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INTERACTION OF TWO-LEVEL ATOMS
WITH A SINGLE-MODE QUANTIZED RADIATION FIELDUDC 539

We have studied the statistical and squeezing properties of the cavity light generated by a two-
level laser. This optical system contains 𝑁 two-level atoms available in a cavity coupled to a
single-mode vacuum reservoir. They are pumped to the top level from the bottom level by means
of the electron bombardment. Applying the steady-state solutions of the equations of evolution
of the expectation values of the atomic operators and the quantum Langevin equation, we
obtained the global and local photon statistics of the single-mode light beam. We have found
that, for the two-level laser operating well above the threshold, the uncertainties in the plus
and minus quadratures are equal and satisfy the minimum uncertainty relation. In view of
this, we have identified the light generated by the laser operating well above threshold to be
coherent. On the other hand, the light generated by the laser operating at threshold is found
to be chaotic. From the obtained results, we have also observed that a large part of the local
mean photon number, the local photon number variance, and the local quadrature variance are
confined in a relatively narrow frequency interval.
K e yw o r d s: mean photon number, quadrature variance, vacuum reservoir noise.

1. Introduction
The interactions of electromagnetic radiation with
matter are the pillar for this work. It is then imper-
ative to go through the fundamentals of the light-
matter interactions. Although the semiclassical ap-
proximation, where the field is assumed to be strong
and treated classically, while the atoms are consid-
ered quantum-mechanical objects, gives remarkably
good results in some systems, it is inadequate to pro-
vide information about the quantum-statistical prop-
erties of radiation. To this end, we start with a fully
quantum- mechanical description of the interaction of
single-mode electromagnetic radiation with an atom
having two-energy levels.

The simplest quantum-mechanical model dealing
with the atom-field interaction is the Jaynes–Cum-
mings model, which describes an isolated two-level
atom coupled to a single-mode quantized electro-
magnetic field resonant with the atomic transition
[1, 2]. The Jaynes–Cummings model has been stud-
ied extensively because of its relatively realistic de-
scription of the actual dipole coupling of an atom to
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a quantized radiation field [3]. Certain novel features
of the system dynamics, such as the collapse and re-
vival of the atomic coherence, were predicted. Some
of these interesting effects have been observed experi-
mentally. The interaction of a single-mode quantized
radiation field with 𝑁 two-level atoms has been stud-
ied by many authors [3–5]. It has been shown that
the fully quantum-mechanical model produces an in-
complete set of linear evolution equations, the form
of which depends on the number of atoms, as well as
on the cavity light.

Fesseha [4] analyzed the quantum properties of the
light generated by a two-level laser in which the two-
level atoms available in a closed cavity are pumped
to the upper level by means of the electron bombard-
ment. He carry out his analysis by putting the noise
operators associated with a vacuum reservoir in the
normal order. The normal ordering of the noise oper-
ators leads to the normally ordered quadrature and
photon-number variance. According to his findings,
the light generated by a two-level laser operating well
above the threshold is coherent and the light gener-
ated by the same laser operating at the threshold is
chaotic. But the quantum theory of a dissipative sys-
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tem has been a fascinating subject for theoreticians
since the early day of quantum mechanics. The main
reason for this interest is, of course, that any theory of
quantum dissipation must necessarily be more com-
plex than a classical theory. A consistent quantum
theory of a damped system becomes possible, only
when the model involves the fluctuating forces exer-
ted on the system by the dissipation mechanism itself.

There are two general approaches to the sub-
ject. One deals with the dynamical equations for the
density operators for the system. Whereas the other
deals with the equation of motion for the dynami-
cal operators of the system. Although the former ap-
proach is by far more common in the literature, the
latter approach, however, offers the advantage that
the Heisenberg equation of motion for the operators
of the system has the same form as those for a classi-
cal damped system subject to the fluctuating forces,
the Langevin equations, and, therefore, provide an
easily visualizable picture of the damping process. It
is the approach we will subject to use here.

Recently, Mekonnen [6] has also studied a three-
level laser in which three-level atoms available in a
closed cavity are pumped from the bottom to the top
level by coherent light. He carried out his analysis
by putting the vacuum noise operators in arbitrary
order. He has found that the light generated by the
three-level laser operating under certain conditions is
in a squeezed state, with the maximum quadrature
squeezing being less than 43% below the vacuum-
state level. In addition, he has also shown that the
effect of the vacuum reservoir noise is to increase the
photon number variance and to decrease the quadra-
ture squeezing. However, the vacuum reservoir noise
has no any effect on the mean photon number.

More recently, Mekonnen [7] (to be published very
soon) has also studied a three-level laser in which
three-level atoms available in an open cavity are
pumped from the bottom and the ground levels to the
top level by means of the electron bombardment. He
carried out his analysis by putting the vacuum noise
operators in an arbitrary order. He has found that
the light generated by the three-level laser operating
under certain conditions is in a squeezed state. In ad-
dition, he has established that although light modes
a and b are separately in a chaotic state, it turns out
that the two-mode cavity light is in a squeezed state
under a certain condition, with a maximum quadra-
ture squeezing of 46% below the coherent state level.

In this paper, we consider electrically pumped 𝑁
two-level atoms interacting with a single-mode quan-
tized electromagnetic field at the resonance.

2. Equations of Evolution

Light is both radiated and absorbed by atoms, and
the interaction between the quantized electromag-
netic field and an atom represents one of the most
fundamental problems in quantum optics. However,
real atoms are complicated systems, and even the sim-
plest real atom, the hydrogen atom, has a non-trivial
energy level structure. It is therefore often necessary
to approximate the behavior of a real atom by that
of a much simpler quantum system. For many pur-
poses, only two atomic energy levels play a significant
role in the interaction with the electromagnetic field,
so that it has become customary in many theoreti-
cal treatments to represent the atom by a quantum
system with only two energy eigenstates. This is the
most basic of all quantum systems, and it generally
simplifies the treatment substantially.

In a real atom, the selection rules limit the allowed
transitions between states, so that, in some cases, a
certain state may couple to only a single one. Mo-
reover, the optical pumping and electrical pumping
techniques have been developed, which allows such
preferred states to be prepared in the laboratory, and
they have been successfully used in experiments. The
two-level atom approximation is therefore close to the
truth and not merely a mathematical convenience in
some experimental situations [8].

