¹ Київський національний університет імені Тараса Шевченка, хімічний факультет, кафедра неорганічної хімії (Вул. Льба Толстого, 12, Київ 01033)
 ² Національний університет біоресурсів і природокористування України, Науково-навчальний інститут енергетики, автоматики і енергозбереження, кафедра фізики (Вул. Героїв Оборони, 15, Київ 03041)
 ДОСЛІДЖЕННЯ ПАРАМАГНІТНИХ КООРДИНАЦІЙНИХ СПОЛУК ЛАНТАНОЇДІВ СКЛАДУ [LnL₃ · Phen] (L = CCl₃C(O)NP(O)(OCH₃)₂) МЕТОДОМ

ЯМР-СПЕКТРОСКОПІЇ НА ЯДРАХ ¹Н ТА ³¹Р

В.О. ТРУШ,¹ О.О. ЛІЦІС,¹ Т.Ю. СЛИВА,¹ Я.О. ГУМЕНЮК,² В.М. АМІРХАНОВ¹

УДК 543.5

Синтезовано ряд координаційних сполук лантаноїдів з диметил-N-трихлорацетиламідофосфатом HL (HL = CCl₃C(O)N(H)P(O)(OCH₃)₂, лігандом карбациламідофосфатного (CAPh) типу) складу [LnL₃ · Phen], de Phen – 1,10 фенантролін, Ln = La, Ce, Pr, Nd, Sm, Tb, Dy, Ho, Er. Розчини ліганду HL та синтезованих на його основі комплексів в ацетоні досліджені методом ЯМР¹H та ³¹P при кімнатній температурі 298 К. Оскільки хімічні зсуви сигналів ¹H мають псевдоконтактну природу, то ізотропні зсуви сигналів ³¹P вдалося розкласти на контактну та псевдоконтактну складові. Було встановлено існування у розчині сполук [LnL₃ · Phen] двох серій комплексів, що мають однакову будову координаційної сфери в межах кожної серії: Ln = Ce, Pr, Nd, Sm (L1) та Ln = Tb, Dy, Ho, Er (L2). Для цих комплексів було розраховано значення константи надтонкої взаемодії: 0,18 МГц (L1) та 0,13 МГц (L2).

Ключові слова: координаційні сполуки лантаноїдів, карбациламідофосфати, ЯМРспектроскопія, ізотропний хімічний зсув.

1. Вступ

Специфічні магнітні властивості йонів лантаноїдів (III) та ефекти, які вони індукують у ЯМРспектрах координованих до них органічних лігандів, роблять їх цінними об'єктами для застосування у ролі лантаноїд-зсуваючих реагентів (ЛЗР). Комплекси лантаноїдів (III), зокрема хелатного типу, використовуються як інструментарій у структурному аналізі з використанням ЯМР-спектроскопії [1, 2]. ЛЗР широко застосовують для вивчення будови органічних сполук, їх конформацій у розчині, енантіомерної чистоти, виявлення хіральності тощо [3]. Відомо, що йони Ln(III) можуть ізоморфно заміщувати йони Ca(II), тому парамагнітні катіони лантаноїдів можуть бути використані як магнітні та оптичні зонди для дослідження кальцій вмісних сполук [4]. Врешті-решт, хелати Ln(III) стають все більш важливими в медичних методах діагностики з використанням спінової ЯМР-візуалізації, в медичних діагностичних методах з використанням магнітно-резонансної томографії [5, 6]. З урахуванням вищезгаданого розробка методів оцінки структури лантанідних комплексів у розчині є важливою та актуальною [7]. Об'єктом проведених досліджень були внутрішньокомплексні координаційні сполуки лантаноїдів на основі ліганду карбациламідофосфатного

