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BEHAVIOR OF THE GRAVITATIONAL
SYSTEM CLOSE TO THE PLANCK EPOCHUDC 531.51

The evolution of a quantum gravitational system (QGS) with the maximally symmetric geom-
etry in the epoch close to the Planck one is investigated. The state vector of the QGS satisfies
the set of wave equations which describes the time evolution of the quantum system in the space
of quantum fields. It is shown that, for the time arrow from past to future, the state vector
describes the QGS contracting for the negative values of the cosmic scale factor and expanding
for its positive values. The intensity distributions of matter for two exactly solvable models of
spatially closed and flat QGSs formed by dust and radiation are calculated. The analogies with
known phenomena in quantum mechanics and optics are drawn.
K e yw o r d s: quantum gravity, quantum geometrodynamics, cosmology.

1. Introduction

The standard cosmological model claims that our uni-
verse has nucleated from the initial cosmological sin-
gularity point as a result of the Big-Bang. The ques-
tion about the Big-Bang prehistory and its mecha-
nism requires passing to the theory which considers
matter and gravitation as quantum fields.

The method of constraint system quantization [1–
12] can be taken as a basis of the quantum theory
of gravity suitable for the investigation of cosmolog-
ical and other quantum gravitational systems simi-
lar to our universe near the Planck epoch [13–20]. In
this theory, the state vector of a quantum gravita-
tional system (QGS) satisfies the set of wave equa-
tions which describes the time evolution of a quantum
system in a generalized space of quantum fields. The
probabilistic interpretation of the state vector of the
QGS implies its normalizability.

In the simplest case of the maximally symmet-
ric geometry with the Robertson–Walker metric, the
geometric properties of the system are determined
by a single variable, namely the cosmic scale factor
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𝑎. We will consider the homogeneous isotropic QGS
formed by matter in the form of a uniform scalar
field 𝜑. This field can be interpreted as a surrogate
of all possible real physical fields of matter averaged
with respect to spin, space, and other degrees of free-
dom. In addition, it will be accepted that the QGS
is filled with a perfect fluid in the form of a rela-
tivistic matter (further referred as radiation), which
defines a material reference frame enabling us to in-
troduce the time variable (recognize the instants of
time) [5, 9, 11].

It is convenient to formulate quantum theory in
terms of dimensionless variables and parameters, in
which length, proper time, mass-energy, energy den-
sity, and pressure are measured in modified Planck
units: 𝑙P =

√︀
2𝐺~/(3𝜋𝑐3), 𝑡P = 𝑙P/𝑐, 𝑚P = ~/(𝑙P𝑐),

𝜌P = 3𝑐4/(8𝜋𝐺𝑙2P), where 𝐺 is Newton’s gravita-
tional constant. The scalar field is taken in 𝜑P =
=
√︀
3𝑐4/(8𝜋𝐺). In these units, the basic equations

of the QGS model have the form of the following set
of two partial differential equations for the state vec-
tor Ψ [11, 12, 18–20](︂
−𝑖𝜕𝑇 − 2

3
𝐸

)︂
Ψ = 0, (1)
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(︀
−𝜕2𝑎 + k𝑎2 − 2𝑎𝐻𝜑 − 𝐸

)︀
Ψ = 0, (2)

where 𝑇 is a conformal time expressed in radians. In
general relativity, the cosmic scale factor 𝑎 describes
the overall expansion or contraction of the cosmo-
logical system, being a function of the proper time 𝜏
connected with the conformal time 𝑇 by the equation

𝑑𝜏 = 𝑎 𝑑𝑇. (3)

In Eqs. (1) and (2), the quantities 𝑎, 𝜑, and 𝑇
are independent variables of the state vector Ψ =
Ψ(𝑎, 𝜑, 𝑇 ). The parameter 𝐸 is a real constant, which
is determined by the energy density of a perfect fluid
𝜌𝛾 taken in the form

𝜌𝛾 =
𝐸

𝑎4
. (4)

In natural physical units, 𝐸 has the dimension of [En-
ergy × Length], [𝐸] = [~𝑐]. The coefficient 2/3 in
Eq. (1) is caused by the choice of the parameter 𝑇 as
the conformal time variable.

