	МП ГОРШИНИЙ
	Інститут фізики НАН України, відділ молекулярної фотоелектроніки (Просп. Науки, 46, Kuïs 03028; e-mail: miron.gorishny@gmail.com)
	МОРФОЛОГІЯ ПОВЕРХНІ ПЛІВОК СУМІШІ ФУЛЕРЕНІВ С ₆₀ /С ₇₀ .
УДК 535.343.2, 539.234, 537.533.35	ІДЕНТИФІКАЦІЯ С ₆₀ ТА С ₇₀ У ПЛІВКАХ С ₆₀ /С ₇₀ ЗА ЇХ СПЕКТРАМИ ПОГЛИНАННЯ

Плівки суміші C_{60}/C_{70} наносили на різні підкладинки методом термічної сублімації у вакуумі 6,5 мПа. Досліджено морфологію поверхні плівок C_{60}/C_{70} товщиною 195 нм. Встановлено, що на кремнеземних і мідних підкладинках формуються полікристалічні і квазиаморфні плівки C_{60}/C_{70} , відповідно. Природа смуг поглинання C_{60} і C_{70} була детально обговорена на основі аналізу літератури та наших даних. Спектри поглинання плівок C_{60} , C_{70} і суміші C_{60}/C_{70} описувалися сумою функцій Гауса. Смуги поглинання C_{60} (2,474, 3,440 і 3,640 еВ) і C_{70} (2,594, 2,804, 3,018 і 3,252 еВ) можуть бути використані для ідентифікації цих речовин у сумішах фулеренів. Було виявлено, що C_{60} е домінуючим компонентом у плівках C_{60}/C_{70} .

Ключові слова: тонка плівка, морфологія поверхні, спектри поглинання, підгонка, Гаусіани, суміш C₆₀/C₇₀.

1. Вступ

Фулерени С₆₀ і С₇₀ були відкриті в 1985 році [1]. Молекулярний квазисферичний кластер С₆₀ утворений 12 п'ятикутними і 20 гексагональними гранями з 60 атомами карбону в їхніх вершинах. Такий кластер описується точковою групою симетрії I_h . Молекулярний кластер С₇₀ має квазиеліпсоїдну форму за рахунок додаткових 5 гексагональних граней уздовж екваторіальної лінії та описується точковою групою симетрії D_{5h} [2]. Ці матеріали широко використовуються як акцептори електронів в органічних сонячних елементах [3]. С₆₀ застосовувався в сонячних елементах [4], фотоелектричних пристроях [5], фотокаталізаторах [6], фототерапії [7] і біодатчиках [8].

 C_{70} підходить для заміни C_{60} в органічних сонячних елементах. Наприклад, ефективність перетворення світла η об'ємних гетеропереходів $C_{70}/ф$ талоціанін цинку (ZnPc) і $C_{60}/ZnPc$ стано-

вила 2,87 і 2,27% відповідно. Більше значення η зумовлено сильнішим поглинанням С₇₀ в спектральному діапазоні 1,771–2,480 нм [9].

Спектри оптичного поглинання чистих С₆₀ (99,86%) і C₇₀ (>99%) записували в н-гексані при кімнатній температурі [10]. У [10] С₆₀ і С₇₀ були отримані методом Крачмера (Krätschmer) та ін. [11] з наступною їх екстракцією з бензольного розчину вихідної графітової сажі та очищенням колонковою хроматографією. Спектри оптичного поглинання C₆₀ у розчинах н-гексану та природу їх смуг досліджено в [12]. У роботах [11, 13 і 14] та [15] досліджено спектри оптичного поглинання плівок С₆₀ та С₇₀ відповідно. Смуги поглинання плівок С₆₀ і С₇₀ зміщені в червону сторону відносно відповідних смуг спектрів їх розчинів, що зумовлено міжмолекулярною взаємодією у твердому стані. У [16] подано огляд найважливіших теоретичних та експериментальних статей, спрямованих на з'ясування властивостей нижчих збуджених станів С₆₀ та С₇₀.

Діаграми енергетичних рівнів молекул C_{60} і C_{70} наведено в роботах [2, 14 і 17–21].

За даними мас-спектрометрії [10], у процесі синтезу фулеренів утворюються молекули з різною кількістю атомів вуглецю, яка описується загальною формулою C_{2n} , де натуральне число n змінює-

Цитування: Горішний М.П. Морфологія поверхні плівок суміші фулеренів С₆₀/С₇₀. Ідентифікація С₆₀ та С₇₀ у плівках С₆₀/С₇₀ за їх спектрами поглинання. Укр. фіз. экурн. **68**, № 5, 318 (2023).

C i t a t i o n: Gorishnyi M.P. Surface morphology of the films of the C₆₀/C₇₀ fullerene mixture. Identification of C₆₀ and C₇₀ in the C₆₀/C₇₀ films using absorption spectra. *Ukr. J. Phys.* **68**, No. 5, 318 (2023). https://doi.org/10.15407/ujpe68.5.318.

Рис. 1. SEM мікрофотографії плівок C₆₀/C₇₀ товщиною 195 нм, нанесених у вакуумі на кремнеземні підкладинки з тонкими шарами карбону С (*a*) та ITO (*б*) і на мідну підкладинку (*в*) відповідно

ться в межах 26–35. Основними компонентами цієї суміші є найбільш стабільні молекули C_{60} і C_{70} . Тому дослідження спектрів поглинання розчинів і плівок чистих C_{60} та C_{70} є актуальним для ідентифікації цих речовин у твердих сумішах синтезованих фулеренів.

У нашій роботі було досліджено морфологію поверхні плівок C_{60}/C_{70} та природу смуг поглинання C_{60} та C_{70} у молекулярному та твердому станах з метою ідентифікації цих речовин за їхніми смугами в спектрах поглинання плівок суміші C_{60}/C_{70} .