[©] В.О. ТРУШ, О.О. ЛІЦІС, Т.Ю. СЛИВА, Я.О. ГУМЕНЮК, В.М. АМІРХАНОВ, 2019

ISSN 0372-400Х. Укр. фіз. журн. 2019. Т. 64, № 9

(КАФ, CAPh) типу – диметил-N-трихлорацетиламідофосфату ($CCl_3C(O)N(H)P(O)(OCH_3)_2$). Особливою перевагою КАФ-сполук порівняно з іншими хелатуючими оксиген-донорними лігандами, наприклад, β -дикетонами [8], є наявність у складі КАФ ліганду атомів фосфору – зручного ЯМР-³¹Р зонду. Висока спорідненість цих лігандів до йонів лантаноїдів (III), синтетична можливість введення різних за стеричними характеристиками та електронною будовою замісників біля функціонального хелатуючого фрагменту -C(O)N(H)P(O)= призвела до систематичного вивчення комплексів лантаноїдів з КАФ лігандами [9–15]. У представленій роботі було синтезовано та досліджено методом ЯМР-спектроскопії на ядрах ¹Н та ³¹Р два ряди координаційних сполук лантаноїдів з диметил-N-трихлорацетиламідофосфатом (HL) складу $[LnL_3 \cdot Phen]$, де Ln = La–Nd, Sm–Yb. У складі комплексів ліганд перебуває у депротонованому стані (L), див. схему синтезу.

2. Методи дослідження

Синтезовані координаційні сполуки ідентифіковано на підставі аналізу на вміст металу [16] та ІЧспектроскопічно (ІЧ-спектри записані в діапазоні 4000–400 см⁻¹ на фур'є-спектрофотометрі FT-IR Spectrum BX-II, Perkin Elmer, зразки готували у вигляді таблеток з бромідом калію (о.с.ч.)). ¹Н ЯМР спектри (розчини в (CD₃)₂CO)та ³¹Р ЯМР спектри ацетонових розчинів записували на AVANCE 400 Bruker NMR спектрометрі за температури 298 К.

3. Експериментальні результати та їх обговорення

Диметил-N-трихлорацетиламідофосфат (HL) та його натрієва сіль (NaL) були синтезовані та ідентифіковані згідно з роботою [17], комплекси лантаноїдів складу [LnL₃·Phen] – відповідно до [18–20]. Загальна схема синтезу комплексів така:

$$\begin{split} & \mathrm{Ln}(\mathrm{NO}_3)_3 \cdot n\mathrm{H}_2\mathrm{O} + 3\mathrm{HL} + \mathrm{Phen} + \mathrm{NaO}\text{-i-}\mathrm{Pr} = \\ & = [\mathrm{Ln}\mathrm{L}_3 \cdot \mathrm{Phen}] + \mathrm{NaNO}_3 + \mathrm{i}\text{-}\mathrm{Pr}\mathrm{OH} + \mathrm{H}_2\mathrm{O}, \end{split}$$

де HL – молекулярна форма ліганду $(CCl_3C(O)N(H)P(O)(OCH_3)_2);$ L – депротонована форма ліганду $(CCl_3C(O)N^-P(O)(OCH_3)_2);$ Phen – 1,10-фенантролін; Ln = La, Ce, Pr, Nd, Sm,

Тb, Dy, Ho, Er; NaO-i-Pr – ізопропілат натрію; i-PrOH – ізопропіловий спирт.

Для сполук складу [LnL₃ · Phen] в кристалічному стані реалізуються два типи координаційного оточення центрального атома: викривлена двошапкова тригональна призма (ДТП) та викривлена квадратна антипризма (АП) [21].

4. ЯМР-спектроскопічні дослідження

В табл. 1 наведено хімічні зсуви (δ , м.ч.) у спектрах ЯМР ¹Н (розчин в (CD₃)₂CO) та ³¹Р (розчин в (CH₃)₂CO) комплексів складу [LnL₃ · Phen]. У спектрах ЯМР ¹Н комплексів для Ln=La-Sm та Yb спостерігаються по одному сигналу від метильних протонів у вигляді дублетів (d), тоді як для комплексних сполук інпих лантаноїдів сигнал метильних протонів фіксується у вигляді уширеного синглету. У спектрах ЯМР ³¹Р (див. табл. 1) ацетонових розчинів комплексів спостерігається один синглет, що свідчить про магнітну еквівалентність всіх атомів фосфору в молекулі.

В табл. 2 наведено величини ізотропних хімічних зсувів фосфору та протонів ($\Delta^{\rm P}$ та $\Delta^{\rm H}$ відповідно), які дорівнюють різниці хімічних зсувів у спектрах ЯМР між парамагнітною та аналогічною діамагнітною комплексною сполукою [22].

