M.G. SRINIVAS, ^{1, 2} H.C. MANJUNATHA, ³ K.N. SRIDHAR, ¹ A.C. RAJ, ² P.S. DAMODARA GUPTA ³
¹ Department of Physics, Government First Grade College (Mulbagal-563131 Karnataka, India)
² Department of Physics, St. Joseph's college (autonomous), Affiliated to Bharathidasan University (<i>Tiruchirappalli-620002, Tamilnadu, India</i>)
³ Department of Physics, Government College for Women (Kolar-563101 Karnataka, India; e-mail: manjunathhc@rediffmail.com)
A SYSTEMATIC STUDY OF PROTON DECAY IN SUPERHEAVY ELEMENTS

We have studied the proton decay in almost all superheavy nuclei with atomic number Z = 104-126. We have calculated the energy released during the proton decay (Q_P) , penetration factor (P), normalization factor (F), and the proton decay half-lives. The latter are also longer than that of other decay modes such as the alpha decay and spontaneous fission. The competition of the proton decay with different decay modes reveals that the proton decay is not the dominant decay mode in the superheavy nuclei region. This means that superheavy nuclei are stable against the proton decay.

Keywords: radioactivity, superheavy nuclei, proton decay.

1. Introduction

UDC 539

The phenomenon of the proton emission from nuclear ground states limits the possibilities of the creation of more exotic proton-rich nuclei that are usually produced by fusion-evaporation nuclear reactions. In the energy domain of radioactivity, a proton can be considered as a point charge having the highest probability of being present in the parent nucleus. Goncallves et al. [1] studied the two-proton radioactivity of nuclei of the mass number A < 70 using the effective liquid drop model. Delion et al. [2] reviewed the theories of proton emission to analyze the properties of nuclear matter. Maglione et al. [3] analyzed the proton emission from the some deformed nuclei. Delsanto et al. [4] investigated the β -delayed proton emission of ⁶⁹Kr and ⁶⁸Se and extracted their proton separation energies, half-lives and excitation energies. Alavi et

al. [5] calculated the proton radioactivity half-lives of 45 proton emitters by the WKB method and observed a decrease in the values of calculated half-lives using the orientation angle-dependent formalism. Raciti et al. [6] measured the emission of two protons from the decay of 18 Ne excited states. Baye *et al.* [7] studied that a proton is emitted during β decay of one neutron halo nuclei. Feix et al. [8] computed the decay widths of proton emission for Z = 51 to 71 nuclei using the droplet model potentials and spectroscopic data from the shell model considerations. Anguiano et al. [9] investigated the photo-emission of two protons from ¹²C, ¹⁶O, and ⁴⁰Ca nuclei for the study of short-range correlations. Coniglione et al. [10] explored high-energy proton emission in heavy ion reactions close to the Fermi energy by investigating the production mechanism of energetic protons in an experiment performed with a MEDEA detector.

Giusti et al. [11] developed the theoretical framework of the emission of two protons in electron-

[©] M.G. SRINIVAS, H.C. MANJUNATHA, K.N. SRIDHAR, A.C. RAJ, P.S. DAMODARA GUPTA, 2022

ISSN 0372-400Х. Укр. фіз. журн. 2022. Т. 67, № 9

induced reactions. Ludewigt et al. [12] studied the proton emission in alpha-induced reactions at 43 MeV per nucleon. Guzman et al. [13] analyzed the proton emission from proton-rich nuclei and calculated the half-lives using the effective liquid drop model. Delion et al. [14] also studied the proton emission. Dong et al. [15] theoretically calculated the halflives of proton emitters using a generalized liquid drop model (GLDM) and the WKB approximation. Enrico Maglione et al. [16] studied the proton emission from ¹²⁵Pm and discussed the behavior of half-lives as a function of the deformation, spin of the decaying state, and energy of the emitted protons. Arumugam et al. [17] investigated the proton emission, gamma deformation, and the spin of the isomeric state of ¹⁴¹Ho and revealed that the proton emission measurements could be a precise tool to probe triaxial deformations and other structural properties of exotic nuclei beyond the proton drip-line. Duarte et al. [18] studied the half-lives for the proton emission, alpha decay, cluster radioactivity, and cold fission processes theoretically. Ferreira et al. [19] also studied the proton radioactivity from spherical nuclei theoretically using a relativistic density functional derived from the meson exchange and point coupling The literature surveys testify that there is a lack of studies of the proton emission from superheavy nuclei. Superheavy nuclei are unstable and decay through various decay modes. In the present work, we will consider the proton emission from superheavy nuclei.

