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The magnetization dynamics in a spin-torque oscillator with nonuniform profile of a static
magnetic field creating a field well is studied by analytic calculations and numerical simu-
lations. It is demonstrated that, in the case of sufficiently deep and narrow field well, the
linear localization in the field well dominates the nonlinear self-localization, despite a negative
nonlinear frequency shift. A change of the localization mechanism results in a qualitatively
different dependence of the generation power on the driving current. For the dominant linear
localization, the soft generation mode is realized, while, for the nonlinear self-localization, we
observe a hard mode of auto-oscillator excitation. Simultaneously, a difference in the profiles
of the excited spin-wave mode can become evident and distinguishable in experiments only in
the case of a nonsymmetric field well.
K e yw o r d s: spin-torque oscillator, spin-wave bullet, localized mode, magnetization dy-
namics.

1. Introduction
Spin current injected into a ferromagnet creates a
torque on its magnetization. Due to the nonconser-
vative nature, this spin-transfer torque can result in
the magnetization reversal [1, 2], partial compensa-
tion of magnetic losses [3, 4], and excitation of self-
sustained magnetization oscillations driven by a dc
current [5, 6]. Nanoscale magnetic oscillators, which
utilize this effect – spin-torque oscillators (STOs) –
are promising for various applications such as com-
pact microwave generators [7, 8], sources of spin
waves in magnonics [9, 10], neuromorphic computing
[11], etc. Earlier researches utilized the spin-transfer
torque of a spin-polarized electric current [1,5,6]; the
usage of pure spin currents coming from the spin-Hall
effect in heavy metals [12] or nonlocal spin current in-
jection [13] enlarges the functionality of STOs.

STOs can demonstrate various types of the nonlin-
ear magnetization dynamics depending on their ge-
ometry. In an STO with a nanoscale confined free
layer, the spin current excites mostly the lowest quasi-
uniform spin-wave mode of the free layer [14] or,
in the case of the free layer in a vortex state, the
gyrotropic mode of a vortex [15], which is also the
lowest among spin-wave modes of a vortex state. In
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the case of spatially extended free layer (film or
nanowire), the dynamics of an STO becomes more
complex. It was shown that the injection of a spin
current into a large micron-size area of a ferromag-
netic film does not allow the excitation of coher-
ent spin waves because of the nonlinear scatter-
ing, which redistributes the energy to many spin-
wave modes [16]. If the size of the active area, into
which the spin current is injected, is reduced down
to hundreds of nanometers, the coherent generation
becomes possible. Features of the excited spin-wave
mode in this case are determined by a nonlinear
frequency shift 𝑁 , which depends on the geometry
and static magnetization direction [14]. In the case
of positive nonlinear frequency shift, 𝑁 > 0, which
is typically realized for the out-of-plane static mag-
netization direction, the linear spin waves propa-
gating from the active area are excited [17–19]. In
contrast, if 𝑁 < 0 (in-plane static magnetization),
the excited mode is a nonlinear self-localized spin-
wave bullet having characteristic sizes of 100-200 nm
[20–22]. Characteristic sizes of the bullet and, con-
sequently, sizes of the STO active area, which sup-
ports the coherent generation can be enlarged by
the dipolar interaction to the micron-scale in a one-
dimensional geometry related to nanowire spin-Hall
oscillators [23, 24].

ISSN 0372-400X. Укр. фiз. журн. 2019. Т. 64, № 10 939



R.V. Verba

Fig. 1. Sketches of a common nanowire spin-Hall oscillator
consisting of a ferromagnetic (FM) – heavy metal (Pt) bilayer
with Au electrodes defining the active area between them (a),
and nanocontact STO with a continuous ferromagnetic film as
a free layer (FL) and a nanodot ferromagnetic pinned layer
(PL) separated by a dielectric spacer (b); (c, d) show the cor-
responding schematic profiles of a static internal magnetic field
𝐵0 (projection of the total magnetic field on the static magne-
tization direction) in the ferromagnetic layer of SHO (c) and
in the free layer of nanocontact STO (d); in (d), dashed lines
show separate contributions of the Oersted field 𝐵𝐼 and stray
fields 𝐵PL of the pined layer