Як відомо, ізотропний зсув являє собою ядерні резонансні зрушення, що виникають внаслідок двох різних взаємодій: "контактної" надчутливої взаємодії Фермі та електронно-ядерної "дипольної" або "псевдоконтактної" взаємодії. Сумарний ізотропний зсув, що спостерігається – це алгебраїчна сума зсувів, спричинених контактним ($\Delta \nu_c$) і псевдоконтактним $\Delta
u_{pc}$ механізмом: $\Delta
u_i = \Delta
u_c$ + $+\Delta \nu_{pc}$. Контактний, або скалярний, внесок у ізотропний зсув зумовлений делокалізацією густини неспареного електрону на резонуючому ядрі та прямо пропорційний до значення квадрата електронної хвильової функції на досліджуваному конкретному ядрі. Для розрахунку контактного зсуву Роубен та Фіат [16] запропонували таке рівняння:

$$\Delta_c = \frac{\Delta\nu_c}{\nu_0} = \frac{2\pi\mu_{\rm B}J(J+1)g(g-1)}{3kT\mu_N} \cdot \frac{A}{h},\tag{1}$$

де $\mu_{\rm B}$ – електронний магнетон Бора; J – повний момент кількості руху електронів ([19]); g – електронний фактор Ланде; μ_N – ядерний магнетон Бора; k – стала Больцмана; T – абсолютна

ISSN 0372-400Х. Укр. фіз. журн. 2019. Т. 64, № 9

848

	³¹ P		$^{1}\mathrm{H}$						
			Тип протона у L		Тип протона у 1,10-Phen				
Ln			-CH ₃		H_a	H_b	H_c	H_d	
	δ , м.ч.	$\delta_{\mathrm{La}} - \delta_{\mathrm{Ln}}$ (Δ), м.ч.	δ, м.ч.	$\delta_{\mathrm{La}} - \delta_{\mathrm{Ln}}$ (Δ), м.ч.	δ, м.ч.	δ, м.ч.	δ, м.ч.	δ , м.ч.	
La	-9,81	_	3,48(d)	_	9,77(d)	7,97(dd)	8,67(d)	8,1(s)	
Ce	29,3	-39,11	5,33(d)	-1,85	7,84, 7,34, 6,29				
Pr	60,1	-69,91	7,66(d)	d) $-4,18$ 5,63, 3,76, 3,29, 2,79					
Nd	50,8	$-60,\!61$	4,71(d)	-1,23	8,21	7,45	6,77	7,74	
Sm	10,7	-20,51	3,80	-0,32	9,07	7,87	8,63	8,08	
Tb	-88,8	78,99	19,54	-16,06	-1,48, -3,62				
Dy	29,8	-39,61	33,84	-30,36	-19,65, -23,31				
Ho	-81	71,19	10,56	-7,08	16,24, -0,31, -5,32, -42,5				
Er	$-127,\!84$	118,03	-0,23	3,71	$13,6,\ 12,6$				
Tm	-82,36	72,55	4,61	-1,13	11,64, 7,78				
Yb	-16,38	6,57	1,55(d)	1,93	$13,05,\ 12,7,\ 11,7$				

Таблиця і	1. Хіміч	ні зсуви (а	δ, м.ч.) в	спектрах			
¹ Н та ³¹]	Р-ЯМР	комплекс	них спол	ук лантаноїдів	складу	$[LnL_3 \cdot]$	Phen]

Таблиця 2. Ізотропні хімічні зсуви ЯМР ¹Н та ³¹Р комплексних сполук лантаноїдів складу [LnL₃ · Phen], T = 298 K

Ln	C_J *	$10^{6}\Delta^{\mathrm{H}}$	$10^6 \Delta^{\mathrm{P}}$	$10^{-4} rac{\Delta^{\mathrm{H}}}{KJg},$ Гц	$10^{-4} \frac{\Delta^{\mathrm{P}}}{KJg},$ Гц	$10^8 T K Jg$, Гц ⁻¹ К
Ce	-11,8	-1,85	-39,11	4,10644	8,68123	-1,32
\Pr	-20,7	-4,18	-69,91	2,94621	5,57867	-4,157
Nd	-8,02	-1,23	-60,61	0,56514	2,78481	-6,377
Sm	0,94	-0,32	$-24,\!65$	0,40414	3,1776	-2,32
$^{\mathrm{Tb}}$	-157,5	-16,06	73,99	-1,15003	0,52983	40,917
Dy	-187	-30,36	-39,61	-2,41699	-0,31534	36,804
Ho	-71,2	-7,08	63,19	-0,70977	0,63348	29,227
\mathbf{Er}	58,8	3,71	118,03	0,54696	1,7401	19,874
Tm	95,3	-1,13	72,55	-0,31211	2,00388	10,608
Yb	39,2	1,93	6,57	1,69308	0,57635	3,34

* C_J – константа Бліні (Bleaney factor), $C_J = g^2 J (J+1)(2J-1)(2J+3) \langle J \parallel \alpha \parallel J \rangle$, [23–25].