2. Theoretical Framework

The half-live for the proton emission is calculated using the equation

$$T_{1/2} = \frac{h \ln(2)}{2\pi\Gamma},$$
 (1)

where Γ is the decay width and is calculated using the relation

$$\Gamma = \frac{S\bar{F}h^2\bar{P}}{16\pi^2m}.$$
(2)

Here, S, F, and P are spectroscopic, normalization, and penetration factors, respectively, \bar{F} is the average normalization factor

$$\bar{F} = \frac{2}{\pi} \int_{0}^{\pi/2} F(\theta) d\theta, \qquad (3)$$

where $F(\theta)$ is the angle-dependent normalization factor

$$\bar{P} = \int_{0}^{\pi/2} P(\theta) \sin \theta d\theta.$$
(4)

Here, $P(\theta)$ is the angle-dependent penetration factor. In the present work, the semiclassical WKB method is used to calculate the angle-dependent penetration factor, $P(\theta)$, and the angle-dependent normalization factor, $F(\theta)$ [20]:

$$F(\theta) = \frac{1}{\frac{1}{2} \int_{r_1(\theta)}^{r_2(\theta)} \frac{1}{k(r,\theta)} dr},$$
(5)

$$P(\theta) = \exp\left[-2\int_{r_2(\theta)}^{r_3(\theta)} k(r,\theta) \, dr\right]. \tag{6}$$

In the above relations, $r_1(\theta)$, $r_2(\theta)$, and $r_3(\theta)$ are the classical turning points at each angle which are defined as the roots of $Q - V(r, \theta) = 0$ and $r_1(\theta) < r_2(\theta) < r_3(\theta)$. Here, $k(r, \theta)$ is calculated using the relation

$$k(r,\theta) = \sqrt{\frac{8\pi^2 m}{h^2} [Q - V(r,\theta)]},$$
(7)

where Q is the energy released during the proton emission, and V is the total potential which is taken as the sum of the nuclear, spin-orbit, Coulomb, and centrifugal terms

$$V = V_N + V_{\rm spin-orbit} + V_{\rm coul} + V_L \tag{8}$$

Nuclear potential V_N is calculated using the equation

$$V_N = -V_R f(r, R, a)$$

with

$$V_R = -\left[47 - 0.46\frac{Z}{A^{1/3}} + 38\frac{(A - 2Z)}{A}\right] \text{ MeV}, \quad (9)$$

where $f(r, R, a) = \frac{1}{1 + e^{(r-R)/a}}$ with $R = 1.17A^{1/3}$ Coulomb term is considered as

$$V_C = \begin{cases} \left(\frac{Ze^2}{8\pi\epsilon_0 R_c}\right) \left(3 - \frac{r^2}{R_C^2}\right) & r \le R_c, \\ \frac{Ze^2}{4\pi\epsilon_0 r} & r > R_c, \end{cases}$$
(10)

ISSN 0372-400X. Укр. фіз. журн. 2022. Т. 67, № 9

superheavy nuclei for proton decay							
Z	Mass number of Studied isotopes	Mass number of isotopes for which Q_P is $+V_e$					
104	240-339	240					
105	241 - 339	241 - 251					
106	244 - 339	240 - 243					
107	247-339	247 - 257					
108	250-339	250 - 253					
109	253 - 339	253-263					
110	256 - 339	256 - 261					
111	259 - 339	259 - 267					
112	262 - 339	262 - 265					
113	266 - 339	266 - 276					
114	269 - 339	269 - 271					
115	272 - 339	272 - 280, 291					
116	275 - 339	275 - 279					
117	278 - 339	278-287, 291					
118	281 - 339	281 - 285					
119	284 - 339	284 - 296					
120	287 - 339	287 - 292					
121	290 - 339	290-303					
122	294 - 339	294 - 299					
123	297 - 339	297-309					
124	300-339	300,301					
125	303-339	303 - 315					
126	306-339	308 - 329					

Table 1 List of studied

where $R_C = 1.21 (A_d)^{1/3}$ in the present work is taken

$$V_{\rm spin-orbit} = V_{\rm SO}(\boldsymbol{\sigma} \,\mathbf{L})\lambda_{\pi}^2 \frac{1}{r} \frac{d}{dr} f(r, R_{\rm SO}, a_{\rm SO}).$$
(11)

Here, $R_{\rm SO} = 1.01 A^{1/3}$, $a_{\rm SO} = 0.75$, (all of the lengths are in fermi), $V_{\rm SO} = 6.2$ MeV, m = A/A + 1, $\lambda_{\pi}^2 \approx$ $\approx 2.0 \text{ fm}^2$, and σ is the three-dimensional Pauli ma- trix

$$\boldsymbol{\sigma} \mathbf{L} = \begin{cases} L & \text{for } j = L + \frac{1}{2}, \\ -(L+1) & \text{for } j = L - \frac{1}{2} > 0. \end{cases}$$
(12)

The centrifugal term is taken as

$$V_L = L(L+1)\frac{h^2}{8\pi^2\mu r^2},$$
(13)

where

 $\mu = \frac{A}{A+1}.$

ISSN 0372-400Х. Укр. фіз. журн. 2022. Т. 67, № 9

3. Results and Discussion

The energy released during the proton decay (Q) is calculated using the difference of mass excess values available in the literature. We have used experimental mass excess values [21]. For those nuclei, where experimental mass excess was unavailable, we have used recent theoretical values [22, 23]. The list of studied superheavy nuclei with the proton decay is given in the Table 1. In this table, we have highlighted the nuclei for which the proton decay is possible. The energy released during the proton decay (Q_P) , penetration factor (P), normalization factor (F), and logarithmic half-lives for the proton decay of superheavy nuclei are also given in Table 2.