This simple picture, however, takes place only in
the case of spatially uniform free layers. In a real de-
vice, the presence of the Oersted field of a driving
current or stray fields from a pinned layer creates a
nonuniform energy landscape even in a geometrically
uniform magnetic film or nanowire. As an illustra-
tion, we show the common geometry of a nanowire
spin-Hall oscillator (SHO) [25] and the corresponding
profile of a static internal magnetic field affected by
the Oersted field of a dc current in Fig. 1, a, c. The
presence of a field well or field hill in the nanowire
depends on the sign of the spin-Hall angle of a heavy
metal (as it determines the direction of a current
necessary for the spin-wave excitation) and the mu-
tual position of ferromagnetic and heavy metal layers
(i.e. which one is on the top). In the case of nanocon-
tact STO with a ferromagnetic film as a free layer
(Fig. 1, b), the field landscape can be more complex,
as it is exemplarily shown in Fig. 1, d. In this case,
the superposition of the Oersted field of a dc current
and the magnetostatic stray fields of the pinned layer
can create a complex landscape with a nonsymmetric
field well.

Naturally, the presence of a geometric or mag-
netic nonuniformity in a ferromagnetic free layer af-
fects the STO dynamics and, in particular, may af-
fect the nature of an excited spin-wave mode. Recent-
ly, it was shown that the excited spin-wave mode
in a nanoconstriction SHO, in which a ferromag-
netic layer is patterned, is often a linearly localized
mode independent of the static magnetization direc-
tion. It is a consequence of the strong nonuniformity
of the internal magnetic field and different nonlinear
properties of the edge modes compared to the bulk
ones [26–28]. In [29], the mode hopping between lin-
early localized and bullet modes in an SHO with ex-
tended active area was found. This means that the
excitation thresholds of both these modes are close
to each other. Similar hoppings were observed in a
constriction-based SHO [27].

In this work, we study the features of localized ex-
citations in an STO within a simple one-dimensional
model with a field well. We consider the conditions,
when a linear or nonlinear localization mechanism
dominates, and how it affects the experimentally mea-
sured properties of STO.

2. Model

In this work, the interplay of the linear and nonlin-
ear localization mechanisms is studied within a sim-
ple one-dimensional model (e.g., nanowire STO or
SHO). We assume that the driving electric current
density 𝐽(𝑦) and, consequently, spin current density,
are constant within the active region of the length
𝐿a and are zero outside it (Fig. 2). The nonuniform
energy landscape in a ferromagnetic layer is mod-
eled by the rectangular profile of a static internal
magnetic field containing a finite-depth field well of
the length 𝐿w. It is described by the spatial depen-
dence of the local ferromagnetic resonance (FMR) fre-
quency 𝜔0(𝑦), which is the “fictive” frequency, which
a zero-wavenumber spin-wave excitation would have,
if the parameters of a sample and the external con-
ditions (e.g., static field) were equal to given local
parameters. Obviously, the spatial distribution 𝜔0(𝑦)
has also rectangular profile with a well (Fig. 2). In a
general case, the nonuniformity of a local FMR fre-
quency can be created not only by a nonuniform to-
tal external field, but also by a spatial dependence of
the magnetic anisotropy, nanowire width or thickness,
etc. The lengths of the active area and the field well
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can be different in the general case, 𝐿a ̸= 𝐿w. In the
most of this work, except for Subsec. 3.3, we consider
a symmetric location of the field well and the active
area, meaning that their centers coincide, as shown
in Fig. 2.

The magnetization dynamics of STO is studied
in the framework of the nonlinear Ginzburg–Landau
equation, which is derived as an approximation of the
Landau–Lifshitz equation accounting for the linear
and first nonlinear (∼|𝑏|3) terms [10, 20, 23]:

𝜕𝑏

𝜕𝑡
+ (𝑖+ 𝛼𝐺)

(︂
𝜔0(𝑦)−𝐷

𝜕2

𝜕𝑦2

)︂
𝑏+

+ 𝑖𝑁 |𝑏|2𝑏− 𝜎𝐽(𝑦)
(︀
1− |𝑏|2

)︀
𝑏 = 0. (1)

Here, 𝑏 = 𝑏(𝑦, 𝑡) is the complex amplitude of the dy-
namic magnetization in the excited spin-wave mode;
it is related to the real dynamic magnetization com-
ponents 𝑀𝜉 and 𝑀𝜂 (orthogonal to each other and
to the static magnetization direction) as 𝑏 = (𝑀𝜉 +
+ 𝑖𝜀𝑀𝜂)/

