E. OVODOK, 1 V. KORMOSH, 2 V. BILANYCH, 3 M. IVANOVSKAYA 1

- ¹ Laboratory of Thin Films Chemistry of Research Institute for Physical Chemical Problems, Belarusian State University (Minsk. Belarus)
- ² Institute of Analytical Technique, Uzhhorod National University (46, Pidhirna Str., Uzhhorod, Ukraine)
- ³ Department of Applied Physics, Faculty of Physics, Uzhhorod National University (46, Pidhirna Str., Uzhhorod, Ukraine; e-mail: vbilanych@gmail.com)

ACETONE VAPOR SENSORS BASED ON TIN DIOXIDE DOPED BY Au NANOPARTICLES

UDC 539

The effect of nano-sized gold particles on the adsorption-sensitive properties of SnO_2 -Au sensors under the detection of acetone vapors has been studied. Different techniques for the preparation of SnO_2 -Au nanocomposites with an average Au particle size of 2 nm were applied. It has been found that a fivefold increase in the sensor response to acetone vapors and threshold sensitivity (C_{lim}) of 0.1 ppm are achieved by adding gold to tin dioxide in the colloidal form during synthesis. While adding gold in ion form (Au (III)) leads to a growth of the sensor response to acetone vapors by 2.7 times and defines C_{lim} of 0.2 ppm. The slope of the calibration curves of the SnO_2 -Au sensors allows registering acetone vapors at concentrations ranging from C_{lim} to 5 ppm. This concentration range can be used for the express diagnostics in diabetes. The enhanced sensitivity of SnO_2 -Au sensors to acetone vapors can be explained by an increase in the adsorption-catalytic activity of tin ions as a result of the modifying effect of sulfate groups and the envolving of highly dispersed gold in the adsorption – catalytic process of oxidation of acetone molecules.

Keywords: SnO₂, gold nanoparticles, acetone gas sensors.

1. Introduction

To diagnose various diseases and to monitor the health status of patients with certain chronic illnesses, different methods to identify markers (substances accompanying these diseases in the human body) are used [1,2]. In particular, the possibilities of determining some markers in human exhale in dental diseases and diabetes are being widely studied [3,4]. Many of these biomarker substances are present in the exhale of a healthy person, but their concentration increases in the case of a disease.

When diagnosing diabetes, acetone vapors are determined in the exhale of a person, since the concentration of other substances is considerably lower. Different methods of determination of acetone vapors are being developed. In recent years, along with the most common method of chromatography [gas chromatography with a plasma photometric detector (PPD)],

intensive work is underway to establish the possibility to determine acetone vapors using sensors [5]. Metal oxide resistive sensors are predominantly studied among different types of sensors [5]. An intensive experimental work has been carried out to test different metal oxide materials as acetone sensors [5, 6]. The interest in these type of sensors is caused by the fact that this might be a new area of their application. The research being carried out should show how this direction will be applicable in the practice of express diagnostics.

The search for promising materials for acetone vapor sensors appeared mainly empirically. Different types of oxide materials doped with activating additives have been tested [5–7]. It was shown that the most promising are WO_3 - and ZnO-based materials. However, other semiconducting metal oxides may also be applicable. SnO_2 is a traditional and widely used material in the production of gas sensors for toxic and flammable gases. It is suitable for the machine technology of sensor manufacturing. Tin diox-

[©] E. OVODOK, V. KORMOSH, V. BILANYCH, M. IVANOVSKAYA, 2022

ide is characterized by high thermal and chemical stabilities and has a wide band gap of 3.6 eV. The gas sensitivity of SnO₂-based sensors is significantly improved, when doped with different additives [8,9].

Nano-sized oxide materials are used for acetone sensors. Different methods for the synthesis of nanosized metal oxides have been developed. This allows one to obtain particles with different morphology: rods, bars, sticks, threads, fibers, tubes, thin sheets and strips, flowers, petals, porous structures, etc. All these anisotropic particles with the size ranging from 120–500 nm to 1–2 μ m consist of small isotropic particles, the diameter of which corresponds to the nanometer range (less than 100 nm). Various organic additives are used in the synthesis of anisotropic nanoparticles of metal oxides (citrate ions, dimethylformamide, pluronic, PVP, surfactants). Such syntheses are carried out in an ethanol/H₂O mixture by the template or carbon-thermal method. The presence of C-containing substances not only promotes the growth of particles of a given shape, but also contributes to the formation of an oxide structure with a high concentration of structural defects. Partial reduction of oxides leads to the formation of oxygen vacancies and ions with a lower than the main oxidation state. In addition, the synthesis with carbon-containing additives promotes the formation of metastable phases of metal oxides (WO₃, In₂O₃, ZnO), which may have the adsorption and conductive properties different from that of the stable phases [5–7]. However, the influence of these factors remains poorly studied. It is known that the highest sensitivity threshold (0.007–0.067 ppm) to acetone vapors is achieved by doping SnO₂ with carbon and nitrogen [8, 9].