2. Підготовка зразків та методика експерименту

У наших дослідженнях ми використовували суміш фулеренів від корпорації MER із таким складом: 76% C_{60} , 22% C_{70} і 2% фулеренів вищого порядку. Далі в нашій роботі ми позначаємо цю суміш як C_{60}/C_{70} відповідно до її основних компонентів.

Для дослідження оптичного поглинання тонкі плівки C_{60}/C_{70} різної товщини в межах 25... 195 нм наносили на кремнеземні підкладинки методом термічної сублімації у вакуумі 6,5 мПа. Сублімацію вихідної суміші C_{60}/C_{70} проводили з нагрітого керамічного тигля шляхом пропускання електричного струму через ніхромову спіраль. У процесі напилення температура керамічного тигля коливалася від 673 до 723 К і вимірювалась хромель-алюмелевою термопарою.

Моменти початку та закінчення осадження плівки контролювали товщиноміром MSV-1841. Товщину плівок вимірювали інтерференційним товщиноміром MII-4.

Спектри поглинання тонких плівок C_{60}/C_{70} в межах 1,305 … 4,133 еВ записували при кімнатній

ISSN 0372-400Х. Укр. фіз. журн. 2023. Т. 68, № 5

температурі за допомогою спектрофотометра Perkin Elmer Lambda 25 UV-Vis із шириною спектральної щілини 1 нм. Похибка вимірювання поглинання не перевищувала 2%.

Морфологію поверхні плівок C_{60}/C_{70} , нанесених на кремнеземні підкладинки з тонкими шарами вуглецю або ITO та на мідні підкладинки, досліджували за допомогою скануючого електронного мікроскопа JSM-35 JEOL.

3. Результати та їх обговорення

3.1. Морфологія поверхні плівок C_{60}/C_{70}

Морфологія поверхні твердих плівок C_{60}/C_{70} товщиною 195 нм, нанесених у вакуумі 6,5 мПа, показана на рис. 1. Добре видно голчасті та круглі кристаліти різного розміру (рис. 1, *a*, *б*). Ці кристаліти утворюються ван-дер-ваальсовою взаємодією молекул C_{60} і C_{70} . Шари карбону С і ІТО впливають на орієнтацію голчастих кристалітів. Більш помітною є орієнтаційна здатність шару ІТО (рис. 1, *б*).

Рухливість сублімованих молекул C_{60} і C_{70} обмежена їх сильною взаємодією з атомами Cu. У цьому випадку на поверхні мідної підкладинки спочатку формується квазиаморфний шар C_{60}/C_{70} . Молекули фулеренів на поверхні цього шару слабше взаємодіють з атомами Cu і за рахунок ван-дер-ваальсової взаємодії стають центрами утворення округлих кристалітів в різних місцях поверхні квазиаморфного шару (рис. 1, 6).

На всіх трьох підкладинках розмір кристалітів коливається в межах 50... 200 нм.

Мікрофотографії SEM (рис. 1) показують, що взаємодія фулеренів із підкладинками впливає на структуру плівок C₆₀/C₇₀.

3.2. Спектри оптичного поглинання плівок $C_{60}, \, C_{70}$ та C_{60}/C_{70}

У нашій роботі за допомогою програмного забезпечення Origin 8.5 спектри поглинання плівок C₆₀ і C₇₀ (рис. 2 і 3 відповідно) були апроксимовані функціями Гауса (Gauss) (Гаусіанами, Gaussian) з стандартним відхиленням $6,2 \cdot 10^{-5}$ і коефіцієнтом кореляції 0,99682.

Енергії переходів гексанових розчинів C₆₀ та їх природа наведено в табл. 1 (стовпчики 2 та 3 відповідно). Тут ε_2 – уявна складова діелектричної функції ε . Перехід $h_u \rightarrow t_{1u}$ (смуга γ) заборонений, оскільки він відбувається між антисиметричними електронними станами. Цей перехід стає можливим завдяки його взаємодії з відповідними симетричними молекулярними коливаннями (сполучення Герцберга–Теллера або Яна–Теллера) [22]. Дозволені переходи відбуваються між електронними станами різної симетрії. Сили їх осциляторів від-

Рис. 2. Спектр поглинання плівки C₆₀ товщиною 20 нм на кремнеземній підкладинці при кімнатній температурі (суцільна лінія скопійована з [9]). Наша підгонка цього спектра представлена п'ятьма Гаусіанами (штрихові лінії)

Рис. 3. Спектр поглинання плівки С₇₀ товщиною 20 нм на кремнеземній підкладинці при кімнатній температурі (суцільна лінія скопійована з [9]). Наша підгонка цього спектра представлена чотирма Гаусіанами (штрихові лінії)

різняються за величиною. Вироджені електронні рівні h_u та (h_g, g_g) відповідають молекулярним орбіталям ВЗМО (НОМО) та (ВЗМО–1(НОМО–1)) відповідно.

Енергії переходів у спектрах поглинання плівок C_{60} наведені в табл. 1 (шостий стовпець) і на рис. 2. У результаті молекулярної взаємодії в плівках C_{60} молекулярні рівні збуджених станів розщеплюються на вузькі енергетичні зони. При підгонці лінії спектра поглинання плівки C_{60} були знайдені Гаусіани для зон γ , B, D, F і G. Зони A, C і Е виглядають як плечі (sh) на низькоенергетичній стороні смуги B, D та F відповідно (рис. 2). У спектрах поглинання гексанових розчинів і плівок C_{60} спостерігалися смуги C та H. У ε_2 -спектрах молекули C_{60} ці смуги відсутні (табл. 1, стовпчики 2 і 3).