2.1. Single-Mode Cavity
Light Damped by Reservoir

We now turn to the formulation of the damping of
a single radiation mode in a cavity by the aggre-
gate of other modes in the reservoir. We now con-
centrate on the time development of the operators in
the Heisenberg representation that characterize the
dynamical system. The total Hamiltonian that de-
scribes the system-reservoir is given by [9]

�̂� = �̂�𝑆 + �̂�𝑅 + �̂�𝑆𝑅. (1)

This Hamiltonian can also be equally rewritten as

�̂� = ~𝜔�̂�†�̂�+
∑︁
𝑘

~𝜔𝑘�̂�
†
𝑘�̂�𝑘+~

∑︁
𝑘

[︀
𝜆𝑘 �̂��̂�

†
𝑘+𝜆*

𝑘 �̂�
†�̂�𝑘

]︀
. (2)
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Consistently with the general formalism, it is assumed
that the reservoir oscillators are in thermal equilib-
rium, and the system operators �̂� and �̂�† commute
with all reservoir operators �̂�𝑘, �̂�

†
𝑘. However, �̂� and

�̂�†, as well as �̂�𝑘, and �̂�†𝑘, satisfy the bosonic commu-
tation rules. The equations of motion of the operators
must satisfy the Heisenberg relation

˙̂
𝑏 = − 𝑖

~
[�̂�, �̂�]. (3)

In view of (2), the above equation takes the form

˙̂
𝑏 = −𝑖𝜔�̂�− 𝑖

∑︁
𝑘

𝜆*
𝑘�̂�𝑘. (4)

Similarly,

˙̂𝑎𝑘 = −𝑖𝜔𝑘�̂�𝑘 − 𝑖𝜆𝑘 �̂�. (5)

To solve these equations for the time-development of
the system operators, we begin by integrating Eq. (5):

�̂�𝑘(𝑡) = �̂�𝑘(𝑡0)𝑒
−𝑖𝜔𝑘(𝑡−𝑡0) − 𝑖

𝑡∫︁
𝑡0

𝑑𝑡′𝜆𝑘𝑒
−𝑖𝜔𝑘(𝑡−𝑡′)�̂�(𝑡′).

(6)

One then may insert Eq. (6) into Eq. (4), with 𝑡0 = 0,
to obtain the integro-differential equation

˙̂
𝑏+ 𝑖𝜔�̂�+

∑︁
𝑘

|𝜆𝑘|2
𝑡∫︁

0

𝑑𝑡′𝑒−𝑖𝜔𝑘(𝑡−𝑡′)�̂�(𝑡′) =

= −𝑖
∑︁
𝑘

𝜆*
𝑘�̂�𝑘(0)𝑒

−𝑖𝜔𝑘𝑡. (7)

At optical frequencies, the modes in a macroscopic
cavity are densely packed, i.e., the number of modes
per unit energy interval is very large. It is possible
then to treat the term containing the integral by con-
verting the sum over 𝑘 into an integral in which the
discrete frequencies 𝜔𝑘 are replaced by a continuous
frequency variable 𝜈 [9]:

∑︁
𝑘

|𝜆𝑘|2𝑒−𝑖𝜔𝑘(𝑡−𝑡′) →
∞∫︁

−∞

𝑑𝜈𝜆2(𝜈)𝑒−𝑖𝜈(𝑡−𝑡′). (8)

The major contribution to the interaction between
the radiation mode and reservoir modes will arises

from those modes whose frequencies are close to that
of the radiation mode. In this narrow frequency in-
terval, 𝜆2(𝜈) remains essentially constant. Then

∞∫︁
−∞

𝑑𝜈𝜆2(𝜈)𝑒−𝑖𝜈(𝑡−𝑡′) ≃ 𝜆2(𝜈)

∞∫︁
−∞

𝑑𝜈𝑒−𝑖𝜈(𝑡−𝑡′). (9)

This equation can also be rewritten as the sharp peak
at 𝑡 ≃ 𝑡′ that allows us to extend the upper limit to
infinity. We may also set

∑︁
𝑘

|𝜆𝑘|2
𝑡∫︁

0

𝑑𝑡′𝑒−𝑖𝜔𝑘(𝑡−𝑡′)�̂�(𝑡′) ≃

≃ 2𝜋𝜆2(𝜈)

𝑡∫︁
0

𝑑𝑡′�̂� (𝑡′) 𝛿 (𝑡− 𝑡′). (10)

Analogously, we set

∞∫︁
0

𝑓(𝑥′)𝛿(𝑥− 𝑥′) 𝑑𝑥′ =
1

2
𝑓(𝑥). (11)

Hence, expression (10) reduces to

∑︁
𝑘

|𝜆𝑘|2
𝑡∫︁

0

𝑑𝑡′𝑒−𝑖𝜔𝑘(𝑡−𝑡′)�̂�(𝑡′) =

= 𝜋𝜆2(𝜈)�̂�(𝑡) =
𝜅

2
�̂�, (12)

where the cavity damping constant 𝜅 is equal to
2𝜋𝜆2(𝜈).

Equation (7) can be now simplified to

˙̂
𝑏+ 𝑖𝜔�̂�+

𝜅

2
�̂� = −𝑖

∑︁
𝑘

𝜆*
𝑘�̂�𝑘(0)𝑒

−𝑖𝜔𝑘𝑡 ≡ 𝐹 (𝑡), (13)

and the Hermitian conjugate yields the corresponding
equation for the creation operator

˙̂
𝑏† − 𝑖𝜔�̂�† +

𝜅

2
�̂�† = 𝑖

∑︁
𝑘

𝜆𝑘�̂�
†
𝑘(0)𝑒

𝑖𝜔𝑘𝑡 ≡ 𝐹 †(𝑡). (14)

Since the reservoir operators are assumed to fluctu-
ate, 𝐹 (𝑡) and 𝐹 †(𝑡), which are solely dependent on the
reservoir operators �̂�𝑘(0) and �̂�†𝑘(0), must also fluctu-
ate. The structure of these equations suggests there-
fore that they are of the Langevin type analogously
to the equation for Brownian motion, and that 𝜅 is to
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be interpreted as a damping constant; 𝐹 (𝑡) and 𝐹 †(𝑡)
are also called Langevin noise sources.

The oscillator modes have been assumed to be in
thermal equilibrium. Since

⟨𝑛𝑘|�̂�𝑘|𝑛𝑘⟩ = 0, ⟨𝑛𝑘|�̂�†𝑘|𝑛𝑘⟩ = 0, (15)

where |𝑛𝑘⟩ is an eigenstate of the oscillator number
operator 𝑁𝑘 = �̂�†𝑘�̂�𝑘, we get

⟨𝐹 (𝑡)⟩ = 0 and ⟨𝐹 †(𝑡)⟩ = 0. (16)

On the other hand,

⟨�̂�†𝑘�̂�𝑙⟩ = ⟨𝑁𝑘⟩𝛿𝑘𝑙 and ⟨�̂�𝑘�̂�†𝑙 ⟩ = ⟨𝑁𝑘 + 1⟩𝛿𝑘𝑙. (17)

Furthermore,

⟨𝐹 †(𝑡)𝐹 (𝑡′)⟩ =
∑︁
𝑘

|𝜆𝑘|2𝑒𝑖𝜔𝑘(𝑡−𝑡′)⟨𝑁𝑘⟩ ≃

≃ 𝜆2(𝜈)⟨𝑛⟩
∞∫︁

−∞

𝑒𝑖𝜈(𝑡−𝑡′) =

= 2𝜋𝜆2(𝜈)⟨𝑛⟩𝛿(𝑡− 𝑡′) = 𝜅⟨𝑛⟩𝛿(𝑡− 𝑡′), (18)

where ⟨𝑛⟩ is the average number of (reservoir) pho-
tons at the temperature 𝑇 that are nearly resonant
with the radiation mode. In the same manner, it is
found that

