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PHASE SHIFT OPERATORS

We will consider graph states generated by the action of controlled phase shift operators on a
separable state of a multiqubit system. The case where all the qubits are initially prepared in ar-
bitrary states is investigated. We will obtain the geometric measure of entanglement of a qubit
with the remaining system in graph states represented by arbitrary weighted graphs and will
establish its relationship with state parameters. For two-qubit graph states, the geometric mea-
sure of entanglement is also quantified on IBM’s simulator Qiskit Aer and quantum processor
ibmq lima based on auziliary mean spin measurements. The results of quantum computations

verify our analytic predictions.
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1. Introduction

Over the past decades, a lot of efforts have been di-
rected toward theorizing and implementing a vari-
ety of practical schemes and algorithms, which could
leverage the amazing potential of quantum mechanics
(as an example, see [1-7] and references therein). Stu-
dies of the quantum entanglement, indisputably con-
sidered one of the fundamental quantum-mechanical
features [8, 9], took a central role in this endeav-
our and soon gave rise to quantum computing and
quantum communications. Manifesting itself in pe-
culiar long-range correlations, which result in non-
factorable states of composite systems, the quan-

IIuryBanua: CycymoBcoka H. ['eomerpuuna mipa 3amyTa-
HOCTI KBAHTOBUX IpacOBUX CTaHIB, yTBOPEHUX 3a [JOIIOMOI'OI0
OIepaTopiB KOHTPOJBLOBAHOIO 3CyBY das3u. Yxp. Pis. owcypn.
70, Ne3, 159 (2025).

(© Bupasenp BJI “Axanemmnepionuka” HAH Vkpaluu, 2025.
CrarTa omybuikoBaHa 3a yMOBaMU BiIKPHTOIO AOCTYIy 3a
ginensielo CC BY-NC-ND  (https://creativecommons.org/
licenses/by-nc-nd/4.0/).

ISSN 0372-400X. Vkp. ¢is. otcypu. 2025. T. 70, Ne 3

of entanglement, multiqubit graph states, weighted graph,

tum entanglement is viewed as an indispensable re-
source in a range of applications. For instance, this
phenomenon lies in the foundation of quantum tele-
portation [1, 2], quantum cryptography [3] and al-
lows the unprecedented capabilities of quantum com-
puters [4]. These devices operate with superposi-
tions of quantum states in high-dimensional Hilbert
spaces and harness the power of entanglement to
solve complex and often classically intractable com-
putational problems [5-7]. In this light, exploring
entangled quantum states and their physical prop-
erties, as well as the ways to efficiently prepare
such states on a quantum computer, is of crucial
importance.

Recently, graph states have received a considerable
amount of attention due to their high degree and per-
sistence of the entanglement [10-13]. These multipar-
tite quantum states are widely used in areas such as
quantum error correction [14-16], quantum metrol-
ogy [17, 18], and quantum machine learning [19]. As
for the latter, graph states appear, for instance, as a
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resource in the hybrid qGAN model, being produced
by a single layer of a variational circuit constituting
a quantum generator [20, 21]. With regards for such
broad applicability, quantifying the entanglement of
graph states becomes an important task, which has
been considered in a number of studies both analyti-
cally and on the basis of quantum computations (for
instance, see [21-27| and references therein). Various
entanglement measures have been adopted for this
purpose. For instance, in [22], the authors utilized the
definition of negativity and performed a computation-
ally heavy state tomography procedure to detect the
full entanglement of graph states associated with ring
graphs. In another range of studies [21, 24-29], the
entanglement of different multiqubit states was de-
termined as the distance between an entangled target
state and the nearest separable state. This quantity,
first introduced in [30], is known as the geometric
measure of entanglement and can be formally repre-
sented by the expression

E(l¢)) = min (1 —[(]es)]?), (1)
{ls)}
where |¢), {|s)} denote an entangled target
state and a set of separable states, respectively,
dis(J), [vs)) = 1 — [(¥|vs)|? is a squared Fubini-
Study distance between |1} and |¢)). In [31] similar
geometric considerations were extended to derive a
distance-based entanglement measure for hybrid sys-
tems of qudits.

In general, when estimating the entanglement on a
quantum computer, selecting an entanglement mea-
sure, which can be directly connected to some easily
measurable observable is a huge benefit. It was shown
in [32] that, in order to calculate the geometric mea-
sure of entanglement of a spin 1/2, which can repre-
sent a qubit, with an arbitrary quantum system in a
pure state [¢) it is enough to obtain the mean value
of this spin. This useful property is reflected in the
following relation:

() = 501~ (o)), )
where

(o) = [(wlolv)| = ((")* + (o¥)? + ()?)