In the synthesis of SnO₂ materials for acetone sensors, SnCl₄ and SnCl₂ are most often used as precursors. Although it is known that the use of other tin salts makes it possible to exclude the negative effect of chloride ion impurities on the adsorption-catalytic properties of SnO₂-sensors. The modifying effect of sulfate ions on the surface state of different metal oxides is known. Sulfate ions improve their catalytic properties in oxidation reactions [10–13].

This work is aimed at the study of the effect of the nano-sized gold particles on the gas sensitivity of the SnO_2 –Au nanocomposites to acetone vapors. A distinctive feature of the studied SnO_2 –Au nanocomposites is that both components (SnO_2 , Au) are nano-

sized. Tin dioxide was synthesized via $SnSO_4$ as a starting material according to the previously developed technique that allows one to obtain nano-sized tin dioxide particles with surface modified by sulfate groups [11].

2. Materials and Experiments

2.1. Methods of synthesis

Tin dioxide (SnO₂) was synthesized by the sol-gel method via SnSO₄ salt. The synthesis technique includes a preliminary treatment of SnSO₄ (20 g) with $20 \text{ ml of H}_2SO_4 (98 \text{ wt.}\%) \text{ under the heating at } 200 \,^{\circ}\text{C}$ for 10 min. At the end of the reaction, the solution was diluted with distilled water up to 200 ml. Then the ammonia solution (5 vol.%) was added dropwise until pH 8 was reached. The obtained precipitate was separated by a the centrifugation and washed 3 times with distilled water. Next, 50 ml of distilled water and 0.1 ml of sulfuric acid (98 wt.%) were added to the precipitate. The suspension was ultrasonicated (f = 22 kHz, P = 130 W) for 2 minutes and $SnO_2 \cdot nH_2O$ sol was prepared. According to the TEM analysis, after the heating, $SnO_2 \cdot nH_2O$ xerogel at 600 °C, SnO₂ powder was obtained with a narrow particle size distribution and the average diameter $d \approx 5.5 \text{ nm} [10-12]$.

The SnO_2 –Au nanocomposites were obtained by adding the colloid solution of gold or $HAuCl_4$ solution into $SnO_2 \cdot nH_2O$ sol in the quantity corresponding to 0.15 at.% of Au relative to SnO_2 . The formation of SnO_2 –Au nanocomposite occurs under the thermal treatment of hydroxylated amorphous tin oxide containing nano-sized Au particles or Au ions, respectively.

To obtain the colloidal solution of gold, $AuCl_4^-$ ions were reduced by sodium borohydride in the presence of 5-(2-mercaptoethyl) tetrazole stabilizer [14]. The size of Au particles in a colloidal solution was 1.9 ± 0.1 nm. Au particles retain their size, when added to SnO_2 –Au nanocomposite. The sample obtained with the use of the gold colloidal solution is denoted as SnO_2 –Au 0 .

No gold particles were detected by the TEM method in SnO_2 –Au nanocomposites obtained by adding Au (III) into the $SnO_2 \cdot nH_2O$ sol. This can be explained by both the small size and the specific morphology of the gold particles. According to the XPS data presented below, the gold content on the sur-

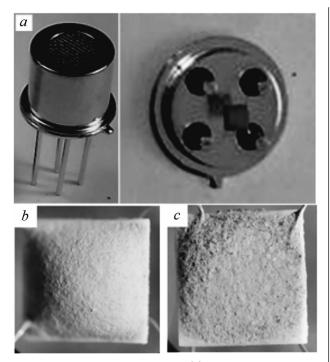


Fig. 1. Photographs of the sensor (a) and sensing element of SnO₂ (b) and SnO₂–Au^{III} (c)

face of this sample is 5 times lower than the amount added into the sol during the synthesis and constitutes 0.03 at.%. This result may indicate the encapsulation of Au particles with tin dioxide under conditions of joint formation of the $\mathrm{SnO_2}\text{-}\mathrm{Au}$ nanocomposite from a colloidal solution of $\mathrm{SnO_2} \cdot n\mathrm{H_2O} + \mathrm{Au^{III}}$ during thermal dehydration. The optical spectrum of such composite allows us to suggest that the gold particles are about 2 nm in size. This sample is denoted as $\mathrm{SnO_2}\text{-}\mathrm{Au^{III}}$ (see Tabl. 1).