⟨𝐹 (𝑡)𝐹 †(𝑡′)⟩ =
∑︁
𝑘

|𝜆𝑘|2𝑒𝑖𝜔𝑘(𝑡−𝑡′)⟨𝑁𝑘 + 1⟩ ≃

≃ 𝜆2(𝜈)⟨𝑛+ 1⟩
∞∫︁

−∞

𝑒𝑖𝜈(𝑡−𝑡′) =

= 2𝜋𝜆2(𝜈)⟨𝑛+ 1⟩𝛿(𝑡− 𝑡′) = 𝜅⟨𝑛+ 1⟩𝛿(𝑡− 𝑡′). (19)

Following the same line of reasoning, we can arrive at

⟨𝐹 (𝑡)𝐹 (𝑡′)⟩ = ⟨𝐹 †(𝑡)𝐹 †(𝑡′)⟩ = 0. (20)

Remark. When the single mode cavity light is damped
with the vacuum reservoir, we must substitute zero
in place of the mean photon number of the thermal
reservoir.

2.2. Interaction Hamiltonian

The Hamiltonian describing the interaction of one of
the two-level atoms with the single-mode cavity light
in the rotating frame of reference and involing the

rotating wave and electric dipole approximations is
given by [10]

�̂� = 𝑖𝑔(�̂�𝑘†
𝑎 �̂�− �̂�†�̂�𝑘

𝑎), (21)

where

�̂�𝑘
𝑎 = |𝑏𝑘⟩⟨𝑎𝑘|, (22)

is the atomic lowering operator, �̂� is the photonic an-
nihilation operator, and 𝑔 is the coupling constant
between the atom and the light. We assume that the
radiation inside the cavity is coupled with the vacuum
reservoir outside the cavity via single-port mirror. In
addition, we carry out our calculation by putting the
noise operators associated with the vacuum reser-
voir in arbitrary order. Thus, the noise operator will
have some effect on the dynamics of the cavity mode
operators.

2.3. Quantum Langevin Equations

We recall that the laser cavity is coupled to a single-
mode vacuum reservoir via a single-port mirror. We
can therefore write the quantum Langevin equation
for the operator �̂� as

𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�− 𝑖[�̂�, �̂�] + 𝐹 (𝑡). (23)

where 𝜅 is the cavity damping constant. Then, with
the aid of Eq. (21), we easily find

𝑑�̂�

𝑑𝑡
= −𝜅

2
�̂�− 𝑔�̂�𝑘

𝑎 + 𝐹 (𝑡). (24)

This is the quantum Langevin equation for the cavity
mode operator �̂�. We use of the Heisenberg equation
of motion given by

𝑑

𝑑𝑡
⟨𝐴⟩ = −𝑖⟨[𝐴, �̂�]⟩, (25)

𝑑

𝑑𝑡
⟨�̂�𝑘

𝑎⟩ = 𝑔⟨(𝜂𝑘𝑏 − 𝜂𝑘𝑎)�̂�⟩, (26)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑎⟩ = 𝑔⟨(�̂�†𝑘

𝑎 �̂�+ �̂�†�̂�𝑘
𝑎)⟩, (27)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑏 ⟩ = −𝑔⟨(�̂�†𝑘

𝑎 �̂�+ �̂�†�̂�𝑘
𝑎)⟩, (28)

where

𝜂𝑘𝑎 = |𝑎𝑘⟩⟨𝑎𝑘|, (29)

𝜂𝑘𝑏 = |𝑏𝑘⟩⟨𝑏𝑘|. (30)
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We see that Eqs. (26), (27), and (28), are incom-
plete linear coupled differential equations whose time-
dependent solutions are not known explicitly. Thus,
to circumvent such a challenge, we apply the adia-
batic elimination scheme [11]. To this end, expression
(24) in this elimination scheme can be rewritten as

�̂�(𝑡) = −2𝑔�̂�𝑘
𝑎

𝑘
(𝑡) +

2𝐹

𝑘
(𝑡). (31)

By substituting (31) back into (26), (27), and (28),
we get

𝑑

𝑑𝑡
⟨�̂�𝑘

𝑎⟩ = −𝛾𝑐
2
⟨�̂�𝑘

𝑎⟩+
2𝑔

𝑘
[⟨𝜂𝑘𝑏𝐹 (𝑡)⟩ − ⟨𝜂𝑘𝑎𝐹 (𝑡)⟩], (32)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑎⟩ = −𝛾𝑐⟨𝜂𝑘𝑎⟩+

2𝑔

𝑘
[⟨�̂�𝑘†

𝑎 𝐹 (𝑡)⟩+ ⟨�̂�𝑘
𝑎𝐹

†
𝑎 (𝑡)⟩], (33)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑏 ⟩ = 𝛾𝑐⟨𝜂𝑘𝑎⟩ −

2𝑔

𝑘
[⟨�̂�𝑘†

𝑎 𝐹 (𝑡)⟩+ ⟨�̂�𝑘
𝑎𝐹

†
𝑎 (𝑡)⟩]. (34)

Following the same procedure presented in [6], we ob-
tain

𝑑

𝑑𝑡
⟨�̂�𝑘

𝑎⟩ = −𝛾𝑐
2
⟨�̂�𝑘

𝑎⟩, (35)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑎⟩ = −𝛾𝑐⟨𝜂𝑘𝑎⟩, (36)

𝑑

𝑑𝑡
⟨𝜂𝑘𝑏 ⟩ = 𝛾𝑐⟨𝜂𝑘𝑎⟩, (37)

where

𝛾𝑐 =
4𝑔2

𝑘
. (38)

We prefer to call the parameter defined by Eq. (38)
the stimulated emission decay constant [12]. Based
on the definition of this decay constant, we infer that
the atom in the upper level and inside a closed cavity
emits a photon due to its interaction with the cav-
ity light. We certainly identify this process to be a
stimulated photon emission.

