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RENOVATION OF INTEREST
IN THE MAGNETOELECTRIC EFFECT
IN NANOFERROICSUDC 539

Recent theoretical studies of the influence of the magnetoelectric effect on the physical prop-
erties of nanosized ferroics and multiferroics have been reviewed. Special attention is focused
on the description of piezomagnetic, piezoelectric, and linear magnetoelectric effects near the
ferroid surface in the framework of the Landau–Ginzburg–Devonshire phenomenological the-
ory, where they are considered to be a result of the spontaneous surface-induced symmetry
reduction. Therefore, nanosized particles and thin films can manifest pronounced piezomag-
netic, piezoelectric, and magnetoelectric properties, which are absent for the corresponding
bulk materials. In particular, the giant magnetoelectric effect induced in nanowires by the
surface tension is possible. A considerable influence of size effects and external fields on the
magnetoelectric coupling coefficients and the dielectric, magnetic, and magnetoelectric suscep-
tibilities in nanoferroics is analyzed. Particular attention is paid to the influence of a misfit
deformation on the magnetoelectric coupling in thin ferroic films and their phase diagrams,
including the appearance of new phases absent in the bulk material. In the framework of the
Landau–Ginzburg–Devonshire theory, the linear magnetoelectric and flexomagnetoelectric ef-
fects induced in nanoferroics by the flexomagnetic coupling are considered, and a significant
influence of the flexomagnetic effect on the nanoferroic susceptibility is marked. The mani-
festations of size effects in the polarization and magnetoelectric properties of semiellipsoidal
bismuth ferrite nanoparticles are discussed.
K e yw o r d s: ferroics, multiferroics, nanoferroics, Landau–Ginzburg–Devonshire theory, mag-
netoelectric effect.

1. Introduction

An invited review to the centenary
of the National Academy of Sciences of Ukraine

A considerable growth of the interest in materials
demonstrating a correlation between ferromagnetic
and ferroelectric properties has been observed in the
last decade. Magnetoelectric (ME) materials [1, 2]
with the coexisting ferromagnetic (FM) and ferroelec-
tric (FE) orderings belong to multiferroics, which is
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schematically illustrated in Fig. 2.1. Till the begin-
ning of the 21st century, magnetoelectrics and mul-
tiferroics were only interesting to a narrow circle of
specialists, because ME effects could be observed only
at low temperatures, so that there was no talking
about the practical application of those effects. A re-
cent burst in the research activity in this area is asso-
ciated with the discovery of materials that have ME
properties at room temperature and moderate mag-
netic fields.
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2. Linear Magnetoelectric Effect

The physics of ME phenomena, which is actively
developed, belongs to the fundamental problems
dealing with the interrelation between the electric
and magnetic fields. Similarly to electromagnetism,
it is described by Maxwell’s equations. However, de-
spite their external resemblance, the ME phenom-
ena are effects of different nature. Electromagnetic
fields are intrinsically connected with electrodynam-
ics; i.e. they arise only when electric charges move. At
the same time, the ME effects are not reduced to dy-
namic phenomena. Even the static electric field gen-
erates a magnetization, and the static magnetic field
generates an electric polarization.

First assumptions about the existence of substan-
ces whose molecules become magnetized by the elec-
tric field and electrified by the magnetic one were
made as long ago as by Pierre Curie [4]. However, no
ME materials, neither in the form of composites nor
in the form of single-phase media, have been created
till the middle of the 20th century.

In 1956, L.D. Landau and E.M. Lifshitz [5] made
the notion of ME materials more accurate. Namely,
those substances were classed to magnetoelectrics,
whose symmetry allows the existence of linear ME
effects, i.e. the emergence of the electrical polariza-
tion proportional to the magnetic field (direct ME ef-
fect), and the magnetization proportional to the elec-
tric field (inverse ME effect):

M =
�̂�

4𝜋
E, (2.1a)

P =
�̂�

4𝜋
H, (2.1b)

where M is the magnetization vector, E the elec-
tric field vector, P the polarization vector, H the
magnetic field vector, and �̂� the tensor of the linear
ME effect. Note that formulas (2.1) couple vectors
with different transformation properties with respect
to the space (𝑃 ) and time (𝑇 ) inversion operations:
the polar vectors P and E change their direction at
the space inversion and remain invariable at the time
inversion (i.e. they are 𝑃 -odd and 𝑇 -even vectors),
whereas the axial vectors M and H are 𝑇 -odd and
𝑃 -even ones. Thus, a necessary condition for the ex-
istence of the linear ME effect in a substance is the
separate violation of the 𝑃 - and 𝑇 -parity with the
preservation of the combined 𝑃𝑇 -parity, which dras-
tically narrowed the search scope for magnetoelect-

Fig. 2.1. Ferroics, multiferroics, and magnetoelectrics (repro-
duced from Ref. [3])

rics. In 1959, I.E. Dzyaloshinskii theoretically pre-
dicted the ME effect in Cr2O3 [6]. In a year, D.N. As-
trov registered a magnetization induced by the elec-
tric field [see Eq. (2.1a)] [7]. Soon, V. Folen, G. Rado,
and E. Stalder [8] changed the electric polarization
induced in Cr2O3 by a magnetic field.

New materials with the ME effect as a cornerstone
of new physical properties are the topic of this re-
view. Their search is carried out very intensively, be-
cause ME materials open up broad prospects for their
application in information and energy-saving tech-
nologies. They can serve as a basis for the creation
of magnetic sensors, capacitance electromagnets, el-
ements of magnetic memory, microwave filters, and
other devices free of direct electric currents giving rise
to heat losses. Some applications, e.g. sensors, are al-
ready at the practical implementation stage, the oth-
ers are under development, whereas some things exist
in the form of ideas.

Magnetic sensors are the most obvious and the
most developed idea of the practical application of
the ME effect. On the basis of composite ME materi-
als, sensors of dc and ac fields are created with a sen-
sitivity that far exceeds the sensitivity of sensors on
the basis of the Hall effect and the giant magnetic re-
sistance in the frequency interval 10−2–103 Hz [9]. At
the same time, they are much cheaper than SQUIDs,
which makes it possible to talk about the application
of those magnetic sensors even in such domains as
magnetoencephalography and magnetocardiography.

In this review, special attention is paid to nanos-
tructured materials. These materials renew interest
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in the ME effect in ferroics. Here, the existence of
the surface plays a crucial role in the emergence of
abnormal properties that are not observed in bulk
materials.

2.1. Analysis of the symmetry
of piezomagnetic, piezoelectric, and linear
magnetoelectric effects induced by the surface

From the viewpoint of both fundamental and applied
physics, the most interesting properties of nanoma-
terials are those, which are absent in bulk materi-
als: antiferroelectric, ferroelectric, antiferromagnetic,
and size-induced ferromagnetic ones. Since the trans-
lational symmetry is violated at any surface or in-
terface, the structural modifications and the modi-
fications in the polarization, magnetic, and electron
states usually take place in thin films and nanoparti-
cles [10, 11, 15–17].

The ME effect in nanomaterials has attracted a
keen attention in the recent years [18]. The magni-
tude of the ME effect turned out much larger than
that in the bulk. The evidence in favor of this as-
sertion follows from the measurements of ME coeffi-
cients in bulk crystals and epitaxial BiFeO3 films on
the SrTiO3 substrate. This effect is associated with
the influence of boundary conditions [19]. Using the
theory of symmetry, Eliseev et al. [20] determined
how the surface-induced symmetry violation results
in the appearance of spontaneous suface piezomag-
netic, piezoelectric, and magnetoelectric effects in
nanomaterials.

2.2. Surface piezomagnetic,
piezoelectric, and linear magnetoelectric
effects in nanosystems

For any spatially confined system, the inversion cen-
ter disappears in the direction normally to the sur-
face; only the symmetry axis and the planes normal
to the surface survive. Hence, the magnetic and spa-
tial symmetry group should be reduced to one of its
subgroups consisting of the transformation matrices
𝐴𝑆

𝑖𝑗 that satisfy the relation 𝑛𝑖𝐴
𝑆
𝑖𝑗𝑛𝑗 = 1, where 𝑛𝑗

are the components of the unit vector normal to the
surface.

The transformation law for the components of the
linear ME-effect tensor 𝛾𝑆

𝑖𝑗 near the surface looks like

𝛾𝑆
𝑖𝑗 = (−1)

𝑡𝑟
det
(︀
A𝑆
)︀
𝐴𝑆

𝑖𝑘𝐴
𝑆
𝑖𝑙𝛾

𝑆
𝑘𝑙,

with 𝛾𝑆
𝑖𝑗 ≡ 𝛾𝑆

𝑖𝑗 for nonzero components. This law dif-
fers from the corresponding law for the bulk material,

𝛾𝑖𝑗 = (−1)
𝑡𝑟
det (A)𝐴𝑖𝑘𝐴𝑖𝑙𝛾𝑘𝑙,

by the form of transformation matrices 𝐴𝑆
𝑖𝑗 ̸= 𝐴𝑖𝑗 .

The ME effect was demonstrated to exists in 58 mag-
netic classes of bulk materials [14]. Our analysis of the
piezomagnetic tensor [20, 21] showed that the ME ef-
fect exists in nanosystems belonging to 90 magnetic
classes.

The following formulas describing the size effect on
the ME coupling in nanosystems were derived in work
[20]:

∙ a thin film ℎ in thickness on a rigid substrate,

𝛾𝑅
3𝑗 = 𝛾3𝑗 +

𝛾𝑆
3𝑗

ℎ
+

𝑑
(Se)
3𝑘𝑙 𝑑

(Sm)
𝑗𝑘𝑙

ℎ2 (𝑠11 + 𝑠12)
;

∙ a wire of radius 𝑅,

𝛾𝑅
𝑖𝑗 = 𝛾𝑖𝑗 +

2

𝑅
𝛾𝑆
𝑖𝑗 ;

∙ a sphere of radius 𝑅,

𝛾𝑅
𝑖𝑗 = 𝛾𝑖𝑗 +

3

𝑅
𝛾𝑆
𝑖𝑗 .

2.3. Giant magnetoelectric effect
induced in nanowires by the surface tension

Let us consider ferroics in the form of nanowires with
two order parameters, the magnetization 𝑀 and the
electric polarization 𝑃 . These order parameters can
be either inherent to the bulk material or induced by
the nanowire surface. Taking into account that fer-
romagnetism was observed at room temperature in
nanoparticles 7–30 nm in diameter [10], whereas the
ferroelectric state appears at a size of about 50 nm
[11], nanowires of about 5–50 nm in size are usu-
ally studied. For such small dimensions, the influence
of surfaces and boundary conditions associated with
them, including the surface tension, is known to be
strong. Therefore, the expected properties should be
closer to those observed near the surface than to the
bulk ones. Although with the growth of a specimen
size, the properties gradually change from the sur-
face (shell) to the bulk (core) ones (see, e.g., works
[22, 23]), they can be considered uniform and sub-
jected to a strong action of the surface tension, if the
specimen size does not exceed 50 nm. The study of
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ferroelectric nanoparticles with the use of the elec-
tron spin resonance (ESR) method showed [24] that
the shell size varies from a few to tens of nanome-
ters. A characteristic feature of the shell is the ab-
sence of spatial symmetry inversion. Therefore, the
piezoelectric effect is possible even in the case of cu-
bic symmetry in the bulk. In the general case, the
existence of the piezomagnetic effect is not excluded.

Now, let us consider long cylindrical ferroic nano-
wires (ℎ ≫ 𝑅) electrically polarized along their
axis 𝑧 and magnetized along one of three equivalent
axes. Let a nanowire with mechanically free side walls
(𝜌 = 𝑅) be clamped between a plate (𝑧 = −ℎ/2) and
an upper electrode (𝑧 = +ℎ/2) (see Fig. 2.2). The ex-
ternal electric and magnetic fields are applied along
the axes 𝑧 and 𝑥, respectively. In this geometry, there
is no depolarization field. The demagnetization field
can also be made low [5]. This geometry is typical of
the majority of experiments. Under those conditions,
a single-domain state is the most beneficial energe-
tically. The electro- and magnetostriction effects, the
mechanical strain tensor, and the boundary condi-
tions at the curved nanoparticle surface have to be
taken into account. The nanowires are assumed to be
well separated from one another and do not interact
electrically or magnetically.

The expansion of the Gibbs energy in a series of
the uniform polarization 𝑃3, magnetization 𝑀1, and
mechanical stress 𝜎𝑖𝑗 looks like [13]

𝐺𝑅 = 2𝜋ℎ

𝑅∫︁
0

𝜌 𝑑𝜌×

×
(︂
𝑎1𝑃

2
3 + 𝑎11𝑃

4
3 + 𝑎111𝑃

6
3 −

(︀
𝑄11𝜎33 +

+𝑄12 (𝜎11 + 𝜎22)
)︀
𝑃 2
3 +

− 1

2

(︀
𝐴11𝜎

2
11 +𝐴11𝜎

2
22 +𝐴33𝜎

2
33

)︀
𝑃 2
3 + ...−

− 𝑔𝑒3𝑗𝑘𝜎𝑗𝑘𝑃3 + 𝑏1𝑀
2
1 + 𝑏11𝑀

4
1 + 𝑎111𝑀

6
1 −

− (𝑍11𝜎33 + 𝑍12 (𝜎11 + 𝜎22))𝑀
2
1 −

− 1

2

(︀
𝐵11𝜎

2
11 +𝐵11𝜎

2
22 +𝐵33𝜎

2
33

)︀
𝑀2

1 + ...−

− 𝑔𝑚1𝑗𝑘𝜎𝑗𝑘𝑀1 −
1

2
𝑠11
(︀
𝜎2
11 + 𝜎2

22 + 𝜎2
33

)︀
−

− 𝑠12 (𝜎11𝜎22 + 𝜎11𝜎33 + 𝜎33𝜎22)−

− 1

2
𝑠44
(︀
𝜎2
23 + 𝜎2

13 + 𝜎2
12

)︀
+

+ 𝑓𝑖𝑗𝑘𝑙𝜎
2
𝑖𝑗𝜎

2
𝑘𝑙 −𝑀1𝐻0 − 𝑃3𝐸0

)︂
. (2.2)

Fig. 2.2. A long cylindrical nanowire: 𝑥 is one of three equiv-
alent axes of weak magnetic anisotropy, and 𝑧 is the axis od
ferroelectric polarization. An external electric field is applied
along the polarization axes, and the magnetic one along the
𝑥-axis (Reproduced from [[13]], with the permission of AIP
Publishing)

Here, subscripts 1, 2, and 3 correspond to the Carte-
sian coordinates 𝑥, 𝑦, and 𝑧, respectively. Below, we
will use the Voight or matrix notation, if necessary:
𝑥𝑥 = 1, 𝑦𝑦 = 2, 𝑧𝑧 = 3, 𝑧𝑦 = 4, 𝑧𝑥 = 5, and 𝑥𝑦 = 6.
In the framework of the Landau–Ginzburg approach,
the coefficients 𝑎1(𝑇 ) and 𝑏1(𝑇 ) depend linearly on
the temperature 𝑇 . All higher-order coefficients are
assumed to be temperature-independent. We also as-
sume that the order parameters and the spatial distri-
bution of elastic stresses are uniform in a nanowire,
so that the gradient energy can be neglected. Note
that, in the case of the film-on-substrate geometry,
this assumption is valid, if the film thickness does
not exceed the critical thickness of the misfit defor-
mation emergence, which is known to reach tens of
nanometers [25].

The quantities 𝑄𝑖𝑗 and 𝑍𝑖𝑗 in Eq. (2.2) are the co-
efficients of the electro- and magnetostriction tensors,
respectively; and 𝑠𝑖𝑗 are the components of the elas-
tic compliance tensor [26]. Below, we assume that the
symmetry of the piezoelectric, 𝑔𝑒3𝑗𝑘, and piezomagne-
tic, 𝑔𝑚3𝑗𝑘, tensors differs from the cubic one due to the
surface effect: 𝑔𝑒3𝑗𝑘𝜎𝑗𝑘𝑃3= 𝑔𝑒31(𝜎11+𝜎22)𝑃3+𝑔𝑒33𝜎33𝑃3,
and 𝑔𝑚1𝑗𝑘𝜎𝑗𝑘𝑀1= 𝑔𝑚11(𝜎11+ 𝜎22)𝑀1+ 𝑔𝑚13𝜎33𝑀1.

The distribution of stresses 𝜎𝑖𝑗 must satisfy me-
chanical equilibrium conditions and boundary condi-
tions at the curved nanoparticle surface,

𝜕𝜎𝑖𝑗

𝜕𝑥𝑖
= 0,

𝜎𝜌𝜌

⃒⃒
𝜌=𝑅

= − 𝜇

𝑅
, 𝜎𝜌𝜙

⃒⃒
𝜌=𝑅

= 0,

𝜎𝜌𝑧

⃒⃒
𝜌=𝑅

= 0, 𝑢3(𝑧 = ±ℎ/2) = 0.