Енергії переходів у спектрах поглинання плівок C_{70} та його гексанового розчину наведено в табл. 2. У колонці 4 цієї таблиці наведено дані для спектра плівки C_{70} товщиною 20 нм (рис. 3). Ці дані узгоджуються з даними [15] (стовпчик 3). Піки поглинання плівок C_{70} зміщені в червону сторону відносно відповідних піків його гексанового розчину [10, 23] (стовпчики 1 і 2).

Енергетичну структуру молекули С₇₀ розраховано *ab initio* методом Хартрі–Фока [24]. За результатами цих розрахунків була побудована енергетична діаграма рівнів молекули С₇₀ [25]. Ми проаналізували ці дані та змінили симетрію рівнів деяких молекулярних орбіталей ВЗМО та НВМО (LUMO) в [25], порівнявши їх з відповідними даними [24]. Симетрія (HOMO-5), LUMO i (LUMO + 1) змінюється на a'_1 , e''_1 i a''_1 відповідно. Відповідно до [24], рівні (LUMO + 4) і (LUMO + 5) мають e'_2 і a''_2 симетрію. Ці рівні були використані для пояснення можливої природи переходів з енергіями $E \geq 3,605$ еВ. Призначення переходів молекули С₇₀ наведено в стовпчику 5 табл. 2.

Різниця в енергіях переходів 2,022 та 1,889 еВ (табл. 2, стовпчик 4) становить 0,133 еВ $\approx 1073 \text{ см}^{-1}$. В [15] відповідна різниця дорівнює 0,136 еВ $\approx 1097 \text{ см}^{-1}$ (стовпчик 3). За величиною ці значення близькі до ІЧ-частоти С₇₀ $E'_1 = 1087 \text{ см}^{-1}$ [26]. Можна припустити, що смуги поглинання 2,026 і 2,022 еВ зумовлені взаємодією збуджених станів e''_1 або a''_1 з коливанням 1087 см⁻¹ (зв'язок Герцберга–Теллера або Яна–Теллера, як у молекулі С₆₀ [22]). Ці смуги можна розглядати як переходи $e''_1 \to e''_1 + E'_1$ або $a''_2 \to a''_1 + E'_1$.

ISSN 0372-400Х. Укр. фіз. журн. 2023. Т. 68, № 5

320

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Код смуги	ε ₂ -Спектри розчину С ₆₀ в гексані [14]		Спект] розчину	ои поглинання С ₆₀ в гексані [12]	Спектр поглинання плівки С ₆₀ товщиною 20 нм (ця робота)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		E, eB	Природа	E, eB	Природа	E, eB	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	2	3	4	5	6	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{c} \gamma & & & & & & & & & & & & & & & & & & $	$\begin{array}{c} 1,995 \ (0,001) \\ 3,280 \ (0,001) \\ 3,580 \ (0,080) \\ 3,732 \ (0,090) \\ 4,210 \ (0,040) \\ 4,600 \ (0,490) \\ 5,437 \ (0,019) \\ 5,730 \ (0,330) \end{array}$	$egin{aligned} h_u & ightarrow t_{1u} \ h_u & ightarrow t_{1g} \ h_u & ightarrow t_{1g} \ \end{pmatrix} \ h_g, g_g & ightarrow t_{1u} \ h_g, g_g & ightarrow t_{1u} \ h_u & ightarrow h_g \ h_u & ightarrow h_g \ h_g, g_g & ightarrow t_{2u} \ h_g, g_g & ightarrow t_{2u} \ \end{pmatrix}$	1,9993,0373,2893,7754,0654,3504,8325,4525,876	$\begin{array}{c} A_g \rightarrow 1T_{1g} \\ A_g \rightarrow 1T_{1u} \\ A_g \rightarrow 2T_{1u} \\ A_g \rightarrow 3T_{1u} \\ A_g \rightarrow 4T_{1u} \\ A_g \rightarrow 5T_{1u} \\ A_g \rightarrow 6T_{1u} \\ A_g \rightarrow 7T_{1u} \\ A_g \rightarrow 8T_{1u} \end{array}$	1,9992,469 (sh)2,7743,246 (sh)3,5654,139 (sh)4,5095,689	

Таблиця 1. Енергії переходів, сили осциляторів (в дужках) і призначення смуг С₆₀ при кімнатній температурі

Примітка: sh – плече.

Таблиця 2. Енергії переходів, відносні інтенсивності (в дужках) і призначення смуг С₇₀ при кімнатній температурі

Спектри поглинання С ₇₀							
Енергії переходів, еВ							
Вге	ксані		Плівка	Призначення [24, 25]			
[10]	[23]	[15]	Ця робота				
1	2	3	4	5			
1,946 (sh) 1,986 (sh) 2,033 (sh) 2,066 (sh) 2,087 (sh) 2,279 (sh) 2,644 (sh) 3,280 (mw) 3,454 (mw)	1,864 (sh) 1,992 (sh) 1,999 (sh) 2,066 (sh) 2,254 (sh) 2,649 (sh) 3,280 (mw) 3,444 (mw)	1,890 2,026 2,183 2,353 2,485 3,204 3,416 2,695	1,889 (sh) 2,022 (sh) 2,176 (sh) 2,344 3,211	$e_{1}^{\prime\prime} \rightarrow e_{1}^{\prime\prime} \text{ or } a_{2}^{\prime\prime} \rightarrow a_{1}^{\prime\prime}$ $e_{1}^{\prime\prime} \rightarrow e_{1}^{\prime\prime} + E_{1}^{\prime} \text{ or } a_{2}^{\prime\prime} \rightarrow a_{1}^{\prime\prime} + E_{1}^{\prime}$ $a_{2}^{\prime} \rightarrow e_{1}^{\prime\prime}$ $e_{2}^{\prime\prime} \rightarrow a_{1}^{\prime\prime}$ $e_{1}^{\prime} \rightarrow a_{1}^{\prime\prime} \text{ or } a_{2}^{\prime\prime} \rightarrow a_{1}^{\prime}$ $e_{2}^{\prime} \rightarrow e_{1}^{\prime} \text{ or } a_{2}^{\prime} \rightarrow e_{1}^{\prime}, \text{ or } a_{1}^{\prime} \rightarrow a_{1}^{\prime\prime}$ $e_{1}^{\prime} \rightarrow a_{1}^{\prime}$			
3,745 (mw) 3,961 (w) 5,767 (s)	3,745 (mw) 5,794 (s)	3,605 4,495 5,688	3,595 (sh) 4,439 5,374	$\begin{array}{c} e_1' \rightarrow e_2' \\ a_2' \rightarrow a_2'' \\ a_1' \rightarrow a_2'' \end{array}$			