Now, we are in a position to include the contribu-
tion of all the 𝑁 atoms to the dynamics of the system
of interest. We have

𝑑

𝑑𝑡
⟨�̂�𝑎⟩ = −𝛾𝑐

2
⟨�̂�𝑎⟩, (39)

𝑑

𝑑𝑡
⟨�̂�𝑎⟩ = −𝛾𝑐⟨�̂�𝑎⟩, (40)

𝑑

𝑑𝑡
⟨�̂�𝑏⟩ = 𝛾𝑐⟨�̂�𝑎⟩, (41)

where the operators �̂�𝑎 and �̂�𝑏 represent the number
of atoms on the upper and lower levels. Furthermore,
employing the completeness relation

𝜂𝑘𝑎 + 𝜂𝑘𝑏 = 𝐼, (42)

we easily arrive at

⟨�̂�𝑎⟩+ ⟨�̂�𝑏⟩ = 𝑁. (43)

In addition, using the definition given by Eq. (22), we
get, for any k,

⟨�̂�†
𝑎�̂�𝑎⟩ = 𝑁⟨�̂�𝑎⟩ (44)

and

⟨�̂�𝑎�̂�
†
𝑎⟩ = 𝑁⟨�̂�𝑏⟩. (45)

When the cavity light interacts with all 𝑁 two-level
atoms available in the cavity, the quantum Langevin
equation is expressible as [13]

𝑑�̂�

𝑑𝑡
= −𝑘

2
�̂�+

𝑔√
𝑁

�̂�𝑎 + 𝐹 (𝑡). (46)

The two-level atoms available in the cavity are
pumped from the lower level to the upper level by
means of the electron bombardment. The pumping
process must certainly affect the equation of evolu-
tion of the atomic operators [7]. Hence, we will con-
sider the effect of the pumping process on the equa-
tion of evolution of the operators ⟨�̂�𝑎⟩ and ⟨�̂�𝑏⟩. To
this end, we present Eqs. (40) and (41) in the form
𝑑

𝑑𝑡
⟨�̂�𝑎⟩ = −𝛾𝑐⟨�̂�𝑎⟩+ 𝑟𝑎⟨�̂�𝑏⟩, (47)

𝑑

𝑑𝑡
⟨�̂�𝑏⟩ = 𝛾𝑐⟨�̂�𝑎⟩ − 𝑟𝑎⟨�̂�𝑏⟩, (48)

where 𝑟𝑎 is the rate at which a single atom is pumped
to the upper level. Now, on the basis of expression
(43), we can rewrite the above expressions as
𝑑

𝑑𝑡
⟨�̂�𝑎⟩ = −(𝛾𝑐 + 𝑟𝑎)⟨�̂�𝑎⟩+ 𝑟𝑎𝑁, (49)

𝑑

𝑑𝑡
⟨�̂�𝑏⟩ = −(𝛾𝑐 + 𝑟𝑎)⟨�̂�𝑏⟩+ 𝛾𝑐𝑁. (50)

The steady-state solutions of these equations finally
take the form

⟨�̂�𝑎⟩ =
𝑟𝑎𝑁

𝛾𝑐 + 𝑟𝑎
(51)

and
⟨�̂�𝑏⟩ =

𝛾𝑐𝑁

𝛾𝑐 + 𝑟𝑎
. (52)
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3. Photon Statistics

The statistical properties of a light beam is described
in terms of the mean photon number and the vari-
ance of the photon number. Here, we wish to calculate
the mean photon number and the variance of photon
number of the light generated by a two-level laser em-
ploying the steady-state solutions of the equations of
evolution of the expectation values of the atomic op-
erators and the quantum Langevin equation for the
cavity mode operator.

3.1. Global Mean Photon Number

The photon number of the cavity light at any time is
given by �̂�†�̂� and the mean of the photon number is
represented by ⟨�̂�†�̂�⟩. Here, we need to determine the
global mean photon number of the cavity light. The
equation of evolution of the mean photon number of
the cavity light is as follows:

𝑑

𝑑𝑡
⟨�̂�†�̂�⟩ =

⟨
𝑑�̂�†

𝑑𝑡
�̂�

⟩
+

⟨̂
𝑏†
𝑑�̂�

𝑑𝑡

⟩
. (53)

Making use of Eq. (46) and its adjoint, we have

𝑑

𝑑𝑡
⟨�̂�†�̂�⟩ = −𝑘⟨�̂�†�̂�⟩+ 𝑔√

𝑁

[︀
⟨�̂�†

𝑎�̂�⟩+ ⟨�̂�†�̂�𝑎⟩
]︀
+

+ ⟨𝐹 †(𝑡)�̂�(𝑡)⟩+ ⟨�̂�†(𝑡)𝐹 (𝑡)⟩. (54)

Now, we are interested to evaluate the above expres-
sions one by one. Using the fact that the vacuum
reservoir noise operator associated with the cavity
mode operator at a certain time does not affect the
atomic or the cavity mode operator at earlier times
along with

⟨︀
𝐹 †(𝑡)𝐹 (𝑡′)

⟩︀
= 0, one can arrive at⟨︀

𝐹 †(𝑡)�̂�(𝑡)
⟩︀
= 0 (55)

and
⟨�̂�†

𝑎(𝑡)�̂�(𝑡)⟩ =
2

𝜅

𝑔√
𝑁

⟨�̂�†
𝑎(𝑡)�̂�𝑎(𝑡)⟩. (56)

Substituting (55), (56), and their complex conjugates
in expression (54), we get

𝑑

𝑑𝑡

⟨︀
�̂�†�̂�

⟩︀
= −𝜅

⟨︀
�̂�†�̂�

⟩︀
+

4

𝜅

𝑔2

𝑁

⟨︀
�̂�†

𝑎�̂�𝑎

⟩︀
. (57)

With regard for Eqs. (38) and (44), the above equa-
tion finally takes the following form for a steady-state:⟨︀
�̂�†�̂�

⟩︀
=

𝛾𝑐
𝜅
⟨�̂�𝑎⟩. (58)

Fig. 1. Mean photon number [Eq. (59)] versus 𝑟𝑎 for 𝛾𝑐 = 0.4,
𝜅 = 0.8, and 𝑁 = 50

Now, with the aid of (51), the mean photon number
of light mode 𝑏 is found to be

⟨�̂�†�̂�⟩ = 𝛾𝑐
𝑘

(︂
𝑟𝑎𝑁

𝛾𝑐 + 𝑟𝑎

)︂
. (59)

For the single-mode radiation operating well above
threshold 𝛾𝑐 ≪ 𝑟𝑎, Eq. (59) is reduced to

⟨�̂�†�̂�⟩ = 𝛾𝑐
𝑘
𝑁. (60)

For the same radiation field operating at the thresh-
old 𝛾𝑐 = 𝑟𝑎, Eq. (59) can be rewritten as

⟨�̂�†�̂�⟩ = 𝛾𝑐
2𝑘

𝑁. (61)

3.2. Local Mean Photon Number

In this subsection, we are going to study the local
mean photon number of the cavity light represented
by light mode 𝑏. In order to determine the mean pho-
ton number of the cavity light in the given frequency
interval, we must first consider the power spectrum
of the cavity light. The power spectrum of the cavity
light with central frequency 𝜔0 is expressible as [14]

𝑃 (𝜔) =
1

𝜋
Re

∞∫︁
0

𝑑𝜏 𝑒𝑖(𝜔−𝜔0)𝜏 ⟨�̂�†(𝑡)�̂�(𝑡+ 𝜏)⟩𝑠𝑠. (62)

Integrating both sides of Eq. (62) over 𝜔, we readily
get

∞∫︁
−∞

𝑃 (𝜔)𝑑𝜔 = ⟨�̂�†(𝑡)�̂�(𝑡)⟩𝑠𝑠 = �̄�, (63)
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Fig. 2. Plot of the characteristic function 𝑧(𝜆) [Eq. (70)] ver-
sus 𝜆 for 𝛾𝑐 = 0.4, and 𝜅 = 0.8

in which �̄� is the steady-state mean photon number
of light mode 𝑏 [12]. From this result, we observe that
𝑃 (𝜔)𝑑𝜔 is the steady-state mean photon number of
light mode 𝑏 in the frequency interval between 𝜔 and
𝜔 + 𝑑𝜔 [12].