To study the competition between different decay modes, we have also calculated the alpha decay halflives and spontaneous fission half-lives. Alpha decay half-lives are evaluated using the semiempirical relations given by Royer [24], UNIV [25], NRDX [26], and Denisov [27]. Spontaneous fission half-lives are evaluated using semiempirical formula given by Xu et al. [28]. Figure 1 shows the competition between dif-

Fig. 1. Competition between different decay modes such as proton decay, spontaneous fission, and alpha decay for superheavy elements

Fig. 2. Variation of logarithmic proton decay half-lives versus $1/\sqrt{Q}$

Fig. 3. Variation of logarithmic proton decay half-lives versus Z_d/\sqrt{Q}

Table 2. Energy released, penetration factor, normalization factor, and logarithmic half-lives for proton decay in superheavy nuclei

Nuclei	Q	Penetration	Normalization	$\log T_{1/2}$	
nuclei	(MeV)	factor (P)	factor (F)	108 1/2	
²⁴⁰ Rf	0.011	6.29×10^{-48}	7.56×10^{-02}	25.96	
²⁴¹ Db	2.131	5.45×10^{-21}	7.82×10^{-02}	-0.99	
²⁴² Db	1.711	1.48×10^{-24}	7.75×10^{-02}	2.58	
^{243}Db	1.691	1.04×10^{-24}	7.72×10^{-02}	2.74	
244 Db	1.341	4.5×10^{-29}	7.65×10^{-02}	7.1	
^{245}Db	1.331	3.15×10^{-29}	7.63×10^{-02}	7.26	
^{246}Db	0.961	4.92×10^{-36}	7.56×10^{-02}	14.07	
^{247}Db	0.941	1.95×10^{-36}	7.54×10^{-02}	14.47	
^{248}Db	0.531	1.84×10^{-42}	7.47×10^{-02}	20.5	
^{249}Db	0.501	7.78×10^{-43}	7.45×10^{-02}	20.88	
^{250}Db	0.121	4.38×10^{-47}	7.39×10^{-02}	25.13	
^{251}Db	0.091	2.12×10^{-47}	7.37×10^{-02}	25.45	
^{244}Sg	0.241	5.08×10^{-46}	7.58×10^{-02}	24.06	
^{245}Sg	0.421	$5.13 imes 10^{-44}$	7.57×10^{-02}	22.05	
^{246}Sg	0.071	8.37×10^{-48}	7.51×10^{-02}	25.84	
^{247}Sg	0.021	$2.6 imes 10^{-48}$	7.48×10^{-02}	26.35	
^{247}Bh	1.881	1.34×10^{-23}	7.73×10^{-02}	1.63	
^{248}Bh	1.761	1.13×10^{-24}	7.69×10^{-02}	2.7	
^{249}Bh	1.701	4.02×10^{-25}	7.66×10^{-02}	3.15	
^{250}Bh	1.341	9.7×10^{-30}	7.6×10^{-02}	7.77	
^{251}Bh	1.161	1.17×10^{-32}	7.55×10^{-02}	10.69	
^{252}Bh	0.771	7.75×10^{-40}	7.49×10^{-02}	17.88	
^{253}Bh	0.861	1.74×10^{-38}	7.48×10^{-02}	16.53	
^{254}Bh	0.511	3×10^{-43}	7.42×10^{-02}	21.29	
^{255}Bh	0.391	1.17×10^{-44}	7.39×10^{-02}	22.71	
^{256}Bh	0.101	8.89×10^{-48}	7.34×10^{-02}	25.83	
^{257}Bh	0.091	6.94×10^{-48}	7.32×10^{-02}	25.94	
250 Hs	0.521	2.32×10^{-43}	7.55×10^{-02}	21.4	
251 Hs	0.521	2.29×10^{-43}	7.53×10^{-02}	21.4	
^{252}Hs	0.261	2.57×10^{-46}	7.48×10^{-02}	24.36	
^{253}Hs	0.241	1.56×10^{-46}	7.45×10^{-02}	24.58	
^{253}Mt	2.211	1.92×10^{-21}	7.7×10^{-02}	-0.53	
^{254}Mt	1.851	1.83×10^{-24}	7.64×10^{-02}	2.5	
^{255}Mt	1.931	1.15×10^{-23}	7.63×10^{-02}	1.7	
^{256}Mt	1.611	7.6×10^{-27}	7.57×10^{-02}	4.88	
^{257}Mt	1.431	5.41×10^{-29}	7.53×10^{-02}	7.03	
²⁵⁸ Mt	1.091	9.34×10^{-35}	7.47×10^{-02}	12.8	
²⁵⁹ Mt	1.051	1.63×10^{-35}	7.45×10^{-02}	13.56	
²⁶⁰ Mt	0.701	2.12×10^{-41}	7.39×10^{-02}	19.45	
261 Mt	0.661	6.23×10^{-42}	7.37×10^{-02}	19.98	
^{262}Mt	0.481	3.77×10^{-44}	7.33×10^{-02}	22.2	
²⁶³ Mt	0.371	2.06×10^{-45}	7.3×10^{-02}	23 46	
²⁵⁶ Ds	0.581	3.6×10^{-43}	7.5×10^{-02}	21.21	
257 De	0.561	2.03×10^{-43}	7.48×10^{-02}	21.46	
258 De	0.321	3.6×10^{-46}	7.43×10^{-02}	24.91	
259 De	0.941	4.98×10^{-47}	7.4×10^{-02}	25.08	
²⁶⁰ Ds	0.001	1.85×10^{-49}	7.36×10^{-02}	27.51	

