В.З. КОЧМАРСЬКИЙ, 1 В.Р. ГАЄ
ВСЬКИЙ, 1 Н.Л. ТИШКО 2

 ¹ Національний університет водного господарства і природокористування (НУВГП) (Вул. Соборна, 11, Рівне 33028; e-mail: v.z.kochmarskii@nuwm.edu.ua)
 ² Львівський національний університет ім. Івана Франка (Вул. Кирила і Мефодія, 8, Львів 79005)

УДК 532.78, 544.42, 544.43 КРИСТАЛІЗАЦІЯ КАРБОНАТУ КАЛЬЦІЮ З ГІДРОКАРБОНАТНИХ РОЗЧИНІВ

> Досліджувалася кінетика виділення $CaCO_3$ з модельних розчинів, утворених попереднім насиченням деіонізованої води CO_2 з додаванням NaHCO₃ та CaCl₂. Особливістю методики є практично одночасне вимірювання активностей основних компонент кальцій-гідрокарбонатної водної системи (KГКВС): Ca^{2+} , CO_2 , CO_3^{2-} , pH i температури. Кристалізація CaCO₃ забезпечувалася дегазацією CO_2 повітрям. Впродовж дегазації процеси в КГКВС поділяються на чотири стадії: розпад кальціввих комплексів; утворення зародків твердої фази ($3T\Phi$) в об'ємі розчину; перехідна стадія – заключна фаза утворення $3T\Phi$ та початок їх росту; масове виділення $CaCO_3$, що відповідає інтенсивному росту $3T\Phi$. Для другої стадії кристалізації координатою реакції є добуток (Ca^{2+})·(CO_3^{2-}), а для третьої та четвертої – (Ca^{2+})·(HCO_3^{-}). Для другої стадії, використовуючи поняття добутку розчинності $CaCO_3$, залежсного від розмірів $3T\Phi$, розраховано розміри та кінетика росту $3T\Phi$ і їх концентрація. Впродовж процесу утворення $3T\Phi$ їх розмір практично сталий ($\approx 8 \cdot 10^{-8}$ м), а концентрація сягає $1,5 \cdot 10^{15}$ м⁻³. Масове виділення $CaCO_3$ (четверта стадія) починається при досягненні $3T\Phi$ розміру $\approx 3 \cdot 10^{-7}$ м.

> *Ключові слова*: стадії кристалізації СаСО₃, координати реакції, зародки твердої фази, добуток розчинності.

1. Вступ

Вивчення процесу кристалізації карбонату кальцію важливе для розуміння кругообороту діоксиду вуглецю в природі, зокрема його захоронення у донних осадах океанів, та багатьох технологічних процесів, що протікають у водах систем охолодження в енергетиці, хімічній технології та при видобутку нафти і природного газу. Проте на сьогодні відсутні усталена точка зору на кінетику виділення твердого CaCO₃ з гідрокарбонатних розчинів і розуміння того, що різні етапи процесу описуються різними кінетичними рівняннями, які відображають механізми виділення твердого CaCO₃ на кожному з етапів.

Зважаючи на це дана робота стосуеться експериментального вивчення і формулювання кінетичних рівнянь для різних періодів виділення твердого CaCO₃, зокрема його початкового періоду, пов'язаного з утворенням зародків твердої фази

 $\mathbf{382}$

(ЗТФ) в контрольованих умовах та заключного періоду, який визначається дифузійним механізмом транспорту матеріалу до зародків.

2. Експеримент

Дослідження робилися на установці AKBA-2M, див. [1, 2]. Розчин х.ч. NaHCO₃, приготований на деіонізованій воді з провідністю 0,2–0,3 мСм/м, заливали у термостатовану вимірювальну комірку з подвійними стінками, виготовлену зі скла пірекс об'ємом 50 мл. Поетапно стабілізували температуру $t = 25 \pm 0.1$ °C, після чого фіксували за допомогою іон-селективних електродів (кальцієвий електрод ЕЛІС-121Са, рН електрод ЕСЛ-63-07; електрод порівняння ЕВЛ-1МЗ) з дискретністю 27 с параметри початкового стану (виміри i = 1-20). Потім розчин насичували х.ч. CO_2 (дані i = 21-45). Одночасно з насиченням СО₂, в комірку дозували 5×50 мкл розчину х.ч. CaCl₂ з концентрацією 1 М. Таким чином в комірці забезпечували концентрацію $CaCl_2 = 5.0$ мМ при початковій концентрації NaHCO₃ = 10,0 мМ. Після кожного дозування