П р и м і т к а: mw – середньо слабка; w – слабка; s – сильна; sh – плече.

Рис. 4. Підгонка функції оптичної густини D(d) плівок C_{60}/C_{70} при заданих енергіях падаючих фотонів 2,412; 2,800; 3,196 і 3,625 еВ (штрихові лінії 1, 2, 3 і 4 відповідно)

Рис. 5. Спектри поглинання плівок на кремнеземних підкладинках: 1 – суміш C_{60}/C_{70} (товщина 25 нм), 2 – C_{60} (20 нм); 3 – C_{70} (20 нм); 4, 5 – різниця кривих 1 і 3 та 1 і 2 відповідно

Рис. 6. Підгонка спектрів поглинання плівок Гаусіанами однакової ширини: $a - C_{60}$, 20 нм; $b - C_{60}/C_{70}$, 100 нм; $c - C_{60}/C_{70}$, 115 нм і $d - C_{60}/C_{70}$, 195 нм. Спектральні контури суми Гаусіанів позначені штриховими лініями

Відповідно до закону Бугера–Ламберта ми оцінили значення ефективних коефіцієнтів поглинання $\alpha(E)$ плівок C_{60}/C_{70} як нахили графіків

Рис. 7. Підгонка спектрів поглинання плівок Гаусіанами однакової ширини: $a - C_{70}$, 20 нм; $b - C_{60}/C_{70}$, 25 нм; $c - C_{60}/C_{70}$, 35 нм. Спектральні контури суми Гаусіанів позначені штриховими лініями

D(d) (рис. 4). Отримані значення $\alpha(E)$ становили $3,22 \cdot 10^4$; 6,16 $\cdot 10^4$; 8,71 $\cdot 10^4$ і 1,82 $\cdot 10^5$ см⁻¹ для ліній 1, 2, 3 і 4 відповідно. Відносна похибка вимірювання $\alpha(E)$ не перевищувала 12%. Ця похибка була найменшою при енергії падаючого фотона 3,625 еВ і становила 2% для лінії графіка 4. Менші значення відносних похибок вимірювань були отримані для більших $\alpha(E)$. Величини $\alpha(E)$, обчислені з спектрів поглинання плівок C₆₀ і C₇₀ товщиною 20 нм, становлять $3,8 \cdot 10^4$; $6,7 \cdot 10^4$; $8,1 \cdot 10^4$; $1,7 \cdot 10^5$ і $8,5 \cdot 10^4$; $7,2 \cdot 10^4$; $1,1 \cdot 10^5$; $1,0 \cdot 10^5$ см⁻¹ для енергій фотонів 2,412; 2,800; 3,196; 3,625 еВ відповідно. Порівняння цих даних показує, що наведені вище значення $\alpha(E)$ для плівок C_{60}/C_{70} краще корелюють з розрахунковими значеннями $\alpha(E)$ для плівок С₆₀ при відповідних енергіях падаючого фотона. Це означає, що в плівках С₆₀/С₇₀ основним компонентом $\in C_{60}$.

В діапазоні 1,38–3,31 еВ поглинання плівки C_{70} сильніше, ніж плівки C_{60} (рис. 5, лінії 3 і 2 відповідно). На рис. 5 цифрами зі стрілками позначено енергії переходу для плівок C_{60} і C_{70} , взяті з табл. 1 (стовпчик 5) і табл. 2 (стовпчик 4). Внесок C_{60} (лінія 4) у поглинання C_{60}/C_{70} оцінювали шляхом віднімання спектра C_{70} (лінія 3) із спектра суміші (лінія 1). Спектр поглинання (лінія 4) корелює зі спектром плівки C_{60} (лінія 2). Спектр поглинання (лінія 5) характеризує внесок C_{70} в поглинання C_{60}/C_{70} . Цей спектр був отриманий шляхом віднімання лінії 2 від лінії 1 і ко-

№ Код		$C_{60}, 20$ нм $A_0 = 0,27799$ в.о.		${ m C}_{60}/{ m C}_{70},100$ нм $A_0=1,\!17812$ в.о.		${ m C}_{60}/{ m C}_{70},115$ нм $A_0=1,45257$ в.о.		${ m C}_{60}/{ m C}_{70},195$ нм $A_0=3{,}00815$ в.о.	
		E, eB	A/A_0	E, eB	A/A_0	E, eB	A/A_0	E, eB	A/A_0
1	1 C ₆₀	1,999	0,016					2,007	0,018
2	$2C_{70}$			2,050	0,008	2,048	0,006		
3	$2 C_{60}$	2,209	0,027	2,200	0,018	2,214	0,024	2,270	0,036
4	3C ₆₀	2,474	0,079	2,431	0,050	2,484	0,073	2,517	0,079
5	$5_{C_{70}}$			2,624	0,080				
6	$4 C_{60}$	2,712	0,116			2,704	0,103	2,737	0,096
7	6_{C70}			2,828	0,088				
8	$5_{C_{60}}$	2,949	0,112			2,929	0,103	2,957	0,106
9	$7_{C_{70}}$			3,053	0,104				
10	$6_{C_{60}}$	3,208	0,135			3,157	0,131	3,214	0,145
11	8_C ₇₀			3,268	0,122				
12	7_{C60}	3,440	0,216	3,472	0,213	3,389	0,222	3,461	0,240
13	8_C ₆₀	3,640	0,298	3,665	0,317	3,622	0,338	3,681	0,280