The operator 𝐻𝜑 in Eq. (2) is the Hamiltonian of
the field 𝜑. This Hamiltonian is defined in a curved
space-time and, therefore, depends on a scale factor
𝑎 as a parameter, 𝐻𝜑 = 𝐻𝜑(𝑎). If the potential term
of the uniform scalar field 𝜑 is described by the scalar
function 𝑉 (𝜑), then

𝐻𝜑 =
1

2
𝑎3𝜌𝜑, 𝜌𝜑 =

2

𝑎6
𝜕2𝜑 + 𝑉 (𝜑), (5)

and
𝐿𝜑 =

1

2
𝑎3𝑝𝜑, 𝑝𝜑 =

2

𝑎6
𝜕2𝜑 − 𝑉 (𝜑), (6)

where 𝜌𝜑 and 𝑝𝜑 are the operators of energy density
and pressure. The 𝐿𝜑 can be interpreted as the La-
grangian of the scalar field. The variable 𝜑 is defined
on the interval: 𝜑 ∈ (−∞,+∞).

In Eq. (2), we single out the curvature constant
k, k = +1, 0,−1 for spatially closed, flat, and open
QGSs, respectively. The derivation of Eqs. (1) and (2)
[11, 18] does not depend on the numerical value of k.

The variables 𝑎 and 𝜑 satisfy the commutation re-
lations

[𝑎,−𝑖𝜕𝑎] = 𝑖, [𝜑,−𝑖𝜕𝜑] = 𝑖.

All other commutators vanish.
Equations (1) and (2) can be rewritten as one time

equation of the Schrödinger type in the space of two
variables 𝑎 and 𝜑 with the time-independent operator
with the dimension of [Energy × Length] instead of
[Energy].

2. Proper Mass-Energy
in a Definite Quantum State

It is convenient to pass from the (𝑎, 𝜑)-representation
of the state vector Ψ to a representation, in which
the continuous variable 𝜑 is replaced by a discrete or
continuous set of values of the quantum number 𝑘,
which characterizes the states of the matter field in
a comoving volume 1

2𝑎
3. With that end in view, we

introduce the complete set of orthonormalized state
vectors of the scalar field ⟨𝜒|𝑢𝑘⟩ in the representa-
tion of a rescaled variable 𝜒 = 𝜒(𝑎, 𝜑), in which the
Hamiltonian 𝐻𝜑 is diagonalized,

⟨𝑢𝑘|𝐻𝜑|𝑢𝑘′⟩ =𝑀𝑘(𝑎) 𝛿𝑘𝑘′ . (7)

After the averaging of 𝐻𝜑 with respect to the field 𝜒,
we transform from the scalar field to the new effective
matter in the discrete and/or continuous 𝑘th state
with the proper mass-energy 𝑀𝑘(𝑎) = 1

2𝑎
3𝜌𝑚. The

energy density 𝜌𝑚 and pressure 𝑝𝑚 of such an aver-
aged matter are

𝜌𝑚 = ⟨𝑢𝑘|𝜌𝜑|𝑢𝑘⟩, 𝑝𝑚 = ⟨𝑢𝑘|𝑝𝜑|𝑢𝑘⟩. (8)

Introducing the equation of state parameter

𝑤𝑚(𝑎) = −1

3

𝑑 ln𝑀𝑘(𝑎)

𝑑 ln 𝑎
, (9)

we find that the averaged matter is a barotropic fluid
with the equation of state

𝑝𝑚 = 𝑤𝑚(𝑎)𝜌𝑚. (10)

The explicit forms of the field 𝜒 and the mass-
energy 𝑀𝑘(𝑎) are different for the different functions
𝑉 (𝜑). If, for example, 𝑉 (𝜑) = 𝜆𝛼𝜑

𝛼, where 𝜆𝛼 is the
coupling constant, 𝛼 takes arbitrary non-negative val-
ues, and the summation with respect to 𝛼 is not as-
sumed, then [18]

𝜒 =

(︂√︀
2𝜆𝛼

𝑎3

2

)︂ 2
2+𝛼

𝜑,

𝑀𝑘(𝑎) = 𝜖𝑘

(︂
𝜆𝛼
2

)︂ 2
2+𝛼

𝑎
3(2−𝛼)
2+𝛼 , (11)

𝑤𝑚(𝑎) =
𝛼− 2

𝛼+ 2
,

where 𝜖𝑘 is an eigenvalue of the equation

(−𝜕2𝜒 + 𝜒𝛼 − 𝜖𝑘)|𝑢𝑘⟩ = 0. (12)
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In a particular case of the 𝜑2-model, the param-
eter 𝑤𝑚(𝑎) = 0 and the barotropic fluid becomes
an aggregate of separate macroscopic bodies (dust)
with the mass-energy 𝑀𝑘 =