ISSN 0372-400Х. Укр. фіз. журн. 2017. Т. 62, № 5

[©] В.З. КОЧМАРСЬКИЙ, В.Р. ГАЄВСЬКИЙ, Н.Л. ТИШКО, 2017

витримували паузу 1–2 хвилини для встановлення електродного потенціалу іон-селективних давачів і комп'ютером реєстрували дані про концентрацію Ca²⁺. За ними програмним чином розраховували калібрувальні параметри кальцієвого електрода (кореляція калібрування не гірша 0,999). Контроль СО2 забезпечувався газоселективним електродом фірми Radelkis. Підготовчий етап відповідає на рис. 1 періоду з i < 50, але там не відображений. З виміру i = 51 з розчину починали дегазацію CO₂ повітрям зі сталою температурою розчину, яке продували через металопористий розпилювач. Інтенсивність дегазації контролювалась газовим ротаметром і велась в автоматичному режимі при одночасному опитуванні пачки 6-ти давачів з періодом 27 с (i = 51-300). Всередині пачки інтервал між вимірами ≈1 с. Вимірювались такі параметри: час (c); t (°C); pH (од.); pCO₂ (од.); рСа (од.); рСО₃ (од.). Видалення СО₂ з розчину ініціювало виділення твердого CaCO₃.

3. Результати та їх обговорення

Нижче на рис. 1–6 показані результати досліджень виділення твердого CaCO₃ для серії з п'яти вимірювань.

На рис. 1 товстою лінією показано активність іонів Ca^{2+} , усереднену по п'яти вимірах. Бачимо, що дисперсія помітна на кінцевій стадії виділення твердої фази і не перевищує 7–8%.

На кінетичній кривій кальцію є характерна ділянка між вимірами i = 50-70 (тривалістю 540 с), де фіксується ріст активної концентрації іонів Ca²⁺. Цей ріст можна пояснити розпадом комплексів CaHCO₃⁺ та CaCO₃⁰, який ініціюється дегазацією CO₂ з маточного розчину відповідно до реакцій

$$CaHCO_3^+ \to Ca^{2+} + CO_2 \uparrow + OH^-; \tag{1a}$$

$$CaCO_3^0 + HOH \rightarrow Ca^{2+} + HCO_3^- + OH^-;$$
(1b)

$$\mathrm{HCO}_{3}^{-} \to \mathrm{CO}_{2} \uparrow + \mathrm{OH}^{-};$$
 (1c)

$$\mathrm{HCO}_{3}^{-} + \mathrm{OH}^{-} \to \mathrm{CO}_{3}^{2-} + \mathrm{HOH}.$$
 (1d)

Зауважимо, що найповільнішою є реакція (1d), оскільки вона пов'язана зі взаємодією однойменно заряджених іонів.

Поведінка активностей HCO_3^- та CO_3^{2-} показана на рис. 2, криві 1 та 2. Бачимо, що від i = 51 до

Рис. 1. Кінетика активностей іонів Ca²⁺ в реакційній комірці. Дегазацію і запис даних робили з виміру i = 51. Характерною особливістю поведінки активностей Ca²⁺ є ріст до виміру i = 70, після якого починається спад, який пришвидшується для i > 85 і зумовлений утворенням твердих зародків та їх ростом, $\Delta i = 27$ с

Рис. 2. Кінетичні криві в режимі дегазації СО₂ для активностей HCO_3^- , крива 1, та CO_3^{2-} , крива 2, $\Delta i = 27$ с. Крива 1 отримана в результаті розв'язку відповідного кінетичного рівняння. Величина активності CO_3^{2-} виміряна і збільшена у 50 раз

71 маємо ріст активної концентрації HCO_3^- , який зумовлений гідролізом розчиненого CO_2 та розпадом комплексів $CaHCO_3^+$ проте в подальшому, для i > 71 активність HCO_3^- завдяки видаленню CO_2 та виділенню твердого $CaCO_3$, див. (2), зменшується.

Цікаво, що активність іонів HCO_3^- , крива 1, має стрімкий максимум при i = 71, а CO_3^{2-} , крива 2,

Рис. 3. Кінетика рСО₂ – крива 1 та рН – крива 2 в процесі "дегазації" КГКВС. Звертаємо увагу на те, що рН зменшується на $\Delta i = 4 \rightarrow 108$ с раніше, ніж рСО₂

Рис. 4. Кінетика похідних $\Delta pCO2/\Delta t$ та $\Delta pH/\Delta t$ (c⁻¹) впродовж "дегазації". Максимальна швидкість внутрішньої генерації CO₂ та іонів водню, що пов'язана з виділенням твердого CaCO₃, відбувається при i > 90

Рис. 5. Кінетичні криві для комплексів $CaHCO_3^+$, $CaCO_3^0$ та $CaOH^+$ криві відповідно 1, 2 та 3. Концентрація $CaOH^+$ збільшена у 3000 разів

на рис. 2, при i = 90 (pH = 8,28). Цей проміжок часу $\Delta t = 513$ с можливо відповідає часу реакції (1d) за цих умов.

