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СПРОЩЕНА КIНЕТИЧНА МОДЕЛЬ
ФАЗОВИХ ПЕРЕХОДIВ I КОНКУРЕНЦIЇ
СТРУКТУР У ВIДКРИТIЙ ДВОВИМIРНIЙ СИСТЕМIУДК 539

Апроксимацiя регулярного розчину успiшно застосовується в термодинамiцi та кiне-
тицi розкладання сплавiв, де вони розглядаються як замкнутi системи. Ця апроксима-
цiя забезпечує якiсно правильний опис усiх стадiй як спiнодального, так i опосередко-
ваного стадiєю зародження розпадiв сплавiв за однорiдних зовнiшнiх умов та без зов-
нiшнiх потокiв. У цiй статтi кiнетичну модель середнього поля для вiдкритих (керо-
ваних потоком) систем розширено шляхом включення розбiжностi вхiдних i вихiдних
потокiв у основнi рiвняння для ймовiрностей заселення. Найближчим експерименталь-
ним аналогом цiєї моделi є формування структури пiд час спiльного осадження бiнар-
ного сплаву в умовах замороженої об’ємної дифузiї, але з прийнятною поверхневою
дифузiєю, де швидкiсть осадження 𝑉 є основним зовнiшнiм параметром. Однак деякi
особливостi моделi також можуть бути корисними для опису евтектичної та позаев-
тектичної кристалiзацiї. Для стацiонарних станiв такої вiдкритої системи визначенi
залежнi вiд швидкостi 𝑉 фазовi дiаграми температура–концентрацiя. Область неста-
бiльностi, що залежить вiд 𝑉 , пiдроздiляється на три рiзнi стацiонарнi морфологiї:
“гепардоподiбнi” плями, “зеброподiбнi” смуги (ламелярнi та лабiринтовi структури),
та їх комбiнацiї. Ця морфологiчна карта залежить вiд початкових умов, проявляючи
ефекти пам’ятi та гiстерезис. Це означає, що на вiдмiну вiд стану рiвноваги у замкну-
тiй системi, яка дiє як атрактор для шляхiв еволюцiї, стацiонарнi стани керованих
потоком систем можуть не бути атракторами.
Ключ о в i с л о в а: вiдкрита система, керованi потоками фазовi переходи, спiнодальний
розклад, формування структури, залежна вiд швидкостi фазова дiаграма, гiстерезис.

1. Вступ

Для початку давайте визначимо термiни “замкне-
нi” i “вiдкритi” системи, якi використовуються в
цiй статтi. Термодинамiчна система називається
“замкнутою”, якщо вона пiдпорядковується одно-
рiдним зовнiшнiм умовам на її межах. Зазвичай
це стосується таких випадкiв:

а) iзольована система,
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б) система з фiксованим об’ємом у термальнiй
ваннi при однорiднiй температурi 𝑇 ,

в) система пiд фiксованим однорiдним тиском у
термальнiй ваннi з однорiдною температурою 𝑇 .

У випадку a) система еволюцiонує до стану з
максимальною ентропiєю; у випадку б) – до мi-
нiмуму вiльної енергiї Гельмгольца 𝐹 = 𝑈 − 𝑇𝑆,
а у випадку в) – до мiнiмуму вiльної енергiї Гiбб-
са 𝐺 = 𝑈 − 𝑇𝑆 + 𝑝𝑉 . Навпаки, система описує-
ться як “вiдкрита” якщо вона вiдчуває приплив
i вiдтiк речовини та/або енергiї, якi, як правило,
керуються градiєнтами електрохiмiчного потенцi-
алу, температури або напруги. Такi градiєнти не
можуть зникати з часом завдяки граничним умо-
вам, таким як, наприклад, гарячий та холодний
кiнцi системи або протилежнi полюси в електри-
чному ланцюзi.
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У той час як замкненi системи завжди еволюцiо-
нують до рiвноваги, вiдкритi системи можуть до-
сягати стацiонарного стану, проявляти коливаль-
ну поведiнку, або навiть розпадатися, але вони не
досягають рiвноваги. Термодинамiка, фазовi пере-
ходи, рушiйнi сили, статистичнi суми, розподiли
ймовiрностей, та кiнцевi рiвноважнi стани замкне-
них систем добре вивченi, хоча закони, що керу-
ють вибором еволюцiйних шляхiв серед багатьох
можливостей, залишаються вiдкритим питанням.
Характер багатьох загальних процесiв у замкне-
них системах можна ефективно вивчати за допо-
могою простих фундаментальних моделей, таких
як модель Iзiнга. Навпаки, вiдкритi системи зали-
шаються набагато менш зрозумiлими, незважаючи
на їх сталий iнтенсивний аналiз; зокрема це стосу-
ється нерiвноважних фазових переходiв [1].

