С.М. АФАНАСЬЄВ

Національний науковий центр "Харківський фізико-технічний інститут" НАН України (Вул. Академічна, 1, Харків 61108; e-mail: afanserg@kipt.kharkov.ua)

ЕНЕРГЕТИЧНІ КОРЕЛЯЦІЇ α -ЧАСТИНОК В КАНАЛІ УТВОРЕННЯ ОСНОВНОГО СТАНУ ЯДРА ⁸Ве РЕАКЦІЙ ¹²С(γ ,3 α) І ¹⁶О(γ ,4 α)

Методом дифузійної камери в магнітному полі на пучці гальмівних фотонів з $E_{\gamma}^{\max} = 150 \, MeB$, досліджено реакції $^{12}C(\gamma,3\alpha)$ і $^{16}O(\gamma,4\alpha)$. У розподілі подій за енергією відносного руху двох α -частинок для обох реакцій виявлено резонанс, ідентифікований як основний стан ядра ^{8}Be . Виміряно парціальні перетини каналів його утворення й показано, що реалізується механізм взаємодії γ -кванта з віртуальною α -частинковою парою.

Ключові слова: фотоядерні реакції, основний стан ядра ⁸Ве, дифузійна камера.

1. Вступ

УДК 539.172.3

Виконано дослідження реакцій повного а-частинкового фоторозщеплення ядер ¹²C і ¹⁶O: ¹²C(γ ,3 α) [I] і ${}^{16}O(\gamma, 4\alpha)$ [II]. Реакції можуть бути використані для перевірки $N\alpha$ -частинкової моделі ядер [1], а також для отримання додаткових відомостей про характер α - α взаємодії. Результати становлять інтерес як для багатотільної проблеми в цілому, так і для астрофізики й термоядерного синтезу [2]. У рамках послідовного двочастинкового розпаду в реакціях [I] і [II] можливе утворення збуджених ядер ⁸Ве^{*} і ¹²С^{*}. Існування нестабільного основного стану ядра ⁸Ве й екзотичного стану Хойла в ядрі ¹²С (0⁺, $E^* = 7,65$ MeB) сприяло істотному просуванню в побудові теорії еволюції зірок [3]. А можливість виділення каналу з утворенням певного збудженого стану проміжного ядра може полегшити процес визначення механізму взаємодії укванта з ядром-мішенню.

При спробі інтерпретації експериментальних даних по фоторозщепленню ядер з виходом α частинок на основі моделі компаунд-ядра виникли труднощі принципового характеру: неможливість передбачення структури повного перетину [4] та протиріччя, пов'язані із правилами відбору по ізотопспину [5]. Останнім часом значний прогрес отримала теорія кластерного фоторозщеплення легких ядер у рамках моделі нуклонних асоціацій [6]. При трактуванні збуджених станів ядра діаграмною технікою [7] у фотореакції можна відзначити такі стадії: віртуальний розпад ядра на кластер і остов, поглинання фотона кластером або остовом і наступне перерозсіювання частинок.

Дане повідомлення є продовженням публікацій [8, 9] результатів дослідження реакцій ${}^{12}C(\gamma,3\alpha)$ і ${}^{16}O(\gamma,4\alpha)$. Раніше ми спостерігали, що реакції йдуть за схемою послідовного двочастинкового типу. У даному матеріалі для кожної реакції виділено канали утворення основного стану ядра ⁸Ве й виконано їх спільний аналіз.

2. Метод експерименту

Експеримент виконано за допомогою дифузійної камери в магнітному полі [10], встановленої на гальмівному пучку фотонів від лінійного прискорювача електронів з максимальною енергією 150 MeB. З метою зменшення щільності мішені камера заповнювалася в першому циклі вимірів су-

[©] С.М. АФАНАСЬЄВ, 2019

ISSN 0372-400Х. Укр. фіз. журн. 2019. Т. 64, № 9

Рис. 1. Розподіл енергії відносного руху $\alpha\alpha$ -системи: реакція ${}^{12}C(\gamma,3\alpha)$ (*a*), реакція ${}^{16}O(\gamma,4\alpha)$ (*б*). Суцільні криві 1 і 2 – фазові розподіли

мішшю метану та гелію, а в другому — сумішшю кисню й гелію. Поєднання мішені й детектора дозволяло реєструвати продукти реакції малої енергії й досліджувати реакцію практично від її порога [11]. Похибка вимірювання імпульсу α -частинок залежить від його величини і довжини треку, та становить від 3 до 10%. Енергія α -частинок, що зупинились, визначалася зі співвідношення пробігенергія. Пробіг у суміші отримано з урахуванням перезарядження іона із середовищем, з використанням табличних даних [12] для декількох компонентів мішені.