Спад активності CO_3^{2-} також може бути пов'язаним з інтенсивним утворенням твердої фази CaHCO₃⁺ та виділенням при цьому H⁺ та CO₂, які закислюють розчин, див. рис. З і 4 та рівняння (2). Повільний ріст активності CO_3^{2-} при i > 116 зумовлений ростом pH кальцій-гідрокарбонатної водної системи внаслідок видалення CO₂, див. рис. 3.

Динаміка pH та pCO₂ показана на рис. 3. З цих рисунків випливає, що починаючи з i = 57 (рис. 4) швидкість росту pH стрімко зменшується, рівно ж як і pCO₂, що можна пояснити утворенням твердої фази карбонату кальцію за схемою

$$Ca^{2+} + 2HCO_3^- \rightarrow CaCO_3 \downarrow +H^+ + HCO_3^-;$$

$$H^+ + HCO_3^- \rightarrow CO_2 \uparrow +H_2O,$$
(2)

що супроводжується генерацією іонів H^+ та виділенням CO_2 .

З рис. З бачимо, що генерація іонів H^+ на 108 с випереджує генерацію CO_2 , що загалом підтверджує послідовність реакції (2) і відповідає характерному часу гідролізу CO_2 [3].

З рис. 4 випливає, що найцікавішою з так званого зародження твердої фази $CaCO_3$ є діапазон вимірів 57 < i < 98, де поведінка pCO₂ та pH зазнає характерних змін.

Отже, проміжок i = 57-98 можемо вважати ділянкою утворення $3T\Phi$ CaCO₃.

Кінетика іонних кальцієвих комплексів показана на рис. 5. Крива 1 стосується комплексу CaHCO₃⁺, крива 2 – CaCO⁰, а крива 3 – CaOH⁺. Максимальна концентрація кальцій-бікарбонатного комплексу ≈ 0.84 мМ, а кальцій-карбонатного ≈ 0.9 мМ.

Зауважимо, що концентрація кальцій-гідратного комплексу на три порядки менша і він не впливає на процеси у КГКВС при pH<10.

У процесі дегазації CO₂ змінюється перенасичення КГКВС. Величина перенасичення характеризується відношенням (карбонатним індексом) [4]:

$$G_{37} = \frac{X_3 X_7}{L_{37}},\tag{3}$$

де X₃, X₇ – активні концентрації іонів карбонату та кальцію, М; L₃₇ – термодинамічний добуток розчинності CaCO₃.

ISSN 0372-400X. Укр. фіз. журн. 2017. Т. 62, № 5

384

Рис. 6. Залежність коефіцієнта перенасичення від номера вимірювання (від часу)

Залежність перенасичення від номера виміру $(\Delta t = 27 \text{ c})$ для t = 25 °С наведена на рис. 6. Система стає термодинамічно нестабільною, коли $G_{37} > 1.3$ рис. 1 випливає, що ознаки зменшення концентрації Ca^{2+} починаються, коли i > 70. На рис. 6 це відповідає $G_{37} = 48$. Отже, до i = 70маємо дуже перенасичений стан з явно відсутніми ознаками виділення твердого СаСО₃. Незважаючи на початок кристалізації для i > 70, карбонатний індекс все ж зростає, див. рис. 6, аж до i = 88, тобто процес генерації карбонатних іонів, див. рис. 2 та 5, випереджує їх відтік внаслідок кристалізації. У цей період виділення твердої фази відбувається на поверхні комірки, домішках макроскопічного розміру, а також іде утворення мікрозародків в об'ємі маточного розчину. Деталі виділення твердого CaCO₃ відображає швидкість зміни активної концентрації іонів Ca^{2+} , див. рис. 7.

З рис. 7 випливає, що швидкість зміни концентрації іонів кальцію має декілька особливих точок:

• максимум при *i* = 60, де внаслідок розпаду іонних комплексів кальцію приріст активності іонів кальцію найбільший;

• точка зміни знака швидкості при i = 70, приріст концентрації іонів кальцію переходить у витрату, готовляться умови для масового виділення твердої фази CaCO₃, яке розпочнеться при i > 86, див. рис. 1 та 3, крива 2;

 максимум витрати при *i* = 106, у цій точці швидкість виділення твердої фази карбонату кальцію досягає найбільшої величини.