√
2𝜆2(𝑘 + 1

2 ), which
does not depend on 𝑎, and 𝜖𝑘 = 2𝑘 + 1, where
𝑘 = 0, 1, 2, ... . Equation (12) for 𝛼 = 2 is the equa-
tion for a quantum oscillator. The mass 𝑀𝑘 can be
interpreted as a sum of masses of separate excita-
tion quanta of the spatially coherent oscillations of
the field 𝜒 about the equilibrium state 𝜒 = 0. The
quantum number 𝑘 is the number of these excitation
quanta with the mass

√
2𝜆2. Taking the mass of pro-

ton ≈1 GeV (∼10−19 in Planck mass units) as such
a mass, one obtains 𝑀𝑘 ∼ 1080 GeV (∼10−61), when
the number of protons 𝑘 ∼ 1080. Such dust mass leads
to the actual density of matter in the observed part
of our universe [21]. The review of the properties of
the barotropic fluid in the 𝜑𝛼-models with 𝛼 ̸= 2 is
given in Ref. [18].

3. Separation of Time
and Matter Degrees of Freedom

Using the completeness and orthonormality of the
state vectors ⟨𝜒|𝑢𝑘⟩, the state vector Ψ of a QGS
in the (𝑎, 𝜒)-representation can be represented in the
form of a superposition of all possible 𝑘th states of
the barotropic fluid

Ψ =
∑︁
𝑘

|𝑢𝑘⟩⟨𝑢𝑘|Ψ⟩, (13)

where ⟨𝑢𝑘|Ψ⟩ ≡ 𝜓𝑘(𝑎, 𝑇 ) satisfies the differential
equations(︂
−𝑖𝜕𝑇 − 2

3
𝐸

)︂
𝜓𝑘(𝑎, 𝑇 ) = 0, (14)(︀

−𝜕2𝑎 + k𝑎2 − 2𝑎𝑀𝑘(𝑎)− 𝐸
)︀
𝜓𝑘(𝑎, 𝑇 ) = 0. (15)

The general solution of this set has the form

𝜓𝑘(𝑎, 𝑇 ) =
∑︁
𝑛

𝑐𝑛𝑘(𝑇 )𝑓𝑛𝑘(𝑎), (16)

with

𝑐𝑛𝑘(𝑇 ) = 𝑐𝑛𝑘(𝑇0) exp

{︂
𝑖
2

3
𝐸𝑛(𝑇 − 𝑇0)

}︂
, (17)

where the summation with respect to discrete values
of 𝑛 and the integration with respect to continuous
ones is assumed.

The wave functions 𝑓(𝑎) in Eq. (16) satisfy the
equation(︀
−𝜕2𝑎 + k𝑎2 − 2𝑎𝑀𝑘(𝑎)− 𝐸

)︀
𝑓(𝑎) = 0, (18)

where indices of the function 𝑓(𝑎) and the eigenvalue
𝐸 describing the discrete and continuous states of ra-
diation are omitted. Thus, the QGS is considered as
a material point moving in the potential

𝑈𝑘(𝑎) = k𝑎2 − 2𝑎𝑀𝑘(𝑎) (19)

formed by the barotropic fluid in the 𝑘th state.
The parameter 𝑇0 in Eq. (17) is an arbitrary con-

stant taken as a time reference point. Equation (18)
determines the stationary quantum state of the QGS
at some fixed instant of time 𝑇0, the choice of which
is arbitrary, 𝑓(𝑎) ≡ 𝑓(𝑎, 𝑇0).

In the probabilistic interpretation of quantum the-
ory, the coefficient 𝑐𝑛𝑘(𝑇0) gives the probability
|𝑐𝑛𝑘(𝑇0)|2 to find the QGS in the 𝑛th state of ra-
diation and the 𝑘th state of the barotropic fluid at
the time instant 𝑇0.

The conditions of normalization and orthogonality
can be imposed on the wave functions 𝑓(𝑎),

⟨𝑓𝑛𝑘|𝑓𝑛′,𝑘⟩ = 𝛿𝑛𝑛′ . (20)

Then the state vector Ψ appears be normalized to
unity,

⟨Ψ|Ψ⟩ =
∑︁
𝑘

∑︁
𝑛

|𝑐𝑛𝑘(𝑇0)|2 = 1, (21)

under the condition that the probability summed
over all possible quantum states of radiation and a
barotropic fluid is equal to unity, i.e. the QGS with
the state vector Ψ exists.