ISSN 0372-400Х. Укр. фіз. журн. 2022. Т. 67, № 9

634

4	Systematic	Study	of	Proton	Decay	in	Superheavy	Elements
---	------------	-------	----	--------	-------	----	------------	----------

			The continuation	n of Table 2	2				The continuation	of Table 2
Nuclei	$\begin{array}{c} Q \\ (\mathrm{MeV}) \end{array}$	Penetration factor (P)	Normalization factor (F)	$\log T_{1/2}$		Nuclei	$\begin{array}{c} Q \\ (MeV) \end{array}$	Penetration factor (P)	Normalization factor (F)	$\log T_{1/2}$
262 Ds	0.011	2.29×10^{-49}	7.34×10^{-02}	27.42		285 Ts	0.641	2.26×10^{-44}	7.21×10^{-02}	22.43
²⁵⁹ Rg	2.301	3.1×10^{-21}	7.66×10^{-02}	-0.73		286 Ts	0.331	7.63×10^{-48}	7.17×10^{-02}	25.9
²⁶⁰ Rg	2.021	2.31×10^{-23}	7.61×10^{-02}	1.4		287 Ts	0.261	1.42×10^{-48}	7.15×10^{-02}	26.64
²⁶¹ Rg	1.961	5.64×10^{-24}	7.58×10^{-02}	2.01		²⁸¹ Og	0.691	$5.47 imes 10^{-44}$	7.32×10^{-02}	22.04
262 Rg	1.601	1.86×10^{-27}	7.52×10^{-02}	5.5		^{282}Og	0.301	2.36×10^{-48}	7.26×10^{-02}	26.41
263 Rg	1.591	1.51×10^{-27}	7.5×10^{-02}	5.59		²⁸³ Og	0.391	2.04×10^{-47}	7.25×10^{-02}	25.47
264 Rg	1.251	1.82×10^{-32}	7.44×10^{-02}	10.51		284 Og	0.011	3.23×10^{-51}	7.2×10^{-02}	29.28
265 Rg	1.231	$9.59 imes 10^{-33}$	7.42×10^{-02}	10.79		285 Og	0.041	6.11×10^{-51}	7.19×10^{-02}	29
266 Rg	0.851	6.92×10^{-40}	7.36×10^{-02}	17.93		$^{284}119$	2.001	7.96×10^{-26}	7.43×10^{-02}	3.87
267 Rg	0.731	1.41×10^{-41}	7.33×10^{-02}	19.63		285119	2.091	4.82×10^{-25}	7.42×10^{-02}	3.09
^{262}Cn	0.691	2.44×10^{-42}	7.46×10^{-02}	20.38		286119	1.681	4.64×10^{-29}	7.36×10^{-02}	7.11
²⁶³ Cn	0.711	4.38×10^{-42}	7.44×10^{-02}	20.13		287119	1.421	2.43×10^{-32}	7.32×10^{-02}	10.39
^{264}Cn	0.391	6.57×10^{-46}	7.39×10^{-02}	23.96		288119	1.171	8.18×10^{-37}	7.28×10^{-02}	14.87
²⁶⁵ Cn	0.321	1.12×10^{-46}	7.37×10^{-02}	24.72		$2^{289}119$	1.311	4.14×10^{-34}	7.28×10^{-02}	12.16
²⁶⁶ Nh	2.251	2.71×10^{-22}	7.58×10^{-02}	0.33		$^{290}119$	0.941	5.62×10^{-41}	7.23×10^{-02}	19.03
²⁶⁷ Nh	2.151	5.04×10^{-23}	7.55×10^{-02}	1.06		$^{291}119$	0.661	1.15×10^{-44}	7.18×10^{-02}	22.73
²⁶⁸ Nh	1.751	1.42×10^{-26}	7.49×10^{-02}	4.61		²⁹² 119	0.531	3.52×10^{-46}	7.16×10^{-02}	24.24
²⁶⁹ Nh	1.681	2.79×10^{-27}	7.46×10^{-02}	5.32		²⁹³ 119	0.361	4.99×10^{-48}	7.13×10^{-02}	26.09
²⁷⁰ Nh	1.321	4.65×10^{-32}	7.41×10^{-02}	10.1		$^{295}119$	0.081	7.72×10^{-51}	7.08×10^{-02}	28.9
²⁷¹ Nh	1.251	4.34×10^{-33}	7.38×10^{-02}	11.14		$^{296}119$	0.011	1.65×10^{-51}	7.06×10^{-02}	29.57
²⁷² Nh	0.921	1.94×10^{-39}	7.33×10^{-02}	17.49		$^{287}120$	0.641	4.03×10^{-45}	7.28×10^{-02}	23.17
²⁷³ Nh	0.881	4.69×10^{-40}	7.31×10^{-02}	18.11		$^{288}120$	0.491	7.88×10^{-47}	7.25×10^{-02}	24.88