The two-time correlation function that appears in
expression (62) is found at a steady-state to be

⟨�̂�†(𝑡)�̂�(𝑡+ 𝜏)⟩𝑠𝑠 = �̄�

[︂
𝜅

𝜅− 𝛾𝑐
𝑒−

𝛾𝑐
2 𝜏 − 𝛾𝑐

𝜅− 𝛾𝑐
𝑒−

𝜅
2 𝜏

]︂
.

(64)

Now on substituting Eq. (64) into (62), the power
spectrum of light mode 𝑏 takes the form

𝑃 (𝜔) =
𝜅�̄�

𝜅− 𝛾𝑐

[︃
𝛾𝑐/2𝜋

(𝜔 − 𝜔0)2 +
𝛾2
𝑐

2

]︃
−

− 𝛾𝑐�̄�

𝜅− 𝛾𝑐

[︂
𝜅/2𝜋

(𝜔 − 𝜔0)2 + (𝜅2 )
2

]︂
. (65)

We recall that the mean photon number of light
mode 𝑏 in the interval between 𝜔′ = −𝜆 and 𝜔′ = 𝜆

Values of the 𝑧(𝜆) and the corresponding
local mean photon number

𝜆 𝑧(𝜆) �̄�𝑎±𝜆

0.5 0.788 0.788�̄�

1.0 0.946 0.946�̄�

2.0 0.991 0.991�̄�

3.0 0.997 0.997�̄�

4.0 0.999 0.999�̄�

is expressible as [12]

�̄�±𝜆 =

𝜆∫︁
−𝜆

𝑃 (𝜔′)𝑑𝜔′, (66)

where 𝜔′ = 𝜔 − 𝜔0. Therefore, substituting (65) into
(66), carrying out the integration, and making use of
the relation
𝜆∫︁

−𝜆

𝑑𝑥

𝑥2 + 𝑎2
=

2

𝑎
tan−1

(︂
𝜆

𝑎

)︂
, (67)

we arrive at

�̄�±𝜆 = �̄�

[︂
2𝜅/𝜋

𝜅− 𝛾𝑐
tan−1

(︂
𝜆

𝛾𝑐

)︂
− 2𝛾𝑐/𝜋

𝜅− 𝛾𝑐
tan−1

(︂
𝜆

𝜅

)︂]︂
.

(68)

Now, the mean photon number of light mode 𝑏 in
the frequency interval ±𝜆 can be written as

�̄�±𝜆 = �̄�𝑧(𝜆), (69)

where the function 𝑧(𝜆) is given by

𝑧(𝜆) =
2

𝜋

[︂
𝜅

𝜅− 𝛾𝑐
tan−1

(︂
𝜆

𝛾𝑐

)︂
−

− 𝛾𝑐
𝜅− 𝛾𝑐

tan−1

(︂
𝜆

𝜅

)︂]︂
. (70)

We see from Eq. (69) along with the plot of 𝑧(𝜆) that
�̄�±𝜆 increases with 𝜆 until it reaches the maximum
value given by Eq. (59). From the plot of Fig. 2, some
of the values of 𝑧(𝜆) and the corresponding local mean
photon number �̄�±𝜆 are shown below.

3.3. Global Photon-Number Variance

Now, we will study the photon-number variance of
light mode 𝑏 in the entire frequency interval. The
photon-number variance of light mode 𝑏 at any sup-
pressed time 𝑡 is given by

Δ𝑛2 =
⟨︀
(�̂�†�̂�)2

⟩︀
−

⟨︀
�̂�†�̂�

⟩︀2
. (71)

Applying the fact that �̂� is a Gaussian variable, we
get [14]

Δ𝑛2 =
⟨︀
�̂�†�̂�

⟩︀⟨︀
�̂��̂�†

⟩︀
+
⟨︀
�̂�†2

⟩︀⟨︀
�̂�2
⟩︀
. (72)

The equation of evolution for the operator ⟨�̂�2⟩ can
be expressed as
𝑑

𝑑𝑡

⟨︀
�̂�2(𝑡)

⟩︀
= −𝜅

⟨︀
�̂�2(𝑡)

⟩︀
. (73)
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Finally, the steady-state solution of the above equa-
tion is⟨︀
�̂�2
⟩︀
= 0. (74)

Next, the equation of evolution for ⟨�̂�(𝑡)�̂�†(𝑡)⟩ takes
the form

𝑑

𝑑𝑡

⟨︀
�̂��̂�†

⟩︀
= −𝜅

⟨︀
�̂��̂�†

⟩︀
+ 𝜅+

𝛾𝑐
𝑁

⟨�̂�𝑎�̂�
†
𝑎⟩. (75)

With the help of the relation indicated in (45), we
find the steady-state solution of this equation to be

⟨�̂��̂�†⟩𝑠𝑠 =
𝛾𝑐
𝜅
⟨�̂�𝑏⟩+ 1. (76)

Finally, in view of Eq. (58) along with (74) and
(76), the photon-number variance of light mode b in
the steady state turns out to be

Δ𝑛2 =
𝛾𝑐
𝜅
⟨𝑁𝑎⟩

[︁𝛾𝑐
𝜅
⟨𝑁𝑏⟩+ 1

]︁
. (77)

At the threshold 𝑟𝑎 = 𝛾𝑐, this can be rewritten as

Δ𝑛2 = �̄�2 + �̄�. (78)

From (61) and (78), we conclude that the photon
statistics of light mode b is supper-Poissonian. We
also note that light mode b is in a chaotic state. It
can also be verified that, well above the threshold,
light mode b is in a coherent state. In view of (51)
and (52), the photon-number variance of light mode
b has, in the steady state, the form

Δ𝑛2 =
𝛾𝑐
𝜅

[︂
𝑟𝑎𝑁

𝑟𝑎 + 𝛾𝑐

]︂
+
[︁𝛾𝑐
𝜅

]︁2 [︂ 𝑟𝑎𝛾𝑐𝑁
2

(𝑟𝑎 + 𝛾𝑐)2

]︂
. (79)

The plot in Fig. 3 indicates that fluctuations are in-
creasing up to 𝑟𝑎 = 0.4 with the maximum value
about 169 and then decreasing, accordingly.