4. Contracting and Expanding QGSs

According to Eq. (5), Eq. (2) is invariant under the
inversion 𝑎 → −𝑎. Since the Robertson–Walker line
element contains only even powers of 𝑎, and the sign
of 𝑎 has not been fixed, while deriving Eqs. (1) and
(2), Eq. (18) can be generalized by extending to the
domain of negative values of 𝑎, so that 𝑎 ∈ (−∞,+∞)
(cf. Refs. [22, 23]).

In order to clarify the physical meaning of the solu-
tions of Eq. (18) in the domain 𝑎 < 0, let us integrate
Eq. (3),

𝑇 (𝜏) = 𝑇0 +

𝜏∫︁
0

𝑑𝜏 ′

𝑎(𝜏 ′)
, at 𝑇 (0) = 𝑇0. (22)
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We get

𝑇 (𝜏) = 𝑇 (−𝜏), at 𝑎(−𝜏) = −𝑎(𝜏). (23)

From Eqs. (13)–(17), it follows that the dependence
of the state vector Ψ on the time 𝑇 (𝜏) is determined
by the exponential multiplier exp(𝑖𝐸𝑇 ), where the
inessential multiplier 2/3 is omitted and the nat-
ural condition 𝑇0 = 0 is imposed. Let this expo-
nential function describe the wave expanding from
𝜏 = −∞ in the direction 𝜏 = +∞ and pass-
ing through the point 𝜏 = 0, where 𝑎(0) = 0
according to Eq. (23). The illustration is given in
Fig. 1.

Then the scale factor 𝑎 ∈ (−∞, 0] corresponds to
the values 𝜏 ∈ (−∞, 0], and the scale factor 𝑎 ∈
[0,+∞) corresponds to the values 𝜏 ∈ [0,+∞). As
a result for the time arrow from 𝜏 = −∞ to 𝜏 = +∞,
the state vector Ψ describes the QGS contracting on
the semiaxis 𝑎 < 0, since |𝑎| decreases, and the QGS
expanding on the semiaxis 𝑎 > 0, because |𝑎| in-
creases.

The instant of time 𝜏 = 0 can be interpreted as
the instant of the nucleation of a quantum system
expanding in time from the point 𝑎 = 0, although
any nucleation “from nothing” does not occur phys-
ically. What happens at the instant 𝜏 = 0 is that
the regime of the preceding contraction of the system
changes into the subsequent expansion. Equation (18)
describes the stationary states of the QGS for a given
constant 𝐸. The state vector (13) contains all infor-
mation about the system as a whole: the cross-section
|𝑎| = const determines the quantum state of the QGS
at the time instant 𝜏 , when such a value of the scale
factor holds.

If one applies the above-described scenario to our
universe at the Planck epoch, interpreting the pas-
sage through the point 𝑎 = 0 at 𝜏 = 0 as the nu-
cleation of an expanding universe with 𝑎 > 0 at
𝜏 > 0, then the answer to the question “What was
with the quantum system before the instant of the
nucleation of the universe of our (expanding) type?”
can be given: there has existed another universe with
the same mass-energy 𝑀𝑘(𝑎) and wave function 𝑓(𝑎)
characterized by the same quantum numbers for mat-
ter and radiation as the nucleated universe; however,
that universe has been contracting up to the state
with 𝑎 = 0, which not necessarily will be singular
(see Sect. 5 below).

5. Intensity Distribution

Let us consider a QGS, in which the barotropic fluid
(matter) and radiation are in some definite quantum
states. In such a quantum system, the intensity dis-
tribution of matter-energy as a function of 𝑎 is given
by the expression

𝐼(𝑎) =𝑀(𝑎)|𝑓(𝑎)|2, (24)

where indices of the states of matter (𝑘) and radiation
(𝑛) are omitted. The wave function 𝑓(𝑎) is the solu-
tion of Eq. (18) complemented with the appropriate
boundary conditions, which determine, for example,
the behavior of 𝑓(𝑎) in the asymptotic domain of large
values of |𝑎|.

The intensity summed over all possible values of 𝑎
gives the mean mass-energy of matter in the QGS in
the state 𝑓(𝑎) normalized to unity,

⟨𝑀(𝑎)⟩ =
∫︁
𝑑𝑎 𝐼(𝑎). (25)

We note that ⟨𝑀(𝑎)⟩ = 𝑀 = const for the 𝜑2-
model. As an example, we will calculate intensity (24)
in the exactly solvable models of a spatially closed and
flat QGS filled with dust and radiation.