Here, o, 0¥, 0% are Pauli operators.
Similarly, the author of work [33] determined that
von Neumann entanglement entropy of the partial
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1/2

(3)

traces in bipartite systems of two-level atoms can be
obtained basing solely on the mean spin value corre-
sponding to one of the atoms.

It should be stressed that the mean value of spin
in an arbitrary pure state can be straightforwardly
measured on a quantum computer according to the
protocol described in [28]. Therefore, the quantity
of entanglement associated with the corresponding
quantum state can be estimated on the basis of such
measurements. In recent years, many studies have
exploited this idea to detect the geometric measure
of entanglement of graph states with various struc-
tures. For instance, in [24] evolutionary graph states
of spin systems with Ising interaction were consid-
ered. The authors of work [26] studied graph states
generated by the action of controlled phase shift op-
erators on the initial multiqubit state corresponding
to the uniform superposition over the computational
basis. Paper [27] also focused on graph states pre-
pared with the help of controlled phase shift opera-
tors, in this case, starting from the state of the sys-
tem, in which all of the qubits are in arbitrary identi-
cal states. These studies concluded that the geomet-
ric measure of the entanglement of an arbitrary qubit
with other qubits in respective graph states depends
on the degree of the corresponding graph vertex. This
important result established a connection between a
physical property of the quantum state and a geomet-
ric property of the graph used to describe it.

In the present study, we will elaborate on the find-
ings presented in [27] and revisit the problem of en-
tanglement quantification for a class of multiqubit
graph states generated by the action of controlled
phase shift operators. We will examine a more general
case where the system of qubits is initially prepared
in an arbitrary separable state. In addition, parame-
ters of controlled phase shift operators corresponding
to different graph edges take independent arbitrary
values. This means that weighted graphs are used to
represent quantum states under investigation. As a
result of the analytic considerations, a general expres-
sion for the geometric measure of entanglement of an
arbitrary qubit with the rest of the system in a state
corresponding to an arbitrary weighted graph is de-
rived. We examine how this quantity depends on the
initial state of the multiqubit system, as well as the
parametrization of the entangling controlled phase
shift operators. Furthermore, the geometric measure
of entanglement for a selection of graph states is quan-
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tified both on IBM’s quantum simulator Qiskit Aer
and real quantum backend ibmgq lima.

The paper is organized as follows. Section 2 is de-
voted to the analytic derivation of the geometric mea-
sure of entanglement of a qubit with other qubits in
a graph state associated with an arbitrary weighted
graph and its subsequent analysis. In Section 3, we
detect the geometric measure of entanglement of two-
qubit graph states on IBM’s simulator Qiskit Aer and
quantum computer ibmg lima [34] and discuss the ob-
tained results. Conclusions are presented in Section 4.

2. Analytical Consideration of the Geometric
Measure of Entanglement of Graph States

Consider an arbitrary multiqubit state characterized
by a general structure

H Uv] |7/}1n1t (4)

(1,5)eE

[Ya) =

where [1ini1) is an initial separable state of the sys-
tem and U;; represents a two-qubit entangling uni-
tary acting on states of qubits ¢;, g;. We can establish
a one-to-one mapping between the class of quantum
states (4) and a set of graphs G(V, E). In this context,
the set of graph vertices V' represents qubits, whereas
the set of graph edges F is associated with two-qubit
operators acting on their initial states. Each unitary
operator U;; can be written in the exponential form

Uij = eid)inij, (5)

where H;; is the Hermitian operator, ¢;; is a scalar
parameter.

In the present study, let us begin by considering a
system of N qubits in the initial separable state

=TT (e 6x)), (6)

keVv

|1/}init>

where

[(ak, O0k)) = COS% [0) + ei“’“sin% 1) (7)
is an arbitrary one-qubit state, 0 < «ap < 2w, 0 <
<O, <m keV=AH{0,..,N—1}. Conveniently, state
(7) can be prepared with the help of the parameter-
ized rotation operators RY (), RZ(«y) acting on
state |0) (accurate to the phase factor)

[¥(ar, 0r)) = e RZ(ay) RY (6)0), 8)
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here RY (0;) =
= exp(—iag0}/2).