3.4. Local Photon-Number Variance

In this subsection, we wish to calculate the photon-
number variance for light mode 𝑏 in a given frequency
interval. To determine the photon-number variance
for light mode 𝑏, we consider the spectrum of photon-
number fluctuations for light mode 𝑏. The spectrum
of photon-number fluctuations for light mode 𝑏 with
the central frequency 𝜔0 is expressible as [4]

𝑆(𝜔) =
1

𝜋

∞∫︁
0

𝑑𝜏𝑒𝑖(𝜔−𝜔0)𝜏 ⟨�̂�(𝑡), �̂�(𝑡+ 𝜏)⟩𝑠𝑠, (80)

Fig. 3. Plot of the photon number variance [Eq. (79)] versus
𝑟𝑎 for 𝛾𝑐 = 0.4, 𝜅 = 0.8, and 𝑁 = 50

where

�̂�(𝑡) = �̂�†(𝑡)�̂�(𝑡) (81)

and

�̂�(𝑡+ 𝜏) = �̂�†(𝑡+ 𝜏)�̂�(𝑡+ 𝜏). (82)

Integrating both sides of Eq. (80) over 𝜔, we easily
find
∞∫︁

−∞

𝑆(𝜔)𝑑𝜔 = Δ𝑛2, (83)

where Δ𝑛2 is the photon-number variance of light
mode 𝑏 in the steady state. We can then assert that
𝑆(𝜔)𝑑𝜔 is the photon-number variance for light mode
𝑏 in the interval between 𝜔 and 𝜔 + 𝑑𝜔 in the steady
state [12].

With regard for Eqs. (81) and (82), two-time cor-
relation function is found to be⟨︀
�̂�(𝑡), �̂�(𝑡+ 𝜏)

⟩︀
=

⟨︀
�̂�†(𝑡)�̂�(𝑡+ 𝜏)

⟩︀⟨︀
�̂�(𝑡)�̂�†(𝑡+ 𝜏)

⟩︀
+

+
⟨︀
�̂�(𝑡)�̂�(𝑡+ 𝜏)

⟩︀⟨︀
�̂�†(𝑡)�̂�†(𝑡+ 𝜏)

⟩︀
, (84)

where

⟨�̂�(𝑡)�̂�†(𝑡+ 𝜏)⟩ = ⟨�̂�(𝑡)�̂�†(𝑡)⟩×

×
[︂

𝜅

𝜅− 𝛾𝑐
𝑒−

𝛾𝑐
2 𝜏 − 𝛾𝑐

𝜅− 𝛾𝑐
𝑒−

1
2𝜅𝜏

]︂
−

− 𝜅

𝜅− 𝛾𝑐

[︁
𝑒−

𝛾𝑐
2 𝜏 − 𝑒−

𝜅
2 𝜏
]︁
, (85)

⟨�̂�(𝑡)�̂�(𝑡+ 𝜏)⟩ = ⟨�̂�(𝑡)�̂�(𝑡)⟩×

×
[︂

𝜅

𝜅− 𝛾𝑐
𝑒−

𝛾𝑐
2 𝜏 − 𝛾𝑐

𝜅− 𝛾𝑐
𝑒−

1
2𝜅𝜏

]︂
, (86)
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⟨�̂�†(𝑡)�̂�†(𝑡+ 𝜏)⟩ = ⟨�̂�†(𝑡)�̂�†(𝑡)⟩×

×
[︂

𝜅

𝜅− 𝛾𝑐
𝑒−

𝛾𝑐
2 𝜏 − 𝛾𝑐

𝜅− 𝛾𝑐
𝑒−

1
2𝜅𝜏

]︂
. (87)

Substituting Eqs. (64), (85), (86), and (87) into
(84), we get, in the steady state,⟨︀
�̂�(𝑡), �̂�(𝑡+ 𝜏)

⟩︀
𝑠𝑠

=
[︁⟨︀
�̂�†2

⟩︀⟨︀
�̂�2
⟩︀
+
⟨︀
�̂�†�̂�

⟩︀⟨︀
�̂��̂�†

⟩︀]︁
×

×
[︂(︂

𝜅

𝜅− 𝛾𝑐

)︂2
𝑒−𝛾𝑐𝜏 − 2𝜅𝛾𝑐

(𝜅− 𝛾𝑐)2
𝑒−

1
2 (𝜅+𝛾𝑐)𝜏 +

+

(︂
𝛾𝑐

𝜅− 𝛾𝑐

)︂2
𝑒−𝜅𝜏

]︂
−

⟨︀
�̂�†�̂�

⟩︀
(𝜅− 𝛾𝑐)2

×

×[𝜅2𝑒−𝛾𝑐𝜏 − (𝜅2 + 𝜅𝛾𝑐)𝑒
−1/2(𝜅+𝛾𝑐)𝜏 + 𝜅𝛾𝑐𝑒

−𝜅𝜏 ]. (88)

Therefore, in view of this expression, the spectrum
of photon-number fluctuations takes the form

𝑆(𝜔) =

(︂
Δ𝑛

𝜅− 𝛾𝑐

)︂2[︃
𝜅2

𝜋
Re

∞∫︁
0

𝑑𝜏𝑒−[𝛾𝑐−𝑖(𝜔−𝜔0)]𝜏 −

− 2𝛾𝑐𝜅

𝜋
Re

∞∫︁
0

𝑑𝜏𝑒−[ 12 (𝜅+𝛾𝑐)−𝑖(𝜔−𝜔0)]𝜏 +

+
𝛾2
𝑐

𝜋
Re

∞∫︁
0

𝑑𝜏𝑒−[𝜅−𝑖(𝜔−𝜔0)]𝜏

]︃
−

− �̄�

(𝜅− 𝛾𝑐)2

[︃
𝜅2

𝜋
Re

∞∫︁
0

𝑑𝜏𝑒−[𝛾𝑐−𝑖(𝜔−𝜔0)]𝜏 −

−
(︂
𝜅2 + 𝜅𝛾𝑐

𝜋

)︂
Re

∞∫︁
0

𝑑𝜏𝑒−[ 12 (𝜅+𝛾𝑐)−𝑖(𝜔−𝜔0)]𝜏 +

+
𝜅𝛾𝑐
𝜋

Re

∞∫︁
0

𝑑𝜏𝑒−[𝜅−𝑖(𝜔−𝜔0)]𝜏

]︃
. (89)

Performing the integration, we get

𝑆(𝜔) = Δ𝑛2

[︃{︂
𝜅

𝜅− 𝛾𝑐

}︂2{︂ 𝛾𝑐

𝜋

𝛾2
𝑐 + (𝜔 − 𝜔0)2

}︂
−

− 2𝜅𝛾𝑐
(𝜅− 𝛾𝑐)2

{︃
𝜅+𝛾𝑐

2𝜋

(𝜅+𝛾𝑐

2 )2 + (𝜔 − 𝜔0)2

}︃
+

+

{︂
𝛾𝑐

𝜅− 𝛾𝑐

}︂2{︂ 𝜅
𝜋

𝜅2 + (𝜔 − 𝜔0)2

}︂]︃
=

= −�̄�

[︃{︂
𝜅

𝜅− 𝛾𝑐

}︂2{︂ 𝛾𝑐

𝜋

𝛾2
𝑐 + (𝜔 − 𝜔0)2

}︂
+

+
𝜅𝛾𝑐

(𝜅− 𝛾𝑐)2

{︂ 𝜅
𝜋

𝜅2 + (𝜔 − 𝜔0)2

}︂
−

− 𝜅(𝜅+ 𝛾𝑐)