(2.3)
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where 𝜇𝑖𝑗 = 𝜇𝛿𝑖𝑗 are coefficients of the surface stress
tensor at the nanowire surface [27, 28]. The surface
tension 𝜇 substantially depends on the nanowire ma-
terial.

The minimization of the free energy with re-
spect to the components 𝜎𝑖𝑗 brings us to the equa-
tions 𝜕𝐺𝑅/𝜕𝜎𝑖𝑗 = −𝑢𝑖𝑗 , where 𝑢𝑖𝑗 are components
of the strain tensor. By neglecting the components
∼𝑓𝑖𝑗𝑘𝑙𝜎

2
𝑖𝑗𝜎

2
𝑘𝑙 and higher-order ones, we obtain the fol-

lowing homogeneous solution for the stresses tensor
components 𝜎𝑖𝑗 in the Cartesian coordinates [13]:

𝜎11 = 𝜎22 = − 𝜇

𝑅
, 𝜎12 = 𝜎13 = 𝜎23 = 0, (2.4)

𝜎33 =
𝑠12(2𝜇/𝑅)−𝑄11𝑃

2
3 − 𝑍11𝑀

2
1 − 𝑔𝑒33𝑃3− 𝑔𝑚13𝑀1

𝑠11 +𝐴33𝑃 2
3 +𝐵33𝑀2

3

.

(2.5)

As a rule, the shell thickness Δℎ𝑑 ≈ 5÷50 nm. In
what follows, we consider a situation where 𝑅 < Δℎ𝑑,
i.e. all particles are in the shell, because it is the most
important factor for the surface and size effects to
manifest themselves.

We would like to emphasize that the considered
mechanical boundary conditions are related to one of
the possible experimental situations. The correspond-
ing calculations showed that there is no ME coupling
in mechanically free rods. At the same time, if a rod
is partially clamped, the results obtained are qualita-
tively similar to those discussed below.

Furthermore, we assume that the quantities
𝐴𝑖𝑖𝜎

2
𝑖𝑖𝑃

2
3 and 𝐵𝑖𝑖𝜎

2
𝑖𝑖𝑀

2
1 are small, and we may neglect

their higher powers. Substituting Eqs. (2.4), (2.5)
into Eq. (2.2), we obtain the Gibbs energy with renor-
malized coefficients [13]:

𝐺𝑅 = 2𝜋ℎ

𝑅∫︁
0

𝜌 𝑑𝜌

(︂
𝛼1(𝑇,𝑅)𝑃 2

3 + 𝛼11𝑃
4
3 −

−𝑃3

(︀
𝐸+

0 𝐸𝑝(𝑅)
)︀
+ 𝛽1(𝑇,𝑅)𝑀2

1 +

+𝛽11𝑀
4
1 +𝑀1

(︀
𝐻+

0 𝐻𝑝(𝑅)
)︀
+ 𝑔ME(𝑃3,𝑀1)

)︂
. (2.6)

The renormalized coefficients in front of 𝑃 2
3 and 𝑀2

1

in the free energy (2.6) read

𝛼1(𝑇,𝑅) = 𝑎1(𝑇 ) +
(𝑔𝑒33)

2

2𝑠11
+

+
2𝜇

𝑅

(︂
𝑄12 −𝑄11

𝑠12
𝑠11

)︂
− 2𝜇2

𝑅2

(︂
𝐴11 +𝐴33

𝑠212
𝑠211

)︂
, (2.7a)

𝛽1(𝑇,𝑅) = 𝑏1(𝑇 ) +
(𝑔𝑚13)

2

2𝑠11
+

+
2𝜇

𝑅

(︂
𝑍12 − 𝑍11

𝑠12
𝑠11

)︂
− 2𝜇2

𝑅2

(︂
𝐵11 +𝐵33

𝑠212
𝑠211

)︂
. (2.7b)

The internal “built-in” fields induced by the piezo-
electric and piezomagnetic effects look like

𝐸𝑝(𝑅) =

(︂
𝑠12
𝑠11

𝑔𝑒33 − 𝑔𝑒31

)︂
4𝜇

𝑅
,

𝐻
(
𝑝𝑅) =

(︂
𝑠12
𝑠11

𝑔𝑚13 − 𝑔𝑚11

)︂
4𝜇

𝑅
.

(2.8)

The magnetoelectric energy density equals

𝑔ME = (𝛾11𝑀1𝑃3+𝛾12𝑀1𝑃
2
3 +𝛾21𝑀

2
1𝑃3+𝛾22𝑀

2
1𝑃

2
3 ),

(2.9)

where the linear and quadratic coefficients of ME cou-
pling look like

𝛾11 =
𝑔𝑒33𝑔

𝑚
13

𝑠11
, (2.10a)

𝛾12 = 𝑔𝑚13

(︂
𝑄11

𝑠11
+

2𝜇

𝑅

𝑠12𝐴33

𝑠211

)︂
,

𝛾21 = 𝑔𝑒33

(︂
𝑍11

𝑠11
+

2𝜇

𝑅

𝑠12𝐵33

𝑠211

)︂
,

(2.10b)

𝛾22 =

(︂
𝑄11𝑍11

𝑠11
− 𝐴33 (𝑔

𝑚
13)

2
+𝐵33 (𝑔

𝑒
33)

2

2𝑠211
+

+
2𝜇

𝑅

𝑠12
𝑠211

(𝑄11𝐵33 + 𝑍11𝐴33) +
4𝜇2

𝑅2

𝑠212
𝑠311

𝐵33𝐴33

)︂
.

(2.10c)

For the coefficient of linear coupling to be non-
zero, 𝛾11 ̸= 0, both the piezoelectric, 𝑔𝑒33, and piezo-
magnetic, 𝑔𝑚13, coefficients have to differ from zero,
which is possible in a few special cases. For instance,
𝑔𝑚33 = 1.2×10−8 Wb/N and 𝑔𝑚13 = −5.8×10−9 Wb/N
in the bulk of Terfenol-D [29].

2.4. Influence of size effects
on the ME coupling coefficients

Let us rewrite Eqs. (2.10) in the form [13]:

𝛾12(𝑅) = 𝛾𝑏
12

(︂
1 +

𝑅12

𝑅

)︂
,

𝛾21(𝑅) = 𝛾𝑏
21

(︂
1 +

𝑅21

𝑅

)︂
,

𝛾22(𝑅) ≈ 𝛾𝑏
22

(︂
1 +

𝑅22

𝑅

)︂
,

(2.11)
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where

𝛾𝑏
12 = 𝑔𝑚13

𝑄11

𝑠11
, 𝑅12 = 2𝜇

𝑠12𝐴33

𝑠11𝑄11
, 𝛾𝑏

21 = 𝑔𝑒33
𝑍11

𝑠11
,

𝑅21 = 2𝜇
𝑠12𝐵33

𝑠11𝑍11
, 𝛾𝑏

22 =
𝑄11𝑍11

𝑠11
−

− 𝐴33 (𝑔
𝑚
13)

2
+𝐵33 (𝑔

𝑒
33)

2

2𝑠211
.

As a rule, the magnetoelectric constants in a bulk
material are small or equal to zero, depending on the
symmetry.

The coefficients of linear ME coupling do not de-
pend on the nanoparticle radius, whereas the quadra-
tic coefficients are reciprocal to this parameter. Thus,
the latter coefficients strongly increase as the nano-
particle radius decreases. The linear ME coupling,
𝛾11, violates the symmetry 𝑃 → −𝑃 and 𝑀 → −𝑀
and also smears the transition point even in the zero
magnetic and electric fields. Hence, Eqs. (2.11) mean
the renormalization and do not exclude a possibil-
ity induced by the surface tension that 𝛾𝑖𝑗 ̸=11 will
change its sign, because the typical values of the pa-
rameters 𝑅𝑖𝑗 can be positive or negative. According
to estimates [13], those values usually vary from 1 to
100 nm.

2.5. Calculation of susceptibilities

In terms of the renormalized coefficients, the free en-
ergy density 𝑔(𝑅, 𝑇 ) can be rewritten as follows:

𝑔(𝑅, 𝑇 ) =

(︂
𝛼1𝑃

2
3 + 𝛽1𝑀

2
1 + 𝛼11𝑃

4
3 + 𝛽11𝑀

4
1 −

− (𝐸𝑝 + 𝐸0)𝑃3 − (𝐻𝑝 +𝐻0)𝑀1 + 𝛾11𝑀1𝑃3 +

+ 𝛾12𝑀1𝑃
2
3 + 𝛾21𝑀

2
1𝑃3 + 𝛾22𝑀

2
1𝑃

2
3

)︂
. (2.12)

The coefficients 𝛼1 and 𝛽1 depend on the temperature
and nanoparticle radius according to Eqs. (2.7). They
can be rewritten in the form

𝛼1 = 𝛼𝑇 (𝑇 − 𝑇CE(𝑅)). 𝛽1 = 𝛽𝑇 (𝑇 − 𝑇CM(𝑅)).

The 𝑅-dependences of the Curie temperature for the
ferroelectric, 𝑇CE(𝑅), and ferromagnetic, 𝑇CM(𝑅),
transitions can be found in works [13, 15].

The conditions for the free energy minimum,

𝜕𝑔/𝜕𝑃3 = 0, 𝜕𝑔/𝜕𝑀1 = 0,

give rise to the system of equations of state⎧⎪⎪⎪⎨⎪⎪⎪⎩
2𝛼1𝑃3 + 𝛾11𝑀1 + 2𝛾12𝑀1𝑃

+
3 𝛾21𝑀

2
1 +

+2𝛾22𝑃3𝑀
2
1 + 4𝛼11𝑃

3
3 = 𝐸𝑝 + 𝐸0,

2𝛽1𝑀1 + 𝛾11𝑃3 + 𝛾12𝑃
2
3 +

+2𝛾21𝑀1𝑃3 + 2𝛾22𝑃
2
3𝑀1 + 4𝛽11𝑀

3
1 = 𝐻𝑝 +𝐻0,

(2.13)

from which the order parameters can be determined.
After elementary transformations of Eqs. (2.13), the
susceptibilities can be written in the form [13]

𝜒E =
𝜕𝑃3

𝜕𝐸0
=

2
(︀
𝛽1 + 𝛾21𝑃3 + 𝛾22𝑃

2
3 + 6𝛽11𝑀

2
1

)︀
Δ(𝑀1, 𝑃3)

,

(2.14a)

𝜒ME =
𝜕𝑃3

𝜕𝐻0
=

𝜕𝑀1

𝜕𝐸0
=

= −𝛾11 + 2𝛾12𝑃3 + 2𝛾21𝑀1 + 4𝛾22𝑀1𝑃3

Δ(𝑀1, 𝑃3)
, (2.14b)

𝜒M =
𝜕𝑀1

𝜕𝐻0
=

2
(︀
𝛼1 + 𝛾12𝑀1 + 𝛾22𝑀

2
1 + 6𝛼11𝑃

2
3

)︀
Δ(𝑀1, 𝑃3)

,

(2.14c)where

Δ(𝑀 ,
1𝑃3) =

(︂
4
(︀
𝛼1 + 𝛾12𝑀1 + 𝛾22𝑀

2
1 + 6𝛼11𝑃

2
3

)︀
×

×
(︀
𝛽1 + 𝛾21𝑃3 + 𝛾22𝑃

2
3 + 6𝛽11𝑀

2
1

)︀
−

− (𝛾11 + 2𝛾12𝑃3 + 2𝛾21𝑀1 + 4𝛾22𝑀1𝑃3)
2

)︂
. (2.15)

Let us analyze the simplified equations (2.13) and
(2.14), which determine the polarization, magneti-
zation, and susceptibility. Taking into account that
those parameters are standard for the ferroelectric
(FE) and ferromagnetic (FM) phases, we will fo-
cus our attention on the multiferroic ferroelectric-
ferromagnetic (FEFM) phase. In the considered case
of non-zero quadratic ME effect, Eqs. (2.13) are sim-
plified to the form{︃
2𝛼1𝑃3 + 4𝛼11𝑃

3
3 + 2𝛾22𝑀

2
1𝑃3 = 0,

2𝛽1𝑀1 + 4𝛽11𝑀
3
1 + 2𝛾22𝑀1𝑃

2
3 = 0.

(2.16)

From whence, the following expressions are obtained
for the order parameters in the FEM phase:⎧⎪⎪⎨⎪⎪⎩
𝑃 2
FEM =

−2𝛼1𝛽11 + 𝛽1𝛾22
4𝛼11𝛽11 − 𝛾2

22

,

𝑀2
FEM =

−2𝛼11𝛽1 + 𝛼1𝛾22
4𝛼11𝛽11 − 𝛾2

22

.

(2.17)
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The positiveness of the susceptibilities

𝜒E =
𝛽11

2 (−2𝛼1𝛽11 + 𝛽1𝛾22)
,

𝜒M =
𝛼11

2 (−2𝛼11𝛽1 + 𝛼1𝛾22)
,

𝜒ME = − 𝛾22
4 (4𝛼11𝛽11 − 𝛾2

22)𝑀FEM𝑃FEM
=

=
𝛾22

2
√
𝛽11𝛼11

√
𝜒E𝜒M

is a necessary condition for the FEFM phase to be
stable.

Using expressions (2.17), we obtain

Δ(𝑀FEM, 𝑃FEM) =

= 16
(︀
4𝛼11𝛽11 − 𝛾2

22

)︀
𝑃 2
FEM𝑀2

FEM,

so that Eqs. (2.14) can be rewritten as follows:

𝜒E =
𝛽11

2 (−2𝛼1𝛽11 + 𝛽1𝛾22)
, (2.18)

𝜒M =
𝛼11

2 (−2𝛼11𝛽1 + 𝛼1𝛾22)
, (2.19)

𝜒ME = − 𝛾22
4 (4𝛼11𝛽11 − 𝛾2

22)𝑀FEM𝑃FEM
=

=
𝛾22

2
√
𝛽11𝛼11

√
𝜒E𝜒M. (2.20)

One can see that, at the points where 𝑃 2
FEM or 𝑀2

FEM

equals zero, the susceptibility 𝜒ME diverges. It should
be emphasized that formula (2.18)–(2.20) for 𝜒ME

coincides with that obtained in work [11], 𝛾22 <
< 2

√
𝛽11𝛼11, which follows from the FEFM phase

stability.
The coefficients 𝛼1 and 𝛽1 depend on the temper-

ature and nanoparticle radius; namely,

𝛼1 = 𝛼𝑇 [𝑇 − 𝑇CE(𝑅)], 𝛽1 = 𝛽𝑇 [𝑇 − 𝑇CM(𝑅)].

Substituting these dependences into Eqs. (2.18), we
obtain

𝜒E =
𝐶E

(𝑇 *
CE − 𝑇 )

, (2.21)

𝜒M =
𝐶M

(𝑇 *
CM − 𝑇 )

, (2.22)

𝜒ME =
𝛾22

2
√
𝛼11𝛽11

√︃
𝐶E𝐶M

(𝑇 *
CT − 𝑇 ) (𝑇 *

CM − 𝑇 )
. (2.23)

In expressions (2.21)–(2.23), we introduced the
Curie–Weiss temperatures and constants renormal-
ized due to the ME coupling,

𝑇 *
CE =

2𝛽11𝛼𝑇𝑇cl(𝑅)− 𝛽𝑇 𝛾22𝑇CM(𝑅)

2𝛽11𝛼𝑇 − 𝛽𝑇 𝛾22
, (2.24a)

𝑇 *
CM =

2𝛼11𝛽𝑇𝑇CM(𝑅)− 𝛼𝑇 𝛾22𝑇cl(𝑅)

2𝛼11𝛽𝑇 − 𝛼𝑇 𝛾22
, (2.24b)

𝐶E =
𝛽11

2(2𝛼𝑇𝛽11 − 𝛽𝑇 𝛾22)
, (2.24c)

𝐶M =
𝛼11

2(2𝛼11𝛽𝑇 − 𝛼𝑇 𝛾22)
. (2.24d)

Equations (2.17) can be rewritten in the form

𝑃 2
FEM = 𝐴E(𝑇

*
CE − 𝑇 ), (2.25a)

𝑀2
FEM = 𝐴M(𝑇 *

CM − 𝑇 ), (2.25b)

where the constants

𝐴E =
2𝛼𝑇𝛽11 − 𝛽𝑇 𝛾22
4𝛼11𝛽11 − 𝛾2

22

, 𝐴M =
2𝛼11𝛽𝑇 − 𝛼𝑇 𝛾22
4𝛼11𝛽11 − 𝛾2

22

(2.26)

were introduced. Therefore, we obtain a standard
formula for the order parameters and susceptibili-
ties, but with the magnetoelectric coupling, transi-
tion temperature, and other coefficients renormalized
by the size effect. Note that the variants of the EE
and FM phases can be obtained from Eqs. (2.23)–
(2.26) by putting 𝛾22 → 0.