2.2. Methods of characterization

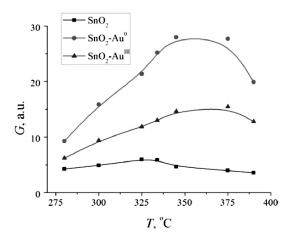
The samples were characterized by the transmission electron microscopy (TEM), infrared (IR) spec-

Table 1. The samples studied in this paper

Sensing material	Au stat	Stabilizer of Au nanoparticles	$d_{ m Au},{ m nm}$
	– Nanoparticles	5-(2-mercapto-	-1.9 ± 0.1
$\mathrm{SnO}_{2} ext{-}\mathrm{Au^{III}}$	$\mathrm{HAuCl_4}$	ethyl)-tetrazole –	~2

troscopy, X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy. The grain size distribution was ascertained on a LEO-906E transmission electron microscope. The IR-spectra were recorded on an AVATAR-330 (Thermo Nicolet) spectrometer equipped with a Smart Diffuse Reflectance accessory in the wavelength range of 400– $4000~\rm cm^{-1}$. The XPS spectra were measured from the surface of the original samples. XPS signals were recorded by using a Thermo Scientific K-Alpha XPS system (Thermo Fisher Scientific Inc., UK) equipped with a microfocused monochromatic Al K α X-ray source (1486.68 eV). UV-Vis absorption spectra were recorded by using a Shimadzu UV-2550 spectrophotometer.

2.3. Manufacturing the sensors and measuring their characteristics


To manufacture the sensing elements, the SnO_2 and SnO_2 –Au powders were ground thoroughly in ethanol to obtain the corresponding pastes. The pastes were used to form thick-film layers on microplatforms for sensors. The general view of the sensor and sensing element is depicted in Fig. 1. The thickness of the sensitive layer was about 150 $\mu\mathrm{m}$.

The standard microplatforms made of aluminium oxide substrates with platinum heater and measuring electrodes were used. The microplatform width was 1.6 mm, and the thickness was 0.25 mm. The sensing elements were mounted in a standard casing (see Fig. 1, a). The resistance of the sensors in wet air (R_0) and standard acetone-air mixtures (R_g) were measured in a constant voltage mode. The temperature-dependent responses of the sensors were mainly acquired at 50 ppm of acetone vapors.

3. Results and Discussionl

3.1. Gas-sensing properties

The dependence of the sensor response on the working temperature, when detecting 50 ppm acetone vapors, are presented in Fig. 2. Adding gold into the nanocomposites leads to a significant growth of the output signal of the $\rm SnO_2$ -based sensors. The response increases by 5 times in the case of $\rm SnO_2$ -Au^{III} sensors and by 2.7 times in the case of $\rm SnO_2$ -Au^{III} sensors in comparison with $\rm SnO_2$ sensors. The optimal temperature interval for the detection of acetone vapors is at higher temperature for sensors contain-

 $\it Fig.~2.$ The sensor response vs working temperature graphs of the SnO₂, SnO₂–Au^{III}, and SnO₂–Au⁰ sensors under detection of acetone vapors (50 ppm)

ing gold particles. Effective acetone detection is observed for these sensors in the interval from 300 to 390 °C with a maximum at 340–370 °C. The wide temperature interval of the acetone vapors detection might indicate the implementation of an additional and more efficient detection mechanism on the surface of the $\rm SnO_2$ –Au sensors in comparison with the $\rm SnO_2$ sensor.

Dynamic parameters can indicate different mechanisms of acetone detection by SnO₂-Au⁰ sensor. Figure 3 shows the dependences of the sensor responses to 10 ppm of acetone vapors vs time. The response time measured for SnO₂-Au sensors is short enough (3–6 s). Recovery to 70% of initial parameters of SnO₂-Au⁰ sensors, after the end of the gas supply, occurs quickly, and then it slows down and becomes as slow as for SnO₂ sensors. This may indicate the difficulty in the desorption of acetone molecules or products of its oxidation. The changes in the electrical characteristics of ${\rm SnO_2-Au^0}$ sensors can be described by two of the known mechanisms: the direct adsorption-desorption of volatile organic compounds on the SnO₂ surface [7, 15] and oxidation-reduction, the so-called "oxygen vacancy model" [16]. It was found that acetone molecules are adsorbed at the SnO₂ surface on tin ions by the oxygen of the carbonyl group with the transfer of electron density to the oxide [15, 17]. The intermediate and final products of the adsorption of ketones on oxides have been studied in [18]. Surface acetate is the most common product of the