Subsequently, a graph state associated with a
weighted graph of a predefined structure can be ob-
tained by applying the controlled phase shift op-
erator CP;;(¢;;) to each pair of qubits ¢;, ¢; rep-
resented by vertices linked with an edge of weight
¢i;. This two-qubit operator is defined as CP;;(¢;;) =
= |O>”<O| (39 I]’ + |1>”<1| ® Pj(¢ij)’ where Ij is an
identity operator and P;(¢;;) = |0);,(0]+e'%i|1),,(1]
is a phase shift operator acting on qubit ¢;, 0 < ¢;; <
< 2m, (i,j) € E.

Note that we deal with weighted graphs and con-
sider the case where all the phase shift parameters ¢;;,
(i,j) € E take different values. The resulting graph
state reads

H CPZ] ¢z_] H W Oék,ek (9)

(.4)eE kev

exp(—ifro}/2) and RZ(ay) =

[Ya) =

where [¢(au, 0r)) is given by (7) and CP;;(¢;;) acts
on qubits ¢;, g; as a control and a target, respectively.

Here, we can resort to the exponential form of the
controlled phase shift operator

iy
H(Li—of)(Ij—03)

CPij(¢i;) = (10)
One can notice that our choice of entangling two-
qubit operators allows us to simulate Ising interaction
in systems of many spins equal to 1/2.

Let us analytically estimate the geometric measure
of entanglement of an arbitrary qubit ¢; with the re-
maining system in state (9) described by an arbitrary
weighted graph. Note that we essentially study bipar-
tite entanglement with one of the subsystems being
represented by qubit ¢; and the rest of the qubits
constituting the second subsystem. As follows from
(2), our objective can be achieved by calculating the
mean value of the corresponding Pauli operator (o)
in the graph state. Namely, one has to separately
consider (o), (07), (07). Hereafter, we use notation
() = (Ve - ).

Accounting for (8) yields

L0 oy % o2
:<¢0|He12"qe ! H CP; 2 (pjr)of x
qev (4,k)EE
x TI CPun(dmn) [[ e Fre % g0), (11)
(m,n)eE peV
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where [19) = [0)®V. To simplify this expression, we
make use of identity (10) and take into considera-
tion that the Pauli operators o} and of anticommute;
thus, obtaining:

II cPiiner I CPun(émn) =

(4,k)EE (m,n)eE
. P z z

= H efl%k(ljfo'j)(lkfak) O—f X

(4,k)EE
x I etEemenied) -

(m,n)eE

iz S a(lj—o?
— 2% EJGNGU) #51(1; aJ)Uf) (12)

where N¢ (1) denotes a set of vertices adjacent to the
vertex [, known as its neighborhood. Eventually, we
find

(o) = sinf; Re z. (13)

Here z € C reads

z = efi(aﬁ% 2jeng® ¢j"> X

X H (cos % +1i sin % cos Hk), (14)
keENg (1)

where > v ) @5 is a weighted degree of the vertex
denoting qubit ¢; in the graph.

Performing similar mathematical transformations,
we easily obtain the result for mean value (o})

(o}) = —sin6;Im z, (15)
where z is given by the same expression (14).
Lastly,
291y 291y
(07) = (tole’> 7" o7e™2 1 o) = cos ). (16)

Eventually, to find the geometric measure of en-
tanglement of qubit ¢; with the rest of the qubits in
state (9), we substitute mean values (13), (15), (16)
into central expression (2) and obtain

H (0052 % +

keENG (1)

1/2
+ sin? % cos? Gk) + cos? 9;] )

Ei(|¢a)) = ;(1 - {sin2 0,

> (17)
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As evident from (17), this entanglement measure de-
pends on absolute values of a subset of parameters
{6} defining the initial state of the multiqubit sys-
tem, which corresponds to a closed neighborhood
N¢ll] of vertex [ representing the qubit under con-
sideration (vertex [ itself combined with a set of
its adjacent vertices), m € Ng[l]. It also depends
on the absolute values of a set of parameters {¢x; }
passed to the controlled phase shift operators respon-
sible for the generation of edges incident to vertex I,
k € Ng (l)

Consider a special case of graph states (9) where
all the qubits of the system are initially prepared in
identical states (7) so that 6, = 6, m € Ngl[l]. In
addition assume that all the controlled phase shift
operators associated with graph edges share the same
parameter, hence, ¢r; = ¢, k € Ng(l). Under these
constraints (17) is reduced to

1

Ei(|[va)) = % (1 - {sin2 6((:082 g + sin? gcos2 9)n +

1/2
+ cos? 9} ),

which coincides with the expression obtained in
[27]. Therefore, the results of the present study gen-
eralize our previous findings. Note that, in (18), the
geometric measure of entanglement of qubit ¢; explic-
itly depends on the degree of the corresponding graph
vertex n;, which is equal to the number of vertices in
its neighborhood.