Найцікавіший щодо розуміння процесу виділення твердої фази є проміжок часу 60 < i < 85,

Рис. 7. Залежність швидкості витрати іонів кальцію (dX_7/dt) , M/c, від номера виміру. Точки – первинні дані, суцільна крива – згладжені за процедурою гаусівського усереднення. Вертикальними лініями позначені характерні моменти процесу кристалізації

Рис. 8. Залежність прискорення витрати іонів кальцію (d^2X_7/dt^2) від номера виміру. Вертикальними лініями позначені характерні точки кривої

оскільки саме у цей період відбувається утворення ЗТФ.

Перейдемо до аналізу залежності прискорення витрати іонів кальцію.

На кривій прискорення зміни концентрації іонів кальцію, рис. 8, є ще декілька характерних точок.

• Перша при i = 54 – відповідає максимуму швидкості росту активної концентрації Ca²⁺ завдяки розпаду іонних комплексів; див. рис. 5–8.

• Друга при i = 88, відповідає максимуму прискорення витрати іонів Ca²⁺. Цікаво, що вона збі-

Рис. 9. Залежність функції $L(t) = -\ln(|dX_7/dt)$ від номера виміру. Точки – первинні дані, суцільна крива – згладжені за процедурою гаусівського усереднення

Рис. 10. Залежність швидкості витрати іонів кальцію (dX_7/dt) , M/c, від номера виміру *i*. Крива 1 – згладжені за процедурою гаусівського усереднення дослідні дані; крива 2 – розрахунок за дифузійною моделлю (7); 3 – лінія "0". Вертикальними штрихованими лініями позначені характерні точки кривої

гається з максимумом перенасичення G_{37} , див. рис. 6.

• Третя при i = 114 – відповідає максимальному гальмуванню швидкості зміни активної концентрації Са²⁺ у завершальний період кристалізації після максимальної швидкості витрати (i = 106, рис. 5).

Зауважимо, що після точки i = 114 спостерігається монотонний хід як швидкості, так і прискорення кристалізації. Цей проміжок починається з $G_{37}(117) = 17,6$ і практично не завершується. КГ-КВС переходить у квазістаціонарний стан, який може тривати десятками годин. Процес виділення $CaCO_3$ на цьому етапі лімітується дифузійним транспортом компонент до $3T\Phi$, див. формули (4)-(6), а також видаленням CO_2 , яке сповільнюється внаслідок наближення концентрації розчиненого CO_2 до рівноважної з повітрям.

Розглянемо кінетику виділення твердої фази карбонату кальцію. Для цього проаналізуємо хід функції [10]:

$$L(i) = -\ln(|\Delta X_7(t)/\Delta t|). \tag{4}$$

Залежність цієї величини від часу (номера виміру) показана на рис. 9.

Ця функція має чіткі чотири характерні періоди, про які згадувалося раніше:

• *перший* 50 < *i* < 60 – відповідає розпаду іонних кальцієвих комплексів;

другий 60 < i < 72 – відповідає процесу утворення ЗТФ;

• третій 72 < i < 106 – відповідає заключній фазі утворення та початковому росту ЗТФ – переходу між двома типами кінетик, див. рівняння (8) і (9);

• четвертий i > 106 – відповідає заключній фазі, що характерна ростом раніше утворених ЗТФ і лімітується дифузійним транспортом речовини.

Впродовж четвертого періоду, як це випливає з рис. 9, часова залежність логарифма швидкості кристалізації може бути представлена лінійною функцією

$$Y(i) = a + b(i - i_0), \quad a = 5,18; b = 7,18 \cdot 10^{-3}, \quad i_0 = 106;$$
(5)

з якої випливає показникова залежність $X_7(i)$

$$X_7(i) = b^{-1} \exp[-(a + b(i - i_0))] \to \to dX_7/di = -bX_7(i),$$
(6)

де а, b – безрозмірні величини.

Порівняння (6) з даними досліду приводить до швидкості зміни активності іонів кальцію, близької до

$$dX_7/dt = -a_7[X_7(t) - X_{70}], (7)$$

для нашого випадку: $a_7 = 6,62 \cdot 10^{-4} \text{ c}^{-1}, X_{70} = 6.98 \cdot 10^{-4} \text{ M}.$

Розрахована за (6) і виміряна залежності dX_7/dt порівнюються на рис. 10.