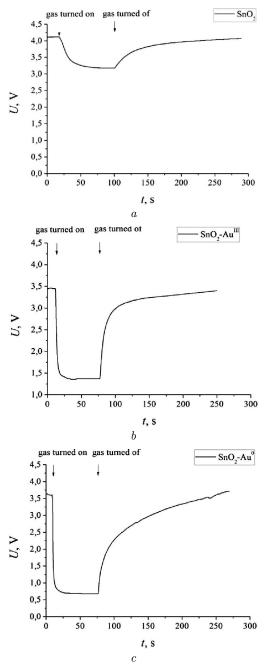


Fig. 3. Dynamic characteristics of the SnO_2 (a), SnO_2 — Au^{III} (b), and SnO_2 — Au^0 (c) sensors under detection of acetone vapors (10 ppm)

chemisorption of ketones on the surfaces of oxides at 350 °C [17, 19].

The study of sensors for the determination of low concentrations of acetone vapors (less than 5 ppm)

Sample	Au, at%, (XPS)	BE, eV Au $4f_{5/2}$	$\alpha = \text{BE Sn } 3d_{5/2}$ KE Sn MNN (XPS)	BE, eV S 2p	S-O (IR)
$ m SnO_2-Au^0$ $0.15~at\%$	0.12	84.0 (Au ⁰)	SnO_2 , Sn^{2+} , impurity $[SnO_5V_0]$	$169.3 \\ SO_4^{2-}$	SO_4^{2-} , bident SO_3^{2-} , monodent
$ m SnO_2-Au^{III}$ $0.15~at\%$	0.03	83.9 (Au ⁰) 84.9 (Au ⁺ Au _n)	SnO_2	$169.3 \\ SO_4^{2-}$	SO_4^{2-} , bident

Table 2. The samples studied in this paper

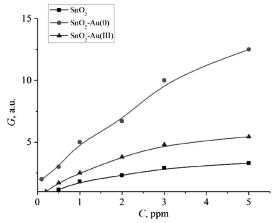


Fig. 4. Dependences of the response of SnO_2 , SnO_2 — Au^0 , and SnO_2 — Au^{III} sensors on the concentration of acetone vapors

deserves a special attention. This interval can be used for the express diagnosis of diabetes. As is known, the acetone content is 0.3–0.9 ppm in the exhale of a healthy person. The acetone concentration in the exhale may grow up to 1.8–5.0 ppm for a person with diabetes. Figure 4 shows the dependences of the response of sensors on the concentration of acetone vapors. The slopes of the the curves for SnO₂–Au sensors allow one to distinguish between small changes in the acetone vapor concentration from a minimal detectable value up to 5 ppm. The SnO₂ sensors do not possess such ability.

3.2. Structural features

A significant difference in the properties of the $\rm SnO_2-Au^0$ and $\rm SnO_2-Au^{III}$ sensors is observed. The structural features of these nanocomposites are considered to explain the differences in the properties of the sensors. The structural characteristics of these nanocomposites were studied in details in our previous work [12]. The states of Au and the surface of $\rm SnO_2$ in

 ${\rm SnO_2-Au^0}$ and ${\rm SnO_2-Au^{III}}$ nanocomposites are presented in Table 2. Some results on the study of samples by the XPS, Auger, and IR spectroscopy methods are also presented.

According to the XPS data, the gold content on the surface of the SnO₂-Au samples is different. The amount of 0.12 at.% was found in SnO₂-Au⁰ sample and 0.03 at.% – in SnO_2 – Au^{III} sample. The Au4f and Au 3d lines in the spectra of SnO_2 -Au⁰ and SnO₂-Au^{III} samples have low intensity and large width (FWHM $3d_{5/2} \sim 4$ eV), which is a result of the small size of gold particles. The shape of the Au $4f_{7/2}$ and Au $4d_{5/2}$ lines with the maxima at 84.0 ± 0.1 and 335.2 ± 0.1 eV indicates the occurrence of the $\mathrm{Au^0}$ state in the SnO₂-Au⁰ sample. In the XPS spectrum of SnO_2 -Au^{III} sample, the Au $4d_{5/2}$ line is hardly distinguishable, whereas two Au $4f_{7/2}$ low-intensity peaks with BE = 83.9 and 84.9 eV are registered. The first peak corresponds to the Au⁰ state. The second one can be attributed to Au⁺ state [20]. Thermal treatment at 600 °C should have evoked the complete transformation of Au^{III} ions to the metal state of gold (Au⁰). However, this conversion might be hindered in $SnO_2 \cdot nH_2O + Au^{III}$ amorphous system, by resulting in the stabilization of the partially oxidized state of gold on the surface of gold clusters – $(Au_n)Au^+$.