²⁷⁴ Nh	0.521	9.75×10^{-45}	7.26×10^{-02}	22.79		$^{289}120$	0.541	2.78×10^{-46}	7.23×10^{-02}	24.34
²⁷⁵ Nh	0.551	2.16×10^{-44}	7.24×10^{-02}	22.45		$^{291}120$	0.181	4.68×10^{-50}	7.17×10^{-02}	28.12
²⁷⁶ Nh	0.101	3.15×10^{-49}	7.18×10^{-02}	27.29		$^{292}120$	0.011	1.09×10^{-51}	7.14×10^{-02}	29.75
²⁶⁹ Fl	0.651	2.13×10^{-43}	7.39×10^{-02}	21.45		$^{290}121$	2.021	3.61×10^{-26}	7.39×10^{-02}	4.22
²⁷⁰ Fl	0.271	1.08×10^{-47}	7.34×10^{-02}	25.74		$^{291}121$	1.981	1.81×10^{-26}	7.37×10^{-02}	4.52
²⁷¹ Fl	0.261	8.42×10^{-48}	7.32×10^{-02}	25.85		²⁹² 121	1.581	9.49×10^{-31}	7.32×10^{-02}	8.8
^{272}Mc	1.981	5.97×10^{-25}	7.51×10^{-02}	2.99		²⁹³ 121	1.561	3.91×10^{-31}	7.3×10^{-02}	9.19
²⁷³ Mc	1.941	2.72×10^{-25}	7.48×10^{-02}	3.33		$^{294}121$	1.411	2.48×10^{-33}	7.27×10^{-02}	11.39
²⁷⁴ Mc	1.651	4.7×10^{-28}	7.43×10^{-02}	6.1		²⁹⁵ 121	1.571	7.27×10^{-31}	7.27×10^{-02}	8.92
²⁷⁵ Mc	1.611	1.02×10^{-28}	7.41×10^{-02}	6.76		²⁹⁶ 121	1.271	1.25×10^{-35}	7.23×10^{-02}	13.69
²⁷⁶ Mc	1.221	1.95×10^{-34}	7.36×10^{-02}	12.49		²⁹⁷ 121	1.031	3.22×10^{-40}	7.19×10^{-02}	18.28
²⁷⁷ Mc	1.191	6.44×10^{-35}	7.33×10^{-02}	12.97		²⁹⁸ 121	0.831	4.28×10^{-43}	7.16×10^{-02}	21.16
278Mc	0.861	6.09×10^{-41}	7.29×10^{-02}	18.99		²⁹⁹ 121	0.741	3.02×10^{-44}	7.13×10^{-02}	22.31
²⁷⁹ Mc	0.181	6.86×10^{-49}	7.21×10^{-02}	26.95		300121	0.401	4.15×10^{-48}	7.09×10^{-02}	26.17
²⁸⁰ Mc	0.061	4.45×10^{-30}	7.18×10^{-02}	28.14		301121	0.331	7.66×10^{-49}	7.07×10^{-02}	26.91
275Lv	0.691	1.91×10^{-43}	7.36×10^{-02}	21.49		³⁰² 121	0.091	3.25×10^{-51}	7.04×10^{-02}	29.28
270Lv	0.371	3.96×10^{-47}	7.31×10^{-02}	25.18		294122	0.091	3.19×10^{-31}	7.02×10^{-02}	29.29
277 Lv	0.351	2.39×10^{-47}	7.29×10^{-02}	25.4		294122	0.481	1.94×10^{-47}	7.21×10^{-02}	25.5
270Lv	0.011	9.3×10^{-31}	7.24×10^{-02}	28.81		²⁹⁵ 122	0.531	6.69×10^{-47}	7.2×10^{-02}	24.96
278m	0.001	7.37×10^{-31}	$(.22 \times 10^{-02})$	28.92		297122	0.311	3.14×10^{-49}	$(.17 \times 10^{-02})$	27.29
279m	1.961	1.23×10^{-23}	$(.46 \times 10^{-02})$	3.68		298102	0.511	3.91×10^{-47}	$(.17 \times 10^{-02})$	25.19
280m	1.591	1.52×10^{-29}	7.41×10^{-02}	7.59		299122	0.041	$(.28 \times 10^{-52})$	7.11×10^{-02}	29.93
281m	1.681	2.62×10^{-28}	$(.4 \times 10^{-02})$	6.35		297122	0.101	2.62×10^{-31}	$(.11 \times 10^{-02})$	29.37
282m	1.391	3.58×10^{-32}	$(.35 \times 10^{-02})$	10.22		2981.00	2.031	1.38×10^{-20}	$(.34 \times 10^{-02})$	4.64
283m	1.011	3.03×10^{-39}	7.3×10^{-02}	17.3		299108	1.881	4.21×10^{-28}	7.31×10^{-02}	6.15
284m	1.021	4.4×10^{-39}	$(.28 \times 10^{-02})$	17.14		300128	1.791	0.53×10^{-29}	$(.29 \times 10^{-02})$	6.96
^{∠04} ′Is	0.661	$ 4 \times 10^{-44}$	$ 7.23 \times 10^{-02}$	22.18		123	1.431	$ 1.1 \times 10^{-33}$	7.24×10^{-02}	11.74