ISSN 0372-400Х. Укр. фіз. журн. 2017. Т. 62, № 5

386

Бачимо, що узгодження задовільне для i > 106(четвертий період зміни швидкості витрати кальцію) і відповідає класичному дифузійному режиму кристалізації. Зрозуміло, що дифузійний режим кристалізації незастосовний для часів, де лімітуючим є не транспорт, а координація і приєднання матеріалу до ЗТФ, тобто, де витрата кальцію зумовлена інтенсивним утворенням і початковим ростом зародків. Як бачимо з рис. 10, це відповідає проміжку 60 < i < 106.

На проміжку i > 106 концентрація бікарбонатів більш ніж у 100 раз, див. рис. 2, перевищує концентрацію карбонатів. Тому там найімовірнішою реакцією, що відповідає за ріст ЗТФ, може бути поляризаційна депротонізація гідрокарбонатних іонів у полі катіона, наприклад, іона кальцію [6, 8]:

$$\operatorname{Ca}^{2+} + \operatorname{HCO}_3^- \to \operatorname{CaCO}_3 + \operatorname{H}^+.$$
 (8)

Ґрунтуючись на рис. 7 та кривій 1 на рис. 10, для моделювання кінетики активної концентрації Ca^{2+} використано *розклад у ряд біля точки мінімуму і* = 106 за координатами реакції (8). Результат представлення швидкості витрати Ca^{2+} рядом такий:

$$dX_{71}/dt = A_{17} + B_{17}(X_1X_7 - L_{17})^2 + C_{17}(X_1X_7 - L_{17})^3,$$
(9)

для нашого випадку, див. рис. 11: $X_1 = (\text{HCO}_3^-)$; $X_7 = (\text{Ca}^{2+})$; $A_{17} = -1,15 \cdot 10^{-6} \text{ M/(дм}^3\text{c})$; $B_{17} = 2,53 \cdot 10^3 (\text{дм}^3/\text{M})^3/\text{c}$; $C_{17} = 3,12 \cdot 10^7 (\text{дм}^3/\text{M})^5/\text{c}$; $L_{17} = X_{1,i=106}X_{3,i=106} = 2,18 \cdot 10^{-5} (\text{M/дм}^3)^2$.

Бачимо, що практично у всьому діапазоні спостереження, за винятком діапазону i < 90, вираз (9) є доброю апроксимацією для кінетичної кривої витрати Ca²⁺. Це свідчить про те, що реакція (8) відіграє важливу роль на всіх етапах кристалізації CaCO₃, окрім ділянки утворення $3T\Phi$, 60 < i < 90.

Зауважимо що з (9), як частковий випадок, можна отримати вираз (7), маючи на увазі, що у наших дослідах концентрація Ca^{2+} була у два рази нижчою від концентрації гідрокарбонатних іонів, тому для i > 120 концентрація HCO_3^- мало змінюється порівняно з Ca^{2+} , див. рис. 2.

Співвідношення між активностями X_1 та X_7 впродовж досліду показане на рис. 12. Характерною точкою кривої на рис. 12 є мінімум при i =

Рис. 11. Порівняння швидкостей витрати іонів кальцію (dX_7/dt) , М/с. Згладжена крива – розрахунок за (9), ламана – не згладжені дослідні дані. Горизонтальні лінії – положення "0" та мінімуму кінетичної кривої, що відповідає i = 106

Puc. 12. Відношення активних концентрацій гідрокарбонатних іонів до іонів кальцію впродовж досліду

= 106, який свідчить про закінчення періоду масової генерації ЗТФ, що супроводжується виділенням H⁺ та CO₂, див. рис. 3 та 4.

Перейдемо до детальнішого аналізу початкового періоду кристалізації, що відповідає діапазону 64 < i < 90 і триває приблизно сім хвилин до досягнення максимального перенасичення, див. рис. 6. Він характерний майже сталою активністю іонів Ca²⁺, див. рис. 1, та стрімким ростом активності CO₃²⁻, див. рис. 2, крива 2. Все це свідчить про те, що тут відбувається генерація ЗТФ настільки малих розмірів, що їх сумарна кількість (моль/дм³) практично не впливає на величину активності Ca²⁺. Оскільки лімітуючим процесом на цьому проміжку часу є утворення зарод-

Рис. 13. Залежність відношення $L_{37}(i)/L_{37}$ від номера виміру *i*. Штрихованими лініями позначено номер, з якого починаємо аналіз величини відношення $L_{37}(i)/L_{37}$

Puc. **14.** Залежність критичного радіуса $\mathrm{3T}\Phi(M)$, від часу, хв.