√
1 + 𝜀2𝑀𝑠 with 𝑀𝑠 being the saturation

magnetization and 𝜀 being the ratio of dynamic mag-
netization components, which describes the ellipticity
of the magnetization precession. The magnetic damp-
ing is described by the effective damping constant 𝛼𝐺,
which could be different from the standard Gilbert
constant due to a contribution of the spin pumping
into the heavy metal layer (in SHOs) and/or large
precession ellipticity. The parameter 𝑁 describes a
nonlinear frequency shift [14]. The coefficient 𝜎 is the
spin-transfer-torque or spin-Hall efficiency for STO or
SHO, respectively, exact expressions for which are not
important for our current work and can be found else-
where [10, 14]. The parameter 𝐷 describes the spin-
wave dispersion and can be achieved from the Tay-
lor expansion of the linear spin wave dispersion re-
lation as 𝜔𝑘 ≈ 𝜔0 + 𝐷𝑘2 + ... [10, 20]. In the case
of a soft ferromagnetic film or thin wide nanowire,
it is equal to 𝐷 = 𝜔𝑀𝜆2(2𝜔𝐻 + 𝜔𝑀 sin2 𝜃𝑀 )/(2𝜔0),
where 𝜔𝑀 = 𝛾𝜇0𝑀𝑠, 𝜔𝐻 = 𝛾𝐵0, 𝛾 is the gyro-
magnetic ratio, 𝜆 is the exchange length of the fer-
romagnetic, 𝐵0 is the modulus of the static effec-
tive magnetic field, and 𝜃𝑀 is the angle between
the static magnetization direction and the film nor-
mal. The FMR frequency in this case is equal to
𝜔0 =

[︀
𝜔𝐻(𝜔𝐻 + 𝜔𝑀 sin2 𝜃𝑀 )

]︀1/2. Formally, it ap-
pears that the parameter 𝐷 is spatially dependent
in the presence of a field well. This weak depen-
dence, however, can be easily neglected, by setting

Fig. 2. Studied model of an STO with a field well, showing a
spatial distribution of the driving current density 𝐽(𝑦) and the
local FMR frequency 𝜔0(𝑦)

the constant 𝐷 to the value calculated outside the
well, since the solution in this region is more sensi-
tive to 𝐷, as it determines the radiation losses. Fi-
nally, in Eq. (1), we neglect the nonlocal term de-
scribing the magnetodipolar interaction (expression
including the dipolar term can be found in [23]). It is
correct for a sufficiently thin ferromagnetic films and
nanowires. Simultaneously, as shown in [23], the dipo-
lar interaction just changes the characteristic length
scale, while it does not lead to a qualitatively new
behavior of an STO.

It should be noted that the model assumes the well
width and depth and a nonlinear frequency shift inde-
pendent of the amplitude of magnetization precession
𝑏. Therefore, it is not directly applicable to the case
of wells created by the self-demagnetization fields or
excitation of spin-wave modes with anomalous non-
linearity. This more complex case takes place, for ex-
ample, in constriction-based SHOs [27, 28].

3. Interplay of Localization Mechanisms

3.1. Excitation thresholds
of linearly localized and bullet modes

The excitation of a magnetization dynamics in an
STO is a threshold process. The generation starts, if
the driving current is higher than the threshold value,
at which the antidamping spin-transfer torque over-
comes total losses (Gilbert damping and radiation
losses). Naturally, the mode having the lowest thresh-
old is excited firstly. At large currents, the generation
can switch to another regime, e.g., the excitation of
higher-order propagating modes [30], second bullet
mode [31], multibullet mode [23], mode hopping [32],
etc. Here, we are not interested in this high-driving-
current dynamics and consider only the lowest excited
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mode. Therefore, to understand which mode – linear
or bullet one – is excited in an STO with a field well,
we firsly calculate the excitation threshold for both
of them.

