows us to obtain the binodal line. In
addition, the spinodal curve as the instability region
of a system at temperatures lower than the critical
one is found.

The usage of higher-order approximations for the
calculation of the equation of state is the subject of
a separate research.

APPENDIX

Determination of the value of B which characterizes the model
potential

Uk) = { e :\k\\ll(jg

Ui(k) at |k| < B,

(8.1)

Here,

Y(r)= 66*2('r7R0)/0t7 Ui(r) = 9¢e—(T—Ro)/a_
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Let us perform the transition to a reduced form. Let v’ = r/Ry.
Then

T(r') = ee—2(r’—1)/aR, Ui(r') = 256_(T/_1)/QR7 (8.2)
where

So, there are two parameters of the interaction potential: € (as
a dimension unit) and ag. The Fourier transforms

(k) = U(0) (1 + aRk?/4) "2, U(0) = erae®/ R,
Ur(k) = U1(0) (1 4 a%k?) 2, (8.4)
U1 (0) = 1667ra%61/°‘R.
Herewith, the following condition is satisfied:
UL(0) = U(0)16e~ /R, (8.5)
The condition to determine the value of B has the form
oo
/V(k)k2dk =0, (8.6)
B
where
V(k) =Ui(k) — fO(k)+
-2

2 k2

+7(1— £)¥(0) (1 n ai > A (8.7)

This allows us to assign 7 = 0.
The evident form of integral (8.5) can be calculated. So, the
following expression is obtained:

k2dk k2dk
=16 *1/‘*1% / . 8.8
f € (1 4 012 k2 / 2 kz) ( )
That is why
x4 _Bar  _ arctg(Bag)
16 2 T 14 B2ag 8 R
fegetlon (8.9)
s QR
,+m - arctg(BocR/Q)}
The parameter p expressed by (3.10) has the form
p=BH(1 - f)/2 (8.10)

and is dependent on the average value of the repulsive potential
U = (U(k)) at ranges [0, B], where B = B(ag, f). At a fixed
value of ar (the characteristic of a substance), the latter is
determined only by the parameter f (see Fig. 12).

We will find ¥ as the average value of ¥ (k) at k € [0, B]:

T = w(O)xr, (8.11)
where
3/ 2V B 1 B
XR=— (7) arctg QR _ ;R . (8.12)
2 \arB 2 21+aRB2/4
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Fig. 12. Changes of the parameter p depending on the value
B at Ry/ao=3.71In 2
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Fig. 13. Changes of the parameter f depending on B at
Ro/a=3.71n2

It is easy to see that the value of x g is a function of B (or f)
at fixed ag.
In the case of fixed f = 0.1488, at which B = 1.258, one has

xr = 0.932, which corresponds to
Pr =0.11, (8.13)

which is calculated, by using (8.9) in the simplest approxima-
tion, where (see (5.2))

Be = a2/V(0,Tc), then

Pr = 722‘/‘11(20?“; (1-f. (8.14)
Since

V(0,Te) = U1 (0) — fT(0) = ¥(0) (166*1/62R - f),

we have

ppol2_1=/ (8.15)

2 16el/ar — §
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So, the parameter p, which defines the special functions (3.15),
depends on f and the parameter a* = vePH" . The parameter
(a*) defines the values of as.

Conclusion. One should choose a substance to be observed,
which means to fix the parameter ar (for example, ar =
= 0.3899 referring to Ro/a = 3.7 In 2). The possible values
of parameter f defining the reference system change within
the limits 0 < f < 0.154 (see Fig. 13). In this range, V' (0) > 0,
that is the necessary condition to apply analytical calculation
methods, specifically the method of CV. In this case, the ref-
erence system includes the main part of the repulsive potential

Yrs = (1= f)¥(k),

where 0.846 < (1 — f) < 1.
To co-ordinate the “primeval” parameter p which has value
(8.9), one has to choose the value

f =0.1488, (8.16)

corresponding to p = 0.11. The latter has to coincide with
the value of p expressed by (8.10) at a* = 11. If the initial
value p # 0.11, any o exist for (8.15) to coincide with the
result of calculation of p by formula (8.10). The critical tem-
perature (5.2) kT. = 3.8135 corresponds to these values of
parameters for the model.
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M.II. Kosnoscvruti, O.A. /lobyw, P.B. Pomanix

JIO PO3PAXYHKY BEJIUKOI
CTATUCTUYHOI CYMU MOJIEJI IIJINHY

Pesmowme

3alporoHOBAHO CIIOCIO PO3PAaXyHKY BEJIMKOI CTATUCTUYHOI Cy-
MH MOJIeJIi IIPOCTOro IJIMHY B PaMKaX y3arajbHEHOI I'DATKOBOL
MO/IeJIi, B KOXKHOMY 3 BY3JIiB sIKOI MOKe I1epebyBaTH JIOBIIbHA
KiJIbKiCTh YacTHHOK. B poJii moTeHniaxy B3a€Mo/Iil MizK 9acTHUH-
KaM# BHKopucTaHo morenniaa Mopse. ¥V mporeci po3paxyHKy
BHKOHAHO IIiJICYMOBYBAHHS 3a YHCJIOM YaCTHHOK Ta iHTerpyBa-
HH# 33 IXHIME KOOpAMHATAMHU. Y HaMIPOCTIHIOMY HaOIMKEHHI
OTPUMAHO DIiBHSIHHSI CTaHy, fIK€ CIIPaBEIJIUBE IJIsl IIHPOKOrO
niamasony Temmeparyp. s TeMmeparyp, HUXKYMX, HiXK KpH-
THYHA, BCTAHOBJICHO HASBHICTb MOPU3OHTAJIBLHHUX IiISHOK Ha
KPUBIil 3aJIE2KHOCTI TUCKY BiJ| I'yCTHHU.

M.II. Koanoscruti, O.A. /lobyw, P.B. Pomarux
O PACYETE BOJILIION
CTATUCTUYECKON CYMMBI MOIEJIN ®JIFOVIA

Peszmowme

IIpeioxken crocob pacdera HGOJIBIION CTATUCTUYECKON CYMMBbI
MOJIEU IPOCTOro (bJIIon/1a B paMKax 060BIIEHHON PEIeTOYHO
MO/IEJIN, B KaXK/IOM U3 y3JI0B KOTOPOH MOKET HaXOJUTHCS IIPOU-
3BOJIbHOE KOJIMYECTBO YaCTHIL. B KadecTBe IIOTeHIIHhaJia B3aHu-
MOJIEACTBUSI MeXK/ly 4acTUIIAMU UCIIOJIb30BaH noreHnuala Mop-
3e. B mporecce pactera BBIIOJIHEHO CYMMHUPOBAHHE IIO GHUCILY
YACTHUIL U MHTEMPUPOBAHUE 110 UX KOOpAuHaTaM. B npocreiinem
NPUOINKEHUN TIOJIyI€HO YPaBHEHHE COCTOSIHISI, KOTOPOE CIIpa-
BEJIUBO JIJIsl IIUPOKOrO JMAIla3oHa TeMieparyp. st Temre-
paTyp HHUXKe, 9eM KPpUTHYEeCKasd, yCTAaHOBJICHO HaJIMNIHE I'Opu-
30HTAJIBHBIX y4YaCTKOB Ha KpPIBOﬁ 3aBHCHUMOCTHU JaBJIECHUA OT
[JIOTHOCTH.
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