ків, яке можливе лише при перевищенні їх добутку розчинності, див. (3) то приймаємо, що координатою реакції тут є добуток X_3X_7 . Зважаючи на це апроксимуємо на проміжку 64 < i < 90 швидкість зміни активності іонів кальцію виразом

$$\frac{dX_7}{dt} = a_{37}[L_{37}(t) - X_3X_7],\tag{10}$$

азт – кінетична стала.

Вираз (10) відрізняється від класичних [5, 9] тим, що тут використано $L_{37}(t)$ – залежний від розмірів ЗТФ добуток розчинності.

Порівнюючи (10) з дослідними даними, див. рис. 7 та 11 для 68 < i < 90, знаходимо, що коефіцієнт $a_{37} = 1,11 \, (\text{дм}^3)/(\text{c} \cdot \text{M})^{-1}$. Тоді за (10) розраховуємо $L_{37}(t)$ для цього проміжку див. рис. 13.

Маючи дослідне $L_{37}(i)$ та використовуючи відоме, див., наприклад, [13] співвідношення між розміром критичного зародка $R_{cr}(t)$ та $L_{37}(t)$,

$$L_{37}(t) = L_{37} \exp\left\{\frac{2\mu\sigma_{\rm cr}}{\rho_{\rm cr}R_{\mu}T}\frac{1}{R_{\rm cr}(t)}\right\},$$
(11)

Рис. 15. Залежність загальної концентрації (м⁻³) ЗТФ від часу, хв.

розраховуємо критичні рівноважні радіуси ЗТФ, які утворюються в процесі зародження твердої фази, а розраховуючи швидкість утворення твердої фази CaCO₃, визначаємо також концентрацію ЗТФ, що генеруються на час t - n(t).

У формулі (11) μ , $\rho_{\rm K3}$, $\sigma_{\rm K3}$ – відповідно, мольна маса, густина і поверхнева енергія ЗТФ; R_{μ} – універсальна газова стала, T – абсолютна температура, L_{37} – добуток розчинності СаСО₃; приймемо: $\mu = 0,1$ кг/моль; T = 298 K; $R_{\mu} = 8,31$ Дж/(M·K), а невідому величину $\sigma_{\rm K3}/\rho_{\rm K3} = 5,5 \cdot 10^{-3}$ (Дж × × м)/кг.

За таких умов з (11) розрахуємо залежності $R_{\rm cr}(t)$ та концентрацію ЗТФ n(t), які показані на рис. 14 та 15. З цих рисунків випливає, що перенасиченню $G_{37} \approx 100$ (i = 68, відповідає часу 30 хв. від початку досліду), при якому починають генеруватися ЗТФ і яке менше від ма-

ISSN 0372-400Х. Укр. фіз. журн. 2017. Т. 62, № 5

388

ксимального max $G_{37} = 152$, відповідають ЗТФ з $R_{\rm cr} = 8,15\cdot 10^{-8}$ м.

Цікаво, що відповідно до рис. 14, на початку утворюються ЗТФ майже одного розміру, який впродовж 8 хв. практично сталий, а ЗТФ завдяки малому розміру оптично не помітні.

Масове ж виділення CaCO₃ починається з номера $i \approx 86$ (відповідає часу ≈ 38 хв. від початку досліду), див. рис. 5 та рис. 14, коли радіус ЗТФ досягає $3 \cdot 10^{-7}$ м, а їх концентрація стає не меншою від $1,5 \cdot 10^{15}$ м⁻³. Цей момент відповідає третьому періоду кристалізації. Саме з цього моменту, див. рис. 1, починається помітне зменшення концентрації іонів Ca²⁺.

Зауважимо, що показані на рис. 14 дані узгоджуються з дослідженнями, виконаними в MEI [7] за допомогою лічильника Malver-6, див. рис. 16, на якому показана динаміка розподілу ЗТФ впродовж часу від моменту початку кристалізації.

Бачимо, що зафіксовані лічильником частинки мають початкові розміри близько 5 · 10⁻⁸ м з малою дисперсією розмірів.

Порівнюючи рис. 14 та 16, знаходимо, що критичний розмір частинок, за нашими оцінками, становить $8 \cdot 10^{-8}$ м. Причиною цих розбіжностей можливо є похибка у виборі величини $\frac{\sigma_{K3}}{\rho_{K3}}$ при розрахунках, або різні умови дослідів.