(18)

3. Investigating the Relation

of the Geometric Measure of Entanglement
of Graph States to the Mean Spin

on a Quantum Device

In order to put our theoretical findings to the test, we
examine two-qubit graph states of structure (9) on a
quantum device and quantify their geometric mea-
sure of entanglement. Such states can be explicitly
written as

[VG,) = CPo1(do1)|(0,00))[4(0,01)) =

0 0
= C'Py1(¢o1) (cos20|0> + sin20|1>> X

X (C08921|0> —|—sin921|1>> (19)
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and associated with a graph depicted in Fig. 1. Graph
state (19) is determined by a set of three parameters,
namely, 6y, 6; defining the initial states of qubits in
the bipartite system, and ¢¢y; corresponding to the en-
tangling gate parameter and, therefore, to the weight
of the graph edge. Note that we set relative phases
of the initial one-qubit states agp, ay in (7) equal to
zero, since they don’t have any impact on the geo-
metric measure of entanglement, according to expres-
sion (17).
On the basis of (8), we further obtain

iog

0 v iy
[e,) = CPor(dor)e” 2 Tl 2 70|00) =

= CPy1(do1)RY1(01)RY,(60)]00), (20)

which shows that an arbitrary two-qubit graph state
can be prepared by the consecutive action of two ro-
tation RY gates and the controlled phase shift gate
on the traditional initial state of a quantum register
|00). See the protocol for generating quantum states
of this structure corresponding to different weighted
graphs on a gate-based quantum computer in Fig. 2.

For the purposes of this research, we aim to ana-
lyze how the geometric measure of entanglement of
one qubit with another in graph state (19) is influ-
enced by the choice of the initial separable state of
the bipartite system, as well as the parameter of the
entangling gate. Hence, two special cases are investi-
gated in detail.

Firstly, we consider a subclass of graph states (19)
with both parameters 6y, 01 equal to 7/2 and track
the dependence of the geometric measure of entangle-
ment on the parameter of the controlled phase shift
gate ¢p1 as it runs in the interval [0,27). Note that,
in this case, the initial one-qubit states coincide with
state |[+) = (|0) 4 [1)) /v/2 (an eigenstate of Pauli-X
operator corresponding to eigenvalue 1) and can be
prepared with the help of Hadamard operators H. We
have

|¢G2 (¢01)> = CP01(¢01)H1H0|00>.

According to (17), the geometric measure of entan-
glement of one qubit with another one in state (21)
is reduced to

). (22)

1 ¢
Bl (o)) = 5 (1~ Joos %t
For the second subclass of graph states, we fix pa-
rameter ¢o; equal to w. Since CZ = CP(m), this

(21)
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Fig. 1. A graph representing state (19)
q[0]]0)
q[1]]0)

Fig. 2. Quantum protocol for preparing two-qubit graph sta-
tes (19)

means in practice that the controlled-Z operators CZ
are used to generate graph edges and the resulting
states take the form

|G, (00,61)) = CZy1 RY1(61)RY,(6p)]00). (23)
In this setting we can show the dependency of the ge-
ometric measure of entanglement on the initial state

parameters by letting them variate independently in
the interval [0, 7]. Analytically, (17) yields

E(lva, (0o,61)) =
1 1/2
=5 (1 — [0052 0o + cos® 0y — cos? 0, cos? 01] ) (24)

Expression (2) suggests that the geometric mea-
sure of entanglement in multiqubit systems can be
detected on a quantum device through the measure-
ments of the mean spin. Namely, one has to obtain
mean values of Pauli operators ¢®, o¥, 0* on the ba-
sis of quantum computations. This can be achieved,
for instance, by following the approach presented in
[28]. In our particular case, assume that we would like
to estimate the geometric measure of entanglement of
qubit o in a certain graph state of a structure (19). It
was shown that (0§), (6§), (c§) can be expressed in
terms of probabilities defining the results of measure-
ments performed on qubit gg in the computational
basis {]0), |1)}. We have