A way to calculate the excitation threshold for a
linear spin-wave mode is well-known. For this pur-
pose, one needs to find a stationary solution 𝑏(𝑦, 𝑡) =
= 𝑏(𝑦)𝑒−𝑖𝜔𝑡 of Eq. (1), neglecting all the nonlinear
terms in it [10, 17, 19]. In our case of piecewise con-
stant functions 𝐽(𝑦) and 𝜔0(𝑦), the solution in each
range is a combination of the sine and cosine func-
tions. Applying the boundary conditions of continu-
ity for the dynamic magnetization and its derivative,
we get a linear eigenproblem, whose solution yields
the generation frequency 𝜔 and the threshold current
𝐽th. Both generation frequency and threshold current
are determined from the following implicit equation:

𝑘1 (𝑘2 − 𝑖𝑘3 tan [𝑘2𝛿]) tan[𝑘1𝐿a/2] =

= −𝑖𝑘2 (𝑘3 − 𝑖𝑘2 tan [𝑘2𝛿]). (2)

Here,

𝑘1 =
√︀

(𝜔 − 𝜔0 + 𝑖(Γ− 𝜎𝐽th)) /𝐷,

𝑘2 =
√︀
(𝜔 − 𝜔0 + 𝑖Γ) /𝐷,

𝑘3 =
√︀
(𝜔 − 𝜔0 −Δ𝜔 + 𝑖Γ) /𝐷

(3)

are complex spin-wave wavenumbers in the active
area, nonactive part of the field well, and the outer re-
gion, respectively, Γ = 𝛼𝐺𝜔 is the spin-wave damping
rate, Δ𝜔 is the depth of the field well, 𝜔0 is the local
FMR frequency within the well, and 𝛿 = (𝐿w−𝐿a)/2
is the distance between boundaries of the active re-
gion and the field well (see Fig. 2). In the case of equal
sizes of the active area and the field well, 𝐿a = 𝐿w,
Eq. (2) simplifies to the well-known expression [10,19]

𝑘1 tan [𝑘1𝐿w/2] = −𝑖𝑘3. (4)

If simultaneously, the well is of infinite depth,
which corresponds to a finite-size magnetic dot, then
Im [𝑘3] → ∞, and the threshold is determined by
Gilbert losses only, 𝐽th = Γ/𝜎.

For the calculation of the bullet excitation thresh-
old, we neglect the presence of a field well. As will
be shown below, the nonlinear self-localization domi-
nates over the linear one for relatively wide and/or
shallow wells, which this assumption is reasonable
for. The method of calculation of the threshold for

the bullet mode was described in [20]. The differ-
ence from the current work consists in a changed di-
mensionality of the problem, from two-dimensional
to one-dimensional one. In the one-dimensional case,
the bullet profile is given by the function 𝑏(𝑦) =
= 𝑏0

√
2/ch[𝑦/𝑙], with 𝑙 =

√︀
𝐷/|𝑁 |/𝑏0 being the

characteristic bullet size, and 𝑏0 being its ampli-
tude. From the condition of energy balance, one can
derive the expression for the excitation threshold of
a bullet having the amplitude 𝑏0:

𝜎𝐽th
𝛼𝐺𝜔0

= cth

[︂
𝐿a

2𝑙

]︂(︂
1− 2

3
𝑏20

(︂
2 + ch−2

[︂
𝐿a

2𝑙

]︂)︂)︂−1

. (5)

The real excitation threshold is found as the minimum
of expression (5) respective to the bullet amplitude 𝑏0
(we recall that 𝑙 = 𝑙(𝑏0)). The corresponding gener-
ation frequency is equal to 𝜔 = 𝜔0 + 𝑁𝑏20 (we recall
that 𝑁 < 0); the bullet size at the threshold is equal
to 𝑙 =

√︀
𝐷/|𝑁 |/𝑏0 and, typically, is of the order of

the active region length 𝐿a.

3.2. Magnetization dynamics
in a symmetric well

For the further consideration, we choose exemplary
parameters of STO as follows: 𝜔𝑀 = 2𝜋 × 30 GHz,
𝐷 = 1.4×10−5 m2/s, 𝛼𝐺 = 0.01, nonlinear frequency
shift 𝑁 = −2𝜋×3 GHz, local FMR frequency is fixed
within the well to 𝜔0,w = 2𝜋×6.9 GHz and is varying
outside the well (this is done in order to fix Gilbert
losses in the active region, which allows us to distin-
guish the pure effect of the well presence). These pa-
rameters correspond to a permalloy nanowire in the
external field of 50 mT.

First, let us look at the simplest case where the
sizes of the active region and the field well are
equal. The excitation thresholds for the linear and
bullet modes calculated by Eqs. (2), (5) are shown in
Fig. 3, a. In our simplified calculations, the excitation
threshold for the bullet mode does not depend on the
field well depth and is equal to 𝐽th = 2.2Γ/𝜎. Just as
an additional example, we also show the bullet exci-
tation threshold in the case of a twice larger nonlinear
frequency shift of 𝑁 = −2𝜋×6 GHz in Fig. 3, a. It is
clear that a higher nonlinear frequency shift leads to a
decrease of the threshold, as the bullet mode becomes
more localized within the active area.