A slight shift in the position of the maximum of the Sn $3d_{5/2}$ line at 487.3 ± 0.1 eV toward lower binding energies in the spectrum of $\mathrm{SnO_2}\text{-}\mathrm{Au_0}$ sample may be caused by imperfections of its structure caused by the appearance of oxygen vacancies $[\mathrm{SnO_5V_0}]$ in the environment of tin cations [21]. A large oxygen deficiency may cause the appearance of $\mathrm{Sn^{2+}}$ cations in the $\mathrm{SnO_2}$ structure [22].

The modified Sn Auger parameter ($\alpha = \text{BE Sn}$ $3d_{5/2} + \text{KE Sn MNN AES}$) [20] is a more reliable indicator of tin state. The measured value of this parameter indicates the occurrence of SnO₂ phase in

Table 3. Comparison of the properties of some acetone sensors

Material	Morphology	$C_{\mathrm{Lim}},$ ppm	Temp.	$G = R_0/R_g,$ 50 ppm	Type of sensor	Ref.
SnO_2	*NP, $d_{\rm SnO_2} = 46$ nm	0.5	320	6	Planar electrode substrate	This paper
SnO ₂ –Au	NP, $d_{\mathrm{SnO}_2} = 46$ nm $d_{\mathrm{Au}} = 1.9$ nm	0.1	340	30	Planar electrode substrate	Same
$\mathrm{SnO}_2 ext{-}\mathrm{Au^{III}}$	NP, $d_{\mathrm{SnO}_2} = 46$ nm $d_{\mathrm{Au}} = 2$ nm	0.2	340	16	Planar electrode substrate	"
SnO_2	Multichannel **NFs $d = 150-250$ nm		310	11.4	Alumina substrate	[27]
SnO_2	Hollow micro-spheres 600–900 nm	-	280	-	Ceramic tube	[28]
Au–SnO ₂	$d_{\mathrm{SnO}_2} = 2050~\mathrm{nm}$	5	220	30		
SnO_2 Rh- SnO_2	NFs $d = 150 \text{ nm}$ $d_{\text{SnO}_2} = 610 \text{ nm}$	- 1	200 200	6 60	Planar electrode substrate	[29]
SnO_2 Ru- SnO_2	NFs $d=120$ –150 nm $d_{\mathrm{SnO}_2}=6$ –9 nm	5 0.5	200 200	4 40	Planar electrode substrate	[30]
SnO_2	Nanospheres,		290	12	Ceramic tube	[30]
Au/SnO ₂	$d_{\mathrm{SnO}_2} = 712 \text{ nm},$	5	280	71		
$\begin{array}{c} {\rm Pd/SnO_2} \\ {\rm PdAu/SnO_2} \end{array}$	$d_{ m Au}=3$ –10 nm	0.1	250 250	42 109		

^{*}NP - nanoparticles; **NFs - nanofibers.

 $\rm SnO_2$ and $\rm SnO_2-Au^{III}$ samples. In addition, this does not exclude $\rm Sn^{2+}$ admixture occurred in $\rm SnO_2-Au^0$ sample.

The S 2p peak with BE ≈ 169.3 eV attributed to SO₄²⁻ ion is registered in the XPS spectra of the samples [23]. The sulphur content was estimated on the surface of the samples to be 2.7–3.1 at.%.

IR spectroscopic data confirm the presence of SO_x -groups in the samples. Bidentate bound sulfate groups SO_4^{2-} predominate [24]. The line at 820 cm⁻¹ in the spectrum of SnO_2 – Au^0 sample can be an attribute of the monodentate O-coordinated SO_3 group on SnO_2 surface. Annealing the samples at 600 °C also promotes the formation of sulfate groups on the surface of tin dioxide.