Для обробки відбиралися трипроменеві (реакція $^{12}C(\gamma,3\alpha)$) і чотирипроменеві ($^{16}O(\gamma,4\alpha)$) зірки, промені яких належать двозарядним частинкам. Ідентифікація подій проводилася після вимірювання на підставі балансу імпульсів. В експерименті вісь OX була спрямована уздовж пучка γ -квантів. Накладалися граничні умови на величини $\Delta_x = \sum P_x^i - E_\gamma$, $\Delta_y = \sum P_y^i$ і $\Delta_z = \sum P_z^i$, де $P_{x(y,z)}^i -$ компонента тривимірного імпульсу *i*-ї кінцевої частинки. Енергія γ -кванта E_γ визначалася як сума кінетичних енергій кінцевих α -частинок і порога реакції. Яскраво виражений пік в області 0 відповідає подіям досліджуваної реакції. Закони збе-

реження енергії й імпульсу дозволяють уточнити результати вимірювання одного із треків, як правило, гірше всіх виміряного.

3. Виділення каналу утворення основного стану ядра ⁸Ве

Енергія відносного руху двох α -частинок у досліджуваних реакціях

$$E_x = \frac{(\mathbf{p}_i - \mathbf{p}_k)^2}{4m},$$

де і, k — їх номера, а m — маса α -частинки. Через нерозрізненість α -частинок заздалегідь не можна вибрати пару, яка утворювалася в результаті розпаду ядра ⁸Ве. Тому для однієї події вимірювалось три значення E_x реакції [I] і шість значень E_x реакції [II]. На рис. 1 гістограмою наводяться всі комбінації значень E_x . Крок гістограми — 0,25 МеВ.

Експериментальні розподіли порівнювалися з фазовими [13]:

$$f_1(E_x) = E_x^{1/2} (E_x^{\max} - E_x)^{1/2}$$

(крива 1) для реакції [I] і

$$f_2(E_x) = E_x^{1/2} (E_x^{\max} - E_x)^2$$

(крива 2) для реакції [II]. E_x^{\max} – максимальна енергія в системі двох α-частинок, що дорівнює повній енергії у системі центра мас (с.ц.м.) реакції. Фазовий розподіл обчислено для гальмівного пучка ү-квантів підсумовуванням розподілів по вузьких інтервалах, де енергія у-кванта вважалася постійною. Площа під такими інтервалами нормувалася на число подій, що приходяться на цей інтервал. Фазові розподіли на рис. 1 показані суцільними кривими. Відмінність експериментального розподілу від фазового, особливо в області при $E_x < 0.25$ MeB, дозволяє зробити висновок про те, що в реакціях [I] і [II] утворюються збуджені стани ядра ⁸Ве. Слід зазначити подібність функцій збудження з максимумами при тих самих значеннях E_x (~0,1 i ~3,0 MeB), що свідчить про утворення однакових рівнів ядра ⁸Ве.

Резонанс при енергії відносного руху двох α-частинок до 0,25 MeB на рис. 1, показано на рис. 2, *a* із кроком 20 KeB. На цьому рисунку й далі темні кружечки – реакція [I], світлі кружечки – реакція [II]; помилки – статистичні. Дані по реакції [I] узяті з роботи [8].

ISSN 0372-400Х. Укр. фіз. журн. 2019. Т. 64, № 9

Максимуми при $E_x < 0.25$ MeB підігнані розподілами Гауса з положенням максимума при $E_0^{I} =$ $= 0,089 \pm 0,004$ МеВ, шириною на напіввисоті $\Gamma^{\rm I} = 0.056 \pm 0.003$ МеВ (реакція [I], крива 1) і $E_0^{\text{II}} = 0.095 \pm 0.005 \text{ MeB}, \ \Gamma^{\text{II}} = 0.088 \pm 0.009 \text{ MeB}$ (реакція [II], крива 2). З даних спектрометричних вимірів [14] відомо, що параметри основного стану (OC) ядра ⁸Be: $E_0 = 0,092$ MeB, $\Gamma = 5,57$ eB, квантові числа – $J^{\pi} = 0^+$. Положення максимумів (експериментальних і табличного) у межах похибки збігаються. Отже, концентрацію подій у околі 0,1 МеВ можна пояснити утворенням ОС ядра ⁸Ве. Раніше відзначалося [8], що спостережувана в даному експерименті ширина резонансу може визначатися апаратурним фактором. Слід зазначити, що зі збільшенням числа кінцевих частинок положення максимуму ОС зміщається у бік збільшення енергії, а також зростає ширина рівня. Можливо, у величину ширини резонансу додається ефект взаємодії частинок у кінцевому стані.