2.6. Influence of external fields
on the polarization and susceptibility

The polarization 𝑃3 is a ferroelectric order parame-
ter. In Fig. 3.1, 𝑎, this is shown for the zero electric
field (𝐸 = 0) and a few magnetic fields 𝐻0 (nor-
malized to the coercive field) for the positive coef-
ficient Γ22(𝑅) > 0 and two values of the nanowire
radius 𝑅/𝑅𝑄 = 10 (curves 1 ) and 3 (curves 2 ). The
temperature dependences of the susceptibilities 𝜒E

and 𝜒ME are exhibited in Fig. 3.1, 𝑏 and 3.1, 𝑐, res-
pectively. Figure 3.1, 𝑑 demonstrates the tempera-
ture dependence of the dielectric susceptibility 𝛿𝜒E =
= (𝜒E(𝐻)− 𝜒E(0))/𝜒E(0).

From Fig. 3.1, 𝑎, one can see that, as the mag-
netic field grows, the ferroelectric order parame-
ter decreases, and the phase transition at low tem-
peratures (cusps in the solid curves) is smeared. If
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the magnetic field induced by the ME coupling
is sufficiently large, it can suppress the ferroelec-
tric polarization, which occurs under the condition
𝛼1 + 𝛾22𝑀

2
1 ≥ 0, i.e. when the binding energy

𝛾22𝑀
2
1𝑃

2
3 suppresses the FE phase, as is shown by

curves 2. Additional calculations testify that the tran-
sition into the FEFM phase takes place at a negative
𝛾22-value. At the same time, the transition tempera-
ture between the ferroelectric and paraelectric phases
changes weakly.

Figure 3.1, 𝑏 demonstrates that the dielectric sus-
ceptibility 𝜒E increases with 𝐻0, as one should expect
in the case of decreasing polarization.

As follows from Fig. 3.1, 𝑐, the magnetoelectric sus-
ceptibility has a singularity at the transition point be-
tween the FEFM and FE phases in the zero magnetic
field (the solid curves).

Finally, Fig. 3.1, 𝑑 illustrates that the dielectric sus-
ceptibility increases, as the magnetic field grows. Its
gigantic value at small nanoparticle radii is associ-
ated with the FEFM-FM transition; the latter is in-
duced by the ME coupling and takes place at pos-
itive 𝛾22 -values. Narrow peaks (singularities) of the
susceptibility at high temperatures emerge due to the
weak dependence of the high-temperature susceptibil-
ity peaks on the magnetic field (see Fig. 3.1, 𝑏). The
dielectric susceptibility grows enormously (by a fac-
tor of 10 and more) near the phase transitions (cf. the
500%-effect shown in work [16]). Those effects are
not observed in the bulk material, which allows the
small coefficients of ME coupling in the bulk to be
neglected.

3. Influence of a Misfit
Deformation on the Magnetoelectric
Coupling in Thin Ferroic Films

As was reported in works [30, 31], thin deformed
hetero-epitaxial BiFeO3 films demonstrate the much
higher ME coefficients and spontaneous polarization
in comparison with the bulk material. Similar ef-
fects were also observed in thin polycrystalline films
[19, 32].

In this section, we demonstrate that the misfit de-
formation, which arises owing to the mismatch of
crystal lattices at the film-substrate interface, can
strongly change the ME coupling coefficients, the
surface energy parameters, and the polar and mag-
netic phase diagrams of antiferromagnetic ferroelec-

Fig. 3.1. Temperature dependences of the polarization 𝑃3 (𝑎),
dielectric susceptibility 𝜒E (𝑏), magnetoelectric susceptibility
𝜒ME (𝑐), and dielectric tunability 𝛿𝜒E (𝑑) in the zero electric
field and various magnetic fields 𝐻0/𝐻C = 0 (solid curves),
0.3 (dotted curves), and 1 (dashed curves) for nanowires with a
large (𝑅/𝑅𝑄 = 10, curves 1 ) and a small (𝑅/𝑅𝑄 = 3, curves 2 )
radius (Reproduced from [13], with the permission of AIP Pub-
lishing)

tric films. This effect makes it possible to extend the
interval of the electrical and magnetic properties of
the films, which opens ways to their new applications.

3.1. Free energy functional

Let us consider an antiferromagnetic ferroelectric film
that was epitaxially grown on a thick rigid sub-
strate. The film has the thickness 𝑙 and occupies the
space region −𝑙/2 ≤ 𝑧 ≤ 𝑙/2. It is in a perfect electri-
cal contact with thin electrodes. For simplicity, we as-
sume that the piezomagnetic effect is absent, whereas
magnetostriction does exist inside the film.

In accordance with the phenomenological Landau–
Ginzburg–Devonshire theory, the Gibbs free energy
looks like

Δ𝐺 =
1

𝑙

𝑙/2∫︁
−𝑙/2

𝑑𝑧𝑔𝑉 (𝑧) +𝐺𝑆

(︂
𝑙

2

)︂
+𝐺𝑆

(︂
− 𝑙

2

)︂
, (3.1)

where 𝑔𝑉 and 𝐺𝑆 are the bulk and surface, respec-
tively, densities of the film free energy. When describ-
ing the phase transitions in antiferromagnetic ferro-
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electric films, we assume that their substance has
two magnetic sublattices with the magnetization vec-
tors M𝑎 and M𝑏. The polarization 𝑃3 and the elec-
tric field 𝐸0 are directed along the polar axis 𝑧. The
axis 𝑥 is considered to be the axis of weak magnetic
anisotropy. When analyzing the size effects on the
phase transitions in thin films, the dependence of the
polarization 𝑃3 and the magnetizations M𝑎,𝑏 of two
sublattices on the depth 𝑧 should be taken into con-
sideration [14,25]. The expansion of the Gibbs energy
density 𝑔𝑉 in a power series of the quantities 𝑃3 and
M𝑎,𝑏 looks like [33]:

𝑔𝑉 =

(︂
𝑎1𝑃

2
3 + 𝑎11𝑃

4
3 + 𝑎111𝑃

6
3 + 𝛾

(︂
𝑑𝑃3

𝑑𝑧

)︂2
−

−𝑄𝑖𝑗33𝜎𝑖𝑗𝑃
2
3−

𝐴𝑖𝑗

2
𝜎2
𝑖𝑗𝑃

2
3−𝑃3

(︂
𝐸0 +

𝐸𝑑

2

)︂
−𝑠𝑖𝑗𝑘𝑙

2
𝜎𝑖𝑗𝜎𝑘𝑙 ×

× 𝑏
(︀
M2

𝑎 +M2
𝑏

)︀
+ 𝑐M𝑎M𝑏 + 𝑑

(︀
M4

𝑎 +M4
𝑏

)︀
+

+ 𝑘M2
𝑎M

2
𝑏 + 𝛿

(︂
𝑑M𝑎

𝑑𝑧

)︂2
+ 𝛿

(︂
𝑑M𝑏

𝑑𝑧
−
)︂2

−

− (𝑀𝑎1 +𝑀𝑏1)𝐻0 + 𝑏1
(︀
𝑀2

𝑎1 +𝑀2
𝑏1

)︀
+ 𝑐1𝑀𝑎1𝑀𝑏1 −

−𝑍𝑖𝑗11𝜎𝑖𝑗

(︀
𝑀2

𝑎1 +𝑀2
𝑏1

)︀
−𝑊𝑖𝑗11𝜎𝑖𝑗𝑀𝑎1𝑀𝑏1

)︂
. (3.2)

Subscripts 1, 2, and 3 correspond to the Cartesian
coordinates 𝑥, 𝑦, and 𝑧, respectively. We assume that
the bulk material has a cubic symmetry in the para-
phase. Equation (3.2) makes allowance for the po-
larization, magnetic, and correlation energies, the
interaction with the external field 𝐸0, the electro-
and magnetostriction energies, the elastic energy, and
the energy of depolarization field 𝐸𝑑. The coefficients
𝑎1(𝑇 ) = 𝛼P

(︀
𝑇 − 𝑇 𝑏

C

)︀
and 𝑏(𝑇 ) = 𝛼M

(︀
𝑇 − 𝑇 𝑏

N

)︀
are

explicit functions of the temperature 𝑇 , whereas all
other coefficients in the expansion are assumed to
be temperature-independent. The parameters 𝑇 𝑏

C and
𝑇 𝑏
N are the Curie and Neél transition temperatures,

respectively; 𝜎𝑖𝑗 are components of the elastic stress
tensor; 𝑄𝑖𝑗𝑘𝑙, 𝑍𝑖𝑗𝑘𝑙, and 𝑊𝑖𝑗𝑘𝑙 are components of the
electro- and magnetostriction tensors, respectively;
and 𝑠𝑖𝑗𝑘𝑙 are components of the elastic strain ten-
sor. Note that the demagnetization field is absent, if
(M𝑎,𝑏)3 = 0. As a rule, |𝑏| ≫ |𝑐| ≫ |𝑏1| + |𝑐1|. For
the antiferromagnetic (AFM) phase to be stable in
the bulk specimen, the inequalities 2𝑏1 − 𝑐1 < 0 and
2𝑏1 − 𝑐1 > 0 must be satisfied.

In the case of a single-domain insulated film with
perfect electrodes, the depolarization field 𝐸𝑑 =

4𝜋
[︀
𝑃3 − 𝑃3(𝑧)

]︀
, where the bar means the average

value over the film thickness, 𝑃3 ≡ 1
𝑙

∫︀ 𝑙/2

−𝑙/2
𝑃3(𝑧) 𝑑𝑧.

The equilibrium equation can be obtained by vary-
ing the Gibbs energy with respect to the stress 𝜎𝑖𝑗 ,
i.e. 𝜕𝐺𝑉 /𝜕𝜎𝑗𝑘 = −𝑢𝑗𝑘. The misfit deformation 𝑢11 =
= 𝑢22 = 𝑢𝑚 ̸= 0 takes place at the film-substrate in-
terface 𝑧 = −𝑙/2. The top surface of the film is free, so
that the normal components 𝜎3𝑗 = 0 at 𝑧 = 𝑙/2. The
non-zero uniform stresses equal

𝜎11 =
𝑢𝑚

𝑠1111 + 𝑠1122 +𝐴11𝑃 2
3

+

+
𝑢𝑆
22𝑠1122 − 𝑢𝑆

11

(︀
𝑠1111 +𝐴11𝑃

2
3

)︀
(𝑠1111 +𝐴11𝑃 2

3 )
2 − 𝑠21122

,

and
𝜎22 =

𝑢𝑚

𝑠1111 + 𝑠1122 +𝐴11𝑃 2
3

+

+
𝑢𝑆
11𝑠1122 − 𝑢𝑆

22

(︀
𝑠1111 +𝐴11𝑃

2
3

)︀
(𝑠1111 +𝐴11𝑃 2

3 )
2 − 𝑠21122

where the spontaneous bulk deformations

𝑢𝑆
11 = 𝑄1122𝑃

2
3 +𝑍1111

(︀
𝑀2

𝑎1 +𝑀2
𝑏1

)︀
+𝑊1111𝑀𝑎1𝑀𝑏1,

𝑢𝑆
22 = 𝑄1122𝑃

2
3 +𝑍1122

(︀
𝑀2

𝑎1 +𝑀2
𝑏1

)︀
+𝑊1122𝑀𝑎1𝑀𝑏1

were introduced. This homogeneous solution of the
elastic problem is valid, if the film thickness does
not exceed the critical thickness 𝑙𝑑 of the disloca-
tion appearance, which is known to amount to tens
of nanometers. The effective misfit strain 𝑢*

𝑚(𝑙) =
= 𝑢𝑚𝑙𝑑/𝑙 [34].

The inversion center disappears near the surface,
and the near-surface piezoelectric effect 𝑔𝑒𝑖𝑗𝑘 has to
be taken into account in the surface free energy [15],

𝐺𝑆

(︂
± 𝑙

2

)︂
=

1

𝑙

(︂
𝛿

𝜆M

(︀
M2

𝑎 +M2
𝑏

)︀
+

+
𝛿

𝜆MA

(︀
𝑀2

𝑎1 +𝑀2
𝑏1

)︀
+

𝛾

𝜆P
𝑃 2
3 − 𝑔𝑒3𝑗𝑘𝜎𝑗𝑘𝑃3

)︂
𝑧=± 𝑙

2

,

(3.3)

where 𝜆𝑝, 𝜆M, and 𝜆MA are ferroelectric and mag-
netic, respectively, extrapolation lengths [34], with
𝜆MA ≫ 𝜆M, which corresponds to the weak magnetic
anisotropy conditions.
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3.2. Influence of a misfit
deformation on phase diagrams

Let us introduce the ferromagnetic, M𝐹 = M𝑎+M𝑏,
and antiferromagnetic, M𝐴 = M𝑎 − M𝑏, order
parameters for two equivalent magnetic sublattices
(M2

𝑎 = M2
𝑏 = 𝑀2) [35]. Substituting the stress 𝜎𝑖𝑗

into the Gibbs energy (3.1), performing the Legen-
dre transformation, and using the direct variational
method for the solution of the Euler–Lagrange equa-
tions, which was proposed in work [36], we obtain the
Helmholtz free energy for various phases [33]:

𝐹DP
[︀
𝑃3, �̄� , 𝜃

]︀
≈
(︂
𝛼P

(︀
𝑇 − 𝑇𝐹𝐸

cr (𝑙)
)︀
𝑃 2
3 + 𝑎𝑚11𝑃

4
3 −

− (𝐸𝑚 + 𝐸0)𝑃3+16𝑑 ·�̄�4+2𝛼M

(︀
𝑇 − 𝑇DP

cr (𝑙)
)︀
�̄�2 +

+4𝑓DP(𝑙)𝑃 2
3 �̄�

2 +Δ𝐹DP
[︀
�̄�, 𝜃

]︀)︂
, (3.4a)

Δ𝐹AFM = 0,

Δ𝐹FM = −2𝐻0�̄�,

Δ𝐹FI ≈ (2𝑐+ 4𝑐1) �̄�
2cos 𝜃

2 − 2𝐻0𝑀 cos 𝜃.

(3.4b)

Here, the superscript 𝐷𝑃 denotes the AFM, FM, or
mixed ferrimagnetic (FI) phase, respectively.

Expressions for renormalized coefficients in
Eqs. (3.4) are quoted in work [33]. In the AFM
phase, the non-zero magnetization component is
𝑀𝐴1(𝑧) ≡ 2𝑀(𝑧), whereas the component 𝑀𝐹1(𝑧) ≡
≡ 2𝑀(𝑧) vanishes in the FM phase. The dependence
of the order parameters on the depth 𝑧 is taken into
account for the FI phase. In particular [5, 33], for the
case of one domain and large extrapolation length
𝜆MA,

M𝐹 (𝑧) = (2𝑀(𝑧) cos 𝜃(𝑧), 0, 0),

M𝐴(𝑧) = (0, 2𝑀(𝑧) sin 𝜃(𝑧), 0),

cos 𝜃 ≈ 𝐻0

2�̄�
(︁
𝑐+ 2𝑐1 + 2𝑓FM𝑃 2

3

)︁ .
Provided the zero magnetic field, 𝐻0 = 0, and the
angle 𝜃 = 𝜋/2, the absolute stability conditions are
satisfied in the FI phase at the axes and the planes of
weak magnetic anisotropy.

The averaged magnetization �̄� depends on the po-
larization 𝑃3 through the ME coupling 𝑓DP,

�̄�2 = −
(︁
𝛼M

(︀
𝑇 − 𝑇DF

cr (𝑙)
)︀
+ 2𝑓DP𝑃 2

3

)︁
/16𝑑. (3.5)

Therefore, the phase transitions induced by the ME
coupling can take place. In the zero total field, 𝐸𝑚 +
+𝐸0 = 0, each of phases (3.4) can be either para-
electric (PE) at 𝑃3 = 0 or ferroelectric (FE) at
𝑃3 ̸= 0. The evaluation of material parameters shows
that the size effects and misfit deformations signifi-
cantly renormalize the free energy coefficients. Misfit
deformations can considerably increase the values of
the quadratic ME coupling coefficients 𝑓AFM,FM(𝑙) in
comparison with the bulk values 𝑓±.

It should be emphasized that the misfit deforma-
tion 𝑢𝑚 and the film thickness 𝑙 can change the order
parameters �̄� = �̄�(𝑇, 𝑙, 𝑢𝑚) and 𝑃3 = 𝑃3(𝑇, 𝑙, 𝑢𝑚).
As a result, the phase transitions associated with the
size effects and ME coupling can take place. For more
details, see work [33].

4. Linear Magnetoelectric
Coupling Induced by the Flexomagnetic
Effect in Nanoferroics

4.1. Brief review of the state-of-art

Non-uniform deformations and electric fields that can
be induced by external forces or can spontaneously
arise in systems with a non-uniform polarization dis-
tribution (e.g., the polarization change in a vicinity
of the surface) bring about the flexoelectric coupling.
The flexoelectric effect is a typical example, which is
a result of the coupling between the polarization and
the elastic deformation gradient (direct effect) and
between the polarization gradient and the elastic de-
formation (inverse effect). The flexoelectric effect was
theoretically studied in detail by Tagantsev [37]. The
components of the flexoelectric tensor were experi-
mentally measured in bulk perovskite crystals by Ma
and Cross [38–42] and Zubko et al. [43]. The interest
in the theoretical description of flexoelectric phenom-
ena in various nanostructures was renewed by Cata-
lan et al. [44, 45], Sharma et al. [46–48], and Kalinin
and Meunier [49]. The spontaneous manifestation of
the flexoelectric effect in ferroelectric nanoparticles
owing to the internal gradients of the order parame-
ter was considered by Eliseev et al. [50].