температура; A/h – константа надтонкої взаємодії (НТВ), Гц.

Контактний внесок для зв'язаного у комплекс ліганду можливий лише при ковалентному характері зв'язку метал–ліганд. Отже, величина константи НТВ відображає долю ковалентності у зв'язуванні. Псевдоконтактний (дипольний) зсув, $\Delta \nu_{pc}$ – просторова взаємодія між ядрами ліган-

ISSN 0372-400Х. Укр. фіз. журн. 2019. Т. 64, № 9

ду та неспареними електронами на йоні металу [26]. Його величина залежить від геометрії оточення центрального атома, а не від типу зв'язку. Дипольні зсуви мають місце лише для комплексів з магнітною анізотропією (тому, наприклад, для магнітоізотропних октаедричних комплексів Ni (II) та тетраедричних Со (II) $\Delta \nu_{pc} = 0$). Для більшості координаційних сполук обидва внески є визна-

Графік залежності $\Delta^{\rm P}/KJg$ ві
д $\Delta^{\rm H}/KJg$ для сполук [LnL3 · Phen] при 298 К

чальними у ізотропний зсув, проте у випадку лантанідних – неспарені електрони знаходяться у глибоко лежачих 4f-орбіталях, тому їх делокалізація на лігандах (а отже, і $\Delta \nu_c$) є дуже незначною.

В основі методики для одержання значення скаляру константи НТВ лежить припущення, що він не повинен суттєво змінюватися в ряду ізоморфних комплексів лантаноїдів з однаковими лігандами [27]. Рівняння для розрахунку константи НТВ A/h виводиться зі співвідношення псевдоконтактних зсувів для двох різних ядер в одному комплексі (наприклад, для ядер фосфору та протонів у досліджуваних комплексах):

$$\Delta_{pc}^{\rm P}: \Delta_{pc}^{\rm H} = \frac{3\cos^2\theta_{\rm P} - 1}{r_{\rm P}^3}: \frac{3\cos^2\theta_{\rm H} - 1}{r_{\rm H}^3} = R, \quad (2)$$

де r_i – довжина вектора r_i між парамагнітним йоном та ядром Р або Н; θ_i – кут між r_i та головною магнітною віссю комплекса.

Це співвідношення не залежить від вибраного лантаноїду та є функцією лише структурних параметрів θ та r, отже стале для ізоморфної серії комплексів:

$$\Delta_{pc}^{\rm P} = R \,\Delta_{pc}^{\rm H}.\tag{3}$$

Якщо вважати контактний зсув для протонів лігандів несуттєвим, то для ізотропного зсуву на ядрі ³¹Р маємо (при $\Delta^{\rm H} = \Delta^{\rm H}_{pc}$):

$$\Delta^{\mathrm{P}} = \Delta_{c}^{\mathrm{P}} + \Delta_{pc}^{\mathrm{P}} = \Delta_{c}^{\mathrm{P}} + R \Delta_{pc}^{\mathrm{H}} = \Delta_{c}^{\mathrm{P}} + R \Delta^{\mathrm{H}}, \quad (4)$$
850

де $\Delta^{\rm P}$ і $\Delta^{\rm H}$ – ізотропні хімічні зсуви фосфору та протонів відповідно. Переписуючи рівняння (1) у спрощеному вигляді, позначивши

$$\frac{2\pi\mu_{\rm B}J(J+1)g(g-1)}{3kT\mu_N} = KJg$$

одержимо вираз для контактного зсуву:

$$\Delta_c^{\rm P} = KJg \cdot \frac{A}{h}.$$
 (5)

Підставляючи (5) в (4), одержуємо кінцевий вираз:

$$\Delta^{\mathrm{P}} = \Delta_{c}^{\mathrm{P}} + R \Delta^{\mathrm{H}} = KJg \cdot \frac{A}{h} + R \Delta^{\mathrm{H}}$$
$$\frac{\Delta^{\mathrm{P}}}{KJg} = \frac{A}{h} + R \frac{\Delta^{\mathrm{H}}}{KJg}.$$

Таким чином, графік залежності величини $\Delta^{\rm P}/KJg$ від $\Delta^{\rm H}/KJg$ для ряду ізоморфних комплексів повинен мати прямолінійний вигляд, причому тангенс кута нахилу чисельно дорівнює R, а перетин із віссю OY дає величину константи НТВ (Гц).