Таблиця 3. Енергії E та відносні інтенсивності електронних переходів A/A_0 у плівках С₆₀ товщиною 20 нм і плівках С₆₀/С₇₀ товщиною 100, 115 і 195 нм

релює зі спектром C₇₀ (лінія 3) в діапазоні 1,8–3,6 еВ. Спостерігалась антикореляція спектрів поглинання плівок C₆₀ та C₇₀ (лінії 2 та 3 відповідно). Спектри поглинання, позначені лініями 4 і 5, також антикорельовані. Отже, наведений вище аналіз спектрів поглинання (рис. 5) показав, що до складу плівки C₆₀/C₇₀ входять C₆₀ і C₇₀.

3.3. Ідентифікація C_{60} та C_{70} у плівках суміші C_{60}/C_{70} за їх спектрами поглинання

В області 1,38–6,0 еВ спектри поглинання плівок C_{60} і C_{70} складаються з широких структурних смуг (рис. 2 і 3 відповідно). На рис. 6 і 7 структурні смуги поглинання плівок C_{60} , C_{70} і C_{60}/C_{70} описані сумою Гаусіанів однакової ширини з метою більш точного визначення енергій переходів і їх порівняння в області 1,38–3,80 еВ. Підгонка Гаусіанами однакової товщини точніше розкриває структуру спектрів поглинання C_{60} , C_{70} і C_{60}/C_{70} та надає можливість виявити якісно динаміку складу плівок C_{60}/C_{70} різних товщин в процесі термічного напилення цієї суміші.

Спектри поглинання плівок C₆₀, C₇₀ і C₆₀/C₇₀ згруповані за подібністю їх контурів. Спектри поглинання плівок C₆₀ (20 нм) і C₆₀/C₇₀ (100, 115 і 195 нм), а також їх підгонка Гаусіанами однакової ширини показані на рис. 6, *a* і 6, *b*, *c*, *d* відповідно.

ISSN 0372-400Х. Укр. фіз. журн. 2023. Т. 68, № 5

На рис. 7, *а* та *b*, *с* така підгонка виконана для спектрів поглинання плівок С₇₀ (20 нм) та С₆₀/С₇₀ (25 та 35 нм) відповідно. Відносну інтенсивність окремих Гаусіанів визначали за відношенням A/A_0 , де A – площа під кожним Гаусіаном; A_0 – сума площ під всіма Гаусіанами, що утворюють цей спектр плівки.

Енергії та відносні інтенсивності електронних переходів у спектрах поглинання плівок C_{60} та C_{60}/C_{70} , визначені згідно з рис. 6 і 7, наведено в табл. 4 відповідно. Числа у другому стовпці цих таблиць є номерами смуг компонентів (C_{60} або C_{70}), що спостерігаються в спектрах поглинання плівок C_{60}/C_{70} товщиною 25, 35, 100, 115 і 195 нм.

3.3.1. Внески C_{60} в спектри поглинання плівок сумішей C_{60}/C_{70}

Слабку смугу 2,007 еВ в спектрі поглинання плівки C_{60}/C_{70} товщиною 195 нм (табл. 3, рядок 1) ідентифіковано як 1_ C_{60} (γ -смуга) при 1,999 еВ (табл. 1, ряд 1)

У спектрах поглинання плівок C_{60}/C_{70} товщиною 100, 115 і 195 нм з'являється смуга 2_ C_{60} при 2,209 еВ (табл. 3, рядок 3). Ця смуга відсутня в спектрах поглинання тонких плівок C_{60}/C_{70} товщиною 25 і 35 нм.

Смуга 3_С₆₀ при 2,474 eB, яка ідентифікується як смуга A (табл. 1), спостерігається в спектрах

Nº	Код смуги	${ m C}_{70},20$ нм $A_0=0,\!29865$ в.о.		${ m C}_{60}/{ m C}_{70},25$ нм $A_0=0,39903$ в.о.		${ m C}_{60}/{ m C}_{70},35$ нм $A_0=0,60292$ в.о.	
		E, eB	A/A_0	E, eB	A/A_0	E, eB	A/A_0
1	1 C ₇₀	1,936	0,016				
2	$2^{-}_{C_{70}}$	2,047	0,055	2,049	0,043	2,057	0,029
3	$3 C_{70}$	2,245	0,094	2,272	0,067	2,254	0,051
4	4_C ₇₀	2,405	0,110				
5	$3_{C_{60}}$			2,487	0,096	2,468	0,088
6	$5 C_{70}$	2,594	0,110	2,674	0,114	2,660	0,104
7	$6 C_{70}$	2,804	0,083	2,871	0,115	2,848	0,101
8	7_C ₇₀	3,018	0,147	3,067	0,114	3,030	0,108
9	8_C ₇₀	3,252	0,188	3,245	0,127	3,222	0,133
10	7 C ₆₀			3,423	0,150	3,423	0,174
11	$9_{C_{70}}$	3,531	0,197				
12	$8 C_{60}$			3,610	0,174	3,629	0,211

Таблиця 4. Енергії E та відносні інтенсивності електронних переходів A/A_0 у плівках С₇₀ товщиною 20 нм і плівках С₆₀/С₇₀ товщиною 25 і 35 нм

поглинання плівок C_{60}/C_{70} усіх товщин (табл. 3, рядок 4; табл. 4, рядок 5). Відносна інтенсивність цієї смуги мінімальна у спектрі поглинання плівки C_{60}/C_{70} товщиною 100 нм.