The flexomagnetic coupling is much less studied
than the flexoelectric one. Only a few relevant articles
have been published [51, 52]. In particular, proceed-
ing from the first principles, Lukashev and Sabirianov
managed to calculate a value of 1.95𝜇B Å for the flex-
omagnetic coefficient of antiperovskite Mn3GaN as
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the coupling parameter between the electric voltage
gradient and the magnetic dipole moment of the Mn
atom.

It is worth emphasizing that the validity of only the
time and/or spatial inversion operation is not enough
for the flexomagnetic effect to exist. For the latter to
take place, those operations must be related to each
other in the material symmetry group. The study of
a symmetry taking the flexomagnetic effect into ac-
count was carried out in the framework of the sym-
metry group theory, as was earlier done for the piezo-
magnetic [20, 21, 53] and ME [54–56] effects.

In this section, a new mechanism governing the
appearance of the linear ME effect in multifer-
roics and (induced) ferroelectrics-(anti)ferromagnets
is proposed It is associated with the existence of the
flexomagnetic effect. Ferro-(anti)ferromagnetic mul-
tiferroics are extremely rare in the nature, especially
as bulk materials. The proposed mechanism, besides
the fundamental interest, may give rise to new tech-
nologies and, therefore, may be very important for
various applications.

4.2. Linear flexomagnetic coupling
in ferroelectric-ferromagnetic nanosystems

While describing the flexomagnetic coupling in spa-
tially confined ferroelectric-ferromagnetic systems,
the phenomenological Landau–Ginzburg–Devonshire
approach is used [57–63]. In the framework of this ap-
proach, we can calculate the surface and gradient en-
ergies, the depolarization and demagnetization fields,
the mechanical pressure, the flexoelectric and flexo-
magnetic effects. The bulk and surface contributions
to the total free energy look like [64]:

𝐹𝑉 =

∫︁
𝑉

(︀
𝑔FE + 𝑔FM + 𝑔elast +

+ 𝑔striction + 𝑔flexo + 𝑔ME

)︀
𝑑3𝑟, (4.1)

𝐹𝑆 =

∫︁
𝑆

𝑑2𝑟

(︂
𝑎𝑆𝑖
2
𝑃 2
𝑖 +𝐾𝑆 (Mn)

2

)︂
, (4.2)

where P is the polarization vector, M the magne-
tization vector, and n a normal to the surface. The
constant 𝐾𝑆 in the surface energy is responsible for
the surface magnetic anisotropy (see work [63]). The
coefficient 𝑎𝑆𝑖 is considered to be positive. The de-
pendence of the Gibbs energy density on the order
parameters 𝑃 and 𝑀 are shown below.

The ferroelectric component of the free energy is
equal to

𝑔FE =
𝑎
(𝑒)
𝑖𝑗 (𝑇 )

2
𝑃𝑖𝑃𝑗 +

𝑎
(𝑒)
𝑖𝑗𝑘𝑙

4
𝑃𝑖𝑃𝑗𝑃𝑘𝑃𝑙 + ...+

+
𝑔
(𝑒)
𝑖𝑗𝑘𝑙

2

𝜕 𝑃𝑖

𝜕𝑥𝑗

𝜕 𝑃𝑘

𝜕𝑥𝑙
− 𝑃𝑖𝐸𝑖, (4.3)

where 𝐸𝑖 is the electric field component, and the ten-
sor 𝑔(𝑒)𝑖𝑗𝑘𝑙 determines the energy contribution of the po-
larization gradient and is assumed to be positive. The
ferromagnetic component is equal to

𝑔FM =

(︂
𝑎
(𝑚)
𝑖𝑗 (𝑇 )

2
𝑀𝑖𝑀𝑗 +𝐾 (Mb)

2
+

+
𝑔
(𝑚)
𝑖𝑗𝑘𝑙

2

𝜕𝑀𝑖

𝜕𝑥𝑗

𝜕𝑀𝑘

𝜕𝑥𝑙
−HM

)︂
, (4.4)

where 𝐾 is the uniaxial anisotropy constant, b a unit
vector directed along the magnetic anisotropy axis,
H the magnetic field vector, and the tensor 𝑔

(𝑚)
𝑖𝑗𝑘𝑙,

which is sometimes referred to as the “heterogeneous
exchange interaction”, determines the contribution of
the magnetization gradient to the free energy. The
elastic component to the free energy equals

𝑔𝑒𝑙𝑎𝑠𝑡 =
𝑐𝑖𝑗𝑘𝑙
2

𝑢𝑖𝑗𝑢𝑘𝑙, (4.5)

where 𝑢𝑖𝑗 is the strain tensor, and 𝑐𝑖𝑗𝑘𝑙 the elas-
tic modulus tensor. The piezoelectric, piezomagnetic,
electro-, and magnetostriction components are

𝑔striction = −𝑑
(𝑒)
𝑖𝑗𝑘𝑃𝑖𝑢𝑗𝑘 − 𝑑

(𝑚)
𝑖𝑗𝑘 𝑀𝑖𝑢𝑗𝑘 −

− 𝑞
(𝑒)
𝑖𝑗𝑘𝑙𝑢𝑖𝑗𝑃𝑘𝑃𝑙 − 𝑞

(𝑚)
𝑖𝑗𝑘𝑙𝑢𝑖𝑗𝑀𝑘𝑀𝑙, (4.6)

where 𝑑
(𝑒)
𝑖𝑗𝑘 and 𝑑

(𝑚)
𝑖𝑗𝑘 are components of the tensors

of the piezoelectric and piezomagnetic effects, respec-
tively; and 𝑞

(𝑒)
𝑖𝑗𝑘𝑙 and 𝑞

(𝑚)
𝑖𝑗𝑘𝑙 are components of the ten-

sors of the bulk electro- and magnetostriction effects,
respectively.

The contribution of the flexomagnetic and flexo-
electric couplings to the energy equals

𝑔flexo =
𝑄

(𝑚)
𝑖𝑗𝑘𝑙

2

(︂
𝜕 𝑢𝑖𝑗

𝜕𝑥𝑘
𝑀𝑙 − 𝑢𝑖𝑗

𝜕𝑀𝑙

𝜕𝑥𝑘

)︂
+

+
𝑄

(𝑒)
𝑖𝑗𝑘𝑙

2

(︂
𝜕 𝑢𝑖𝑗

𝜕𝑥𝑘
𝑃𝑙 − 𝑢𝑖𝑗

𝜕 𝑃𝑙

𝜕𝑥𝑘

)︂
, (4.7)
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where 𝑄
(𝑚)
𝑖𝑗𝑘𝑙 and 𝑄

(𝑒)
𝑖𝑗𝑘𝑙 are the tensors of flexomag-

netic and flexoelectric couplings, respectively. Note
that the flexoelectric effect is not observed in the
paramagnetic phase, although it exists for all types
of symmetry.

The contribution of the magnetoelectric coupling
to the free energy looks like

𝑔ME = 𝑓𝑖𝑗𝑀𝑖𝑃𝑗 + 𝑤𝑖𝑗𝑘𝑀𝑖𝑃𝑗𝑃𝑘 + ... . (4.8)

This expression includes the bilinear term 𝑓𝑖𝑗𝑀𝑖𝑃𝑗 ,
which is relevant for 58 bulk magnetic classes and al-
most all surface magnetic classes inherent to nanosys-
tems. The quadratic terms proportional to 𝑀𝑖𝑀𝑗𝑃𝑘

and 𝑀𝑖𝑀𝑗𝑃𝑘𝑃𝑙 are usually small in comparison with
the bilinear term.

In order to study the influence of flexolectricity
and flexomagnetism on magnetoelectricity, we neglect
the depolarization and demagnetization fields. For in-
stance, we consider prolate particles, in which the
magnetization and polarization are directed along the
same axis.

Let us demonstrate the influence of a deformation
and consider the case of a mechanically free system;
i.e. the boundary conditions are 𝜎𝑖𝑗𝑛𝑖|𝑆 = 0. We as-
sume that the field of mechanical stresses in nanosys-
tems with a characteristic size of 10 nm is similar to
the surface one, i.e. it can be taken to equal zero ev-
erywhere. Therefore, the surface tension can be easily
determined explicitly. Substituting the solutions for
the strain tensor into the free energy (4.1) and using
the Legendre transformation, we obtain new terms in
the ME and FMFE energies [64],

𝑔ME =
(︁
𝑓𝑖𝑗 + 𝑠𝑤𝑣𝑞𝑠𝑑

(𝑒)
𝑗𝑤𝑣𝑑

(𝑚)
𝑖𝑠𝑞

)︁
𝑀𝑖𝑃𝑗 +

+
(︁
𝑤𝑖𝑗𝑘 + 𝑠𝑤𝑣𝑞𝑠𝑑

(𝑚)
𝑖𝑤𝑣𝑞

(𝑒)
𝑠𝑞𝑗𝑘

)︁
𝑀𝑖𝑃𝑗𝑃𝑘, (4.9a)

𝑔FME = 𝑠𝑖𝑗𝑞𝑠𝑄
(𝑚)
𝑖𝑗𝑘𝑙𝑄

(𝑒)
𝑞𝑠𝑛𝑝

𝜕𝑀𝑘

𝜕𝑥𝑙

𝜕 𝑃𝑛

𝜕𝑥𝑝
+

+ 𝑠𝑖𝑗𝑞𝑠𝑄
(𝑚)
𝑖𝑗𝑘𝑙𝑑

(𝑒)
𝑛𝑠𝑞𝑃𝑛

𝜕𝑀𝑙

𝜕𝑥𝑘
+ 𝑠𝑖𝑗𝑞𝑠𝑄

(𝑒)
𝑖𝑗𝑘𝑙𝑑

(𝑚)
𝑛𝑠𝑞𝑀𝑛

𝜕 𝑃𝑙

𝜕𝑥𝑘
+

+ 𝑠𝑖𝑗𝑞𝑠𝑄
(𝑚)
𝑖𝑗𝑘𝑙𝑞

(𝑒)
𝑞𝑠𝑛𝑝𝑃𝑛𝑃𝑝

𝜕𝑀𝑘

𝜕𝑥𝑙
+

+ 𝑠𝑖𝑗𝑞𝑠𝑄
(𝑚)
𝑖𝑗𝑘𝑙𝑞

(𝑒)
𝑞𝑠𝑛𝑝𝑃𝑛

𝜕 𝑃𝑝

𝜕𝑥𝑙
𝑀𝑘 +

+ 𝑠𝑖𝑗𝑞𝑠𝑞
(𝑚)
𝑖𝑗𝑘𝑙𝑄

(𝑒)
𝑞𝑠𝑛𝑝

𝜕 𝑃𝑛

𝜕𝑥𝑝
𝑀𝑘𝑀𝑙 +

+ 𝑠𝑖𝑗𝑞𝑠𝑄
(𝑒)
𝑖𝑗𝑘𝑙𝑞

(𝑚)
𝑞𝑠𝑛𝑝𝑃𝑛𝑀𝑘

𝜕𝑀𝑙

𝜕𝑥𝑝
. (4.9b)

Attention should be paid to that the flexomagnetic
term in Eq. (4.9b) is absent from the expression for
the initial free energy (4.1). The most important term
is the linear flexomagnetoelectric term

𝑔𝑆FME = 𝑠𝑖𝑗𝑞𝑠𝑄
(𝑚)
𝑖𝑗𝑘𝑙𝑄

(𝑒)
𝑞𝑠𝑛𝑝

𝜕𝑀𝑘

𝜕𝑥𝑙

𝜕 𝑃𝑛

𝜕𝑥𝑝
+

+ 𝑠𝑖𝑗𝑞𝑠𝑄
(𝑚)
𝑖𝑗𝑘𝑙𝑑

(𝑒)
𝑛𝑠𝑞𝑃𝑛

𝜕𝑀𝑙

𝜕𝑥𝑘
+ 𝑠𝑖𝑗𝑞𝑠𝑄

(𝑒)
𝑖𝑗𝑘𝑙𝑑

(𝑚)
𝑛𝑠𝑞𝑀𝑛

𝜕 𝑃𝑙

𝜕𝑥𝑘
,

which exists in the absence of external factors – in
particular, magnetic, electric, and elastic fields – due
to the existence of the spontaneous magnetization
and polarization gradients. The linear flexomagneto-
electric coupling is not associated with the piezoelec-
tric effect and equals [64]

𝑄FME
𝑘𝑙𝑛𝑝 ≡ 𝑠𝑖𝑗𝑞𝑠𝑄

(𝑚)
𝑖𝑗𝑘𝑙𝑄

(𝑒)
𝑞𝑠𝑛𝑝. (4.10)

It is proportional to the product of the flexolectric,
𝑄

(𝑒)
𝑖𝑗𝑘𝑙, and flexomagnetic, 𝑄

(𝑚)
𝑖𝑗𝑘𝑙, tensors, whose val-

ues can be determined experimentally [39–42, 44] or
calculated from the first principles [52]. The term
𝑔𝑆FME, as well as the terms ∼𝑄

(𝑚)
𝑖𝑗𝑘𝑙𝑃𝑛𝑃𝑝

𝜕𝑀𝑘

𝜕𝑥𝑙
and

∼𝑄
(𝑚)
𝑖𝑗𝑘𝑙𝑃𝑛

𝜕 𝑃𝑝

𝜕𝑥𝑙
𝑀𝑘 that are linear in the magnetiza-

tion, are relevant for materials with the nonzero flex-
omagnetic tensor 𝑄

(𝑚)
𝑖𝑗𝑘𝑙. Those terms are responsible

for the appearance of the non-uniform polarization
and magnetization in spatially inhomogeneous ferro-
magnets. The terms proportional to the magnetiza-
tion and its gradient, ∼𝑃𝑛𝑀𝑘

𝜕𝑀𝑙

𝜕𝑥𝑝
and ∼𝜕 𝑃𝑛

𝜕𝑥𝑝
𝑀𝑘𝑀𝑙,

are relevant for materials with an arbitrary symmetry,
because the flexoelectric tensor 𝑄(𝑒)

𝑖𝑗𝑘𝑙 and the magne-

tostriction tensor 𝑞
(𝑚)
𝑖𝑗𝑛𝑝 have non-zero components in

any case.
In Table 4.1, the symmetry groups of ferroelectrics-

ferromagnets with the non-zero flexomagnetic effect
(𝑄(𝑚)

𝑖𝑗𝑘𝑙 ̸= 0) are counted. It should be noted that
all 13 ferromagnetic-ferroelectric groups in the ta-
ble can be surface groups. All groups of ferroelectric-
ferromagnets quoted in Table 4.1 are linear flexomag-
netoelectrics, magnetoelectrics, piezomagnets, and
piezoelectrics (𝑑(𝑒)𝑖𝑗𝑘 ̸= 0 and 𝑑

(𝑚)
𝑖𝑗𝑘 ̸= 0) both in the

bulk and near the surface. It should be emphasized
that the number of non-zero tensor components is
always several times larger than the number of non-
trivial components.
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Table 4.1. Ferromagnets-ferroelectrics with the flexomagnetic effect (multiferroics of type I [64])

Point
symmetry

group

Magnetic
symmetry

group

Number of non-trivial (non-zero) tensor components

Flexo-
magnetic

Linear
flexomagneto-

electric

Linear
magneto-
electric

Piezo-
magnetic

Piezo-
electric

1 1 54 54 9 18 18
2 2 28 28 5 8 8

2′ 26 26 4 10
𝑚 𝑚 26 26 4 8 10

𝑚′ 28 28 5 10
mm2 𝑚′𝑚′2 15 15 3 5 5

𝑚𝑚′2′ 13 13 2 3
4 4 14 14 2 4 4

4𝑚𝑚 4𝑚′𝑚′ 8 8 2 3 3
3 3 18 18 2 6 6

3𝑚 3𝑚′ 11 11 1 2 4
6 6 12 12 2 4 4

6𝑚𝑚 6𝑚′𝑚′ 7 7 2 3 3

The flexomagnetic and flexoelectric effects change
the gradient terms in expressions (4.8) and (4.9);
namely,

𝑔
(𝑚)
𝑘𝑙𝑝𝑛 = 𝑔

(𝑚)
𝑘𝑙𝑝𝑛 −𝑄

(𝑚)
𝑖𝑗𝑘𝑙𝑠𝑖𝑗𝑠𝑞𝑄

(𝑚)
𝑠𝑞𝑝𝑛,

𝑔
(𝑒)
𝑘𝑙𝑝𝑛 = 𝑔

(𝑒)
𝑘𝑙𝑝𝑛 −𝑄

(𝑒)
𝑖𝑗𝑘𝑙𝑠𝑖𝑗𝑠𝑞𝑄

(𝑒)
𝑠𝑞𝑝𝑛.