The excitation threshold of the linear mode signif-
icantly depends on the field well depth. In the ab-
sence of a field well, it is much higher than the bullet
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threshold. As the well becomes deeper, the threshold
decreases and reaches the value 𝐽th = Γ/𝜎 in the limit
of infinitely deep well, i.e., in a confined free layer uni-
formly pumped by the spin current (Δ𝜔 → ∞ at a
constant 𝜔0). The bullet mode cannot reach this min-
imal threshold value in a confined free layer, and one
may expect the excitation of the linear mode in a
confined layer of arbitrary sizes. It is, however, not
always correct. One should be aware of the excita-
tion of other linear and nonlinear modes. In a large
sample (micron-sized in the 2D case; in 1D, it may
be larger due to the dipolar interaction), the excita-
tion thresholds for many modes are very close to each
other, which results in a chaotic dynamics instead of
the coherent generation [16].

From Fig. 3, a, one can expect the transition from
the bullet mode excitation to the excitation of a lin-
ear mode, when the field well becomes deeper than
Δ𝜔 = 2𝜋 × 0.3GHz. We simulated the magnetiza-
tion dynamics by solving numerically the initial equa-
tion (1) for two values of the field well depth, below
and above this critical value (accounting the non-
linearity and the field well simultaneously). Corres-
ponding stationary profiles of the excited spin-wave
mode near the excitation thresholds are shown in
Fig. 3, b. It is quite hard to distinguish normalized
profiles even in simulations and will be completely im-
possible to do this in experiments. Of course, depend-
ing on the values of a nonlinear frequency shift and
a field well depth, the characteristic sizes of the bul-
let and linear modes can become different. However,
the localization law is the same. Indeed, the bullet
mode 𝑏(𝑦) ∼ 1/ch[𝑦/𝑙] is exponentially localized. The
linear mode has a lower threshold than bullet ones,
when its frequency is below the local FMR frequency
outside the well, i.e., when it becomes the evanes-
cent mode. The localization law of this mode outside
the well is also exponential and is determined mainly
by 𝑏(𝑦) ∼ exp[−Im[𝑘3]|𝑦|]. A small difference within
the active region between inverse hyperbolic cosine
1/ch[𝑦/𝑙] and cosine cos[𝑘1𝑦] is too weak to be an
evidence of the mode character.

The difference between the bullet and linear modes
is pronounced in the dependence of the generation
power on the driving current, which is shown in
Fig. 3, c. For the linear mode, the power at the
threshold is vanishingly small and monotonically in-
creases above the threshold (until the nonlinear inter-
action with other modes becomes important). This

Fig. 3. a – calculated excitation threshold of a linearly lo-
calized mode as a function of the field well depth and the
excitation threshold of the bullet mode at different nonlinear
frequency shifts; 𝐿a = 𝐿w = 100nm; stars show points of sim-
ulations in panels (b, c); b – normalized profiles of spin-wave
modes close to the threshold for Δ𝜔 = 2𝜋×1GHz (linear mode)
and Δ𝜔 = 0 (bullet); c – corresponding dependences of the
generation power on the driving current for Δ𝜔 = 2𝜋 × 1GHz
(linear mode) and Δ𝜔 = 0 (bullet). Panels (b, c) are obtained
from the numerical solution of Eq. (1)

is the so-called “soft mode” of the excitation of an
auto-oscillator. The bullet mode power at the thresh-
old is finite and quite large (hard mode of excita-
tion), because the bullet should have a large ampli-
tude to support its self-localization. These features
are the same as for the linear and bullet modes in
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Fig. 4. Phase diagram of STO with the active region of the
length 𝐿a = 100 nm showing the excitation regions of the bullet
and linear modes depending on the length and depth of the
filed well; 𝑁 = −2𝜋 × 3 GHz. Dashed line show the boundary
between the bullet and linear modes in the case of a higher
nonlinear frequency shift of 𝑁 = −2𝜋 × 6 GHz