5.1. Spatially closed QGS

In the model of spatially closed QGS formed by
dust, whose mass does not depend on 𝑎, 𝑀(𝑎) =
= 𝑀 = const, Eq. (18) is reduced to the equation
for an oscillator by the substitution of the variable
𝑎 = 𝜉 +𝑀 ,(︀
−𝜕2𝜉 + 𝜉2 − 𝜖

)︀
𝑓(𝜉) = 0, (26)

where an eigenvalue 𝜖 = 𝐸 +𝑀2. Changing from the
variable 𝑎 to 𝜉 restores the inversion invariance of
Eq. (18) violated in the case where matter is rep-
resented by dust. The variable 𝜉 describes a devi-
ation of 𝑎 from its equilibrium value at the point
𝑎 = 𝑀 . This variable lies in the interval [−𝑀,+∞),
if 𝑎 takes only positive values and zero. For 𝑀 ≫ 1,

Fig. 1. Wave expanding in the proper time 𝜏
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Fig. 2. Intensity distribution (27) for the cases 𝜌𝛾 > 0 (bold
line) and 𝜌𝛾 < 0 (thin line)

the interval of change of 𝜉 in the normalization in-
tegral for the function 𝑓(𝜉) can be extended to the
whole semiaxis of the negative values of 𝜉. The er-
ror arising here is ∼𝑂((2𝑀)2𝑛−1 exp(−𝑀2)), where
𝑛 = 0, 1, 2, ... [11, 12]. Then the solution of Eq. (26),
decreasing at |𝜉| = +∞ and normalized to unity, gives
the intensity distribution of dust matter in the form

𝐼𝑛(𝑎) =
𝑀

2𝑛𝑛!
√
𝜋
𝑒−(𝑎−𝑀)2𝐻2

𝑛(𝑎−𝑀), (27)

where 𝐻𝑛(𝜉) is the Hermite polynomial and
the variable 𝑎 takes any values in the interval
(−∞,+∞). The constant 𝐸 is quantized in accor-
dance with the condition

𝐸 = 2𝑛+ 1−𝑀2. (28)

It takes a sequence of discrete positive values for 2𝑛+
1 > 𝑀2 and discrete negative values for 2𝑛 + 1 <
< 𝑀2. In the latter case, radiation as a perfect fluid
is characterized by the negative energy density (4)
and pressure 𝑝𝛾 = − 1

3 |𝜌𝛾 |, i.e. a perfect fluid acquires
the properties of the antigravitating matter at small
quantum numbers 𝑛 and large masses 𝑀 .

Equation (27) determines the intensity distribution
of dust matter in a QGS both in the regime of its con-
traction, when 𝑎 < 0, and in the regime of expansion,
when 𝑎 > 0. The quantities 𝑛 and 𝑀 in Eqs. (27) and
(28) are free parameters.

In Fig. 2, it is shown the intensity distribution for
the parameters 𝑛 = 16 and 𝑀 = 5 (bold line), when

𝜌𝛾 > 0, and 𝑀 = 6 (thin line), when 𝜌𝛾 < 0. In the
case of the positive energy density of radiation, the
intensity evolves so that the first maximum of 𝐼𝑛(𝑎)
is reached in the domain of contraction, straight be-
fore the boundary point 𝑎 = 0, where the regime of
contraction changes into the expansion. It is as if the
QGS accumulates the energy just before the begin-
ning of the expansion. The intensity at the point 𝑎 =
= 0 is found to be finite (𝐼𝑛(0) = 0.7 in Fig. 2). In the
case 𝜌𝛾 < 0, the negative pressure of radiation pushes
out the first maximum into the domain of expansion
near the point 𝑎 = 0. In both cases, the intensity
oscillates between maximum values and zero in the
domain of expansion. The value 𝑎 = 𝑀 corresponds
to the smallest maximum and 𝐼𝑛(0) = 𝐼𝑛(2𝑀). For
𝑎≫ 2𝑀 , the intensity decreases exponentially.