(4.11)

At the same time, the piezomagnetic and piezoelec-
tric couplings renormalize the expansion coefficients
in formulas (4.8) and (4.9):

�̃�
(𝑚)
𝑖𝑗 = 𝑎

(𝑚)
𝑖𝑗 − 1

2
𝑑
(𝑚)
𝑖𝑙𝑝 𝑠𝑙𝑝𝑘𝑚𝑑

(𝑚)
𝑗𝑘𝑚,

�̃�
(𝑒)
𝑖𝑗 = 𝑎

(𝑒)
𝑖𝑗 − 1

2
𝑑
(𝑒)
𝑖𝑙𝑝𝑠𝑙𝑝𝑘𝑚𝑑

(𝑒)
𝑗𝑘𝑚.

(4.12)

In order to study the linear FMFE coupling in fer-
roelectrics-ferromagnets, let us consider a model for
one-dimensional distributions of the one-component
polarization and magnetization in an ultrathin nan-
otube with the internal radius 𝑅𝑖 and the external
radius 𝑅𝑜. The tube thickness ℎ = 𝑅𝑜 − 𝑅𝑖 is as-
sumed to be very small as compared with the average
tube radius 𝑅 = 0.5 (𝑅𝑜 +𝑅𝑖) (see Fig. 4.1, 𝑎). This
simple model makes it possible to carry out analytical
calculations for the average properties, which can be
measured, by using the standard experimental meth-

ods. As an example, let us estimate the average gra-
dient for thin tubes (ℎ ≪ 𝑅):

𝜕𝑃

𝜕𝑥

𝜕𝑀

𝜕𝑥
≈ 1

ℎ

𝑅𝑜∫︁
𝑅𝑖

𝜕𝑃 (𝑥)

𝜕𝑥

𝜕𝑀 (𝑥)

𝜕𝑥
𝑑𝑥 ∼

∼ 2𝑟𝑒𝑟𝑚𝑀𝑃

(𝑟𝑒 + 𝑟𝑚) (𝑟𝑒 + Λ𝑒) (𝑟𝑚 + Λ𝑚)ℎ
, (4.13)

where the electrical and magnetic correlation lengths
are introduced as

𝑟𝑒(𝑇 ) =

⎯⎸⎸⎷ 𝑔(𝑒)⃒⃒⃒
𝑎
(𝑒)
1 (𝑇 )

⃒⃒⃒ , 𝑟𝑚 =

√︃
𝑔(𝑚)

|𝐾|
,

and Λ𝑒 = 𝑔(𝑒)/𝑎𝑆 and Λ𝑚 = 𝑔(𝑚)/𝐾𝑆 are the
electric and magnetic extrapolation lengths, respec-
tively. For ferroelectrics, the extrapolation length cal-
culated from the first principles equals Λ𝑒

𝑘 ≈ 1 nm
[65]. Since the extrapolation length is proportional to
the gradient coefficient, its renormalization due to the
flexoeffect has also to be taken into account [64].

As follows from Eq. (4.13), the linear flexomagne-
toelectric coupling induced by the surface stimulates
an additional size dependence of the linear ME effect
in nanosized multiferroics. The flexomagnetoelectric
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coupling affects the magnetization and polarization
distributions (see Figs.4.1, 𝑏 and 4.1, 𝑐).

The energy of linear flexomagnetoelectric coupling
that is typical of nanosystems and was calculated, by
using the averaged expressions (4.13), looks like [64]

𝑔𝑆FME =
1

𝑉

∫︁
𝑉

𝑔𝑆FME𝑑
3𝑟 ≈

≈ 𝑠𝑢

(︂
2𝑟𝑒𝑟𝑚𝑄(𝑚)𝑄(𝑒)

(𝑟𝑒 + 𝑟𝑚) (𝑟𝑒 + Λ𝑒) (𝑟𝑚 + Λ𝑚)
+

+
𝑟𝑚𝑄(𝑚)𝑑(𝑒)

(𝑟𝑚 + Λ𝑚)
+

𝑟𝑒𝑄
(𝑒)𝑑(𝑚)

(𝑟𝑒 + Λ𝑒)

)︂
𝑀𝑃

ℎ
. (4.14)

In this formula, the tensor indices at the compliance,
flexoeffect, piezomagnetic, and piezoelectric tensors
are omitted to simplify the understanding. As one
can see from Eq. (4.14) and Fig. 4.2, 𝑎, the flex-
omagnetoelectric coupling depends rather strongly
on the system size. Namely, its value is recipro-
cal to the tube thickness ℎ. The coupling magni-
tude decreases with the growth of extrapolation
lengths Λ𝑚 and Λ𝑒, because the gradients of order
parameters decrease, as Λ𝑒,𝑚 increases. For larger
Λ𝑒,𝑚, the linear flexomagnetoelectric coupling is
smaller.

The following dimensionless parameters were intro-
duced and used in numerical calculations:

𝜉 =
𝑄

(𝑒)
44 𝑄

(𝑚)
44

𝑐44

𝑀0𝑃0

𝑔(𝑚)
, 𝑓 =

𝑄
(𝑒)
44 𝑞

(𝑚)
44

𝑐44

𝑃0

𝐾𝑟𝑚
,

𝐺𝑒𝑚 ≡

⃒⃒⃒
𝑎
(𝑒)
1 (𝑇 )

⃒⃒⃒
𝑃 2
0

𝐾 ·𝑀2
0

, 𝑃0 =

⎯⎸⎸⎷⃒⃒⃒𝑎(𝑒)1 (𝑇 )
⃒⃒⃒

𝑎
(𝑒)
11

.

(4.15)

For ferromagnetic bulk materials, 𝑀0 is the spon-
taneous magnetization, 𝑃0 the temperature-depen-
dent spontaneous polarization of a bulk material at
𝑎
(𝑒)
1 (𝑇 ) < 0 (intrinsic ferroelectric) or a certain char-

acteristic polarization of the material at 𝑎
(𝑒)
1 (𝑇 ) > 0

(extrinsic ferroelectric), 𝜉 is the dimensionless linear
coefficient of flexomagnetoelectric coupling propor-
tional to 𝑄

(𝑒)
44 𝑄

(𝑚)
44 , 𝑓 the dimensionless nonlinear co-

efficient of flexomagnetoelectric coupling proportional
to 𝑄

(𝑒)
44 𝑞

(𝑚)
44 , and 𝐺𝑒𝑚 the ratio between the polariza-

tion and magnetization energies. At temperatures far
from the bulk ferroelectric and magnetic transitions
(Curie or Neél), the magnitudes of those parameters

a

b

c
Fig. 4.1. One-dimensional distributions of the polarization
and magnetization (solid curves) in a nanotube; Λ𝑒 and Λ𝑚

are the corresponding extrapolation lengths, i.e. the distances
along the axis 𝑋 confined by the tangent lines drawn from the
points 𝑥 = ±𝑅𝑖,𝑜 (𝑎). The spontaneous magnetization 𝑀1,2(𝑥)

(𝑏) and spontaneous polarization 𝑃2(𝑥) (𝑐) in a ferromagnet-
ferroelectric nanotube. The solid curve 𝑃2(𝑥) and the dashed
curve 𝑃1(𝑥) were obtained in the cases where the flexomag-
netic effect exists (𝑄(𝑚) ̸= 0) or not (𝑄(𝑚) = 0), respectively.
The dashed curve 𝑃1(𝑥) was obtained in the case without the
flexomagnetic effect (𝑄(𝑚) = 0). The extrapolation lengths Λ𝑒

and Λ𝑚 equal zero (Reproduced from [64], with the permission
of AIP Publishing)

are as follows: 𝜉 ≈ 10−6÷10−1, 𝑓 ≈ 10−6÷10−2,
𝐺𝑒𝑚 ≈ 0.1÷10, 𝑃0 ≈ 0.1÷1 C/m

2 for the extrin-
sic ferroelectric and 0.01÷0.1 C/m

2 for the intrin-
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a b
Fig. 4.2. Dependences of the relative flexomagnetoelectric effect coefficients 𝑔𝑆FME

𝑄(𝑚)𝑠𝑢𝑄(𝑒) on the nanotube thickness ℎ (𝑎) and

the extrapolation magnetization length Λ𝑚 (𝑏). The characteristic length 𝑟𝑆 = 2𝑟𝑒𝑟𝑚
(𝑟𝑒+𝑟𝑚)

. The curves correspond to various values

of the ratio Λ𝑚/𝑟𝑚 (indicated near the curves). The other parameters are (𝑎) 𝑑(𝑒) = 0, 𝑑(𝑚) = 0, Λ𝑒/𝑟𝑒 = 0 and (𝑏) ℎ = 𝑟𝑆
(Reproduced from [64], with the permission of AIP Publishing)

sic ferroelectric. The electric and magnetic correla-
tion lengths equal

𝑟𝑒(𝑇 ) =

⎯⎸⎸⎷ 𝑔(𝑒)⃒⃒⃒
𝑎
(𝑒)
1 (𝑇 )

⃒⃒⃒ , 𝑟𝑚 (𝑇 ) =

√︃
𝑔(𝑚)

|𝐾 (𝑇 )|
. (4.16)

Those lengths vary within the intervals 𝑟𝑒(𝑇 ) ≈
≈ 0.5÷5 nm and 𝑟𝑚(𝑇 ) ≈ 1÷10 nm. The values
of the parametersfor numerical calculations were
selected according to the estimates of parame-
ters (4.16).

It is worth emphasizing that the linear flexomagne-
toelectric energy described by expression (4.14) may
appear in bulk inhomogeneous systems with the ex-
ternally induced non-zero flexomagnetic effect.

4.3. Linear flexomagnetoelectric coupling
in nanosized antiferromagnets-ferroelectrics

Below, we consider ferroelectrics-antiferromagnets
with two sublattices 𝑎 and 𝑏. The antiferromagnetic
order parameter L =

(︀
M(𝑎) −M(𝑏)

)︀
/2 is trans-

formed as a pseudovector at symmetry operations
applied to each sublattice and changes its sign at
the 𝑎 ↔ 𝑏 operation. The sign of the piezomagnetic
effect is known [66] to be determined by the sign
of L. This means that the non-zero components of
the piezomagnetic tensor 𝑑

(𝑚)
𝑖𝑗𝑘 determine the con-

tribution 𝑑
(𝑚)
𝑖𝑗𝑘 𝐿𝑖𝑢𝑗𝑘 or 𝑑

(𝑚)
𝑖𝑗𝑘 𝐻𝑖𝑢𝑗𝑘 to the free en-

ergy. The contributions from the linear magnetoelec-
tric effect can be written in the form 𝑄

(𝑚)
𝑖𝑗𝑘𝑙

𝜕 𝑢𝑖𝑗

𝜕𝑥𝑘
𝐿𝑙 or

�̃�
(𝑚)
𝑖𝑗𝑘𝑙

𝜕 𝑢𝑖𝑗

𝜕𝑥𝑘
𝐻𝑙. They are linear in L.

Below, the magnetic field H and the electric field
E are assumed to be absent. Therefore, the ferromag-
netic order parameter M =

(︀
M(𝑎) +M(𝑏)

)︀
/2 is also

absent, and the free energy components of a spatially
confined antiferromagnet look like [64]

𝐹𝑉 =

∫︁
𝑉

(𝑔FE + 𝑔AFM +

+ 𝑔elast + 𝑔striction + 𝑔flexo)𝑑
3𝑟, (4.17)

𝐹𝑆 =

∫︁
𝑆

𝑑2𝑟

(︂
𝑎𝑆𝑖
2
𝑃 2
𝑖 +

(︁
2𝐾𝑆 − �̃�𝑆

)︁
(Ln)

2

)︂
, (4.18)

where n is a normal to the surface, 𝐾𝑆 the surface in-
tralattice anisotropy, and �̃�𝑆 the surface interlattice
anisotropy [67, 68]; the ferroelectric contribution 𝑔FE
is expressed by formula (4.8) at E = 0. The antifer-
romagnetic contribution to the free energy equals

𝑔AFM = −𝐽 · L2 +
(︁
2𝐾 − �̃�

)︁
𝐿2
3 +

+
(︁
𝑔
(𝑚)
𝑖𝑗𝑘𝑙 − 𝑔

(𝑚)
𝑖𝑗𝑘𝑙

)︁ 𝜕 𝐿𝑖

𝜕𝑥𝑗

𝜕 𝐿𝑘

𝜕𝑥𝑙
, (4.19)

where 𝑔
(𝑚)
𝑖𝑗𝑘𝑙 and 𝑔

(𝑚)
𝑖𝑗𝑘𝑙 are components of the intra-

and interlattice inhomogeneous exchange tensors, re-
spectively; 𝐾 and �̃�𝑆 the intra- and interlattice bulk
anisotropies, respectively; and 𝐽 the intralattice ex-
change interaction constant. The condition 𝐽 > 0
is necessary for the antiferromagnetic state to exist,
with the equality M(𝑎) = −M(𝑏) being valid in zero
and low magnetic fields.
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The elastic contribution 𝑔elast to the free energy is
described by formula (4.10). The piezoelectric, piezo-
magnetic, electro-, and magnetostriction contribu-
tions equal

𝑔striction =
(︀
−𝑑

(𝑒)
𝑖𝑗𝑘𝑃𝑖𝑢𝑗𝑘 − 𝑑

(𝑚)
𝑖𝑗𝑘 𝐿𝑖𝑢𝑗𝑘 − 𝑞

(𝑒)
𝑖𝑗𝑘𝑙𝑢𝑖𝑗𝑃𝑘𝑃𝑙 −

−
(︁
2𝑞

(𝑚)
𝑖𝑗𝑘𝑙 − 𝑞

(𝑚)
𝑖𝑗𝑘𝑙

)︁
𝑢𝑖𝑗𝐿𝑘𝐿𝑙

)︀
, (4.20)

where 𝑞
(𝑚)
𝑖𝑗𝑘𝑙 are components of the sublattice elec-

trostriction tensor, and 𝑞
(𝑚)
𝑖𝑗𝑘𝑙 are components of the in-

terlattice bulk electrostriction tensor. The flexomag-
netic and flexoelectric energies equal

𝑔flexo =
𝑄

(𝑚)
𝑖𝑗𝑘𝑙

2

(︂
𝜕 𝑢𝑖𝑗

𝜕𝑥𝑘
𝐿𝑙 − 𝑢𝑖𝑗

𝜕𝐿𝑙

𝜕𝑥𝑘

)︂
+

+
𝑄

(𝑒)
𝑖𝑗𝑘𝑙

2

(︂
𝜕 𝑢𝑖𝑗

𝜕𝑥𝑘
𝑃𝑙 − 𝑢𝑖𝑗

𝜕 𝑃𝑙

𝜕𝑥𝑘

)︂
. (4.21)

Unlike the free energy of ferroelectrics-ferro-
magnets, which was considered in the previous sec-
tion, we now discuss ferroelectrics-ferromagnets with
a definite symmetry. We assume that, near the sur-
face, the surface symmetry group is 4𝑚′𝑚′ at high
temperatures, which corresponds to the 𝑚′3𝑚′ bulk
symmetry group and allows both the flexomagnetic
and linear ME couplings to exist. Let us consider
the case where the components 𝑃1 of cferroelectric
polarization, two components 𝐿1,3 of the vector of
antiferromagnetic order parameter, and the mag-
netic anisotropy axis are directed along the 𝑧-axis
(Fig. 4.3, 𝑎).

Below, we consider ultrathin antiferromagnetic-
ferroelectric films on a substrate that provides a neg-
ligibly small misfit deformation at the film-substrate
interface. In this case, 𝑢11 = 𝑢22 = 𝑢23 = 0 and 𝜎13 =
= 𝜎23 = 𝜎33 = 0, i.e.