Залежність $\Delta^{\rm P}/KJg$ від $\Delta^{\rm H}/KJg$ для комплексів [LnL₃ · Phen] наведена на рис. 1. З одержаних даних випливає, що в ацетонових розчинах існує дві серії комплексів з однаковою в межах кожної серії будовою координаційної сфери: Ln = Ce, Pr, Nd, Sm та Ln = Tb, Dy, Ho, Er. Оскільки точки, що відповідають лантаноїдам підгрупи ітрію, різко випадають із загальної залежності, то вони не були взяті в розрахунок. Лінійна апроксимація за методом найменших квадратів (MHK) для наступних рядів комплексів [LnL₃ · Phen] приводить до рівнянь:

• для Ln = Ce, Pr, Nd та Sm:

 $y = 1.81554 + 1.54237x; \quad R = 0.98098;$

• для Ln = Tb, Dy, Ho та Er:

y = 1.31539 + 0.68568x; R = 0.99578.

Константи НТВ, які визначені для цих серій сполук становлять 0,18 і 0,13 МГц відповідно.

Одержані результати свідчать про те, що ковалентний внесок у зв'язок метал–ліганд для розглянутих сполук є суттєво меншим для важких

ISSN 0372-400Х. Укр. фіз. журн. 2019. Т. 64, № 9

лантаноїдів, ніж для легких, що повністю корелює із зміною йонних радіусів та здатністю електронних оболонок до поляризації. Порівняння величин констант НТВ із літературними даними, наприклад, щодо подібних досліджень методом ЯМР ¹⁷О [28, 29] свідчить про плідність такого підходу для оцінки не тільки міцності зв'язку метал-ліганд у випадку кінетично інертних систем, а і у випадку систем, що характеризуються внутрішньомолекулярними та міжмолекулярними процесами хімічного обміну.

5. Висновки

В ході даної роботи було синтезовано ряд координаційних сполук лантаноїдів з диметил-N-трихлорацетиламідофосфатом складу [LnL₃ · Phen]. Структуру комплексів у розчині досліджено методом поліядерної ЯМР-спектроскопії. Розраховані ізотропні зсуви протонів та фосфору, константи надтонкої взаємодії. З використанням методу розділення ізотропного хімічного зсуву на контактну та псевдоконтактну складові встановлено, що в ацетонових розчинах комплексів складу [LnL₃ · Phen] існують два ряди ізоморфних в межах кожного ряду комплексів: для легких лантаноїдів (Ce, Pr, Nd та Sm) константа НТВ лантаноїд – фосфор становить 0,18 МГц, для важких (Tb, Dy, Ho та Er) – 0,13 МГц.

Роботу виконано в рамках бюджетної теми № 19БФ037-05.

- A.J. Roche, S.A. Rabinowitz, K.A. Cox. Efficient NMR enantiodiscrimination of bridge fluorinatedparacyclophanes using lanthanide tris beta-diketonate complexes. *Tetrahedron: Asymmetr.* 24, 1382 (2013).
- S. Spiliadis, A.A. Pinkerton. Paramagnetic nuclear magnetic resonance study of the lanthanide complexes [Ln(SPR)₃]; R = OMe, OiPr. Determination of Phosphorus hyperfine coupling and solution structuresInorg. *Chim. Acta.* **75**, 125 (1983).
- А.В. Туров, С.П. Бондаренко, А.А. Ткачук, В.П. Хиля. Изучение конформационной подвижности замещенных 2-метоксихалконов под воздействием лантаноидных сдвигающих реагентов. *Ж. Ор. Х.* 41, 51 (2005).
- В.Ф. Золин, Л.Г. Коренева. Редкоземельный зонд в химии и биологии (Наука, 1980).
- M. Woods, D.E. Woessnerc and A.Dean Sherry. Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. *Chem. Soc. Rev.* 35, 500 (2006).