For 𝑛 ≫ 1, the intensity distribution oscillates ac-
cording to the law

𝐼𝑛(𝑎) =
𝑀

𝜋

√︂
2

𝑛
cos2

(︁√
2𝑛(𝑎−𝑀)− 𝑛𝜋

2

)︁
. (29)

The averaging with respect to oscillations gives the
intensity, which does not depend on 𝑎,

𝐼𝑛(𝑎) =
𝑀

𝜋

√︂
1

2𝑛
at 𝑛→ ∞. (30)

The general behavior of intensity (27) reproduces a
position probability density of a harmonic oscillator
with respect to the variable 𝑎 renormalized by the
mass 𝑀 . For the QGS under consideration, Eq. (26)
is exact. Its application to the cosmological problem
leads to nontrivial conclusions about the evolution of
the intensity distribution of matter in the QGS with
all possible parameters 𝑛 and 𝑀 close to the Planck
epoch.

5.2. Spatially flat QGS

The prediction about the exponential decreasing of
the intensity distribution of matter for 𝑎 ≫ 2𝑀 is
made in the model of spatially closed QGS. Now, let
us consider another exactly solvable model, namely
that of flat space. In the model of spatially flat QGS
formed by dust with the constant mass 𝑀 , Eq. (18)
is reduced to(︀
𝜕2𝜉 + 𝜉

)︀
𝑓(𝜉) = 0, (31)

by introducing the variable

𝜉 = (2𝑀)1/3
(︂
𝑎+

𝐸

2𝑀

)︂
. (32)
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Its general solution is a linear superposition of the
Airy functions 𝐴𝑖 and 𝐵𝑖. We will look for the solu-
tion, which has a form of the outgoing wave at 𝜉 > 0
and satisfies the boundary condition 𝑓(−∞) = 0. By
normalizing this solution to the delta-function as in
Eq. (20), we get the following expression for the in-
tensity distribution of matter (24):

𝐼(𝑎) =
(2𝑀)2/3

2𝜋
𝐴𝑖2

(︂
−(2𝑀)1/3

(︂
𝑎+

𝐸

2𝑀

)︂)︂
. (33)

In Fig. 3, the intensity 𝐼(𝑎) (33) is depicted as a func-
tion of 𝑎 for the same parameters as in Fig. 2 for
𝜌𝛾 > 0.

As in the case of spatially closed QGS, intensity
(33) increases exponentially with the contraction of
the system, reaching a maximum, passing through
the point 𝑎 = 0 with the finite value (𝐼(0) = 0.1) and
then oscillating. From the asymptotic expression for
𝐴𝑖(−𝜉), it follows that the intensity averaged over the
oscillations decreases with 𝑎 according to the law

𝐼(𝑎) =
1

4𝜋

√︂
2𝑀

𝑎
at 𝑎≫ 𝐸

2𝑀
. (34)

If one assumes that, during the quantum epoch, in-
tensity (34) decreases in time as 𝜏−2 like the en-
ergy density in general relativity, then the scale fac-
tor should increase in time according to a power law
𝑎 ∼ 𝜏4. Such a growth of 𝑎 corresponds to an infla-
tionary model, in which it is supposed that the scale
factor increases more slowly than in the exponential
regime [24].

6. Analogies

Intensities (27) and (33) obtained from exact solu-
tions of Eq. (18) allow us to draw analogy with known
phenomena, which are described by the equations
of quantum mechanics and optics. We will consider
some of these analogies in detail.

6.1. Oscillating wave packet

Formula (27) gives the intensity distribution of mat-
ter in stationary states. Let us find how this intensity
changes with the proper time in the expanding QGS.

The eigenfunction of the ground state of an oscil-
lator (26)

𝑓0(𝑎− ⟨𝑎⟩) = 1

𝜋1/4
𝑒−

1
2 (𝑎−⟨𝑎⟩)2 (35)

Fig. 3. Intensity distribution (33) for 𝑀 = 5, 𝐸 = 8

has the form of a normalized minimum packet, whose
center of gravity is displaced in the positive 𝑎 direc-
tion by an amount ⟨𝑎⟩ =𝑀 [11, 12]. We assume that
such a state corresponds to the time instant 𝜏 = 0,
𝜓(𝑎, 𝜏 = 0) = 𝑓0(𝑎 − ⟨𝑎⟩). If the equivalent classi-
cal system evolves in time 𝜏 with a power-law scale
factor, 𝑎 = 𝛽𝜏𝛼, where 𝛼 and 𝛽 are some positive
constants, then the time phase in Eq. (17) at 𝑇0 = 0
takes the form
2