𝑢33 =
1

𝑐11

(︂
𝑞
(𝑒)
12 𝑃

2
1 + 𝑑

(𝑚)
33 𝐿3 +

+
(︁
2𝑞

(𝑚)
11 − 𝑞

(𝑚)
11

)︁
𝐿2
3 +𝑄

(𝑚)
11

𝜕 𝐿3

𝜕𝑥3

)︂
, (4.22a)

𝑢13 =
1

𝑐44

(︂
𝑑
(𝑒)
15 𝑃1 +𝑄

(𝑒)
44

𝜕 𝑃1

𝜕𝑥3
+ 𝑑

(𝑚)
15 𝐿1 +

+
(︁
2𝑞

(𝑚)
44 − 𝑞

(𝑚)
44

)︁
𝐿1𝐿3 +𝑄

(𝑚)
44

𝜕 𝐿1

𝜕𝑥3

)︂
. (4.22b)

a

b

c
Fig. 4.3. One-dimensional distributions of the antifer-
romagnetic order parameter 𝐿 and the polarization 𝑃 in-
side the film (𝑎). Non-uniform distributions of the normal-
ized sublattice magnetizations 𝑚𝑎1,3 (𝑥3) = 𝑀𝑎1,3 (𝑥3) /𝑀0,
𝑚𝑏1,3 (𝑥3) = 𝑀𝑏1,3 (𝑥3) /𝑀0 (𝑏), and the polarization 𝑃1(𝑥)

in an antiferromagnetic-ferroelectric film (𝑐). The antimagne-
tization components are 𝐿1 = 𝑀0(𝑚𝑎1 − 𝑚𝑏1)/2 and 𝐿3 =

= 𝑀0(𝑚𝑎3 −𝑚𝑏3)/2. The solid and dashed curves 𝑃1(𝑥) were
obtained in the cases where the flexomagnetic effect is present
(𝑄(𝑚) ̸= 0) or absent (𝑄(𝑚) = 0), respectively. The dashed
and solid curves for the magnetization practically coincide (𝑏).
Λ𝑒 and Λ𝑚 are extrapolation lengths. The dimensional pa-
rameters are 𝜉 = 0 (dotted curves) and −0.2 (solid curves),
𝑓 = 0.01, 𝐺𝑒𝑚 = 0.5, 𝑟𝑒/𝑟𝑚 = 0.5, and 𝑎

(𝑒)
1 (𝑇 ) < 0. The

extrapolation length equals zero (Reproduced from [64], with
the permission of AIP Publishing)

By substituting strains (4.22) into the free energy
and performing the Legendre transformation, we ar-
rive at the following expression for the free energy:

𝐹 =

∫︁
𝑉

(𝑔FE + 𝑔AFM + 𝑔ME + 𝑔FME) 𝑑
3𝑟+
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+

∫︁
𝑆

𝑑2𝑟

(︂
𝑎𝑆𝑖
2
𝑃 2
𝑖 +

(︁
2𝐾𝑆 − �̃�𝑆

)︁
(nL)

2

)︂
. (4.23)

The ferroelectric component of the free energy ac-
quires the form

𝑔FE =
1

2

⎛⎜⎝𝑎(𝑒)1 −

(︁
𝑑
(𝑒)
15

)︁2
𝑐44

⎞⎟⎠𝑃 2
1 +

(︃
𝑎
(𝑒)
11

4
− (𝑞

(𝑒)
12 )

2

2𝑐11

)︃
𝑃 4
1 +

+ ...+

⎛⎜⎝𝑔
(𝑒)
44

2
−

(︁
𝑄

(𝑒)
44

)︁2
2𝑐44

⎞⎟⎠(︂𝜕 𝑃1

𝜕𝑥3

)︂2
. (4.24)

For the 4𝑚′𝑚′ symmetry, the antiferromagnetic con-
tribution to the free energy equals

𝑔AFM =

(︃
−𝐽(𝐿2

1 + 𝐿2
3) +

(︃
2𝐾 − �̃� − (𝑑

(𝑚)
33 )2

2𝑐11

)︃
𝐿2
3 −

−

(︁
2𝑞

(𝑚)
44 − 𝑞

(𝑚)
44

)︁
𝑄

(𝑚)
44

𝑐44
𝐿1𝐿3

𝜕 𝐿1

𝜕𝑥3
− 𝑑

(𝑚)
33 𝑄

(𝑚)
11

𝑐11
×

×𝐿3

(︂
𝜕 𝐿3

𝜕𝑥3

)︂
+

⎛⎜⎝𝑔(𝑚)
44 − 𝑔

(𝑚)
44 −

(︁
𝑄

(𝑚)
44

)︁2
2𝑐44

⎞⎟⎠(︂𝜕 𝐿1

𝜕𝑥3

)︂2
+

+

⎛⎜⎝𝑔(𝑚)
11 − 𝑔

(𝑚)
11 −

(︁
𝑄

(𝑚)
11

)︁2
2𝑐11

⎞⎟⎠(︂𝜕 𝐿3

𝜕𝑥3

)︂2
−

− 𝑑
(𝑚)
15 𝑄

(𝑚)
44

𝑐44
𝐿1

𝜕 𝐿1

𝜕𝑥3

)︃
. (4.25)

The contribution of the ME coupling to the free en-
ergy,

𝑔ME = −𝑑
(𝑒)
15 𝑑

(𝑚)
15

𝑐44
𝑃1𝐿1 −

𝑞
(𝑒)
12 𝑑

(𝑚)
33

𝑐11
𝑃 2
1𝐿3 −

−

(︁
2𝑞

(𝑚)
44 − 𝑞

(𝑚)
44

)︁
𝑑
(𝑒)
15

𝑐44
𝑃1𝐿1𝐿3 −

−
𝑞
(𝑒)
12

(︁
2𝑞

(𝑚)
11 − 𝑞

(𝑚)
11

)︁
𝑐11

𝑃 2
1𝐿

2
3, (4.26)

contains a new term associated with the flexomagne-
toelectric coupling,

𝑔FME =
1

𝑐44

(︂
−𝑄

(𝑒)
44 𝑄

(𝑚)
44

𝜕 𝐿1

𝜕𝑥3

𝜕 𝑃1

𝜕𝑥3
−𝑄

(𝑒)
44 𝑑

(𝑚)
15 𝐿1

𝜕 𝑃1

𝜕𝑥3
−

− 𝑑
(𝑒)
15 𝑄

(𝑚)
44

𝜕 𝐿1

𝜕𝑥3
𝑃1+𝑄

(𝑒)
44

(︁
𝑞
(𝑚)
44 − 2𝑞

(𝑚)
44

)︁(︂𝜕 𝑃1

𝜕𝑥3

)︂
𝐿1𝐿3 −

− 𝑞
(𝑒)
12 𝑄

(𝑚)
11

𝑐11
𝑃 2
1

𝜕 𝐿3

𝜕𝑥3

)︂
. (4.27)

Note that new linear and nonlinear terms can appear
in expression (4.27) in the case of ferroelectrics-anti-
ferromagnets with the increasing of the polarization
𝑃 gradient and/or the antiferromagnetic order pa-
rameter 𝐿 gradient. The flexomagnetolectric coupling
affects the spatial distribution of the order parame-
ter, as is shown in Figs. 4.3, 𝑏 and 𝑐. In particular,
there appear pronounced maxima in the polarization
distribution plot, in the sections, where the gradient
of 𝐿 takes place, i.e. near the film surface, where 𝐿1

and 𝐿3 change their values owing to the rotation of
the vector 𝐿.

For a thin film with thickness ℎ, we calculated the
average values

(︂
𝜕 𝑃1

𝜕𝑥

)︂(︂
𝜕 𝐿1

𝜕𝑥

)︂
=

1

ℎ

−ℎ/2∫︁
−ℎ/2

𝜕𝑃1 (𝑥)

𝜕𝑥

𝜕 𝐿1 (𝑥)

𝜕𝑥
𝑑𝑥 ≈

≈ 2𝑟𝑒𝑟𝑚𝑃1𝐿1

(𝑟𝑒 + 𝑟𝑚) (𝑟𝑒 + Λ𝑒) (𝑟𝑚 + Λ𝑚)ℎ
, (4.28a)

(︂
𝜕 𝑃1

𝜕𝑥

)︂
𝐿1𝐿3 =

1

ℎ

−ℎ/2∫︁
−ℎ/2

𝜕𝑃1 (𝑥)

𝜕𝑥
𝐿1 (𝑥)𝐿3 (𝑥) 𝑑𝑥 ≈

≈ 𝑟𝑒𝑃1𝐿1𝐿3

(𝑟𝑒 + Λ𝑒)ℎ
. (4.28b)

Using the mean values (4.28), we obtained that
the spontaneous linear flexomagnetoelectric coupling
gives rise to the following additional energy in nano-
systems:

𝑔𝑆FME =
1

𝑉

∫︁
𝑉

𝑔𝑆FME𝑑
3𝑟 ∼

∼ 1

ℎ𝑐44

(︂
−2𝑟𝑒𝑟𝑚𝑃1𝐿1𝑄

(𝑒)
44 𝑄

(𝑚)
44

(𝑟𝑒 + 𝑟𝑚) (𝑟𝑒 + Λ𝑒) (𝑟𝑚 + Λ𝑚)
−

−𝑄
(𝑒)
44 𝑑

(𝑚)
15

𝑟𝑒𝑃1𝐿1

(𝑟𝑒 + Λ𝑒)
−𝑄

(𝑒)
44 𝑑

(𝑚)
15

𝑟𝑚𝑃1𝐿1

(𝑟𝑚 + Λ𝑚)
+

+𝑄
(𝑒)
44

(︁
𝑞
(𝑚)
44 − 2𝑞

(𝑚)
44

)︁ 𝑟𝑒𝑃1𝐿1𝐿3

(𝑟𝑒 + Λ𝑒)

)︂
. (4.29)

As one can see from Eq. (4.29), the flexomagnetoelec-
tric energy strongly depends on the film thickness ℎ,
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being inversely proportional to this parameter. One
can also see that the influence of the flexomagneto-
electric effect decreases, as the film thickness ℎ or the
extrapolation length increases.

As was done for spatially confined bulk antiferro-
magnets-ferroelectrics, in order to generalize the re-
sults discussed above onto the case of other symme-
try, all classes of antiferromagnets-ferroelectrics with
𝑄

(𝑚)
𝑖𝑗𝑘𝑙 ̸= 0 were determined [64].

4.4. Influence of flexomagnetoelectric
coupling on susceptibility

Let a thin antiferroelectric film of the 4𝑚′𝑚′ sym-
metry be subjected to the action of external mag-
netic, H, and electric, E, fields in the geometry
shown in Fig. 4.4, 𝑎 (the magnetic anisotropy axis
is directed along the axis 𝑥3). The expressions for
the ferromagnetic and antiferromagnetic order pa-
rameters look like M =

(︀
M(𝑎) +M(𝑏)

)︀
/2 and L =

=
(︀
M(𝑎) −M(𝑏)

)︀
/2, respectively. Using the solutions

of elasticity theory in the linear approximation, we
can exclude non-trivial strain components from the
free energy functional making use of the Legendre
transformation and obtain the following expression
for the renormalized free energy [64]:

𝐹𝑉 =

∫︁
𝑉

(𝑔FE + 𝑔AFM + 𝑔ME + 𝑔FME) 𝑑
3𝑟, (4.30a)

𝐹𝑆 =

∫︁
𝑆

𝑑2𝑟

(︂
𝑎𝑆𝑖
2
𝑃 2
𝑖 +

(︁
2𝐾𝑆 + �̃�𝑆

)︁
(Mn)

2
+

+
(︁
2𝐾𝑆 − �̃�𝑆

)︁
(nL)

2

)︂
, (4.30b)

where the ferroelectric component equals

𝑔FE =
𝑎
(𝑒)
1 (𝑇 )

2
𝑃 2
1 +

⎛⎜⎝𝑎
(𝑒)
11

4
−

(︁
𝑞
(𝑒)
12

)︁2
2𝑐11

⎞⎟⎠𝑃 4
1 + ...+

+

⎛⎜⎝𝑔
(𝑒)
44

2
−

(︁
𝑄

(𝑒)
44

)︁2
2𝑐44

⎞⎟⎠(︂𝜕 𝑃1

𝜕𝑥3

)︂2
− 𝑃1𝐸1, (4.31)

and the antiferromagnetic component equals

𝑔AFM = 𝐽
(︀
M2 − L2

)︀
− 2 (HM) + 2𝐾

(︀
𝑀2

3 + 𝐿2
3

)︀
+

+ �̃�
(︀
𝑀2

3 − 𝐿2
3

)︀
+ 2

⎛⎜⎝𝑔
(𝑚)
44

2
−

(︁
𝑄

(𝑚)
44

)︁2
2𝑐44

⎞⎟⎠×

×

(︃(︂
𝜕𝑀1

𝜕𝑥3

)︂2
+

(︂
𝜕 𝐿1

𝜕𝑥3

)︂2)︃
+ 2

⎛⎜⎝𝑔
(𝑚)
11

2
−

(︁
𝑄

(𝑚)
11

)︁2
2𝑐11

⎞⎟⎠×

×

(︃(︂
𝜕𝑀3

𝜕𝑥3

)︂2
+

(︂
𝜕 𝐿3

𝜕𝑥3

)︂2)︃
+

⎛⎜⎝̃𝑔(𝑚)
44 −

(︁
𝑄

(𝑚)
44

)︁2
𝑐11

⎞⎟⎠×

×

(︃(︂
𝜕𝑀1

𝜕𝑥3

)︂2
−
(︂
𝜕 𝐿1

𝜕𝑥3

)︂2)︃
+

⎛⎜⎝̃𝑔(𝑚)
11 −

(︁
𝑄

(𝑚)
11

)︁2
𝑐11

⎞⎟⎠×

×

(︃(︂
𝜕𝑀3

𝜕𝑥3

)︂2
−
(︂
𝜕 𝐿3

𝜕𝑥3

)︂2)︃
. (4.32)

The condition 𝐽 > 0 has to be satisfied for the anti-
ferromagnetic state (M = 0, L ̸= 0) to be stable in
the zero magnetic field. On the other hand, the con-
dition 𝐽 < 0 is necessary for the ferromagnetic state
(L = 0, M ̸= 0) to be stable in arbitrary magnetic
fields.

The magnetoelectric and flexomagnetoelectric
components of the free energy equal

𝑔ME = 2𝑓11𝑀1𝑃1 + 2𝑤111𝑀1𝑃
2
1 − 2

𝑞
(𝑒)
12 𝑞

(𝑚)
11

𝑐11
×

×𝑃 2
1

(︀
𝑀2

3 + 𝐿2
3

)︀
− 𝑞

(𝑒)
12 𝑞

(𝑚)
11

𝑐11
𝑃 2
1

(︀
𝑀2

3 − 𝐿2
3

)︀
(4.33)

and

𝑔FME =

(︂
−2

𝑞
(𝑒)
12 𝑄

(𝑚)
11

𝑐11
𝑃 2
1

𝜕𝑀3

𝜕𝑥3
−

− 2𝑄
(𝑚)
44

𝑄
(𝑒)
44

𝑐44

𝜕 𝑃1

𝜕𝑥3

𝜕𝑀1

𝜕𝑥3
− 𝑄

(𝑒)
44

𝑐44
𝑑
(𝑚)
15 𝑀1

𝜕 𝑃1

𝜕𝑥3
−

− 𝑑
(𝑒)
15

𝑄
(𝑚)
44

𝑐44
𝑃1

𝜕𝑀1

𝜕𝑥3
− 2

𝑄
(𝑒)
44

𝑐44

(︂
𝜕 𝑃1

𝜕𝑥3

)︂
×

×
(︁(︁

𝑞
(𝑚)
44 + 𝑞

(𝑚)
44

)︁
𝑀1𝑀3 +

(︁
𝑞
(𝑚)
44 − 𝑞

(𝑚)
44

)︁
𝐿1𝐿3

)︁)︂
,

(4.34)

respectively. Attention should be paid to that
the terms quadratic in the magnetization vector,
∼𝑀𝑖𝑀𝑗

𝜕 𝑃𝑘

𝜕 𝑥𝑙
and ∼𝐿𝑖𝐿𝑗

𝜕 𝑃𝑘

𝜕 𝑥𝑙
, are relevant to all ma-

terials, because the flexoelectric, 𝑄
(𝑒)
𝑖𝑗𝑘𝑙, and magne-

tostriction, 𝑞(𝑚)
𝑖𝑗𝑛𝑝, tensors have non-zero components

at an arbitrary symmetry. The terms linear in the
magnetization vector, ∼𝜕 𝑃1

𝜕𝑥3

𝜕 𝑀1

𝜕𝑥3
and ∼𝑃 2

1
𝜕𝑀3

𝜕𝑥3
, ap-

pear in the free energy, if the magnetic fields are
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Fig. 4.4. Scheme of the non-homogeneous external stress
(bend) and the internal stress (e.g., near the domain walls
of an object or other possible surfaces), which cause the
flexomagnetic effect in ferromagnetics (a), non-homogeneous
normalized components of the nagnetization 𝑚1,3(𝑥3) =

= 𝑀1,3(𝑥3)/𝑀0 induce the polarization 𝑃1(𝑥3) in ferromag-
netics (b). The solid curve 𝑃1(𝑥3) is obtained in the case where
the flexomagnetic effect exists 𝑄(𝑚) ̸= 0. Dotted lines of the
polarization correspond to the case without flexomagnetic ef-
fect 𝑄(𝑚) = 0. The dimensionless parameters are as follows:
𝜉 = 0,−0.1 (пунктирнi i суцiльнi лiнiї вiдповiдно) 𝑓 = 0.01,
𝐺𝑒𝑚 = 0.2, 𝑟𝑒/𝑟𝑚 = 0.5, and 𝑎

(𝑒)
1 (𝑇 ) > 0. The extrapolation

length equals zero. (Reproduced from [64], with the permission
of AIP Publishing)

higher than the critical value of the spin-flop phase
transition in an antiferromagnetic nanomaterial with
the non-zero flexomagnetic effect (𝑄(𝑚)

𝑖𝑗𝑘𝑙 ̸= 0).
The free energy (4.30) can be used to describe a

number of different cases; namely,
∙ L ̸= 0 and M = 0 in the magnetic fields below

the critical one; in this case, P and L are non-zero;
∙ L ̸= 0 and M ̸= 0 for the magnetic fields above

the critical one, but lower than the spin-flop transi-
tion field; in this case, P, L, and M are non-zero;

∙ L ̸= 0 and M ̸= 0 for the ferromagnetic phase
in a strong magnetic field above the spin-flop phase-
transition value; in this case, P and M are non-zero.