На рис. 2, б наведені кутові розподіли α -частинок у с.ц.м. ядра ⁸Ве для подій при $E_x < 0,25$ МеВ. Полярний кут β_{α} відлічується від напрямку руху ядра ⁸Ве. Кутові розподіли близькі до ізотропних. Це означає, що орбітальний момент l = 0 і квантові числа – $J^{\pi} = 0^+$, як і повинно бути в ОС ядра ⁸Ве.

Встановлено, що, в основному, внесок у цей резонанс дає тільки одна з можливих $\alpha\alpha$ -комбінацій. У випадку 1,17% або 1,85% подій реакцій [I] або [II] відповідно, можливий внесок у цю енергетичну область більш ніж однієї комбінації події. Наявність декількох комбінацій проявляється при малих енергіях фотона, і в цих комбінаціях однією з частинок є низькоенергетична α -частинка.

Події, у яких одна з пар α -частинок відповідає утворенню ОС ядра ⁸Ве, надійно виділяються. Подальший аналіз буде виконано для подій тільки цих парціальних каналів. Відносний вихід каналів – 12,2% для реакції [I] і 25,44% для реакції [II], незважаючи на те, що число подій приблизно однакове (значення при $E_x = 0,1$ МеВ на рис. 1). У подіях, для яких у цій області енергій можливо кілька комбінацій, резонансною парою вважалася та, у якої значення E_x було ближче до значення $E_0 = 0,092$ МеВ. Також, можна відзначити, що відношення виходів каналу утворення ОС ядра ⁸Ве в реакціях [I] і [II] (12,2 і 25,44) про-

ISSN 0372-400Х. Укр. фіз. журн. 2019. Т. 64, № 9

Puc.2. Енергії відносного руху
 $\alpha\alpha$ -системи при $E_x<0,25~{\rm MeB}~(a),$ кутові розподіл
и α -частинок у с.ц.м. ОС ядра $^8{\rm Be}~(\delta)$

порційно відношенню числа можливих комбінацій α -частинок (3 і 6).

4. Парціальні перетини каналу утворення основного стану ядра ⁸Ве

На рис. 3, а крапками наведені парціальні перетини каналу утворення ОС ядра ⁸Ве із кроком 1 МеВ залежно від повної кінетичної енергії кінцевої системи, визначеної як $T_0 = E_{\gamma} - Q_{I,II}$, де $Q_{I,II}$ – поріг відповідно реакцій [I] і [II]. Крапки поставлені посередині інтервалу. Раніше, у роботі [8], було наведено парціальний перетин суми каналів утворення OC ядра ⁸Be і резонансу аномалія-примара (AП). Було встановлено, що АП є сателітом ОС і виникає за рахунок викривлення функції збудження ОС, що швидко змінюється біля порога розпаду ядра ⁸Ве внаслідок проникання α -частинки через потенціальний бар'єр. У даній роботі для коректного порівняння парціальних каналів для реакції [I] наведено дані тільки стосовно ОС ядра ⁸Ве. Визначено інтегральні перетини парціальних каналів утворення ОС ядра ⁸Ве: $\sigma_0^{I} = 0.56 \pm 0.04$ МеВ · мбн (реакція [I]) і $\sigma_0^{II} = 0.51 \pm 0.04$ МеВ · мбн (реакція [II]).

У кривій збудження парціальних перетинів спостерігаються кілька максимумів. Кривими 1 і 2 для реакцій [I] і [II], відповідно, на рис. 3, *а* по-

Рис. 3. Перетин каналів утворення основного стану ядра ${}^{8}\text{Be}(a)$, залежність розподілу середньої енергії α_1 -частинки від повної енергії кінцевої системи (δ)

казано фітування перетинів лінійною комбінацією 4-х функцій Гауса, у результаті якого визначені енергії положення максимумів T_0 і їх ширини Г. Результати підгонки представлено в таблиці у 1-й і 2-й колонках для реакції [I] і у 3-й і 4-й колонках для реакції [II]. Положення максимумів і їх ширини для реакцій у межах похибки збігаються.