Цiкавий пiдхiд був запропонований Martin,
Bellon та iн. для моделювання вiдкритих кристалi-
чних систем пiд впливом опромiнення або сильної
пластичної деформацiї (СПД) [2–4]. Martin та iн.
[2] назвали такi ситуацiї “керованими системами” i
ввели поняття балiстичних стрибкiв та ефективної
температури для їх опису. Вiдповiдний пiдхiд по-
будований на добре вiдомих головних рiвняннях
для ймовiрностей зайнятостi вузлiв, якi змiнюю-
ться з часом через атомнi обмiни (стрибки) мiж
вузлами. Розглядаються два типи стрибкiв: тер-
мiчнi (звичайна перехiдна ймовiрнiсть подолання
бар’єра через температурнi флуктуацiї) i балiсти-
чнi (атермiчнi, що залежать вiд зовнiшнiх енерге-
тичних впливiв, а не вiд температури):
𝜕𝑃𝑖

𝜕𝑡
=
∑︁
𝑗

(−𝑃𝑖𝑊𝑖;𝑗 + 𝑃𝑗𝑊𝑗;𝑖),

𝑊𝑗;𝑖=𝑊 th
𝑗;𝑖 +𝑊 bal

𝑗;𝑖 .

(1)

У нашiй спрощенiй моделi вiдкритих систем кон-
цепцiя балiстичних стрибкiв не використовується;
натомiсть, приймається iдея вхiдних атомiв, якi
випадковим чином замiнюють наявнi на вiльнiй
поверхнi завдяки зовнiшньому потоку i таким чи-
ном “поступово перетворюють” поверхневi атоми в
атоми в об’ємi, що мають нульову рухливiсть. Щоб
краще зрозумiти загальну поведiнку вiдкритих си-
стем, ми пропонуємо таку саму елементарну мо-
дель, як модель Iзiнга. Модель Iзiнга служить кла-
сичним прикладом для iлюстрацiї суттєвих тер-
модинамiчних i кiнетичних особливостей фазових
переходiв у замкнених системах [5]. У цiй статтi

ми представляємо модель “подiбну до моделi Iзiн-
га”, яка зберiгає подiбнi спрощення при вивченнi
основних особливостей вiдкритих систем, зокрема
їхнiх стацiонарних станiв. З цiєю метою ми викори-
стовуємо модифiкований пiдхiд Джорджа Мартi-
на, заснований на головних рiвняннях для ймовiр-
ностей зайнятостi вузла. Мартiн вперше запропо-
нував самоузгоджену нелiнiйну кiнетичну модель
для квазi-1D системи в 1990 роцi [6], яка була пiзнi-
ше застосована до тонкоплiвкової нелiнiйної взає-
модифузiї через контактнi зони з вираженою ди-
фузiйною асиметрiєю, як правило, обмеженою де-
кiлькома атомними шарами (Erdelyi, Beke та iн.
[7, 8]). Згодом ми розробили 3D модель, [9–12], яка
з того часу стала основою для нового програмно-
го забезпечення SKMF (Stochastic Kinetic Mean-
Field, skmf.eu), для атомiстичного моделювання
дифузiйно-контрольованих перетворень, включа-
ючи спiнодальний розпад, зародження, дозрiван-
ня, реактивну дифузiю та конкуренцiю фаз. Не-
щодавно ми застосували 2D версiю SKMF для до-
слiдження формування структур пiд час спiльного
осадження з парової фази бiнарних сплавiв [13].

Формування структур мезоскопiчного масштабу
пiд час кристалiзацiї з рiдкої або парової фаз до-
бре вивчено [14–19], але їх формування в атомно-
му масштабi залишається недостатньо дослiдже-
ним [20]. У нашiй попереднiй роботi [13] ми ви-
користали дещо штучну модель, припускаючи, що
нова атомна площина (001) у ГЦК ґратцi швидко
заповнюється атомами, що надходить. Пiсля цьо-
го атомнi обмiни вiдбуваються протягом часу, що
дорiвнює 𝛿/𝑉 , де 𝑉 – це швидкiсть осадження, що
дорiвнює добутку щiльностi потоку осадження на
атомний об’єм твердої фази, а 𝛿 – мiжплощинна
вiдстань у напрямку осадження. Пiсля цього часо-
вого iнтервалу дифузiя в “похованiй” атомнiй пло-
щинi вважається повнiстю замороженою.