The presence of sulfate-sulfite groups in the samples can be explained by the adsorption of SO_2 on SnO_2 surface. Sulphate ions, included in $SnO_2 \cdot nH_2O$ sol from precursors ($SnSO_4$, H_2SO_4), are source of SO_2 . In the case of SnO_2 -Au⁰ sample, the Scontaining stabilizer of Au colloidal particles 5-(2-mercaptoethyl)tetrazole is an additional source of

SO₂. Thermal destruction of this substance occurs in stages [25]. A large amount of gaseous products is formed as a result of the destruction of the tetrazole ring. Sulfur removal occurs at the last stage (500–600 °C). These factors have a significant effect on the formation of the crystal structure and surface of Au and SnO₂ particles from amorphous $SnO_2 \cdot nH_2O$ xerogel. These factors also explain the appearance of structural defects, primarily oxygen vacancies and $\mathrm{Sn^{2+}}$ cations in the $\mathrm{SnO_2-Au^0}$ sample, since structural oxygen from $SnO_2 \cdot nH_2O$ and SnO_2 can take part in the oxidation of the stabilizer of Au colloidal particles. Disordered fragments of the tin dioxide structure (Sn_nO_{2n-1}) and the Au/Sn_nO_{2n-1} boundaries can act as oxygen activation centers.

It is known [13,26] that the adsorbed forms of SO_2 change the nature of active centers on the surface of metal oxides. They increase the strength of Lewis acid sites (surface metal ions) due to the induction effect. The induction effect consists in a shift of the electron density from tin cations by SO_2 molecules.

Thus, two factors – the defectiveness of the SnO_{2-x} structure and the presence of adsorbed forms of SO_2 allows explaining the high sensitivity of $\mathrm{SnO}_2\mathrm{-Au}^0$ sensors to acetone vapors. The higher response of the $\mathrm{SnO}_2\mathrm{-Au}^0$ sensors as compared to the $\mathrm{SnO}_2\mathrm{-Au}^{\mathrm{III}}$ sensors is explained by the high defectiveness of the SnO_2 surface and the high concentration of Au on their surface.

Table 3 shows some parameters of the sensors studied in this work in comparison with other SnO₂ sensors. In the selected tin dioxide sensors, the synthesis of the sensitive material was carried out, by using carbon-containing organic substances and polymers. The sensors based on SnO₂ without dopants and doped with Au are discussed in [27,28]. For comparison, SnO₂ sensors doped with Ru or Rh [29, 30] are considered. Ruthenium, like gold, is a catalyst for the partial oxidation of organic substances. The catalytic activity of rhodium is poorly studied. The PdAu/SnO₂ sensor with a bimetallic additive is characterized by the highest sensitivity threshold to acetone vapors among the SnO₂ sensors doped with noble metals [31].

The $\rm SnO_2$ –Au nanocomposites investigated in this work differ from the materials listed in Table 3 by the smallest sizes of $\rm SnO_2$ and Au particles, as well as by a low concentration of gold. However, they are highly sensitive to low concentrations of acetone vapors. The threshold sensitivity of $\rm SnO_2$ –Au₀ sensors is comparable to that of $\rm PdAu/SnO_2$ sensor. This bimetallic sensor is characterized by a synergistic effect that increases their sensitivity. Other sensors (Au–SnO₂; Au/SnO₂; Rh–SnO₂; Ru–SnO₂) have a lower threshold sensitivity to acetone.

The response of $\mathrm{SnO_2-Au^0}$ sensor is comparable or less than that of other $\mathrm{Au-SnO_2}$ sensors when detecting 50 ppm acetone. This can be explained by the lower content of Au (0.15 at% or 0.2 wt%.) in $\mathrm{SnO_2-Au^0}$ than in other sensors with higher response – $\mathrm{Au/SnO_2}$, $\mathrm{PdAu/SnO_2}$ (0.9507%) [30], Rh- $\mathrm{SnO_2}$ (0.5 mol. % Rh) [30], Ru- $\mathrm{SnO_2}$ (2 mol.% Ru) [31].

4. Conclusions

The addition of colloidal gold with a particle size of 1.9 ± 0.1 nm, stabilized by 5-(2-mercaptoethyl) tetrazole, into the $\mathrm{SnO}_2\cdot n\mathrm{H}_2\mathrm{O}$ sol enhances the sensitivity of the SnO_2 –Au⁰ sensors to low concentrations of ace-

tone vapors. The threshold sensitivity of SnO_2 -Au⁰ sensors to acetone is 0.1 ppm.

The slopes of the concentration curves of $\rm SnO_2-Au^0$ sensors allow one to detect acetone concentrations in the interval from 0.1 ppm to 5 ppm, which is necessary for the express diagnosis of diabetes.

The high sensitivity of SnO_2 –Au sensors to acetone vapors is due to the effect of SO_4^- groups on the adsorption activity of SnO_2 surface and the evolving of highly dispersed Au in the process of oxidation of acetone molecules.

This work was performed within the framework of an international Ukrainian-Belarusian grant (Belarusian RFFR grants No. X21UKRG-002), Himreagent 2021–2025 No. 2.1.04.02.