(𝜅− 𝛾𝑐)2

{︃
𝜅+𝛾𝑐

2𝜋

(𝜅+𝛾𝑐

2 )2 + (𝜔 − 𝜔0)2

}︃]︃
. (90)

We recall that the local photon-number variance of
the single-mode cavity light in the interval between
𝜔′ = −𝜆 and 𝜔′ = 𝜆 is expressible as [15]

Δ𝑛2
±𝜆 =

𝜆∫︁
−𝜆

𝑆(𝜔′)𝑑𝜔′ (91)

in which 𝜔′ = 𝜔−𝜔0 .̄, Therefore, substituting Eq. (90)
into (91) and carrying out the integration, we arrive
at

Δ𝑛2
±𝜆 = Δ𝑛2

[︃
2

𝜋

(︂
𝜅

𝜅− 𝛾𝑐

)︂2
tan−1

(︂
𝜆

𝛾𝑐

)︂
−

− 2

𝜋

2𝜅𝛾𝑐
(𝜅− 𝛾𝑐)2

tan−1

(︂
2𝜆

𝜅+ 𝛾𝑐

)︂
+

+
2

𝜋

(︂
𝛾𝑐

𝜅− 𝛾𝑐

)︂2
tan−1

(︂
𝜆

𝜅

)︂]︃
−

− �̄�

[︃
2

𝜋

(︂
𝜅

𝜅− 𝛾𝑐

)︂2
tan−1

(︂
𝜆

𝛾𝑐

)︂
+

+
2

𝜋

𝜅𝛾𝑐
(𝜅− 𝛾𝑐)2

tan−1

(︂
𝜆

𝜅

)︂
−

− 2

𝜋

𝜅(𝜅+ 𝛾𝑐)

(𝜅− 𝛾𝑐)2
tan−1

(︂
2𝜆

𝜅+ 𝛾𝑐

)︂]︃
. (92)

From the plot in Fig. 4, we notice that the lo-
cal photon-number variance approaches the global
photon-number variance, as 𝜆 increases.

4. Quadrature Variance

Here, we study the quadrature variance of the cav-
ity light produced by electrically bombarded two-
level atoms in a closed cavity and coupled to a vac-
uum reservoir via a single-port mirror. Applying the
steady-state solutions of the equations of evolution of
the expectation values of the atomic operators and
the quantum Langevin equation for the cavity mode
operator, we obtain the global and local quadrature
variances of the single-mode cavity light.

578 ISSN 0372-400X. Укр. фiз. журн. 2021. Т. 66, № 7



Interaction of Two-Level Atoms

4.1. Global Quadrature Variance

We now calculate the global quadrature variances of
light mode 𝑏, produced by the system under consid-
eration. The squeezing properties of light mode 𝑏 is
described by two quadrature operators [6]

�̂�+ = �̂�† + �̂� (93)

and

�̂�− = 𝑖(�̂�† − �̂�). (94)

These operators are Hermitian and satisfy the com-
mutation relation

[�̂�−, �̂�+] = 2𝑖

[︂
𝛾𝑐
𝜅

(︀
�̂�𝑎 − �̂�𝑏

)︀
− 1

]︂
. (95)

The operators �̂�+ and �̂�− represent physical quanti-
ties called the plus and minus quadratures, respec-
tively. The uncertainty relation for the quadrature
operators can be expressed as [16]

Δ�̂�+Δ�̂�− ≥
⃒⃒⃒𝛾𝑐
𝜅

(︀
⟨�̂�𝑎⟩ − ⟨�̂�𝑏⟩

)︀
− 1

⃒⃒⃒
, (96)

so that, in view of Eqs. (51) and (52), we find the
uncertainty relation for the quadrature operators of
cavity light mode 𝑏 in the steady-state:

Δ�̂�+Δ�̂�− ≥
⃒⃒⃒𝛾𝑐
𝜅

(︂
𝑟𝑎 − 𝛾𝑐
𝑟𝑎 + 𝛾𝑐

)︂
𝑁 − 1

⃒⃒⃒
. (97)

Moreover, we consider the case where the rate at
which the bombarded atoms transit from the bottom
level to the top one is much less than the stimulated
emission decay constant. Hence, for 𝑟𝑎 ≪ 𝛾𝑐, Eq. (97)
reduces to

Δ�̂�+Δ�̂�− ≥ 𝛾𝑐
𝜅
𝑁 + 1. (98)

Next, we proceed to calculate the quadrature vari-
ance of light mode 𝑏. The variance of the quadrature
operators is expressible as

Δ�̂�2± = ⟨�̂�2±⟩ − ⟨�̂�±⟩2. (99)

The explicit form of the quadrature variance of the
plus and minus quadratures can be expressed as

Δ�̂�2+ = ⟨�̂�2+⟩ − ⟨�̂�+⟩2 (100)

Fig. 4. Plot of (Δ𝑛)2±𝜆 versus 𝜆 for 𝛾𝑐 = 0.4, 𝜅 = 0.8, 𝑟𝑎 = 2,

and 𝑁 = 50

and

(Δ�̂�−)
2 = ⟨�̂�2−⟩ − ⟨�̂�−⟩2. (101)

With the aid of Eqs. (93) and (94), the above expres-
sions take the form

Δ�̂�2± = ⟨�̂��̂�†⟩+ ⟨�̂�†�̂�⟩ ± ⟨�̂�2⟩ ± ⟨�̂�†2⟩∓

∓ ⟨�̂�⟩2 ∓ ⟨�̂�†⟩2 − 2⟨�̂�⟩⟨�̂�†⟩. (102)

Since �̂� is a Gaussian variable with zero mean, we
readily get

Δ�̂�2± = ⟨�̂��̂�†⟩+ ⟨�̂�†�̂�⟩ ± ⟨�̂�2⟩ ± ⟨�̂�†2⟩. (103)

In view of Eqs. (58), (74), and (76), the quadrature
variance of light mode 𝑏 takes, in the steady-state,
the form

Δ�̂�2± =
𝛾𝑐
𝜅

[︁
⟨�̂�𝑎⟩+ ⟨�̂�𝑏⟩

]︁
+ 1. (104)

Thus, the substitution of Eqs. (51) and (58) into
Eq. (104) results in

Δ�̂�2+ = Δ�̂�2− =
𝛾𝑐
𝜅
𝑁 + 1. (105)

At the threshold, the above expression is just equal
to

Δ�̂�2+ = Δ�̂�2− = 2�̄�+ 1. (106)

This represents the quadrature variance of cavity
light mode 𝑏. This indicates that light mode 𝑏 is in
a chaotic state. In view of (98) and (105), we see that
the uncertainties in the plus and minus quadratures
are equal to each other and satisfy the minimum un-
certainty relation.
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4.2. Local Quadrature Variance

We finally seek to obtain the quadrature variance of
the cavity light in a given frequency interval. To this
end, we firstly determine the spectrum of quadrature
fluctuations of the single-mode cavity light. We define
this spectrum with central frequency 𝜔0 by [4]

𝑆±(𝜔) =
1

𝜋
Re

∞∫︁
0

⟨�̂�±(𝑡), �̂�±(𝑡+ 𝜏)⟩𝑠𝑠𝑒𝑖(𝜔−𝜔0)𝜏𝑑𝜏. (107)

Integrating both sides of Eq. (107) over 𝜔, we get

∞∫︁
−∞

𝑆±(𝜔)𝑑𝜔 = Δ𝑏2±, (108)

where

Δ𝑏2± = ⟨�̂�±(𝑡), �̂�±(𝑡)⟩𝑠𝑠 (109)

is the quadrature variance of the light mode in the
steady state. On the basis of the result given by (109),
we assert that 𝑆±(𝜔)𝑑𝜔 is the quadrature variance
of the light mode in the steady state in the interval
between 𝜔 and 𝜔 + 𝑑𝜔.