ISSN 0372-400Х. Укр. фіз. журн. 2022. Т. 67, № 9

M.G. Srinivas, H.C. Manjunatha, K.N. Sridhar et al.

			The end	of Table 2
Nuclei	Q (MeV)	Penetration factor (P)	Normalization factor (F)	$\log T_{1/2}$
³⁰¹ 124	1.311	1.21×10^{-35}	7.21×10^{-02}	13.7
³⁰² 125	0.871	4.07×10^{-43}	7.16×10^{-02}	21.18
³⁰³ 123	0.371	6.91×10^{-49}	7.1×10^{-02}	26.95
³⁰⁴ 123	1.021	5.25×10^{-41}	7.15×10^{-02}	19.07
³⁰⁵ 123	0.991	1.82×10^{-41}	7.13×10^{-02}	19.53
³⁰⁶ 123	0.691	2.15×10^{-45}	7.09×10^{-02}	23.46
³⁰⁷ 123	0.711	3.66×10^{-45}	7.08×10^{-02}	23.23
³⁰⁸ 123	0.381	8.03×10^{-49}	7.04×10^{-02}	26.89
³⁰⁹ 123	0.321	1.92×10^{-49}	7.02×10^{-02}	27.51
300124	0.801	2.94×10^{-44}	7.21×10^{-02}	22.32
³⁰¹ 124	0.621	2.1×10^{-46}	7.18×10^{-02}	24.46
³⁰³ 125	1.391	7.81×10^{-35}	7.25×10^{-02}	12.89
³⁰⁴ 125	1.151	2.04×10^{-39}	7.22×10^{-02}	17.47
$^{305}125$	1.051	4.02×10^{-41}	7.19×10^{-02}	19.18
³⁰⁶ 125	4.651	2.12×10^{-14}	7.53×10^{-02}	-7.56
³⁰⁷ 125	1.951	5.77×10^{-28}	7.25×10^{-02}	6.02
³⁰⁸ 125	1.731	2.47×10^{-30}	7.21×10^{-02}	8.39
³⁰⁹ 125	1.721	1.87×10^{-30}	7.2×10^{-02}	8.51
³¹⁰ 125	1.271	5.13×10^{-37}	7.14×10^{-02}	15.08
³¹¹ 125	1.361	1.77×10^{-35}	7.14×10^{-02}	13.54
³¹² 125	0.721	1.44×10^{-45}	7.07×10^{-02}	23.63
³¹³ 125	0.571	2.76×10^{-47}	7.04×10^{-02}	25.35
³¹⁴ 125	0.211	5.37×10^{-51}	7×10^{-02}	29.07
³¹⁵ 125	0.151	1.4×10^{-51}	6.98×10^{-02}	29.65
308126	0.721	8.91×10^{-46}	7.15×10^{-02}	23.84
³⁰⁹ 126	0.661	1.77×10^{-46}	7.13×10^{-02}	24.54
³¹⁰ 126	0.071	1.7×10^{-52}	7.06×10^{-02}	30.56

ferent decay modes such as the proton decay, spontaneous fission, and alpha decay for superheavy elements. From the detailed study of the comparison among the different decay modes, it is observed that the proton decay half-lives in the superheavy region are greater than that of alpha decay. For most of the superheavy nuclei, the proton decay half-lives are greater than that of spontaneous fission.

To check the Geiger–Nuttal law for the proton decay in superheavy nuclei, we have plotted the logarithmic proton decay half-lives versus $1/\sqrt{Q}$ (Fig. 2). It is found that the proton decay half-lives do not vary linearly with $1/\sqrt{Q}$. Figure 3 shows the variation of the logarithmic proton decay half-lives with Z_d/\sqrt{Q} . It is seen that the proton decay half-lives do not vary linearly with Z_d/\sqrt{Q} as well. This fact clearly indicates that the proton decay does not follow the Geiger–Nuttal law.

Fig. 4. Variation of \sqrt{R} against mass number of the parent nuclei A

The nuclear charge radii can be derived from the proton decay half-lives. We have evaluated the nuclear charge radii using the semiempirical relation from [29]. Figure 4 shows the variation of \sqrt{R} against the mass number of the parent nuclei. From this variation, we observe that the nuclear charge radii of superheavy nuclei do not vary systematically with the mass number of parent nuclei.