Якісно резонансна структура парціального перетину може бути пояснена в рамках моделі поглинання γ -кванта α -частинковою парою. На першому етапі фотон взаємодіє з віртуальним ква-

Резонанси в перетинах									
каналу	утворення	\mathbf{OC}	ядра	⁸ Be					

		Література [14] Рівні ядра ⁸ Ве				
Реакція [I]				Реакц		
	$T_0,$ MeB	$\Gamma,$ MeB	$T_0,$ MeB	$\Gamma,$ MeB	$E_0,$ MeB	Г, МеВ
	$3,55 \pm 0,22$ $11,61 \pm 0,26$ $16,72 \pm 0,21$ $21,01 \pm 0,35$	$2,49 \pm 0,38 \\5,14 \pm 0,67 \\1,33 \pm 0,46 \\3,67 \pm 0,68$	$\begin{array}{c} 3,96 \pm 0,21 \\ 11,32 \pm 0,19 \\ 16,79 \pm 0,22 \\ 20,97 \pm 0,43 \end{array}$	$2,81 \pm 0,34 \\ 4,51 \pm 0,42 \\ 1,67 \pm 0,47 \\ 2,82 \pm 0,63$	$3,04 \\ 11,4 \\ \sim 16,78 \\ > 20$	1,5 3,5 $\sim 0,5$ $\sim 2,0$

зібериліем, переводячи його в збуджений стан – ⁸Ве^{*}. Зі збільшенням енергії γ -кванта відкриваються канали, пов'язані з більш високими рівнями віртуального ядра ⁸Ве^{*}. Параметри цих станів і проявляються в перетині парціальних каналів: $E_{\gamma} - Q_{I,II} = E_0^*$, де E_0^* – значення максимуму рівня ядра ⁸Ве. В таблиці у 5-й і 6-й колонках наведені параметри декількох рівнів ядра ⁸Ве [14]. Положення експериментальних максимумів (1 і 3 колонки) якісно збігаються з табличними (5 колонка). Ширини в експерименті (2 і 4 колонки) перевищують пирини збуджених станів віртуального квазіядра ⁸Ве (6 колонка).

На другому етапі одна α -частинка з ядра ⁸Ве^{*} першою залишає ядро, а ті α -частинки, що залишились, утворюють проміжне збуджене ядро, яке потім розпадається. У випадку реакції [І] це ОС ядра ⁸Ве, яке ми й спостерігаємо в експерименті.

Із запропонованої моделі взаємодії виходить, що перша α -частинка, що вилетіла, має кореляційну залежність із повною кінетичною енергією системи T_0 . На рис. 3, δ наведено залежності середньої кінетичної енергії $T^{\text{aver}} \alpha$ -частинки від T_0 . Середня енергія T^{aver} вираховувалась для частинок, що потрапили в 1-МеВний інтервал T_0 . У випадку реакції [І] перша α -частинка ідентифікована надійно, а у випадку реакції [ІІ] із двох α -частинок, що не утворюють ОС ядра ⁸Ве, бралася α -частинка з більшою енергією.

Виконано фітування лінійною функцією $T^{\rm aver} = a + b^* T_0$, і визначено тангенс кута нахилу для $T^{\rm aver} \colon b^{\rm exp} = 0,671 \pm 0,023$ для реакції [I] (крива 1) і $b_{\rm II}^{\rm exp} = 0,498 \pm 0,022$ для реакції [II] (крива 2). Можна відзначити, що у всьому діапазоні енергій значення $b_I^{\rm exp}$ і $b_{\rm II}^{\rm exp}$ вище відповідних статистичних значень ($b_{\rm I}^{\rm stat} = T_0/3$ для реакції [I] і $b_{\rm II}^{\rm stat} = T_0/4$ для реакції [II]), причому співвідноплення $b^{\rm exp}/b^{\rm stat} \sim 2$ виконується для обох реакцій. Якісно експериментальну залежність можна описати як $T^{\rm aver} = \frac{M}{A} \cdot T_0$, де M, A– атомне число ядер ⁸Ве й мішені ($^{12}{\rm C}$ або $^{16}{\rm O}$) відповідно.

5. Висновки

У реакціях ¹²С(γ ,3 α) і ¹⁶О(γ ,4 α) виміряно розподіл подій за енергією відносного руху двох α частинок. Визначено, що утворюється проміжне збуджене ядро ⁸Ве, і виділено канали утворення основного стану ядра ⁸Ве.