3
𝐸𝑛𝑇 =

[︂
1

2
(1−𝑀2) + 𝑛

]︂
𝜔𝜏, (36)

where the frequency

𝜔 =
4

3(1− 𝛼)𝑎
(37)

depends on 𝑎. From the requirement 𝜔 > 0, we get
the following restriction: 𝑎 > 0 and 0 ≤ 𝛼 < 1. Un-
der these conditions, we have lim𝜏→0 𝜔𝜏 = 0. Consi-
dering only the sum with respect to 𝑛 in Eq. (16)
(continuous spectrum is absent), using representa-
tion (17) with 𝑇0 = 0, and the explicit form of func-
tion (35), as well as the representation of the phase
(36), one can calculate the wave function 𝜓(𝑎, 𝜏) =
= 𝜓𝑘(𝑎, 𝑇 (𝜏)). As a result, the intensity distribution
𝐼(𝑎, 𝜏) = 𝑀 |𝜓(𝑎, 𝜏)|2 of matter with the mass 𝑀 in
a wave packet moving in time appears to equal

𝐼(𝑎, 𝜏) =
𝑀√
𝜋
exp

{︁
− [𝑎− (1 + cos𝜔𝜏)𝑀 ]

2
}︁
. (38)

If the mass of matter (dust) goes to zero, then the
wave function tends to the eigenfunction correspond-
ing to the lowest energy of radiation 1

2𝜔 at 𝑛 = 0,
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Fig. 4. Intensity distribution (38) for 𝑀 = 5, 𝛼 = 0

while the intensity does not depend on time and goes
to zero as 𝐼(𝑎, 𝜏) → (𝑀/

√
𝜋) exp(−𝑎2) at 𝑀 → 0. If

the mass 𝑀 ̸= 0, then the condition 𝐸 > 0 is ensured
by including the stationary states with the quantum
numbers 𝑛 ̸= 0 in the packet. In the case 𝑛 ≫ 1,
the main contribution to the packet is made by the
eigenfunction with 𝑛 = 1

2𝑀
2, and the intensity is de-

scribed by expression (38).
In Fig. 4, we show intensity 𝐼(𝑎, 𝜏) (38) for the pa-

rameters 𝑀 = 5 and 𝛼 = 0 in Eq. (37). The modes
with 𝑛 = 12 and 𝑛 = 13 make the most important
contribution to 𝐼(𝑎, 𝜏). Matter is distributed in 𝑎 and
𝜏 in the form of periodic structures like petals or
stretched bubbles and displaced to their edges. These
structures are limited by the value 𝑎 = 2𝑀 with re-
spect to 𝑎 (as in Fig. 2), and their number increases
with time.

6.2. Diffraction

For the spatially flat QGS formed by dust and filled
with radiation, described by Eq. (18) with k = 0 and
𝑀 = const, an analogy with the motion of a particle
in a uniform external field along the coordinate 𝑎 with
the energy 𝐸 under the action of the force 𝐹 = 2𝑀
is obvious [25]. Therefore, we consider a more inter-
esting analogy with the distribution of the light in-
tensity in the neighborhood of the point, where its
ray is tangent to the caustic [26]. Eq. (33) yields the
asymptotic expression for 𝐼(𝑎) at

(︀
𝑎+ 𝐸

2𝑀

)︀
≫ 1. We

rewrite it in the form

𝐼 ≈ 2𝐴√
−𝑥

sin2

(︃
2

3
(−𝑥)3/2

√︂
2𝜅2

𝑅
+
𝜋

4

)︃
, (39)

where we denote

𝐴 =

√
2𝑀

4𝜋
, 𝑥 = −

(︂
𝑎+

𝐸

2𝑀

)︂
,

𝜅2 =
𝐸

2𝑎
, 𝑅 =

𝐸

2𝑎𝑀
.

(40)

The introduced quantities have a clear physical mean-
ing. The amplitude 𝐴 is the intensity far from the
caustic, which would be obtained from geometric op-
tics neglecting the diffraction effects, 𝑥 is the dis-
tance from the point of observation along the nor-
mal to the caustic, which takes positive values for
points on the normal in the direction of its center of
curvature, 𝜅2 is the energy of the ray of light, 𝑅 is
the radius of curvature of the caustic at the point of
observation.