We have studied the proton decay in almost all superheavy nuclei with atomic numbers Z = 104– 126 and found that the proton decay is possible in few superheavy nuclei (listed in Table 1). Proton decay half-lives are also longer than that of other decay modes. The competition of the proton decay with various decay modes such as the alpha decay and spontaneous fission reveals that the proton decay is not a dominant decay mode in the superheavy nuclei region. This means that the superheavy nuclei are stable against the proton decay.

 M. Gonçalves, N. Teruya, O.A.P. Tavares, S.B. Duarte. Two-proton emission half-lives in the effective liquid drop model. *Phys. lett.* **774**, 14 (2017).

ISSN 0372-400Х. Укр. фіз. журн. 2022. Т. 67, № 9

- D.S. Delion, R.J. Liotta, R. Wyss. Theories of proton emission. *Phys. Reports* 424, 113 (2006).
- E. Maglione, L.S. Ferreira, R.J. Liotta. Proton emission from deformed nuclei. *Phys. Rev. C* 59, R589(R) (1999).
- M. DelSanto, Z. Meisel, D. Bazin, A. Becerril *et al.* βdelayed proton emission of ⁶⁹Kr and the ⁶⁸Se rp-process waiting point. *Phys. Lett. B* **738**, 453 (2014).
- S.A. Alavi, V. Dehghani, M. Sayahi. Calculation of proton radioactivity half-lives. *Nucl. Phys. A* 977, 49 (2018).
- G. Raciti, M. De Napoli, G. Cardella, et al. Two-proton correlated emission from ¹⁸Ne excited states. Nucl. Phys. A 834, 464 (2010).
- 7. D. Baye, E.M. Tursunov. β delayed emission of a proton by a one-neutron halo nucleus. *Phys. Lett. B* **696**, 464 (2011).
- W.F. Feix, E.R. Hilf. Nuclear proton emission predictions. *Phys. Lett. B* 120, 14 (1983).
- M. Anguiano, G. Co, A.M. Lallena. Photo-emission of two protons from nuclei. Nucl. Phys. A 744, 168 (2004).
- R. Coniglione, P. Sapienza, E. Migneco *et al.* High energy proton emission in heavy ion reactions close to the Fermi energy. *Phys. Lett. B* 471, 339 (2000).
- C. Giusti, F.D. Pacati. Two-proton emission induced by electron scattering. Nucl. Phys. A 535, 573 (1991).
- B. Ludewigt, R. Glasow, H. Löhner, R. Santo. Proton emission in a-induced reactions at 43 MeV nucleon. *Nucl. Phys.* A 408, 359 (1983).
- F. Guzmán, M. Gonçalves, O.A.P. Tavares *et al.* Proton radioactivity from proton-rich nuclei. *Phys. Rev. C* 59, R2339(R) (1999).
- D.S. Delion, R.J. Liotta, R. Wyss. Systematics of proton emission. *Phys. Rev. Lett.* 96, 072501 (2006).
- J.M. Dong, H.F. Zhang, G. Royer. Proton radioactivity within a generalized liquid drop model. *Phys. Rev. C* 79, 054330 (2009).
- E. Maglione, L.S. Ferreir. Proton emission from ¹²⁵Pm could be observed. *Phys. Rev. C* 94, 044317 (2016).
- P. Arumugam, L.S. Ferreira, E. Maglione. Proton emission, gamma deformation, and the spin of the isomeric state of ¹⁴¹Ho. *Phys. Lett. B* 680, 443 (2009).
- S.B. Duarte, O.A.P. Tavares, F. Guzmán *et al.* Half-lives for proton emission, alpha decay, cluster radioactivity, and cold fission processes calculated in a unified theoretical framework. *Atomic Data and Nuclear Data Tables* 80, 235 (2002).
- L.S. Ferreira, E. Maglione, P. Ring. Self-consistent description of proton radioactivity. *Phys. Lett. B* 701, 508 (2011).
- 20. D.S. Delion. Theory of Particle and Cluster Emission (Springer-Verlag, 2010).
- 21. https://www-nds.iaea.org/RIPL-3/
- 22. M. Kowal, P. Jachimowicz, J. Skalski. Ground State and Saddle Point: masses and deformations for even-even superheavy nuclei with 98 < Z < 126 and 134 < N < 192. arXiv:1203.5013
- H.C. Manjunatha, B.M. Chandrika, L. Seenappa. Empirical formula for mass excess of heavy and superheavy nuclei. Mod. Phys. Lett. A **31** (28), 1650162 (2016).