ISSN 0372-400Х. Укр. фіз. журн. 2019. Т. 64, № 9

- M.D. Organ and R.C. Brasch. Chapter 28. Contrast enhancing agents in NMR imaging. Annu. Rep. Med. Chem. 20, 277 (1985).
- J.A. Peters, M.S. Nieuwenhuizen, A.P.G. Kieboom, D.J. Raber. Analysis of multinuclear lanthanide induced shifts. Part 5'. The coordination polyhedron of 1:3 lanthanide(III)-glycolate complexes in aqueous solution. J. Chem. Soc. Dalton Trans. 3, 717 (1988).
- V.V. Skopenko, V.M. Amirkhanov, T.Yu. Sliva, I.S. Vasilchenko, E.L. Anpilova, A.D. Garnovskii. Various types of metal complexes based on chelating β-diketones and their structural analogues. *Russ. Chem. Rev.* 8, 737 (2004).
- V.M. Amirkhanov, V.A. Ovchynnikov, V.A. Trush, P. Gawryszewska, L.B. Jerzykiewicz. Powerful New Ligand Systems: Carbacylamidophosphates (CAPh) and sulfonylamidophosphates (SAPh). in Ligands. Synthesis, Characterization and Role in Biotechnology (NOVA Publishers, 2014) [ISBN-13: 978-1631171437].
- O.O. Litsis, I.O. Shatrava, V.M. Amirkhanov, V.A. Ovchynnikov, T.Yu. Sliva, S.V. Shishkina, V.V. Dyakonenko, O.V. Shishkin, V.M. Amirkhanov. New carbacylamidophosphates (CAPh) and CAPh-containing coordination compounds: structural peculiarities. *Struct. Chem.* 27, 341 (2016).
- N.S. Kariaka, J.A. Rusanova, S.S. Smola, S.V. Kolotilov, K.O. Znovjyak, M. Weselski, T.Yu. Sliva, V.M. Amirkhanov. First examples of carbacylamidophosphate pentanuclear hydroxo-complexes: Synthesis, structure, luminescence and magnetic properties. *Polyhedron.* **106**, 44 (2016).
- O. Litsis, V. Ovchynnikov, T. Sliva, S. Shishkina, V. Amirkhanov. Lanthanide coordination compounds with monodentate coordinated β-diketone heteroanalogue-(2,2,2-trichloro-N-(dipiperidin-1-yl-phosphoryl)acetamide: synthesis and spectral investigations. *Chem. J. Moldova.* 13, 15 (2018).
- V. Amirkhanov, A. Rauf, T.B. Hadda, V. Ovchynnikov, V. Trush, M. Saleem, M. Raza, T. Rehman, H. Zgou, U. Shaheen, T. Farghaly. Pharmacophores modeling in terms of prediction of theoretical physico-chemical properties and verification by experimental correlations of Carbacylamidophosphates (CAPh) and Sulfanylamidophosphates (SAPh) Tested as New Carbonic Anhydrase Inhibitors. *Mini-Rev. Med. Chem.* 19, 20 (2019).
- 14. I.I. Grynyuk, S.V. Prylutska, N.S. Kariaka, T.Yu. Sliva, O.V. Moroz, D.V. Franskevych, V.M. Amirkhanov, O.P. Matyshevska, M.S. Slobodyanik. Computer prediction of biological activity of dimethyl-n-(benzoyl)amidophosphate and dimethyl-n-(phenylsulfonyl)amidophosphate, evaluation of their Cytotoxic activity against leukemia cells *invitro*. Ukr. Biochem. J. 87, 154 (2015).
- Iu. Shatrava, V. Ovchynnikov, K. Gubina, S. Shishkina, O. Shishkin, V. Amirkhanov. Varieties in structures of Co(II), Ni(II) and Cu(II) coordination compounds based on dimethyl pyridin-2-ylcarbamoylphosphoramidate. *Struct. Chem.* 27, 1413 (2016).