- D. Hill, R. Binions. Breath analysis for medical Diagnosis. Inter. J. on Smart Sensing and Intelligent Systems 5, 401 (2012).
- B. Buszewski, M. Kesy, T. Ligor, A. Amann. Human exhaled air analytics: Biomarkers of diseases. *Biomed. Chromatogr.* 21, 553 (2007).
- V. Saasa, T. Malwela, M. Beukes, M. Mokgotho, Ch-Pu Liu, B. Mwakikunga. Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. *Diagnostics* 8, 12 (2018.
- M. Righettoni, A. Tricoli. Toward portable breath acetone analysis for diabetes detection. J. Breath. Res. 5, 037109 (2011).
- M. Masikini, M. Chowdhury, O. Nemraoui. Review-metal oxides: Application in exhaled breath acetone chemiresistive sensors. J. Electrochem. Soc. 167, 037537 (2020).
- N. Alizadeh, H. Jamalabadi, F. Tavoli. Breath acetone sensors as non-invasive health monitoring systems: A review. IEEE Sensors Journal 20, 5 (2020).
- S. Americo, E. Pargoletti, R. Soave, F. Cargnoni, M.I. Trioni, G.L. Chiarello, G. Cerrato, G. Cappelletti. Unveiling the acetone sensing mechanism by WO₃ chemiresistors through a joint theory-experiment approach. *Electrochimica Acta* 371, 137611 (2020).
- J. Hu, C. Zou, Y. Su, M. Li, Z. Yang, M. Ge, Y. Zhang. One-step synthesis of 2D C₃N₄-tin oxide gas sensors for enhanced acetone vapor detection. Sens. Actuators B Chem. 253 641 (2017).
- X. Guan, Y. Wang, P. Luo, Y. Yu, D. Chen, X. Li. Incorporating N atoms into SnO₂ nanostructure as an approach to enhance gas sensing property for acetone. Nanomaterials 9, 445 (2019).
- E. Ovodok, M. Ivanovskaya, D. Kotsikau, V. Kormosh, I. Alyakshev. Kotsikau, V. Kormosh, I. Alyakshev. The structure and the gas sensing properties of nanocrystalline tin dioxide synthesized from tin(II) sulphate physics. Chem. Appl. Nanostr. 313 (2015).

ISSN 0372-400X. Укр. фіз. журн. 2022. Т. 67, № 3

- E. Ovodok, M. Ivanovskaya, D. Kotsikau, V. Kormosh,
 P. Pylyp, V. Bilanych. Structural characterization and gas sensing properties of nano-sized tin dioxide material synthesized from tin(II) sulfate. *Ukr. J. Phys.* 66, 803 (2021).
- M. Ivanovskaya, E. Ovodok, T. Gaevskaya, D. Kotsikau, V. Kormosh, V. Bilanych, M. Micusik. Effect of Au nanoparticles on the gas sensitivity of nanosized SnO₂. Mater. Chem. Phys. 258, 123858 (2021).
- L.M. Kustov, V.B. Kazansky, F. Figueras, D. Tichit. Investigation of the acidic properties of ZrO₂ modified by SO₂⁻⁴ anions. J. Catal. 150, 143 (1994).
- C. Guhrenz, A. Wolf, M. Adam, L. Sonntag, S.V. Voitekhovich, S. Kaskel, N. Gaponik, A. Eychmüller. Tetrazolestabilized gold nanoparticles for catalytic applications. Z. Phys. Chem. 231, 51 (2017.
- A.A. Abokifa, K. Haddad, J. Fortner, C.S. Lo, P. Biswas. Sensing mechanism of ethanol and acetone at room temperature by SnO₂ nano-columns synthesized by aerosol routes: theoretical calculations compared to experimental results. J. Mater. Chem. A 6, 2053 (2018).
- A. Tricoli, M. Righettoni, A. Teleki. Semiconductor gas sensors: Dry synthesis and application. Angew. Chem. Int. Ed. 49, 7632 (2010).
- W. Thoren, D. Kohl, G. Heiland. Kinetic studies of the decomposition of CH₃COOH and CH₃COOD on SnO₂ single crystals. Surface Sci. 162, 402 (1985).
- P.G. Harrison, B.M. Maunder. Tin oxide surfaces. Part 11. Infrared study of the chemisorption of ketones on tin(IV) oxide. J. Chem. Soc., Faraday Trans. I 80, 1329 (1984).
- A.-K. Elger, C. Hess. Elucidating the mechanism of working SnO₂ gas sensors using combined operando UV/Vis, Raman, and IR spectroscopy. *Angew. Chem. Int. Ed.* 58, 15057 (2019).
- Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Edited by D. Briggs, M.P. Seah (John Wiley and Sons Ltd., 1983).
- Y. Yang, Y. Wang, S. Yin. Oxygen vacancies confined in SnO₂ nanoparticles for desirable electronic structure and enhanced visible light photocatalytic activity. Appl. Surf. Sci. 420, 399 (2017).
- S. Shi, D. Gao, Q. Xu, Z. Yang, D. Xue. Singly-charged oxygen vacancy-induced ferromagnetism in mechanically milled SnO₂ powders. RSC Advances 4, 45467 (2014).
- C.L. Lau, G.K. Wertheim. Oxidation of tin: An ESCA study. J. Vac. Sci. Technol. 15, 622 (1978).
- K. Nakamoto. Infrared and Raman spectra of inorganic and coordination compounds (John Wiley & Sons, Ltd., 1986).
- S.V. Voitekhovich, A. Wolf, C. Guhrenz, A.S. Lyakhov, L.S. Ivashkevich, M. Adam, N. Gaponik, S. Kaskel, A. Eychmueller. 5-(2-Mercaptoethyl)-1H-tetrazole: Facile synthesis and application for the preparation of water soluble nanocrystals and their gels. Chem. Eur J. 22, 14746 (2016)
- F. Berger, E. Beche, R. Berjoan, D. Klein, A. Chambaudet. An XPS and FTIR study of SO₂ adsorption on SnO₂ surfaces. Appl. Surf. Sci. 93, 9 (1996).