Fig. 5. Example profiles of the linear (a) and bullet (b) modes
excited in STO with asymmetric position of the active region
respective to the field well. Three instant profiles in each quar-
ter of the oscillation period (𝑡1 < 𝑡2 < 𝑡3) are shown in both
panels. Parameters: 𝐿a = 100 nm, 𝐿w = 400 nm, shift
between the well active region centers is 75 nm, well depth
Δ𝜔 = 2𝜋 × 1 GHz (a), and Δ𝜔 = 2𝜋 × 0.25 GHz (b)

a uniform ferromagnetic layer [14, 21] and are the
main experimentally measured evidence of the nature
of the excited spin-wave mode. However, such a sim-
ple picture is present only at vanishingly small ther-
mal fluctuations. The sufficient thermal noise could
spread the abrupt step in the power dependence, be-
cause of the nonstationary hopping between the bul-
let mode and the generation absence below the real
excitation threshold of a bullet [23]. This spreading is

more pronounced, if the thresholds of the bullet and
linear modes are close to each other, as will happen
close to the well depth of 0.3 GHz in our case (see
Fig. 3, a). In this complex case, only precise time-
resolved measurements can distinguish a type of the
magnetization dynamics [29].

Above, we considered the case of equal sizes of the
active region and the field well, which is a good model
for nanowire SHO (see Fig. 1, a, c). Figure 4 shows
the phase diagram in a more general case of an arbi-
trary length of the field well, larger than the length of
the active region. One can see that, in a sufficiently
wide well, the bullet mode is excited in spite of a large
well depth. In this case, the localization length of
the bullet determined by a nonlinear frequency shift
and the active region size becomes less than the field
well length. Consequently, the magnetization dynam-
ics does not feel the well and behaves as in a uniform
ferromagnetic layer, in which the bullet mode should
be excited, if 𝑁 < 0. This characteristic critical well
length is, naturally, inversely dependent on the non-
linear frequency shift, because the higher values of
the nonlinear shift make the bullet mode more lo-
calized. Thus, we can conclude that the significantly
narrow and deep field wells support the linearly lo-
calized mode formation. Otherwise, the bullet mode
is excited.

3.3. Spin-wave profiles
in a nonsymmetric well

In this section, we briefly discuss how the asymmetry
of positions of the active region and the field well af-
fects the STO dynamics. Such case of nonsymmetric
well can appear in nanocontact STOs, as shown in
Fig. 1, d. We model the asymmetry by a shift of the
field well center respective to the active region cen-
ter, while both still are of a rectangular profile. Simu-
lations show that the asymmetry does not lead to a
qualitative change of the STO phase diagram and the
generation power dependence. The sufficiently nar-
row deep well supports the excitation of the lin-
ear mode in a soft excitation mode. Otherwise, the
hard mode of the bullet excitation takes place. Simul-
taneously, the difference in spin-wave profiles could be
substantial.

In Fig. 5, we show the profiles of the linearly local-
ized and bullet modes in a nonsymmetric well. One
can see that the presence of the well leads to a shift of
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the bullet mode from the center of the active area to-
ward to the center of the well (Fig. 5, b). This happens
because “tails” of the bullet feel the boundaries of the
well. This shift is more pronounced in a deeper well,
if it stills support the bullet formation. The bullet
has a standing-mode character, and the magnetiza-
tion at different points oscillates with approximately
the same phase, as it does in the case of a symmet-
ric well or in the absence of a well. The effect of an
asymmetry on a linearly localized mode is more pro-
nounced. This mode becomes nonstanding, i.e., the
magnetization oscillates not in the same phase in all
the sample. The position of a maximum of the in-
stant spin-wave profile changes during the oscillation
period. Moreover, the profile varies from one having
one maximum to that with two maxima, as shown in
Fig. 5, b (number of maxima may differ depending on
the well size). This complex dynamics is a result of
the excitation of quasipropagating spin waves by the
active region and its quantization in the well.