Справді, у наших дослідах, показаних на рис. 14, час росту ЗТФ від початкового розміру до оптично помітного, тобто 0,08–0,3 мкм, тривав ≈ 8 хв. (проміжок від 30 хв. після початку досліду до 38 хв.), тоді як на рис. 16 всього 20 с, що у 24 рази швидше. Це пов'язане з тим, що у наших дослідах кристалізація ініціюється повільним видаленням CO₂ з маточного розчину, а у дослідах на рис. 16 – раптовим змішуванням компонент розчину CaCl₂+Na₂CO₃. Проте, в подальшому, розміри ЗТФ у наших дослідах та на рис. 16 стають близькими.

З рис. 14–16 бачимо, що як у наших дослідах, так і у дослідах [7], множина початкових ЗТФ практично монодисперсна. Це пояснюється однорідними початковими умовами об'ємної кристалізації. В подальшому монодисперсність на рис. 16 порушується внаслідок накладання двох процесів: утворення та росту ЗТФ. Згадані особливості початку нуклеації CaCO₃, зокрема розподіл за розмірами ЗТФ та їх швидкості росту, отримані нами, узго-

ISSN 0372-400Х. Укр. фіз. журн. 2017. Т. 62, № 5

джуються з пізнішими дослідженнями, виконаними LP-TEM технікою, див. [14].

При цьому зауважимо, що практично одинакові результати щодо початкових етапів нуклеації CaCO₃, отримані нами недорогими та доступними засобами, які щодо інформативності не гірші за високотехнологічні дослідження в роботах [7] та [14].

4. Висновки

1. Завдяки використанню комплексу AKBA-2M нами практично одномоментно впродовж процесу кристалізації у квазінеперервному режимі вимірювалися основні параметри КГКВС. Це дозволило дослідити деталі ходу процесу виділення твердого CaCO₃ з перенасичених гідрокарбонатних розчинів, що за якістю близькі до природних поверхневих вод, і безпосередньо прослідкувати за основними стадіями виділення твердого CaCO₃, зокрема розрахувати розмір і кінетику росту зародків твердої фази.

2. В період формування ЗТФ (68 < i < 90, де активність CO_3^{2-} досягає максимуму) координатою реакції є добуток активностей (CO_3^{2-})·(Ca^{2+}). Процес кристалізації на цьому етапі лімітується координацією та енергією взаємодії іонів при формуванні первинної структури твердої фази.

3. Важливо, що для часів i > 86 (точка зміни типу кінетики, яка відповідає мінімуму $d^2(\operatorname{Ca}^{2+})/dt^2$) координатою реакції є добуток активностей (HCO₃⁻) · (Ca²⁺), а крива $d(\operatorname{Ca}^{2+})/dt$ добре апроксимується, починаючи з цього часу, розкладом у ряд за степенями координати реакції.

4. Показано, що на початковому етапі виділення твердої фази класичне кінетичне рівняння (10) добре описує процес, якщо вважати добуток розчинності L_{37} залежним від розмірів ЗТФ, тобто від енергетичного та конфігураційного факторів, див. (11).

5. Використовуючи залежність зміни в часі добутку розчинності, оцінено критичний розмір $3T\Phi$, який виявився рівним $(7-8) \cdot 10^{-8}$ м та їх початкову кінетику. Результати щодо розмірів $3T\Phi$ близькі до отриманих іншими дослідниками.

6. Проміжок часу кристалізації до максимуму перенасичення (i < 86) характеризується утворенням ЗТФ. Їх розміри до початку масового виділення твердого CaCO₃ змінюються в межах від 0,08

до 0,3 мкм за вісім хвилин. Цей час є латентним періодом виділення твердої фази в умовах досліду.

7. Встановлено, що на початковому етапі (латентний період виділення твердої фази) формується практично монодисперсна множина ЗТФ з $R_{cr} \approx 0.08$ мкм.

 Масове виділення твердого карбонату кальцію, яке пов'язане з ростом уже утворених ЗТФ, починається після досягнення ЗТФ розмірів >0,1 мкм. Це підтверджується також оптичними даними щодо розсіяння світла.

9. Показано, що на кінцевій стадії виділення твердого карбонату кальцію, в умовах цього досліду (при *i* > 106), а загалом після мінімуму похідної від активної концентрації іонів кальцію, реалізується *дифузійний механізм кристалізації*.

10. Досліджено кінетичні криві комплексів $Ca(HCO_3)^+$, $CaCO_3^0$ та $Ca(OH)^+$. Показано, що максимальна концентрація перших сягає ≈ 1 мМ, а третього набагато менша 10^{-5} мМ впродовж досліду.