(08) = (Waalogba,) = (V,105108,) =

= [(V%,10)° — [(dg, I, (25)
(08) = (Wasloglba,) = (g, |05108,) =
= [(VE,10)* = [(9&, |1, (26)

(08) = (Waslo§le,) = (¥a.l0)* = [(va. )7, (27)
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Fig. 3. Architecture of IBM’s quantum computer ibmg lima.
Arrows connect the qubits, to which CNOT gates can be di-
rectly applied. Each qubit can play a role of both a control
and a target
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Fig. 4. Results of quantifying the geometric measure of en-
tanglement of qubit go with qubit g1 in graph state (21) on
IBM’s simulator Qiskit Aer (marked with crosses) and analyt-
ical results (represented with a line)
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Fig. 5. Results of quantifying the geometric measure of entan-
glement of qubit go with qubit ¢; in graph state (21) on IBM’s
quantum computer ibmg lima (marked with crosses) and ana-
lytic results (represented with a line)
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Fig. 6. Results of quantifying the geometric measure of en-
tanglement of qubit go with qubit ¢; in graph state (23) on
IBM’s simulator Qiskit Aer (marked with dots) and analytical
results (represented with a continuous surface)
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Fig. 7. Results of quantifying the geometric measure of en-
tanglement of qubit go with qubit g1 in graph state (23) on
IBM’s quantum computer ibmg lima (marked with dots) and
analytic results (represented with a continuous surface)

where
[9E,) = e ™70/ 4y, ) = RXo(7/2) [, ), (28)
[04,) = ™8/ |yg,) = RYy(—m/2)be,). (29)

According to identities (28), (29), in order to detect
mean values (0§), (of) the state of qubit go has to
be rotated by angle 7/2 around y and z axes, re-
spectively, prior to the measurements in the compu-
tational basis.

In the present study, we prepare graph states (21),
(23) with the help of quantum circuits generalized
in Fig. 2 and estimate their entanglement according
to the protocol described above on both IBM’s sim-
ulator Qiskit Aer and real quantum backend ibmg
lima [34]. The latter is a universal gate-based quan-
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tum processor consisting of 5 superconducting qubits
connected according to the map in Fig. 3.

Note that, when preparing an arbitrary two-qubit
state on a 5-qubit quantum computer, one has mul-
tiple choices of which physical qubits to utilize in the
appropriate quantum circuit. Therefore, at the time
of experiments calibration parameters of ibmg lima
including the readout error, as well as one- and two-
qubit gate errors were taken into account to minimize
the cumulative error of computations.

To begin with, we quantify the geometric measure
of entanglement of qubit gy with qubit ¢; in graph
state |1, (¢o1)) for various values of the controlled
phase shift gate parameter ¢¢1 € [0, 27| (see Figs. 4,
5). The obtained experimental dependency is then
compared to the analytic one on the basis of expres-
sion (22). It’s easy to see that, on the given inter-
val, the geometric measure of entanglement reaches
its maximum at ¢91 = m, and the respective ex-
perimental value is close to the theoretical predic-
tion of 1/2. Note that this point on the plot corre-
sponds to the graph state prepared by the action of
the controlled-Z gate CZ
[Ya,) = CZo1 H1 Hol00). (30)
Hereafter, the slight quantitative misalignment be-
tween the results of quantum computations and the
theoretical ones can be explained by the errors inher-
ent to the quantum hardware that were mentioned
before. The geometric measure of entanglement takes
its minimal value of 0 at points ¢g; = 0, 27, which
corresponds to the case where the controlled phase
shift gate C'P is reduced to the identity gate I, and
the resulting two-qubit state is separable.

Similarly, the geometric measure of entanglement
of qubit g in graph state |1, (6o, 61)) is obtained for
various values of the initial state parameters 6y, 6, €
[0,7] (see Figs 6, 7). We show that the results of
quantum computations are consistent with previously
derived analytic expression (24). In particular, graph
state (23) is maximally entangled, when both of the
initial state parameters 6y, 6; are equal to 7/2. Con-
sidering that RY (7/2) = X H, and state |+) is an
eigenstate of the operator Pauli-X associated with
eigenvalue 1, this brings us back to the state (30),
as expected. On the contrary, the graph state under
consideration becomes separable (the geometric mea-
sure of entanglement goes to 0) if at least one of the
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initial state parameters 6y, 61 is set equal to 0 or
7. From the standpoint of quantum programming, to
prepare such one-qubit states, the rotation RY gate
is replaced in the quantum circuit by the identity gate
I and the Pauli-Y" gate (accurate to a phase factor),
respectively.