Experimental methods [34] are applied mostly of-
ten to study the magnetoelectric properties of a
material, its dielectric constant and magnetoelectric
susceptibility. The average magnetization, polariza-

Fig. 4.5. Dependences of the linear dielectric constant (𝑎, 𝑏)
and magnetoelectric susceptibility (𝑐, 𝑑) on the relative mag-
netic field magnitude 𝐻/(𝑀𝐾) = 0, 0.1, 0.2, 0.5, and 0.7 (in-
dicated near the curves) in the cases with no flexomagnetic
effect (𝑎, 𝑏) and with it (𝑐, 𝑑). The dotted curves correspond
to the zero magnetic field. The dimensional parameter 𝜉 = 0

(dashed curves) and −0.2 (solid curves), 𝑓 = 0.01, 𝐺𝑒𝑚 = 0.5,
𝑟𝑒/𝑟𝑚 = 0.5, and 𝑎

(𝑒)
1 (𝑇 ) > 0 (Reproduced from [64], with the

permission of AIP Publishing)

tion, linear dielectric permeability in various mag-
netic fields, and magnetoelectric susceptibility can be
calculated from the free energy functional. The de-
pendences of the dielectric constant and the mag-
netoelectric susceptibility on the magnetic field are
shown in Fig. 4.5. One can see that the flexomag-
netoelectric coupling between the polarization and
magnetization substantially affects the susceptibil-
ity and dielectric permeability. In particular, in the
absence of flexoeffects, the susceptibility by means
of the quadratic ME coupling cannot exceed 1%
(Fig. 4.5, 𝑏), whereas the flexomagnetoelectric cou-
pling results in the susceptibility change by 10–30%
(Fig. 4.5, 𝑐).

5. Size Effect
of the Magnetoelectric Coupling
in Bismuth Ferrite Nanoparticles

Bismuth ferrite (BiFeO3) is one of the most promis-
ing multiferroics with rather high ferroelectric and
antiferromagnetic transition temperatures, as well as
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a relatively high ME coupling coefficient at room
temperature. Thus, bismuth ferrite is quite sensi-
tive to the influence of external electric and mag-
netic fields. In this section, the influence of the size
of semiellipsoidal BiFeO3 nanoparticles attached to
a rigid substrate on the phase diagram and the
FE and ME properties is considered. The spatial
distribution of the spontaneous polarization vec-
tor in a nanoparticle, the phase diagram, and the
paramagnetoelectric (PME) coefficient were calcu-
lated in the framework of the Landau–Ginzburg–
Devonshire (LGD) theory. The analytical expressions
were derived for the dependences of the ferroelec-
tric transition temperature, the average polariza-
tion, the linear dielectric susceptibility, and the
PME coefficient on the particle size in the gen-
eral case of a semiellipsoidal nanoparticle with three
different semiaxes 𝑎, 𝑏, and 𝑐 (height). The analy-
sis of the results obtained testifies that the phase
diagrams, the spontaneous polarization, and the
PME coefficient are very sensitive to the ratio be-
tween the particle sizes in the polarization direc-
tion and are less sensitive to the size magnitudes
per se.

5.1. BiFeO3 multiferroic
in fundamental researches

Multiferroics, which are characterized by two or
more long-range order parameters, are perfect sys-
tems for fundamental researches of the relation be-
tween the ferroelectric polarization, structural anti-
ferrodistortion, and antiferromagnetic order parame-
ter [69–72]. This relation is responsible for the unique
physical properties of multiferroics [73]. For exam-
ple, the biquadratic and linear ME couplings re-
sult in an impressive effect known as the giant
megnetoelectric effect in multiferroics [74]. The bi-
quadratic coupling between the structural, polariza-
tion, and dielectric order parameters was consid-
ered in works [75–77]. It is responsible for an un-
usual behavior of the physical properties of ferroe-
lastics, quantum paraelectrics. The linear-quadratic
PME effect has to exist in the paramagnetic phase
of ferroics at a temperature below the paraelectric-
ferroelectric phase-transition one, where the electric
polarization differs from zero. This effect was ob-
served in NiSO4· 6H2O [78], Mn-doped SrTiO3 [79],
Pb(Fe1/2 Nb1/2)O3 [80–82], and Pb(Fe1/2Nb1/2)O3-

PbTiO3 solid solution [83]. Note that the PME ef-
fect can be expected to take place in many nano-
sized ferroics that become paramagnetic at the
temperature elevation owing to the induced tran-
sition from the ferromagnetic or antiferromagnetic
phase.

BiFeO3 is one of the most interesting multiferroics
with a strong ferroelectric polarization, antiferromag-
netism at room temperature, and enhanced elec-
tric transport along the domain walls. [84–89]. Bulk
BiFeO3 is antiferrodistortive at temperatures be-
low 1200 K. This is a ferroelectric with a high
spontaneous polarization below 1100 K and an an-
tiferromagnet below the Neél temperature 𝑇N ≈
650 K [90, 91]. Well-pronounced multiferroic prop-
erties were observed in BiFeO3 thin films and het-
erostructures [30, 92–95]. There are a lot of ex-
perimental and theoretical studies concerning the
physical properties of bulk BiFeO3 and BiFeO3

thin films [68, 77–79, 96–102]. Nevertheless, plenty
of other important issues concerning the appear-
ance of the polarization, magnetic, and other elec-
trophysical properties of BiFeO3 nanoparticles re-
mained practically beyond the scope of researches
[103, 104].

5.2. Multiferroic
nanoparticles. The state of art

According to modern requirements to the miniatur-
ization of the nanotechnology for a storage of the
information packed to super-high densities in non-
volatile memory cells, it is very important that the
nanoparticle size in self-ordered arrays should be di-
minished without substantial worsening of their ME
properties. A promising example of the preservation
of polar and dielectric properties of a material is the
application of ferroelectric nanoparticles of various
modifications. In particular, Yadlovker and Berger
[105–107] reported unexpected experimental results
concerning the enhancement of polar properties in
cylindrical nanoparticles of Rochelle salt. Frey and
Payne [108], Zhao et al. [109], and Erdem et al. [110]
demonstrated a possibility to control the tempera-
ture of a ferroelectric phase transition, as well as
the magnitude and position of a dielectric permittiv-
ity maximum, for BaTiO3 and PbTiO3 nanopowders
and nanoceramics. The research of KTa1−𝑥Nb𝑥O3

nanopowders [111] and ceramic nanograins [112–114]
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Fig. 5.1. Semiellipsoidal uniformly polarized ferroelectric
nanoparticle attached to a conductive substrate (e.g., Pt). The
one-component ferroelectric polarization is directed along the
𝑋-axis. The semiellipsoid height is equal to 𝑐; the lateral semi-
axes to 𝑎 and 𝑏 (Adapted from [128], with the permission of
AIP Publishing)

revealed the emergence of new polar phases and a
shift of the phase transition temperature with respect
to that in bulk crystals. The size effects were detected
in SrBi2Ta2O9 nanoparticles by Yu et al. [115] and Ke
et al. [116], by using Raman spectroscopy.

The list of experimental results can be contin-
ued. Therefore, new theoretical researhes of ferroelec-
tric nanoparticles are important from the viewpoint
of both the fundamental science and the technological
applications. In particular, the influence of the sur-
face and confinement effects on the phase diagrams,
the polar and electrophysical properties of BiFeO3

nanoparticles have not been studied enough. Such
a research can be very useful for the science itself
and for advanced applications, because the theory
of size effects in nanoparticles allows us to deter-
mine the physical origin of polar and other anoma-
lies in physical properties, the change in the tem-
perature of a phase transition in nanoparticles with
a decrease of their size. In particular, by using the
phenomenological approach, Niepce [117], Huang et
al. [118, 119], Ma [120], Eliseev et al. [50], and Mo-
rozovska et al. [11, 121–124] showed that the transi-
tion temperature variations and the enhancement or
weakening of polar properties in spherical and cylin-
drical nanoparticles are governed by various physical
mechanisms, such as the correlation effect, depolar-
ization fields, flexolectricity, electrostriction, and sur-
face tension.

5.3. Motivation and formulation
of the problem

Semiellipsoidal nanoparticles can be considered as
a model for studying the influence of size effects
on the physical properties of ferrite nanoislands.
BiFeO3 nanoislands and their self-ordered arrays can

be formed on anisotropic substrates making use of
various methods [125–127]. The particles usually pos-
sess different axial sizes in the substrate plane ow-
ing to the anisotropy of the substrate conductiv-
ity. Recent progress in the production technology of
such nanoparticles made the synthesis of nanopar-
ticles that are currently used to manufacture mi-
crodrives, microwave phase shifter, infrared sensors,
transistors, energy-collecting devices, and others eco-
nomically efficient. The mechanism of correlation be-
tween the sizes, geometry, and physical parameters
of nanoparticles, as well as the related phenomena,
such as spontaneous polarization, antiferromagnetic
and antiferrodistortive ordering, the width of domain
walls, and the stability of domains, must be studied
experimentally and simulated theoretically. Among of
the most important fundamental tasks to be solved,
there are the evaluation of the polarization stability
limit and the study of the mechanisms that govern the
domain wall motion and the polarization switching in
nano-scaled volumes.

All that stimulated us to study the influence of size
effects on the FE, AFE, and ME properties of semiel-
lipsoidal BiFeO3 nanoparticles theoretically, in the
framework of the Landau–Ginzburg–Devonshire ap-
proach, classical electrostatics, and elasticity theory
[128]. Ferroelectricity is known to be a phenomenon
associated with the long-range ordering of dipole mo-
ments. This ordering is characterized by a certain
transition temperature, which depends on some fac-
tors such as the size, material, structural homogene-
ity, and so forth. The size effects are assumed to be
connected with either internal (mainly, this is the
atomic polarization) or external (stresses, microstruc-
ture, polarization, screening, and others) factors.

Let us consider ferroelectric nanoparticles in the
form of semiellipsoidal islands, which were deposited
onto a rigid conductive substrate. An ellipsoid is char-
acterized by different values of its semiaxis lengths 𝑎,
𝑏, and 𝑐 measured along the axes 𝑋, 𝑌 , and 𝑍, respec-
tively. Let 𝜀𝑏 and 𝜀𝑒 denote the dielectric permittiv-
ity inside and outside the ferroelectric nanoparticle,
respectively. A one-component ferroelectric polariza-
tion in the particle is directed along the crystallo-
graphic axis 3, i.e. in parallel to the interface 𝑧 = 0
(Fig. 5.1).

Let us assume that the dependence of the lon-
gitudinal components “1” and “2” (in the crystal-
lographic coordinate system) of the electric polar-
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ization on the internal electric field E𝑖 is linear,
i.e. 𝑃1 = 𝜀0

(︀
𝜀𝑖𝑏 − 1

)︀
𝐸𝑖

1 and 𝑃2 = 𝜀0
(︀
𝜀𝑖𝑏 − 1

)︀
𝐸𝑖

2,
where 𝜀0 = 8.85 × 1012 F/m is the universal dielec-
tric constant (the dielectric permittivity of vacuum)
and the isotropic background dielectric constant 𝜀𝑖𝑏
is relatively small

(︀
𝜀𝑖𝑏 ≤ 10

)︀
[129]. The perpendicular

component “3” of polarization contains the ferroelec-
tric and background components:

𝑃3 (r, 𝐸3) = 𝑃 (r, 𝐸3) + 𝜀0
(︀
𝜀𝑖𝑏 − 1

)︀
𝐸𝑖

3.

The electric displacement vector equals D𝑖= 𝜀0𝜀
𝑖
𝑏E

𝑖+
+P inside the particle and D𝑒 = 𝜀0𝜀

𝑒E𝑒 outside it,
where 𝜀𝑒 is the relative dielectric permittivity of ex-
ternal carriers. Hereafter, the superscripts 𝑖 and 𝑒 de-
note the electric field or the potential inside and out-
side the particle, respectively.

The non-uniform spatial distribution of the fer-
roelectric component of the polarization 𝑃3 (r, 𝐸3)
can be determined from the Landau–Ginzburg–
Devonshire equation for the nanoparticle interior,

𝛼P𝑃3 + 𝛽P𝑃
3
3 + 𝛾P𝑃

5
3 −

− 𝑔33𝑚𝑛
𝜕2𝑃3

𝜕𝑥𝑚𝜕𝑥𝑛
− 2𝑄𝑘𝑙𝑖3𝜎𝑘𝑙𝑃3 = 𝐸3, (5.1)

where the coefficient 𝛼P (𝑇 ) = 𝛼
(𝑇 )
P (𝑇 − 𝑇C), 𝑇 is the

absolute temperature, 𝑇C the Curie temperature of
the paraelectric-ferroelectric phase transition, 𝛽P and
𝛾P are the coefficients of the LGD potential expan-
sion in a series in the polarization, and 𝜎𝑘𝑙 and 𝑄𝑖𝑗𝑘𝑙

are the tensors of elastic stresses and electrostric-
tion, respectively. The flexoeffect is considered to be
small. The boundary conditions for the polarization
𝑃3 at the particle surface 𝑆 are assumed to be stan-
dard, i.e. (𝜕𝑃3/𝜕n)𝑆 = 0.

The electric field is determined, as usually, through
the electric potential, 𝐸𝑖 = −𝜕𝜙/𝜕𝑥𝑖. For the combi-
nation ferroelectric-insulator, the electric potential 𝜙
can be found from the Laplace equation outside the
nanoparticle, 𝜀0𝜀𝑒Δ𝜙𝑒 = 0, and the Poisson equation
inside it,

𝜀0𝜀
𝑏
𝑖𝑗

𝜕2𝜑

𝜕 𝑥𝑖𝜕 𝑥𝑗
=

𝜕𝑃𝑘

𝜕 𝑥𝑘
, (5.2)

where 𝜀𝑏𝑖𝑗 is the background dielectric permittivi-
ty. There are no free charges inside the particle.

The continuity equation (𝜙𝑒 − 𝜙𝑖)𝑆 = 0 is a re-
quired boundary condition for the electric potential

at the particle surface. The boundary condition for
the normal components of the electric displacement
vector should involve the surface screening of the en-
vironment from free charges on the particle surface
𝑆:
[︀
(D𝑒 −D𝑖)n+ 𝜀0

𝜙𝑖

𝜆

]︀
𝑆
= 0, where 𝜆 is the screen-

ing length. The potential is constant at the particle-
electrode interface: 𝜙𝑖|𝑧=0 = 0. The surface screen-
ing reduces the influence of an external field and di-
minishes the depolarization field associated with the
polarization gradient.

In the framework of the phenomenological ap-
proach, the contribution of the linear and bi-
quadratic ME couplings to the free energy of the
system is described by the quantities 𝜇𝑖 𝑗𝑃𝑖𝑀𝑗 and
𝜉𝑖 𝑗 𝑘 𝑙𝑃𝑖𝑃𝑗𝑀𝑘𝑀𝑙, where P is the polarization and M
the magnetization vector, 𝜇𝑖 𝑗 and 𝜉𝑖 𝑗 𝑘 𝑙 are the ten-
sors of corresponding ME effects [130–133]. The con-
tribution of the PME effect is described by the term
𝜂𝑖𝑗𝑘, 𝑃𝑖,𝑀𝑗 ,𝑀𝑘 [127, 131]. To calculate the PME co-
efficients, the phenomenological LGD model is used
[134, 135]. If the magnetization M is proportional to
the applied magnetic field H, i.e. 𝑀 ≈ 𝜒FM (𝑇 )𝐻,
the PME coefficient 𝜂 has the form [128]

𝜂 (𝑇 ) = −𝑃𝑆 (𝑇 ) 𝜒FE (𝑇 ) (𝜒M (𝑇 ))
2
𝜉MP, (5.3)

where 𝑃𝑆 (𝑇 ) is the spontaneous polarization 𝑃3 (r)
averaged over the volume, which is calculated from
Eq. (5.1) at 𝐻 = 0 and 𝐸 = 0; and the functions
𝜒M (𝑇 ) and 𝜒FE (𝑇 ) are the linear magnetic suscep-
tibility and the dielectric permittivity, respectively,
of the ferroelectric phase averaged over the particle
volume. The ferroelectric susceptibility can be calcu-
lated by formula (5.1) with the help of the equation

𝜒FE (𝑇 ) =
𝜕 ⟨𝑃3⟩
𝜕𝐸3

⃒⃒⃒⃒
𝐸3=0

. (5.4)

The approximate expression for the magnetic suscep-
tibility obtained in work [128] reads

𝜒M (𝑇 ) =
𝜇0

𝛼
(𝑇 )
M (𝑇 − 𝜃) + 𝜉LM𝐿2 + 𝜉MP𝑃 2

𝑆 (𝑇 )
. (5.5)

Equations (5.3) and (5.4) are valid for the ferroelect-
ric-antiferromagnetic phase with a nonzero antifer-
romagnetic long-range order parameter (i.e. at 𝐿 ̸=
̸= 0) and for the magnetically disordered ferroelectric-
paramagnetic phase (i.e. at 𝑀 = 𝐿 = 0). The param-
eters 𝜉LM and 𝜉MP are biquadratic ME coefficients for
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the polarization and magnetic order parameters in the
ME energy

𝐺ME =
1

2

(︀
𝜉MP𝑀

2 + 𝜉LP𝐿
2
)︀
𝑃 2.