Equation (39) describes the intensity for the ray of
light at large negative values of 𝑥. In the radiation-
dominated epoch, 𝑎 ≪ 𝐸/(2𝑀), the radius of cur-
vature is 𝑅 ≫ 1. This means that the wave surface
is practically flat. In the matter-dominated epoch,
𝑎 ≫ 𝐸/(2𝑀), we have 𝑅 ≪ 1. For 𝑅 ∼ 0, the
wave surface is practically spherically symmetric,
and its center of the caustic coincides with the fo-
cus. Far from the focus, the averaged intensity de-
creases as 𝑎−1/2 with account for the diffraction
effects (see Eq. (34)). The diffraction in the QGS
can be explained by the scattering of electromag-
netic waves of radiation on massive dust particles
playing the role of opaque bodies (screens). The ob-
served diffraction picture is similar to that depicted
in Fig. 3.

7. Final Remarks

In conclusion, we note some interesting properties
of the QGS under consideration. Because of the fact
that frequency (37) is inversely proportional to the
variable 𝑎, in the spatially closed QGS, only one cy-
cle of oscillations of intensity (27) is possible. In such
a system, the dissipation of energy occurs with in-
crease of 𝑎. This makes a difference between the spa-
tially closed quantum system with gravitation and the
corresponding classical universe, which allows oscilla-
tions of the scale factor 𝑎(𝜏) in time with endlessly
repeated passage through the singular state 𝑎 = 0
(so-called oscillatory models [27]).

The next property deals with the time-energy un-
certainty relation. Let us find the form of this relation
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for the QGS model with Eqs. (1) and (2). Let A be
an observable which does not depend on time explic-
itly. Then, from the Heisenberg equation for the mean
value ⟨A⟩,

𝑑⟨A⟩
𝑑𝑇

=
1

𝑖
⟨[A,H]⟩, (41)

where H is the Hamiltonian of the system written in
units of the lapse function (for details, see [11, 18]),
and from the uncertainty relation in the general form
[28],

ΔAΔE ≥ 1

2
|⟨[A,H]⟩|, (42)

where ΔA and ΔE are the root-mean-squares of 𝐴
and of H, respectively, using Eq. (3), we find

𝜏A
ΔE

|𝑎|
≥ ~

2
, (43)

where

𝜏A =

⃒⃒⃒⃒
⃒ΔA

(︂
𝑑⟨A⟩
𝑑𝜏

)︂−1
⃒⃒⃒⃒
⃒ (44)

is a time characteristic of the evolution of the sta-
tistical distribution of A (i.e. the time necessary for
this statistical distribution to be considerably mod-
ified). The quantity ΔE/|𝑎| is the statistical fluctu-
ation of the result of the energy measurement. In
the limit |𝑎| → 0, this fluctuation becomes infinitely
large, while a time characteristic 𝜏A can acquire any
value in accordance with the uncertainty relation
(43). Thus, near the initial cosmological singularity,
the notions of time and energy lose their meaning
(they cannot be measured).

Let A = 𝑎. Then, for a stationary state, one has
⟨𝑎⟩ = 𝑀 = const and 𝑑⟨A⟩/𝑑𝜏 = 0. In this case,
𝜏A = ∞, and ΔE = 0.

Possible modifications of the uncertainty relations
caused by the spacetime curvature are discussed in
the literature (see, e.g., Refs. [29–32]). For example,
in Ref. [29], the statistical fluctuation of the spatial
variable is identified with the distance between the
two near points (the coordinate distance). In such a
“naive” analysis for quantum gravity, the uncertainty
relation between the curvature and the metric can
be obtained. But it is noted that the consequences

of it are unclear. The further discussion of Unruh’s
uncertainty principle can be found in Ref. [33] and
references therein.
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ПОВЕДIНКА ГРАВIТАЦIЙНОЇ СИСТЕМИ
В ЕПОХУ, БЛИЗЬКУ ДО ПЛАНКIВСЬКОЇ

Р е з ю м е

Дослiджено еволюцiю квантової гравiтацiйної системи
(КГС) з максимально-симетричною геометрiєю в епоху,
близьку до планкiвської. Вектор стану КГС задовольняє
систему хвильових рiвнянь, якi описують еволюцiю кванто-
вої системи у часi в просторi квантових полiв. Показано, що
для стрiли часу, спрямованої з минулого в майбутнє, вектор
стану описує КГС, яка стискається для вiд’ємних значень
космiчного масштабного фактора та розширюється для йо-
го додатних значень. Обчислено розподiл iнтенсивностi ма-
терiї для двох моделей, що допускають точний розв’язок, а
саме для просторово замкненої та плоскої КГС, якi утворенi
пилом та випромiнюванням. Наведенi аналогiї з вiдомими
явищами з квантової механiки та оптики.