We believe that such a transition from a nonlin-
ear to linear localization of the excited mode was ob-
served in [33], but was incorrectly treated. In [33],
it was stated that depending on external conditions,
the one- or two-bullet mode, which are called 𝑠- or
𝑝-like bullets, is excited at the threshold. However,
there is no other experimental or theoretical work,
where the two-bullet solution (or the second bullet
mode) was observed at the threshold. The second bul-
let mode always appears at a some higher threshold
after the single-bullet mode is excited [23, 31]. We
do not see any cause for why the two-bullet mode
could be more energy-favorable than a single-bullet
one. Indeed, the formation of the two-bullet mode
always increases the exchange energy comparing to
a single-bullet one. The nonuniformity of the energy
landscape or bias current leads only to a shift of the
single-bullet mode at the threshold, as is shown in this
work and in [23], respectively. Simultaneously, the
qualitative features of the mode observed in [33] are
the same, as we found in a nonsymmetric well. Both
the experiment and micromagnetic simulations in [33]
showed that the mode, which was interpreted as a “𝑝-
like” soliton, has quasipropagating character with a
variation in the number of instant maxima from one
to two during the oscillation period. The nanocon-
tact STO studied in [33] is similar to one shown in
Fig. 1, b, which demonstrates a complex nonsymmet-
ric magnetic field landscape. Therefore, we can state

that the observed excitation in that work was a linear
mode localized in a field well.

4. Conclusions

In this work, the magnetization dynamics in a spin-
torque oscillator with a nonuniform profile of the
static magnetic field creating a field well has been
studied. It is demonstrated that the presence of the
field well can change the nature of the excited spin-
wave mode. A shallow and/or wide well does not af-
fect much the magnetization dynamics, and the bullet
mode is excited in an STO having a negative non-
linear frequency shift, as it happens in the absence
of a well. In contrast, if the well is sufficiently deep
and narrow, the linear localization mechanism dom-
inates over the nonlinear self-localization, despite a
negative nonlinear frequency shift, and a linear local-
ized spin-wave mode is excited. A change of the lo-
calization mechanism results in a qualitatively differ-
ent dependence of the generation power on the driv-
ing current. For the dominant linear localization, the
soft generation mode is realized, while we observe the
hard mode of auto-generator excitation for the non-
linear self-localization. Simultaneously, in the case of
a symmetric position of the well and the active re-
gion, the difference in the profiles of the linear and
bullet spin-wave modes is weak. They have the expo-
nential localization outside the well and the difference
in the mode profiles within the active region is hardly
distinguishable in experiment. But, in a nonsymmet-
ric well, the profiles of the linear and bullet modes
can differ drastically. While the bullet mode remains
of a standing-mode character, the linear mode could
acquire a quasipropagating character, which can be
easily detected by a spatial mapping of the magneti-
zation dynamics.
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M. Muñoz, G. de Loubens, O. Klein. Full control of the
spin-wave damping in a magnetic insulator using spin-orbit
torque. Phys. Rev. Lett. 113, 197203 (2014).

5. S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley,
R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph. Microwave
oscillations of a nanomagnet driven by a spin-polarized cur-
rent. Nature 425, 380 (2003).

6. W.H. Rippard, M.R. Pufall, S. Kaka, S.E. Russek,
T.J. Silva. Direct-current induced dynamics in Co90Fe10/

Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201
(2004).

7. O. Prokopenko, E. Bankowski, T. Meitzler, V. Tiberkevich,
A. Slavin. Spin-torque nano-oscillator as a microwave sig-
nal source. IEEE Magn. Lett. 2, 3000104 (2011).

8. S. Tsunegi, H. Kubota, K. Yakushiji, M. Konoto, S. Ta-
maru, A. Fukushima, H. Arai, H. Imamura, E. Grimaldi,
R. Lebrun, J. Grollier, V. Cros, S. Yuasa. High emission
power and Q factor in spin torque vortex oscillator con-
sisting of FeB free layer. Appl. Phys. Express 7, 063009
(2014).

9. V.E. Demidov, S. Urazhdin, R. Liu, B. Divinskiy, A. Tele-
gin, S.O. Demokritov. Excitation of coherent propagat-
ing spin waves by pure spin currents. Nature Commun.
7, 10446 (2016).

10. A. Giordano, R. Verba, R. Zivieri, A. Laudani, V. Puliafito,
G. Gubbiotti, R. Tomasello, G. Siracusano, B. Azzerboni,
M. Carpentieri, A. Slavin, G. Finocchio. Spin-Hall nano-
oscillator with oblique magnetization and Dzyaloshinskii–
Moriya interaction as generator of skyrmions and nonre-
ciprocal spin-waves. Sci. Rep. 6, 36020 (2016).

11. J. Torrejon, M. Riou, F.A. Araujo, S. Tsunegi, G. Khalsa,
D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fu-
kushima, H. Kubota, S. Yuasa, M.D. Stiles, J. Grollier.
Neuromorphic computing with nanoscale spintronic oscil-
lators. Nature 547, 428 (2017).