ISSN 0372-400Х. Укр. фіз. журн. 2022. Т. 67, № 9

- G. Royer. Alpha emission and spontaneous fission through quasi-molecular shapes. J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000).
- D.N. Poenaru, R.A. Gherghescu, W. Greiner. Single universal curve for cluster radioactivities and α decay. *Phys. Rev. C* 83, 014601 (2011).
- D. Ni, Z. Ren, T. Dong, C. Xu. Unified formula of halflives for a decay and cluster radioactivity. *Phys. Rev. C* 78, 044310 (2008).
- V.Y. Denisov, A.A. Khudenko. α-decay half-lives: Empirical relations. *Phys. Rev. C* 79 (5), 054614 (2009).
- 28. C. Xu, Z. Ren, Y. Guo. Competition between α decay and spontaneous fission for heavy and superheavy nuclei. *Phys. Rev. C* **78**, 044329 (2008).
- Y. Qian, Z. Ren, D. Ni. Attempt to probe nuclear charge radii by cluster and proton emissions. *Phys. Rev. C* 87, 054323 (2013).
- H.C. Manjunatha. Comparison of alpha decay with fission for isotopes of superheavy nuclei Z = 124. Intern. J. Modern Phys. E 25, 1650074 (2016).
- H.C. Manjunatha. Alpha decay properties of superheavy nuclei Z = 126. Nucl. Phys. A 945, 42 (2016).
- 32. H.C. Manjunatha, K.N. Sridhar. Projectile target combination to synthesis superheavy nuclei Z = 126. Nucl. Phys. A **962**, 7 (2017).
- 33. H.C. Manjunatha, N. Sowmya. Competition between spontaneous fission ternary fission cluster decay and alpha decay in the super heavy nuclei of Z = 126. Nucl. Phys. A **969**, 68 (2018).
- 34. H.C. Manjunatha, N. Sowmya. Decay modes of superheavy nuclei Z = 124. Inte Jou of Mod Phys E 27 (5), 1850041 (2018).
- N. Sowmya, H.C. Manjunatha. Competition between different decay modes in 279Ds. DAE Symp. Nucl. Phys. 63, 200-201 (2018).
- 36. H.C. Manjunatha, K.N. Sridhar, N. Sowmya. Investigations of the synthesis of the superheavy element Z = 122. *Phys. Rev. C* **98**, 024308 (2018).
- 37. H.C. Manjunatha, K.N. Sridhar, N. Sowmya. Investigations on ${}^{64}\text{Ni}+_Z\text{An}^A \rightarrow_{Z=104-123} (\text{SHN})^{A=250-310}$ reactions. Nucl. Phys. A **987**, 382 (2019).
- 38. K.N. Sridhar, H.C. Manjunatha, H.B. Ramalingam. Search for possible fusion reactions to synthesize the superheavy element Z = 121. *Phys. Rev. C* **98** (6), 064605 (2018).
- 39. H.C. Manjunatha, K.N. Sridhar. Investigation to synthesis more isotopes of superheavy nuclei Z = 118. Nucl. Phys. A 975, 136 (2018).
- 40. N. Sowmya, H.C. Manjunatha. Competition between different decay modes of superheavy element Z = 116 and synthesis of possible isotopes. *Braz. J. Phys.* **49**, 874 (2019).
- N. Sowmya, H.C. Manjunatha. A Study of Binary Fission and Ternary Fission in ²³²⁻²³⁸U. Bulg. J. Phys. 46, 16 (2019).

42.	G.R. Sridhar, H.C. Manjunatha, N. Sowmya, P.S.D. Gup- ta, H.B. Ramalingam. Atlas of cluster radioactivity in actinide nuclei. <i>Europ. Phys. J. Plus</i> 135 (3), 291 (2020).	М.Г. Срінівас, Х.К. Манджуната, К.Н. Шрідхар, А.К. Радж, П.С. Дамодара Гупта СИСТЕМАТИЧНЕ ДОСЛІДЖЕННЯ ПРОТОННОГО РОЗПАДУ НАДВАЖКИХ ЕЛЕМЕНТІВ
43.	M.G. Srinivas, H.C. Manjunatha, K.N. Sridhar, N. Sow- mya, A.C. Raj. Proton decay of actinide nuclei. <i>Nucl. Phys.</i> A 995 , 121689 (2020).	Розглядається протонний розпад майже всіх надважких ядер з атомними номерами $Z = 104$ –126. Розраховано енергію, що вивільняється в такому розпаді (Q_P), коефіцієнт
44.	N. Sowmya, H.C. Manjunatha, N. Dhananjaya, A.M. Na- garaja. Competition between binary fission, ternary fission, cluster radioactivity and alpha decay of 281Ds. <i>J. Radio-</i> <i>analyt. Nucl. Chem.</i> 323 (3), 1347 (2020).	проникнення (P), коефіцієнт нормування (F) та періоди на- піврозпаду. Останні більші, ніж для інших каналів розпаду, таких як альфа-розпад та спонтанне ділення. У порівнянні з іншими каналами розпаду, протонний розпад не є доміну- ючим в області надважких ядер. Це означає, що надваж- кі ядра можна вважати стабільними відносно протонного розпаду. Ключобі слоба: радіоактивність, надважкі ядра, про-
	Received 12.08.19	тонний розпад.