У спектрах поглинання плівок C_{60}/C_{70} товщиною 115 і 195 нм спостерігаються смуги 4_ C_{60} і 5_ C_{60} при 2,712 (смуга В, табл. 1) і 2,949 еВ відповідно. Їх відносна інтенсивність змінюється незначно із збільшенням товщини плівок C_{60}/C_{70} (табл. 3, рядки 6 і 8 відповідно).

Смуга 6_C₆₀ при 3,208 eB (смуга C, табл. 1) присутня в спектрах поглинання плівок C₆₀/C₇₀ товщиною 115 і 195 нм. Відносна інтенсивність цієї смуги зростає зі збільшенням товщини плівок C₆₀/C₇₀ (табл. 3, рядок 10).

Смуги 7_C₆₀ і 8_C60 при 3,440 і 3,640 eB (табл. 1, смуги D₁ і D₂ відповідно) спостерігаються в спектрах поглинання всіх плівок C₆₀/C₇₀ (табл. 3, рядки 12 і 13; табл. 4, рядки 10 і 12). Їх відносна інтенсивність зростає зі збільшенням товщини плівок C₆₀/C₇₀.

Отже, наведені вище дані підтверджують наявність компонента C_{60} в плівках C_{60}/C_{70} товщиною 25, 35, 100, 115 і 195 нм. Обчислені середні значення енергій переходів і відносних інтенсивностей (в дужках) 3_ C_{60} , 7_ C_{60} і 8_ C_{60} смуг плівок C_{60}/C_{70} всіх товщин становлять 2,477 еВ (0,077); 2,434 еВ (0,200) і 3,641 еВ (0,264) та добре узгоджуються з даними для плівок C_{60} товщиною 20 нм: 2,474 еВ (0,079); 3,440 еВ (0,216) і 3,640 еВ (0,298)

відповідно (табл. 3 і 4). Тому смуги 2,474, 3,440 та 3,640 еВ можна використовувати для ідентифікації C_{60} у сумішах плівок фулеренів за їх спектрами поглинання. Відносна зміна енергії піків C_{60} 2,474, 3,440 і 3,640 еВ у плівках C_{60}/C_{70} товщиною 25, 35, 100, 115 і 195 нм становить (0,5; -0,2; -1,7; 0,4 і 1,7%), (-0,5; -0,5; 0,9; -1,5 і 0,6%) і (-0,8; -0,3; 0,7; -0,5 і 1,1%) відповідно.

3.3.2. Внески С70 в спектри

поглинання плівок сумішей C_{60}/C_{70}

Слабка смуга 1_C₇₀ при 1,936 еВ не спостерігається в спектрах поглинання плівок C₆₀/C₇₀ (табл. 4, рядок 1). За положенням піка ця смуга близька до енергії переходів $e''_1 \to e''_1$ або $a''_2 \to a''_1$ 1,889 еВ (табл. 2).

У спектрах поглинання плівок C_{60}/C_{70} товщиною 25, 35, 100 і 115 нм спостерігалася слабка смуга 2_ C_{70} при 2,047 еВ. Відносна інтенсивність цієї смуги зменшується зі збільшенням товщини плівок C_{60}/C_{70} і є дуже малою у спектрах поглинання плівок C_{60}/C_{70} товщиною 100 і 115 нм (табл. 4, рядок 2; табл. 3, рядок 2).

У спектрах поглинання плівок C_{60}/C_{70} товщиною 25 і 35 нм є смуга 3_ C_{70} при 2,245 еВ. Відносна інтенсивність цієї смуги зменшується зі збільшенням товщини плівок C_{60}/C_{70} (табл. 4, рядок 3). За положенням піка ця смуга знаходиться посередині між смугами C_{70} при 2,176 ($a'_2 \rightarrow e''_1$ – перехід) і 2,344 еВ ($e''_2 \rightarrow a''_1$ – перехід) (табл. 2).

У спектрах поглинання плівок C_{60}/C_{70} смуга $4_{C_{70}}$ при 2,405 eB відсутня (табл. 4, рядок 4).

Смуга 5_C₇₀ при 2,594 еВ спостерігалась в спектрах поглинання плівок C_{60}/C_{70} товщиною 25, 35 і 100 нм. Відносна інтенсивність цієї смуги зменшується зі збільшенням товщини плівок C_{60}/C_{70} (табл. 4, рядок 6; табл. 3, рядок 5). За положенням піка ця смуга близька до смуги C_{70} при 2,485 еВ $(e'_1 \rightarrow a''_1$ або $a''_2 \rightarrow a'_1$ – переходи) (табл. 2).

Смуга 6_C₇₀ при 2,804 еВ присутня в спектрах поглинання плівок C₆₀/C₇₀ товщиною 25, 35 і 100 нм. Відносна інтенсивність цієї смуги найбільша у плівці C₆₀/C₇₀ товщиною 25 нм і не змінюється для плівок товщиною 35 і 100 нм (табл. 4, рядок 7; табл. 3, рядок 7).

Смуга 7_C₇₀ при 3,018 eB з'являється в спектрах поглинання плівок C_{60}/C_{70} товщиною 25, 35 і 100 нм. Відносна інтенсивність цієї смуги зменшується зі збільшенням товщини плівок C_{60}/C_{70} (табл. 4, рядок 8 і табл. 3, рядок 9).

У спектрах поглинання плівок C_{60}/C_{70} товщиною 25, 35 і 100 нм спостерігалася смуга 8_ C_{70} при 3,252 еВ. Відносна інтенсивність цієї смуги не змінюється зі збільшенням товщини плівок C_{60}/C_{70} (табл. 4, рядок 9; табл. 3, рядок 11). За положенням піка ця смуга близька до смуги C_{70} при 3,211 еВ ($e'_2 \rightarrow e'_1$ або $a'_2 \rightarrow e'_1$, або $a'_1 \rightarrow a''_1$ – переходи) (табл. 2).