12. V.E. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich,
A. Slavin, D. Baither, G. Schmitz, S.O. Demokritov. Mag-
netic nano-oscillator driven by pure spin current,. Nat.
Mater. 11, 1028 (2012).

13. V.E. Demidov, S. Urazhdin, A. Zholud, A.V. Sadovnikov,
A.N. Slavin, S.O. Demokritov. Spin-current nano-oscillator
based on nonlocal spin injection. Sci. Rep. 5, 8578 (2015).

14. A. Slavin, V. Tiberkevich. Nonlinear auto-oscillator theory
of microwave generation by spin-polarized current. IEEE
Trans. Magn. 45, 1875 (2009).

15. V.S. Pribiag, I.N. Krivorotov, G.D. Fuchs, P.M. Braganca,
O. Ozatay, J.C. Sankey, D.C. Ralph, R.A. Buhrman. Mag-
netic vortex oscillator driven by d.c. spin-polarized current.
Nature Phys. 3, 498 (2007).

16. V.E. Demidov, S. Urazhdin, E.R.J. Edwards, M.D. Stiles,
R.D. McMichael, S.O. Demokritov. Control of magnetic

fluctuations by spin current. Phys. Rev. Lett. 107, 107204
(2011).

17. J. Slonczewski. Excitation of spin waves by an electric cur-
rent. J. Magn. Magn. Mater. 195, L261 (1999).

18. M.A. Hoefer, M.J. Ablowitz, B. Ilan, M.R. Pufall, T.J. Sil-
va. Theory of magnetodynamics induced by spin torque
in perpendicularly magnetized thin films. Phys. Rev. Lett.
95, 267206 (2005).

19. G. Consolo, L. Lopez-Diaz, B. Azzerboni, I. Krivorotov,
V. Tiberkevich, A. Slavin. Excitation of spin waves by a
current-driven magnetic nanocontact in a perpendicularly
magnetized waveguide. Phys. Rev. B 88, 014417 (2013).

20. A. Slavin, V. Tiberkevich. Spin wave mode excited by spin-
polarized current in a magnetic nanocontact is a stand-
ing self-localized wave bullet. Phys. Rev. Lett. 95, 237201
(2005).

21. G. Consolo, B. Azzerboni, G. Gerhart, G.A. Melkov, V. Ti-
berkevich, A.N. Slavin. Excitation of self-localized spin-
wave bullets by spin-polarized current in in-plane mag-
netized magnetic nanocontacts: A micromagnetic study.
Phys. Rev. B 76, 144410 (2007).

22. S. Bonetti, V. Tiberkevich, G. Consolo, G. Finocchio,
P. Muduli, F. Mancoff, A. Slavin, J. Åkerman. Experimen-
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nàndez, A. Eklund, D. Backes, J. Frisch, J. Katine,
G. Malm, S. Urazhdin, A. D. Kent, J. Stöhr, H. Ohldag,
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КОНКУРЕНЦIЯ ЛIНIЙНОГО
ТА НЕЛIНIЙНОГО МЕХАНIЗМIВ
ЛОКАЛIЗАЦIЇ В СПIН-ТОРК ОСЦИЛЯТОРАХ
ЗА НАЯВНОСТI ПОТЕНЦIАЛЬНОЇ ЯМИ

Р е з ю м е

Аналiтично та числовими методами дослiджується динамi-
ка намагнiченостi у спiн-торк осциляторах з неоднорiдним
профiлем статичного магнiтного поля, який утворює потен-
цiальну яму. Продемонстровано, що у випадку достатньо
глибокої та вузької потенцiальної ями лiнiйний механiзм
локалiзацiї домiнує над нелiнiйною самолокалiзацiєю, не-
зважаючи на вiд’ємний нелiнiйний зсув частоти спiнових
хвиль. Змiна механiзму локалiзацiї вiдображається у якiсно
рiзних залежностях потужностi генерацiї вiд струму нака-
чки – у випадку лiнiйної локалiзацiї реалiзується м’який
режим збудження автогенератора, тодi як у випадку не-
лiнiйної самолокалiзацiї спостерiгається жорсткий режим
збудження. При цьому рiзниця профiлiв збуджених спiн-
хвильових мод стає помiтною та такою, що може бути екс-
периментально вимiряною, лише у випадку несиметричного
положення потенцiальної ями.
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