- T. Wang, S. Ma, L. Cheng, X. Jiang, M. Zhang, W. Li, W. Jin. Facile fabrication of multishelled SnO₂ hollow microspheres for gas sensing application. *Materials Letters* 164, 56 (2016).
- Y. Li, L. Qiao, D. Yan, L. Wang, Y. Zeng, H. Yang. Preparation of Au-sensitized 3D hollow SnO₂ microspheres with an enhanced sensing performance. J. Alloys and Compounds 586, 399 (2014).
- 29. X. Kou, N. Xie, F. Chen, T. Wang, L. Guo, C. Wang, Q. Wang, J. Ma, Y. Sun, H. Zhang, G. Lu. Superior acetone gas sensor based on electrospun SnO₂ nanofibers by Rh doping. Sensors and Actuators B: Chemical 256, 861 (2018).
- X. Kou, F. Meng, K. Chen, T. Wang, P. Sun, F. Liu, X. Yan, Y. Sun, F. Liu, K. Shimanoe, G. Lu. High-performance acetone gas sensor based on Ru-doped SnO₂ nanofibers. Sensors and Actuators B: Chemical 320, 128292 (2020).
- 31. G. Li, Z. Cheng, Q. Xiang, L. Yan, X. Wang, J. Xu. Bimetal PdAu decorated SnO₂ nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sensors and Actuators B: Chemical 283, 590 (2019).
 Received 01.02.22

€. Оводок, В. Кормош,

В. Біланич, М. Івановська

НАПІВПРОВІДНИКОВІ ОКСИДИ МЕТАЛІВ, ЛЕГОВАНІ НАНОЧАСТИНКАМИ ЗОЛОТА, ДЛЯ ВИКОРИСТАННЯ В ГАЗОВИХ СЕНСОРАХ АЦЕТОНУ

Досліджено вплив нанорозмірних частинок золота на адсорбийно-чутливі властивості сенсорів на основі SnO₂-Au при детектуванні парів ацетону. Були використані різні методи приготування нанокомпозитів SnO₂-Au із середнім розміром частинок Au 2 нм. Встановлено, що п'ятикратне збільшення відгуку сенсора на пари ацетону та порогова чутливість ($C_{
m lim}$) 0,1 ppm досягаються при додаванні золота до діоксиду олова в колоїдній формі в процесі синтезу. Додавання золота в іонній формі (Au(III)) приводить до збільшення відгуку сенсора на пари ацетону в 2,7 рази і визначає C_{lim} 0,2 ppm. Нахил градуювальних кривих сенсорів SnO₂-Аи дозволяє реєструвати пари ацетону в діапазоні концентрацій від C_{lim} до 5 ppm. Цей діапазон концентрацій можна використовувати для експрес-діагностики цукрового діабету. Підвищену чутливість SnO2-Au-сенсорів до парів ацетону можна пояснити підвищенням адсорбційнокаталітичної активності іонів олова в результаті модифікуючої дії сульфатних груп та залучення високодисперсного золота до адсорбційно-каталітичного процесу окислення молекул апетону.

K лючові слова: SnO2, наночастинки золота, сенсори ацетону.