- В.З. Кочмарський, В.Р. Гаєвський, О.В. Кочмарський. Прогнозування складу води та відкладень солей твердості в циркуляційних системах охолодження. *Матеріали другої науково-технічної конференції професорськовикладацького складу та студентів УДАВГ, ч. 3.* 26.03–13.04, Рівне (1996), с. 30.
- В.З. Кочмарський. Про механізм кристалізації СаСО₃ з водних карбонатних систем. Вісник РДТУ 2, ч. 2, 37 (1999).
- 3. П.В. Данквертс. Газо-жидкостные реакции (Химия, 1973).
- Л.С. Алексеев. Развитие методов оценки стабильности пресных вод. Химия и технология воды 11, № 2, 137 (1989).
- 5. Е.В. Хамский. Кристаллизация из растворов (Наука, 1967).
- В.Р. Гаєвський. Кристалізація CaCO₃ з гідрокарбонатних розчинів. Вісник РДТУ 3 (5), ч. 1, 233 (2000).
- Л.Г. Васина, А.В. Богловский, Р.Н. Календарев. Изучение кинетики образования карбоната кальция в закрытой системе. *Труды МЭИ* 466, 53 (1980).
- G.H. Nancollas, M.M. Reddy. The crystallization of calcium carbonate. II. Calcite growth mechanism. J. Colloid Interface Sci. 37, 824 (1971).
- А.М. Иванов, В.Я. Михайловский, Б.В. Галабицкий, К.А. Червинский. Кинетика превращения бикарбоната

натрия, калия и кальция в разбавленных водных растворах. *Журнал общей химии* **49**, № 3, 481 (1979).

- L.N. Plummer, D.L. Parkhurst, T.M.L. Wigley. *Chemical Modeling in Aqueous Systems*, edited by Everett A. Jenne (Am. Chem. Soc., 1979) [ISBN: 9780841204799].
- A.M. Pritchard. Deposition of hardness salts. Fouling Science and Technology 145, 261 (1988).
- В.З. Кочмарський, О.В. Кочмарський. Протинакипна обробка водного теплоносія поверхнево активними інгібіторами. *Вода і водоочисні технології* № 1–2 (43–44), 30 (2010).
- В.А. Киреев. Краткий курс физической химии (Химия, 1978).
- L.M. Hamm, A.J. Giuffre, N. Han, J. Tao, D. Wang, J.J. Yoreo, P.M. Dove. Reconciling disparate views of template-directed nucleation through measurement of calcite nucleation kinetics and binding energies. *Proc. Natl. Acad. Sci. U.S.A.* **111** (4), 1304 (2014).

Одержано 13.09.16

V.Z. Kochmarskii, V.R. Gayevskii, N.L. Tyshko CALCIUM CARBONATE CRYSTALLIZATION FROM HYDROCARBONATE SOLUTIONS

Summary

The kinetics of CaCO₃ precipitation from model solutions formed by preliminary saturating deionized water with CO₂ and by adding NaHCO₃ and CaCl₂ has been considered. The characteristic feature of the method is the almost simultaneous measurement of the activities of major components of the aqueuos calcium hydrocarbonate system (ACHCS): Ca^{2+} , CO_2 , HCO_3^- , as well as pH and the temperature. CaCO₃ crystallization was provided with the help of the CO_2 degassing by air. The processes running in the ACHCS during the degassing can be divided into four stages: dissociation of $CaHCO_2^+$ complexes; formation of crystal nuclei in the solution; a transitive stage, which includes the final phase of crystal nucleation and the initial growth of newly formed crystals; and intensive growth of crystal nuclei, which gives rise to the mass CaCO₃ precipitation. The product $(Ca^{2+}) \cdot (CO_3^{2-})$ is a reaction coordinate for the second stage of CaCO₃ precipitation, whereas $(Ca^{2+}) \cdot (HCO_3^{-})$ for the third and fourth stages. The kinetics of growth of crystal nuclei and their concentration are calculated for the second stage, by using the concept of CaCO₃ dissolution product that depends on the crystal nucleus size. During the process of crystal nucleation, the crystal size remains practically stable ($\approx 8 \times 10^{-8}$ m), and the concentration reaches 1.5×10^{-15} m⁻³. The mass CaCO₃ precipitation (the fourth stage) starts when the crystal nuclei reach dimensions of about 3×10^{-7} m.

ISSN 0372-400Х. Укр. фіз. журн. 2017. Т. 62, № 5