Note that only two coefficients in the magnetic energy

𝐺M =
𝛼L (𝑇 )

2
𝐿2 +

𝛽L

4
𝐿4 +

𝛼M (𝑇 )

2
𝑀2 +

+
𝛽M

4
𝑀4 − 𝜇0𝑀 𝐻 +

𝜉LM
2

𝐿2𝑀2

are temperature-dependent; namely, these are

𝛼L(𝑇 ) = 𝛼
(𝑇 )
M (𝑇 − 𝑇N)

and

𝛼M(𝑇 ) = 𝛼
(𝑇 )
M (𝑇 − 𝜃),

where 𝑇N and 𝜃 are the Neél and Curie temperatures,
respectively.

5.4. Analytical solutions

Using the finite-element method, the spatial distribu-
tion and the average electric field inside particles can
be calculated. The material parameters of BiFeO3

used in calculations [128] were as follows: the sponta-
neous polarization 𝑃𝑆 = 1 m/C, the electrostriction
coefficient 𝑄12 = −0.05 m4/C2, the electrostriction
coefficient 𝑄11 = −0.1 m4/C2, the background dielec-
tric constant 𝜀𝑏 = 10, the external dielectric constant
𝜀𝑒 = 1, the gradient coefficient 𝛾11 = 10−10 m3/F,
the LGD coefficient 𝛼𝑆 = 10−4 m2/F, the LGD
coefficient 𝛽 = 107 Jm5/C

4, the LGD coefficient
𝛼 = −107 m/F (at 𝑇 = 300 K), the ferroelectric Curie
temperature 𝑇C = 1100 K, the temperature coeffi-
cient 𝛼𝑇 = 0.9× 106 m/(C F), the Neél temperature
𝑇N = 650 K, the screening length 𝜆 = 10−3÷102 nm,
and the dielectric constant 𝜀0 = 8.85× 10−12 F/m.

The calculated numerical results were approxi-
mated analytically. The expression obtained for the
electric field at the distance 𝜆 from the surface is as
follows:

𝐸𝑑𝑋 ≈ −𝑃𝑋

𝜀0

𝜆𝑛∞ (𝑎, 𝑏, 𝑐)

𝜆+𝑅𝑛∞ (𝑎, 𝑏, 𝑐)
, (5.6)

where 𝑛∞ is the depolarization factor of the system
in bulk (the limit 𝜆 → ∞) making no allowance for
the charge screening, and 𝑅 is a characteristic length
along the particle semiaxis 𝑎. Using Eq. (5.6), the

effective depolarization factor 𝑛𝑑 (𝑎, 𝑏, 𝑐) = −𝜀0
𝐸𝑑𝑋

𝑃𝑋

can be introduced, so that

𝑛𝑑 (𝑎, 𝑏, 𝑐) =
𝜆𝑛∞ (𝑎, 𝑏, 𝑐)

𝜆+𝑅𝑛∞ (𝑎, 𝑏, 𝑐)
. (5.7)

Formula (5.7) allows the parameters 𝑛∞ and 𝑅 to be
determined for a large variety of nanoparticle sizes
𝑎, 𝑏, and 𝑐, which are the lengths of ellipsoid semi-
axes. The specific values of those parameters were
found, by using the following approximations:

𝑛∞ (𝑎, 𝑏, 𝑐) ≈ 𝑏

𝜀𝑏𝑏+ 𝜀𝑒𝑎

(︃
𝑐2

𝑐2 + 0.7𝑎 𝑐+ 𝑎2 𝑏
𝑏+0.075𝑎

)︃
,

(5.8a)
𝑅 (𝑎, 𝑏, 𝑐) ≈ 𝑎

(︁
0.62 + 0.19

𝑎

𝑏
+ 0.25

𝑎

𝑐

)︁
. (5.8b)

Note that the first multiplier in formula (5.8a) is an
exact expression for the depolarization coefficient of
the elliptic cylinder with the semiaxes 𝑎 and 𝑏. A
high accuracy of approximations (5.8) becomes evi-
dent from Figs. 5.2, 𝑏–𝑑.

Taking Eqs. (5.6)–(5.8) into account, the transition
temperature into the paraphase, 𝑇cr (𝑎, 𝑏, 𝑐), can be
determined analytically from the condition 𝛼+𝑛𝑑

𝜀0
= 0

[128]; namely,
𝑇cr (𝑎, 𝑏, 𝑐) = 𝑇C − 𝑛𝑑 (𝑎, 𝑏, 𝑐)

𝛼𝑇 𝜀0
. (5.9)

This formula gives rise to analytical expressions for
the average spontaneous polarization,

𝑃𝑆 =

⎧⎨⎩
√︂

𝛼𝑇

𝛽
(𝑇cr (𝑎, 𝑏, 𝑐)− 𝑇 ) for 𝑇 < 𝑇cr,

0 for 𝑇 > 𝑇cr,

(5.10)

𝜒FE (𝑇 ) =

⎧⎪⎪⎨⎪⎪⎩
1

2𝛼𝑇 (𝑇cr (𝑎, 𝑏, 𝑐)− 𝑇 )
for 𝑇 < 𝑇cr,

1

𝛼𝑇 (𝑇 − 𝑇cr (𝑎, 𝑏, 𝑐))
for 𝑇 > 𝑇cr.

(5.11)

Furthermore, Eqs. (5.3), (5.5), (5.10), and (5.11)
bring us to an analytical expression for the PME co-
efficient in the form

𝜂 (𝑇 ) =

⎧⎪⎨⎪⎩
−𝜉MP (𝜒M (𝑇 ))

2

2
√︀

𝛼𝑇𝛽 (𝑇cr (𝑎, 𝑏, 𝑐)− 𝑇 )
for 𝑇 < 𝑇cr,

0 for 𝑇 > 𝑇cr.

(5.12)

As follows from formulas (5.9)–(5.12), the depolar-
ization fields considerably affect the polar and PME
properties of ellipsoidal nanoparticles.

1028 ISSN 0372-400X. Укр. фiз. журн. 2018. Т. 63, № 11



Renovation of Interest in the Magnetoelectric Effect in Nanoferroics

5.5. Influence of size effects
on phase diagrams, average polarization,
and PME coefficient

The phase diagrams of semiellipsoidal BiFeO3 nano-
particles in the relative temperature 𝑇/𝑇C (𝑇C is the
Curie temperature in bulk) – semiaxis length 𝑎 coor-
dinates are shown in Fig. 5.2, 𝑎. The boundary be-
tween the PE and FE phases, i.e. the actual phase
transition temperature 𝑇cr (𝑎, 𝑏, 𝑐), depends on the
semiellipsoid sizes 𝑎, 𝑏, and 𝑐. The size effects man-
ifest themselves in the disappearance of the ferro-
electric phase at a critical size, which is followed by
a monotonic growth of the transition temperature,
as 𝑎 increases, and its saturation at 𝑎 ≫ 100 nm.
The curves in Fig. 5.2 were calculated for various
length values of the semiaxis 𝑏 = 3, 10, 30, and
100 nm and the fixed particle heights 𝑐 = 10 nm
(Fig. 5.2, 𝑎) and 100 nm (Fig. 5.2, 𝑏). The crit-
ical size monotonically decreases, and the PE-FE
phase boundary shifts from left to right with the
growth of 𝑏 at a fixed 𝑐. The critical sizes calcu-
lated for 𝑐 = 10 nm are considerably smaller than
those calculated for 𝑐 = 100 nm and the same 𝑏-
values [cf. the curves in Figs. 5.2, 𝑎 and 5.2, 𝑏]. At
𝑐 = 10 nm, the critical size varies in a narrow in-
terval of 10–12 nm, and the curves calculated for
different 𝑏-values are located very close to one an-
other. At 𝑐 = 100 nm, the critical size changes in
a wider interval of 15–45 nm, and the curves calcu-
lated for different 𝑏-values are well separated from one
another.

The analysis of the calculation results depicted in
Fig. 5.2 makes it possible to draw a conclusion that
the influence of the size effect on the phase diagrams
is considerable for the ratio 𝑏𝑐/𝑎2 between the par-
ticle sizes and less sensitive to separate size magni-
tudes. The smaller this ratio, the lower is the depo-
larization field and, consequently, the higher is the
transition temperature and the smaller is the critical
size. This result seems to be non-trivial.

The dependences of the spontaneous polarization
on the semiellipsoid length 𝑎 calculated for room tem-
perature and the semiaxis length 𝑐 = 100 nm are
shown in Fig. 5.2, 𝑏. The lengths of another semi-
axis 𝑏 are indicated near the curves. The polarization
curves calculated for different 𝑏-values are well sep-
arated from one another. The spontaneous polariza-
tion appears at the critical size 𝑎cr (𝑏, 𝑐) and increases

a

b

c
Fig. 5.2. Phase diagrams in the temperature 𝑇 – ellipsoid
semiaxis length 𝑎 coordinates calculated for the semiaxis length
𝑐 = 100 nm and various semiaxis lengths 𝑏 = 3, 10, 30, and
100 nm (indicated near the curves) (𝑎). Dependences of the
spontaneous polarization on the ellipsoid semiaxis length 𝑎 at
room temperature calculated for 𝑐 = 100 nm and various semi-
axis lengths 𝑏 = 3, 10, 30, and 100 nm (indicated near the
curves) (𝑏). The same as in panel 𝑏, but for the PME coeffi-
cient (𝑐). The screening length 𝜆 = 1 nm, the other parameters
corresponding to BiFeO3 are quoted in section 5.2 (Adapted
from [128], with the permission of AIP Publishing)
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with 𝑎. The polarization saturates at a value of about
1 C/m2 at 𝑎 ≫ 100 nm.

The dependences of the PME coefficient on the
semiaxis length 𝑎 calculated for room temperature
and the semiaxis length 𝑐 = 100 nm are shown in
Fig. 5.2, 𝑐. The lengthsof another semiaxis 𝑏 were cho-
sen the same as in the previous figures (𝑏 = 3, 10, 30,
and 100 nm). The plotted dependences were normal-
ized by the main PME coefficient value. The PME
coefficient equals zero, if 𝑎 < 𝑎cr (𝑏, 𝑐) owing to the
spontaneous disappearance of the polarization, ap-
pears at 𝑎 < 𝑎cr, has a singularity at 𝑎 = 𝑎cr(𝑏, 𝑐),
then decreases, as the size 𝑎 grows, and saturates at
𝑎 ≫ 100 nm. The singularity testifies to a possibil-
ity to obtain a giant PME effect in BiFeO3 nanopar-
ticles near the size-induced FE-PE phase transition
point. In particular, the normalized PME coefficient
significantly exceeds 1 for the sizes within the interval
𝑎cr (𝑏, 𝑐) ≤ 𝑎 < 2𝑎cr (𝑏, 𝑐). The behavior of the PME
coefficient reproduces that of the dielectric suscepti-
bility described by Eq. (5.11) in the framework of our
model. The dependences of the PME coefficient cal-
culated for various 𝑏-values are well separated from
one another.

To summarize, in this section we considered the in-
fluence of nanoparticle sizes on the phase diagrams
and the ferroelectric and magnetoelectric properties
of semiellipsoidal BiFeO3 nanoparticles attached to
a rigid conductive substrate. In the framework of
the Landau–Ginzburg–Devonshire method, as well
as the classical electrostatics and elasticity theory,
the spatial distributions of the spontaneous polariza-
tion vector inside the ferroelectric nanoparticles, the
phase diagrams, and the PME coefficient were cal-
culated. Analytical expressions were obtained for the
dependences of the ferroelectric transition tempera-
ture, average polarization, linear dielectric suscepti-
bility, and PME coefficient on the particle sizes in
the general case of semiellipsoidal nanoparticles with
different semiaxes 𝑎 and 𝑏, and the height 𝑐. Since
the depolarization field for nanoparticles with small 𝑐-
values is substantially lower, the energy-beneficial are
nanoparticle orientations along the spontaneous po-
larization plane 𝑐 < 𝑎. As follows from the analysis of
the results obtained, the phase diagrams, the sponta-
neous polarization, and the PME coefficient are quite
sensitive to the ratio 𝑏𝑐/𝑎2 between the particle sizes
and are less sensitive to the size magnitudes. This cir-

cumstance opens a way to control the nanoparticle
properties by choosing the proper value of this ratio.

6. Conclusions

Theoretical researches of the influence of the magne-
toelectric effect on the physical properties of nano-
sized ferroics and multiferroics are very challeng-
ing. The interest in them has grown significantly
within the last decade. The Landau–Ginzburg–De-
vonshire phenomenological theory can successfully
describe the appearance of the piezomagnetic, piezo-
electric, and linear magnetoelectric effects near the
ferroic surface as a result of the surface-induced spon-
taneous reduction of a symmetry of the system. As
a consequence, nanosized particles and thin ferroic
films can manifest pronounced piezomagnetic, piezo-
electric, and magnetoelectric properties, which are
absent in the corresponding bulk materials. In par-
ticular, there may appear the giant magnetoelectric
effect in nanowires induced by the surface tension. A
significant influence of size effects and external fields
on the magnetoelectric coupling coefficients, the di-
electric, magnetic, and magnetoelectric susceptibili-
ties in nanoferroics was considered. The special atten-
tion was paid to the influence of misfit deformations
on the magnetoelectric coupling in thin ferroic films
and the corresponding phase diagrams, including the
emergence of new phases absent for the bulk material.

In the framework of the Landau–Ginzburg–Devon-
shire theory, the mechanisms giving rise to the ap-
pearance of the linear magnetoelectric and flexomag-
netoelectric effects in nanoferroics induced by the
flexomagnetic coupling are considered. A substantial
influence of the flexomagnetoelectric effect on the sus-
ceptibility of nanoferroics is revealed. In particular,
the sizes of semiellipsoidal bismuth ferrite nanopar-
ticles strongly affect their polar and magnetoelectric
properties.
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ВIДНОВЛЕННЯ IНТЕРЕСУ
ДО МАГНIТОЕЛЕКТРИЧНОГО
ЕФЕКТУ У НАНОФЕРОЇКАХ

Р е з ю м е

Авторський огляд присвячено останнiм теоретичним до-
слiдженням впливу магнiтоелектричного ефекту на фi-
зичнi властивостi нанорозмiрних фероїкiв i мультиферо-
їкiв. Особливу увагу придiлено застосуванню феномено-
логiчної теорiї Ландау–Гiнзбурга–Девоншира для опису
виникнення п’єзомагнiтного, п’єзоелектричного i лiнiйно-
го магнiтоелектричного ефектiв поблизу поверхнi ферої-
кiв, як таких, що викликанi спонтанним пониженням си-
метрiї, iндукованим поверхнею. Як наслiдок, нанорозмiр-
нi частинки i тонкi плiвки можуть проявляти вираже-
нi п’єзомагнiтнi, п’єзоелектричнi i магнiтоелектричнi вла-
стивостi, вiдсутнi у вiдповiдних об’ємних матерiалiв, з
яких вони зробленi. Зокрема можливе виникнення гiгант-
ського магнiтоелектричного ефекту у нанодротах, iнду-
кованого поверхневим натягом. Розглянуто та вiдзначе-
но значний вплив розмiрних ефектiв та зовнiшнiх полiв
на коефiцiєнти магнiтоелектричного зв’язку, дiелектричну,
магнiтну та магнiтоелектричну сприйнятливiсть у нано-
фероїках. Особлива увага придiлена розгляду впливу де-
формацiй невiдповiдностi на магнiтоелектричний зв’язок
у тонких плiвках фероїкiв, їх фазовi дiаграми, включаю-
чи виникнення нових фаз, вiдсутнiх в об’ємному матерi-
алi. В рамках теорiї Ландау–Гiнзбурга–Девоншира розгля-
нуто виникнення лiнiйного магнiтоелектричного та флексо-
магнiтоелектричного ефектiв у нанофероїках, iндуковано-
го флексомагнiтним зв’язком. Вiдзначено значний вплив
флексомагнiтоелектричного ефекту на сприйнятливiсть на-
нофероїкiв. Огляд завершується конкретним прикладом
впливу розмiрних ефектiв на полярнi та магнiтоелектри-
чнi властивостi напiвелiпсоїдальних наночастинок ферiту
вiсмута.
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