ISSN 0372-400Х. Укр. фіз. журн. 2019. Т. 64, № 9

ъ

Виміряно парціальні перетини каналу утворення основного стану ядра ⁸Ве залежно від повної кінетичної енергії системи для обох реакцій. У перетині спостерігаються чотири максимуми, положення яких збігається для обох реакцій. Виявлена кореляція між енергією, що відповідає максимуму перетину й енергією збудження ядра ⁸Ве E_0 : $E_{\gamma} - Q_{I,II} = E_0$, де $Q_{I,II}$ – поріг реакції [I] або [II]. Якісно результати було пояснено в рамках моделі поглинання γ -кванта віртуальною α -частинковою парою.

- A. Tohsaki, H. Horiuchi, P. Schuck, G. Ropke. Condensation in ¹²C and ¹⁶O. Phys. Rev. Lett. 87, 192501 (2008).
- A. Coc, C. Angulo, E. Vangioni-Flamk *et al.* Big Bang nucleosynthesis, microwave anisotropy, and the light element abundances. *Nucl. Phys. A.* **752**, 522 (2005).
- F.-K. Thielemann, F. Brachwitz, C. Freiburghaus *et al.* Element synthesis in stars. *Prog. Part. Nucl. Phys.* 46, 5 (2001).
- Р.И. Джибути, Р.Я. Кезерашвили, Н.И. Шубитидзе. Фоторасщепление α-кластерных ядер на α-частицы. Ядерная Физика 55, 3233 (1992).
- M. Gell-Mann, V.L. Telegdi. Consequences of charge independence for nuclear reactions involving photons. *Phys. Rev.* 91, 169 (1953).
- О.Ф. Немец, В.Г. Неудачин, А.Т. Рудник и др. Нуклонные ассоциации в атомных ядрах и ядерные реакции многонуклонных передач (Наукова думка, 1988).
- Г.И. Читанава. Исследование зависимости резонансной структуры функций возбуждения ядер ¹¹B, ¹²C, ¹⁶O от типа входного и выходного каналов. *Ядерная Физика* 42, 145 (1985).
- С.Н. Афанасьев, А.Ф. Ходячих. О механизме образования возбужденных состояний ядра ⁸Ве в реакции ¹²C(γ,3α). Ядерная Физика 71, 1859 (2008).

- 9. С.Н. Афанасьев. Механизм образования ядра ⁸Ве в реакциях¹²С(γ,3α) и ¹⁶О(γ,4α). Науковий Вісник Ужгородського університету. Серія Фізика **30**, 148 (2011).
- Ю.М. Аркатов, П.И. Вацет, В.И. Волощук и др. Установка для изучения фотоядерных реакций. ПТЭ 3, 205 (1969).
- Ю.М. Аркатов, П.И. Вацет, В.И. Волощук и др. Метод обработки стереофотографий с диффузионной камеры (Препринт ХФТИ АН УССР, № 70-37, 1970).
- 12. О.Ф. Немец, Ю.В. Гофман. Справочник по ядерной физике (Наукова думка, 1975).
- А.М. Балдин, В.И. Гольданский, В.М. Максименко, И.Л. Розенталь. Кинематика ядерных реакций (Атомиздат, 1968).
- 14. D.R. Tilley, J.H. Kelley, J.L. Godwin, et al. Energy levels of light nuclei A = 8, 9, 10. Nucl. Phys. A. **745**, 155 (2004).

Одержано 09.04.19

S.N. Afanasyev

ENERGY CORRELATIONS OF α -PARTICLES IN THE ⁸Be-NUCLEUS GROUND-STATE FORMATION CHANNEL OF THE ¹²C(γ ,3 α) AND ¹⁶O(γ ,4 α) REACTIONS

Summary

The method of diffusion chamber in the magnetic field making use of a bremsstrahlung beam with a maximum photon energy of 150 MeV is applied to study the ${}^{12}C(\gamma,3\alpha)$ and ${}^{16}O(\gamma,4\alpha)$ reactions. A resonance identified as the ground state of ⁸Be nucleus is found in the distribution of events over the energy of the relative motion of two α -particles. The partial cross-sections of the ⁸Be nucleus formation channels are measured. It is shown that the mechanism of interaction between a γ -quantum and a virtual α -particle pair takes place in this case.