У спектрах поглинання плівок C_{60}/C_{70} смуга 9_ C_{70} при 3,531 еВ відсутня (табл. 4, рядок 11). Можна припустити, що ця смуга не проявляється на тлі інтенсивних смуг при 3,440 та 3,640 еВ компоненти C_{60} . За положенням піка ця смуга близька до смуги C_{70} при 3,595 еВ ($e'_1 \rightarrow e'_2$ – перехід) (табл. 2).

Отже, наведені вище дані підтверджують наявність компонента C_{70} в плівках C_{60}/C_{70} товщиною 25, 35 і 100 нм. Обчислені середні значення енергій переходів і відносних інтенсивностей (в дужках) 5_ C_{70} , 6_ C_{70} , 7_ C_{70} і 8_ C_{70} смуг плівок C_{60}/C_{70} товщиною 25, 35 і 100 нм становлять 2,652 еВ (0,099); 2,849 еВ (0,101); 3,050 (0,109) і 3,245 еВ (0,127) та задовільно узгоджуються з даними для плівок C_{70} товщиною 20 нм: 2,594 еВ (0,110); 2,840 еВ (0,083); 3,018 еВ (0,147) і 3,252 еВ (0,188) відповідно (табл. 3 і 4). Тому смуги 2,594, 2,804, 3,018 і 3,252 еВ можна використовувати для ідентифікації C_{70} в сумішах плівок фулеренів за їх спектрами поглинання. Відносна зміна енергії

ISSN 0372-400Х. Укр. фіз. журн. 2023. Т. 68, № 5

піків C₇₀ 2,594, 2,804, 3,018 і 3,252 eB у плівках C₆₀/C₇₀ товщиною 25, 35 і 100 нм становить (3,1; 2,5 і 1,2%), (2,4; 1,6 і 0,8%), (1,6; 0,4 і 1,1%) і (-0,2; -0,9 і 0,5%) відповідно.

Зміни відносних інтенсивностей смуг C_{60} і C_{70} у спектрах поглинання плівок C_{60}/C_{70} дозволяють припустити, що на початку напилення сублімують обидві компоненти, і плівки C_{60}/C_{70} товщиною $d \leq 100$ нм утворюються осадженням молекул C_{60} і C_{70} на кремнеземні підкладинки. Ці плівки є двокомпонентними. Після різкого зменшення інтенсивності сублімації C_{70} внаслідок його малої кількості у в тиглі плівки C_{60}/C_{70} товщиною d > 100 нм складаються із двох шарів. Перший шар товщиною 100 нм, який контактує безпосередньо з підкладинкою, є двокомпонентним, а наступний шар – однокомпонентний і складається переважно з молекул C_{60} .

4. Висновки

Молекулярна взаємодія фулеренів із підкладинками впливає на структуру плівок C_{60}/C_{70} . На кремнеземних підкладинках з проміжними шарами карбону С або ІТО утворюються полікристалічні плівки C_{60}/C_{70} з голчастими та круглими кристалітами. На поверхні мідних підкладинок утворюються квазиаморфні шари C_{60}/C_{70} , поверхневі молекули яких стають центрами утворення кристалітів.

Оцінено значення ефективних коефіцієнтів поглинання $\alpha(E)$ плівок C_{60}/C_{70} при різних енергіях падаючих фотонів. Встановлено, що значення $\alpha(E)$ для плівок C_{60}/C_{70} краще корелюють з розрахунковими значеннями $\alpha(E)$ для плівок C_{60} при відповідних енергіях падаючого фотона. Це означає, що в плівках C_{60}/C_{70} основним компонентом є C_{60} .

Природа смуг поглинання C_{60} і C_{70} була детально обговорена на основі аналізу літератури та наших даних. Смуги поглинання $C_{60}(2,474, 3,440 i 3,640 eB)$ і C_{70} (2,594, 2,804, 3,018 і 3,252 eB) можна використовувати для ідентифікації цих речовин у сумішах фулеренів.

Робота виконана за кошти бюджету НАН України (проект № 1.4. В/209).

 H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. C₆₀: Buckminsterfullerene. *Nature* **318** (6042), 162 (1985).