- S.J. Lyle, Md.M. Rahman. Complexometic titration of yttrium and lanthanoids. *Talanta*, **10**, 1177 (1963).
- В.М. Амирханов, В.А. Труш. Свойства и строение диметилового эфира трихлорацетил-амидофосфорной кислоты. ЖОХ, 7, 1120 (1995).
- J. Cybin'ska, J. Legendziewicz, V. Trush, R. Reisfeld, T. Saraidarov. The orange emission of single crystals and solgels based on Sm³⁺ chelates. J. Alloy. Compd. 451, 94 (2008).
- M. Puchalska, I. Turowska-Tyrk, V. Trush, J. Legendziewicz. Structural characteristic and luminescence properties of first known example of a pair of europium(III) complexes of phosphoroazo-derivative of β-diketone with inner and both inner and outer sphere 2,2'-bipyridine. J. Alloy. Compd. 451, 264 (2008).
- V. A. Trush, O.O. Litsis, T.Yu. Sliva, V.M. Amirkhanov. Heteroleptic lanthanide complexes with the CAPhtype ligand dimethyl-N-trichloracetylamidophosphate. *Vi*sn. Odes. nac. univ., Him. 22, 62 (2017).
- 21. G. Oczko, J. Legendziewicz, V. Trush, V. Amirkhanov. Xray analysis and excited state dynamics in a new class of lanthanide mixed chelates of the type $\text{LnPh}\beta_3$. Phen (Ln = Sm, Eu, Gd, Tb). New J.Chem. **27**, 948 (2003).
- J. Reuben, D. Fiat. Nuclear magnetic resonance studies of solutions of the rare earth ions and their complexes. *J. Chem. Phys.* 51, 4909 (1969).
- K.A. Gschneidner, J.-C.G. Bunzli, V.K. Pecharsky. Handbook on the Physics and Chemistry of Rare Earths, (Elsevier, 2003) [ISBN: 978-0-444-51323-6].
- 24. A.M. Funk, K.-L.N. A. Finney, P. Harvey, A.M. Kenwright, E.R. Neil, N.J. Rogers, P.K. Senanayake and D. Parker. Critical analysis of the limitations of Bleaney's theory of magnetic anisotropy in paramagnetic lanthanide coordination complexes. *Chem. Sci.* 6, 1655 (2015).
- B.B. Bleaney. Nuclear Magnetic Resonance Shifts in Solution Due to Lanthanide Ions. J. Magn. Reson. 8, 91 (1972).
- R.S. Drago, J.I. Zink, R.M. Richman and W.D. Perry. Theory of isotropic shifts in the nmr of paramagnetic materials: Part I. J. Chem. Educ. 51, 371 (1974).
- A.A. Pinkerton, W.L. Earl. A Nuclear Magnetic Resonance Investigation of bis (O,O'-diethyldithiophosphato)-comp-

lexes of the lanthanids: Separation of contact and pseudocontact contributions to the chemical shifts. J. Chem. Soc. Dalton Trans. **3**, 267 (1978).

- L. Fusaro. An ¹⁷O NMR study of diamagnetic and paramagnetic lanthanide-tris(oxydiacetate) complexes in aqueous solution. *Magn. Reson. Chem.* 56, 1168 (2018).
- 29. K. Djanashvili, J.A. Peters. How to determine the number of inner-sphere water molecules in Lanthanide(III) complexes by ¹⁷O NMR spectroscopy. A technical note. *Contrast Media Mol. Imaging* 2, 67 (2007).

Одержано 17.05.19

V.A. Trush, O.O. Litsis,

T.Yu. Sliva, Ya.O. Gumenyuk, V.M. Amirkhanov

¹H- AND ³¹P-NMR SPECTROSCOPY STUDY OF PARAMAGNETIC LANTHANIDE COORDINATION COMPOUNDS $[LnL_3 \cdot Phen]$ (L = CCl₃C(O)NP(O)(OCH₃)₂)

Summary

A series of lanthanide coordination compounds with dimethyl-N-trichloroacetylamidophosphate

 $CCl_3C(O)N(H)P(O)(OCH_3)_2$ (HL) [HL = $CCl_3C(O)N(H)P(O)(OCH_3)_2$

is a ligand of the carbacylamidophosphate (CAPh) type, whose compositions are described by the formula $[LnL_3 \cdot Phen]$, where Ln = La, Ce, Pr, Nd, Sm, Tb, Dy, Ho, and Er; L is the deprotonized form of HL; and Phen is 1,10-Phenantroline, has been synthesized. Acetonic solutions of HL and complexes synthesized on its basis are studied by means of ¹H- and ³¹P-NMR spectroscopy at room temperature (298 K). Since the chemical shifts of ¹H signals have the pseudocontact origin, the isotropic shifts of ³¹P signals are managed to be decomposed into the contact and pseudocontact components. It is found that there are two series of complexes in the solution of $[LnL_3 \cdot Phen]$ compounds with the same structure of the coordination sphere within each of the series Ln = (Ce, Pr, Nd, Sm) (series L1) and Ln = = (Tb, Dy, Ho, Er) (series L2). The values of the constant of superfine interaction for those complexes are calculated: 0.18 MHz (series L1) and 0.13 MHz (series L2).