As expected, in both Figs. 4, 5 and Figs. 6, 7, the
results produced by a real quantum processor deviate
from the theoretical results slightly more than the
simulated ones due to the presence of noise. Howe-
ver, there is still a good agreement with our analytic
predictions. Note that the associated computational
errors are not significant, since we only consider two-
qubit systems and all the quantum circuits executed
for the purposes of this study are fairly shallow.

4. Conclusions

In this paper, a class of graph states (9) obtained as a
result of the action of controlled phase shift operators
on the initial separable state of a multiqubit system,
in which all of the qubits are in arbitrary states, has
been considered. We have derived an analytic expres-
sion (17) for the geometric measure of entanglement
of an arbitrary qubit with other qubits in a graph
state belonging to this class, which is described by an
arbitrary weighted graph. This expression shows that
the geometric measure of entanglement is related to
the subset of absolute values of initial state parame-
ters corresponding to the closed neighborhood of the
vertex representing the qubit under consideration, as
well as the set of absolute values of parameters passed
to the controlled phase shift operators responsible for
generating its incident edges.

In addition, the entanglement of two-qubit graph
states (19) has been studied on the basis of quantum
computations. Namely, we have proposed a protocol
for preparing such quantum states (see Fig. 2) and
detected the geometric measure of entanglement as-
sociated with their two special cases through auxiliary
mean spin measurements on IBM’s quantum simula-
tor Qiskit Aer and quantum device ibmg lima. In the
first case, both of the initial state parameters 6y, 61
have been set equal to 7/2 (21), which has allowed
us to estimate the dependence of the entanglement
on the parameter of the phase shift gate ¢g;. Alter-
natively, in the second case, we have generated graph
states with parameter ¢o; equal to 7 (23) and ana-
lyzed how the choice of the initial separable bipartite
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state impacts the entanglement in the system. The
results obtained on a quantum device in the course of
this research are in a good agreement with analytic
ones.

The author thanks Prof. Gnatenko Kh.P. for useful
comments and invaluable support during the research
studies.
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H. Cycynoscovra

TEOMETPUYHA MIPA

SAIIJIYTAHOCTI KBAHTOBUX I'PA®OBIX CTAHIB,
YTBOPEHUIX 3A JOIIOMOI'OIO OITEPATOPIB
KOHTPOJIBOBAHOI'O 3CYBY ®A3U1

Posrnspaorees rpadoBi craHM, yTBOpPEHI Ji€r0 onepaTopis
KOHTPOJILOBAHOrO 3CyBy ¢da3m Ha daxTopusoBaHuil cTaH 6a-
raTokybiTaol cucremu. JlOC/i/I2KEHO BHUIIAJIOK, KOJIM KOXKEH 3
Ky0iTiB MOYATKOBO IMPUTOTOBaHU y HOBinIbHOMY crami. OTpu-
MaHO 'eOMETPHYHY Mipy 3amIlyTaHOCTi KybiTa 3 iHmmmu Kybi-
TaMHu cucTeMu y rpadOBOMY CTaHi, IO BiJINOBIIa€ JTOBIIBHOMY

ISSN 0372-400X. Yxp. ¢is. orcypn. 2025. T. 70, Ne 3

3BakeHoMy rpady, Ta BCTAHOBJIEHO 11 3B’SI30K 3 IapamMeTpaMu
mporo crany. OKpiM 1BOro, JUist ABOKYOITHUX IpacpOBUX CTaHIB
3A1HCHEHO KiJIbKICHY OLIHKY I€OMeTPUYHOI MipH 3aIlIyTaHOCTi
Ha cumyiasaTopi Qiskit Aer Ta KBaHTOBOMY mporecopi ibmgq li-
ma kommanii IBM Ha ocHOBI BUMIpIOBaHBb CEpeIHBOIO 3HAYUEH-
Hs criHa. Pe3yiabrary KBaHTOBUX OOYUCJIEHB y3TOJKYIOTHCH 3
AHAJITUYIHUMHY OI[IHKaMH.

cA06a: reoMeTpuyHa Mipa 3amyraHocTi, Oa-
rpadosi 3BarKeHuil rpad,

Karwvwoei
raTokybiTHi KBaHTOBU

KOMII'IOTEP.

CTaHH,
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