- A. Graja, J.-P. Farges. Optical spectra of C₆₀ and C₇₀ complexes. Their similarities and differences. *Adv. Mater. Opt. Electron.* 8, 215 (1998).
- L. Benatto, C.F.N. Marchiori, T. Talka, M. Aramini, N.A.D. Yamamoto, S. Huotari, L.S. Roman, M. Koehler. Comparing C₆₀ and C₇₀ as acceptor in organic solar cells: Influence of the electronic structure and aggregation size on the photovoltaic characteristics. *Thin Solid Films.* 697, 137827 (2020).
- Y. Yi, V. Coropceanu, J.-L. Brédas. Exciton-dissociation and charge-recombination processes in pentacene/C₆₀ solar cells: Theoretical insight into the impact of interface geometry, J. Am. Chem. Soc. **131** (43), 15777 (2009).
- 5. P. Brown, P.V. Kamat. Quantum dot solar cells. Electrophoretic deposition of CdSe– C_{60} composite films and capture of photogenerated electrons with nC_{60} cluster shell. J. Am. Chem. Soc. **130** (28), 8890 (2008).
- H. Yi, D. Huang, L. Qin, G. Zeng, C. Lai, M. Cheng, S. Ye, B. Song, X. Ren, X. Guo. Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production, *Appl. Catal. B* 239, 408 (2018).
- P. Mroz, G.P. Tegos, H. Gali, T. Wharton, T. Sarna, M.R. Hamblin. Photodynamic therapy with fullerenes. *Photoch. Photobid. Sci.* 2007. 6 (11), 1139 (2007).
- S. Afreen, K. Muthoosamy, S. Manickam, U. Hashim. Functionalized fullerene (C₆₀) as a potential nanomediator in the fabrication of highly sensitive biosensors. *Biosens. Bioelectron.* 63, 354 (2015).
- S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, K. Leo. Imroved bulk heterojunction organic solar cells employing C₇₀ fullerenes. *Appl. Phys. Lett.* **94** (22), 223307 (2009).
- H. Ajie, M. M. Alvarez, S. J. Anz, R.D. Beck, F. Diederich, K. Fostiropoulos, D.R. Kraetschmer, M. Rubin, K.E. Schriver, D. Sensharma, R.L. Whetten. Characterization of the Soluble All-Carbon Molecules C₆₀ and C₇₀. *J. Phys. Chem.* 94, 8630 (1990).
- W. Krätschmer, L. Lamb, K. Fostiropoulos, D.R. Huffman. Solid C₆₀: A new form of carbon. *Nature* **347** (6291), 354 (1990).
- S. Leach, M. Vervloet, A. Despres, E. Breheret, J.P. Hare, T.J. Dennis, H.W. Kroto, R. Taylor, D.R.M. Walton. Electronic spectra and transitions of the fullerene C₆₀. *Chem. Phys.* **160** (3), 451 (1992).
- S. Mochizuki, M. Sasaki, R. Ruppin. An optical study on C₆₀ vapour, microcrystal beam and film. J. Phys.: Condens. Matter. 10, 2347 (1998).
- J. Hora, P. Panek, K. Navratil, B. Handlirova, J. Humlicek, H. Sitter, D. Stifter. Optical response of C₆₀ thin films and solutions. *Phys. Rev. B.* 54 (7), 5106 (1996).
- W. Zhou, S. Xie, S. Qian, T. Zhou, R. Zhao, G. Wang, L. Quian, W. Li. Optical absorption spectra of C₇₀ thin films. J. Appl. Phys. 80 (1), 459 (1996).
- G. Orlandi, F. Negri. Electronic states and transitions in C₆₀ and C₇₀ fullerenes. Photochem. *Photobiol. Sci.* 1, 289 (2002).

- R.C. Haddon, L.E. Brus and K. Ragnavachari. Electronic structure and bonding in icosahedral C₆₀. *Chem. Phys. Lett.* **125** (5 and 6), 459 (1986).
- S. Saito, A. Oshiyama. Cohesive mechanism and energy bands of solid C₆₀. *Phys. Rev. Lett.* 66 (20), 2637 (1991).
- V. Capozzi, G. Casamassima, G.F. Lorusso *et al.* Optical spectra and photoluminescence of C₆₀ thin films. *Solid State Commun.* 98 (9), 853 (1996).
- 20. S. Kazaoui, N. Minami. Optical and electrical properties of C₆₀, C₇₀, nanotubes and endohedral fullerenes. Edited by Y. Tanabe. In: *Macromolecular Science and Engineeri*ng. Springer Series in Materials Science (Springer, 1999), vol. 35.
- T.E. Saraswati, U.H. Setiawan, M.R. Ihsan, I. Isnaeni, Y. Herbani. The study of the optical properties of C₆₀ fullerene in different organic solvents. *Open Chem.* **17** (1), 1198 (2019).
- K. Yabana, G.F. Bertsch. Forbidden transitions in the absorption spectra of C₆₀. Chem. Phys. Lett. **197** (1, 2), 32 (1992).
- J.P. Hare, H.W. Kroto, R. Taylor. Preparation and 'UV/visible spectra of fullerenes C₆₀, and C₇₀. Chem. Phys. Lett. **177** (4, 5), 394 (1991).
- G.E. Scuseria. The equilibrium structure of C₇₀. An ab initio Hartree–Fock study. *Chem. Phys. Lett.* **180** (5), 451 (1991).
- J. Shumway, S. Satpathy. Polarization-dependent optical properties of C₇₀. Chem. Phys. Lett. **211** (6), 595 (1993).
- R.E. Stratmann, G.E. Scuserial, M.J. Frisch. Density functional study of the infrared vibrational spectra of C₇₀. *J. Raman Spectroscopy* **29**, 483 (1998).

Одержано 11.05.23

M.P. Gorishnyi

SURFACE MORPHOLOGY OF THE FILMS OF THE C_{60}/C_{70} FULLERENE MIXTURE. IDENTIFICATION OF C_{60} AND C_{70} IN THE C_{60}/C_{70} FILMS USING ABSORPTION SPECTRA

Films of the C_{60}/C_{70} mixture are deposited onto various substrates in a vacuum of 6.5 mPa using the thermal sublimation method. The surface morphology of 195-nm C_{60}/C_{70} films is studied. It is found that polycrystalline and quasi-amorphous C_{60}/C_{70} films are formed on silica and copper substrates, respectively. The nature of the C_{60} and C_{70} absorption bands has been discussed in detail by analyzing the literature and our data. The absorption spectra of the C_{60} and C_{70} films and the C_{60}/C_{70} mixture films are described as the sum of Gaussian functions. The absorption bands of C_{60} (at 2.474, 3.440, and 3.640 eV) and C_{70} (at 2.594, 2.804, 3.018, and 3.252 eV) can be used to identify those substances in fullerene mixtures. C_{60} is found to be the dominant component in the C_{60}/C_{70} films.

 $Keywords\colon$ thin film, surface morphology, absorption spectra, fitting, Gaussians, C_{60}/C_{70} mixture.

ISSN 0372-400Х. Укр. фіз. журн. 2023. Т. 68, № 5

326