Now, the two-time correlation function involved in
(107) is found to be⟨︀
�̂�±(𝑡), �̂�±(𝑡+ 𝜏)

⟩︀
=

= Δ𝑏2±

[︂
𝜅

𝜅− 𝛾𝑐
𝑒−

𝛾𝑐𝜏
2 − 𝛾𝑐

𝜅− 𝛾𝑐
𝑒−

𝜅𝜏
2

]︂
−

− 𝜅

𝜅− 𝛾𝑐

[︁
𝑒−

𝛾𝑐
2 𝜏 − 𝑒−

𝜅
2 𝜏
]︁
𝑁. (110)

Fig. 5. Plot of the local quadrature variance of the two-mode
cavity light versus 𝜆 [Eq. (113)] for 𝜅 = 0.8, 𝑁 = 50, and
𝛾𝑐 = 0.4

Substituting this equation into (107) and carrying out
the integration, the spectrum of quadrature fluctua-
tions for the single-mode cavity light is as follows:

𝑆±(𝜔) = Δ𝑏2±

[︃
𝜅

𝜅− 𝛾𝑐

{︂ 𝛾𝑐

2𝜋

(𝜔 − 𝜔0)2 + (𝛾𝑐

2 )2

}︂
−

− 𝛾𝑐
𝜅− 𝛾𝑐

{︂ 𝜅
2𝜋

(𝜔 − 𝜔0)2 + (𝜅2 )
2

}︂]︃
−

−

[︃
2𝜅

𝜅− 𝛾𝑐

{︂ 𝛾𝑐

2𝜋

(𝜔 − 𝜔0)2 + (𝛾𝑐

2 )2

}︂
−

− 𝜅

𝜅− 𝛾𝑐

{︂ 𝜅
2𝜋

(𝜔 − 𝜔0)2 + (𝜅2 )
2

}︂]︃
. (111)

We realize that the quadrature variance in the fre-
quency interval between 𝜔′ = −𝜆 and 𝜔′ = 𝜆 is ex-
pressible as

Δ𝑏2±𝜆 =

𝜆∫︁
−𝜆

𝑆±(𝜔
′) 𝑑𝜔′, (112)

in which 𝜔′ = 𝜔−𝜔0. Now, taking (111) into account
and carrying out the integration, we easily obtain

Δ𝑏2±𝜆 = Δ𝑏2±

[︃
2𝜅

𝜋(𝜅− 𝛾𝑐)
tan−1

(︂
2𝜆

𝛾𝑐

)︂
−

− 2𝛾𝑐
𝜋(𝜅− 𝛾𝑐)

tan−1

(︂
2𝜆

𝜅

)︂]︃
−

−

[︃
4𝜅

𝜋(𝜅− 𝛾𝑐)
tan−1

(︂
2𝜆

𝛾𝑐

)︂
− 4𝜅

𝜋(𝜅− 𝛾𝑐)
tan−1

(︂
2𝜆

𝜅

)︂]︃
.

(113)

From Fig. 5, we can clearly observe that the local
quadrature variance approaches the global quadra-
ture variance, as the frequency difference increases.

5. Conclusion

We have studied the statistical and squeezing prop-
erties of the cavity light generated by a two-level
laser. In this optical system, 𝑁 two-level atoms avail-
able in a cavity coupled to a single-mode vacuum
reservoir are pumped to the top level from the bot-
tom one by means of the electron bombardment. Al-
though we consider the case where the cavity light
is interacting with the single-mode vacuum reservoir,
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we omit the case where the atoms inside the cavity are
interacting with the single-mode vacuum reservoir.

Employing the interaction Hamiltonian, we have
obtained the quantum Langevin equation for the cav-
ity mode operator and the equation of evolution for
the atomic operators. Based on the definition of the
stimulated emission decay constant, we infer that an
atom at the upper level and inside a closed cavity
emits a photon due to its interaction with the cav-
ity light. We certainly identify this process to be the
stimulated emission.

Applying the steady-state solutions of the equa-
tions of evolution of the expectation values of the
atomic operators and the quantum Langevin equa-
tion, we obtained the global and local photon statis-
tics of the single-mode light beam. We have found
that, for the two-level laser operating well above
threshold, the uncertainties in the plus and minus
quadratures are the same and satisfy the minimum
uncertainty relation. In view of this, we have identi-
fied the light generated by the laser operating well
above the threshold to be coherent. On the other
hand, the light generated by the laser operating at
the threshold is found to be chaotic. From the results
we have obtained, we have also observed that a large
part of the local mean photon number, as well as the
local photon number variance along with the local
quadrature variance, are confined in a relatively very
small frequency interval.
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М.Молла Гессессе

ВЗАЄМОДIЯ ДВОРIВНЕВИХ
АТОМIВ З ОДНОМОДОВИМ КВАНТОВАНИМ
ПОЛЕМ ВИПРОМIНЮВАННЯ

Дослiджуються статистичнi властивостi i стисливiсть свi-
тла в порожнинi, випромiненого дворiвневим лазером. Ця
оптична система мiстить 𝑁 дворiвневих атомiв у порожни-
нi, з’єднанiй iз одномодовим вакуумним резервуаром. Пе-
рехiд атомiв з нижнього на верхнiй рiвень здiйснюється пiд
дiєю бомбардування електронами. Використовуючи стацiо-
нарнi розв’язки рiвнянь еволюцiї для середнiх значень опе-
раторiв i квантове рiвняння Ланжевена, ми знаходимо ло-
кальну i глобальну статистику одномодового свiтлового пу-
чка. Показано, що для дворiвневого лазера, який працює
в режимi значно вище порога, невизначеностi додатних i
вiд’ємних квадратур рiвнi i задовольняють мiнiмуму спiв-
вiдношення невизначеностi. Тому свiтло вiд лазера, що пра-
цює вище порога, вважається когерентним. Але якщо лазер
працює близько до порога, свiтло є хаотичним. З отриманих
результатiв ми також бачимо, що велика частина середньої
локальної кiлькостi фотонiв, дисперсiя їх числа i дисперсiя
локальної квадратури обмеженi вiдносно вузьким iнтерва-
лом частот.

Ключ о в i с л о в а: середнє число фотонiв, дисперсiя ква-
дратури, вакуумний резервуар, шум.
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