2. Базовi припущення моделi

У пропонованiй версiї нашої моделi ми намагає-
мося створити структуру, яка еволюцiонує непе-
рервно у часi, уникаючи ступiнчатої кiнетики з її
рiзким лавиноподiбним заповненням атомної пло-
щини з подальшою iзольованою дифузiєю по цiй
площинi. Натомiсть ми вводимо “розмазану” ча-
сову шкалу, у якiй дифузiя та осадження у верх-
ньому поверхневому шарi вiдбуваються одночасно.
Цей пiдхiд дозволяє нам використовувати рухому

272 ISSN 0372-400X. Укр. фiз. журн. 2025. Т. 70, № 4



Спрощена кiнетична модель фазових переходiв

систему вiдлiку, яка рухається з верхньою поверх-
нею з постiйною швидкiстю 𝑉 у напрямку осадже-
ння. У цiй рухомiй системi, окрiм дифузiйних по-
токiв уздовж площини (що приводять до частко-
вого розкладання), є два зовнiшнi потоки, спря-
мованi перпендикулярно до верхньої поверхнi: це
приплив 𝑉

Ω𝐶dep, де Ω – атомний об’єм у твердiй
фазi, i вiдтiк 𝑉

Ω𝐶𝐴 (𝑖, 𝑗, 𝑘 = 0), де 𝑘 = 0 позначає
верхню площину, а 𝑖, 𝑗 позначають конкретнi ву-
зли ґратки всерединi цiєї площини (у ГЦК ґратцi
число 𝑖+ 𝑗+𝑘 є парним). Обидва процеси — це ди-
фузiя вздовж верхньої площини та розбiжнiсть по-
току при її перетинi — математично представленi
двома членами в правiй частинi такого рiвняння,
якi визначають ймовiрностi заповнення вузла:

𝜕𝐶𝐴

𝜕𝑡
=

𝑍‖∑︁
𝑖=1

{︂
−𝐶𝐴(𝑖)𝐶𝐵(𝑖𝑛) Γ𝐴𝐵

(︁
𝐴(𝑖) ↔ 𝐵(𝑖𝑛)

)︁
+

+𝐶𝐵(𝑖)𝐶𝐴(𝑖𝑛) Γ𝐴𝐵

(︁
𝐴(𝑖𝑛) ↔ 𝐵(𝑖)

)︁}︂
+

+
𝑉

𝛿

(︁
𝐶dep − 𝐶𝐴(𝑖)

)︁
. (2)

Аналогiчна модифiкацiя рiвняння дифузiї для лi-
нiйної версiї пiдходу Cahn–Hilliard обговорювалася
в роботi [21].

У рiвняннi (2) 𝐶𝐴(𝑖) фактично означає
𝐶𝐴(𝑖, 𝑗, 𝑘 = 0) i є ймовiрнiстю того, що вузол
(𝑖, 𝑗) (тобто 𝑥 = 𝑎

2 𝑖, 𝑦 = 𝑎
2 𝑗) у верхнiй площинi

(𝑘 = 0) (тобто 𝑧 = 𝑎
20) буде зайнято атомом

виду 𝐴. Ми розглядаємо лише монокристалiчну
ГЦК ґратку, вирощену осадженням у напрямку
⟨001⟩, де 𝑖+ 𝑗+𝑘 – це парне число. У нашiй моделi
атомарнi обмiни вiдбуваються лише мiж вузлами
в однiй верхнiй площинi (𝑘𝑛 = 0, а 𝑖𝑛 + 𝑗𝑛 + 𝑘𝑛 –
це парне число). Частоти обмiну визначаються
виразом, подiбним до больцманiвського,

Γ𝐴𝐵

(︁
𝐴(𝑖) ↔ 𝐵(𝑖𝑛)

)︁
=

= 𝜈0 exp

[︂
−𝐸𝑠 − (𝐸𝐴(𝑖) + 𝐸𝐵(𝑖𝑛))

𝑘𝑇

]︂
, (3)

де

𝐸𝐴(𝑖) + 𝐸𝐵(𝑖𝑛) =

= 𝐸𝐴(𝑖, 𝑗, 𝑘 = 0) + 𝐸𝐵(𝑖𝑛, 𝑗𝑛, 𝑘𝑛 = 0)

– це енергiя взаємодiї сусiднiх атомiв до обмiну, а
𝐸𝑠 – енергiя в сiдловiй точцi пiд час обмiну (вва-
жається постiйною в оригiнальнiй моделi Martin i
всiх її розробках).

Енергiя у вузлi обчислюється в наближеннi се-
реднього поля та включає внески вiд 𝑍‖ = 4 най-
ближчих сусiдiв з iндексами (𝑖 ± 1, 𝑗) i (𝑖, 𝑗 ± 1) з
тiєї ж верхньої площини (𝑘 = 0), а також 𝑍⊥ = 4
найближчих сусiдiв з iндексами (𝑖± 1, 𝑗) i (𝑖, 𝑗± 1)
з нижньої площини (𝑘 = 1, 𝑧 = −𝑎

21).

𝐸𝐴(𝑖) =

𝑍‖+𝑍⊥∑︁
𝑖′=1

{︂
𝐶𝐴(𝑖

′)𝑉𝐴𝐴 + 𝐶𝐵(𝑖
′)𝑉𝐴𝐵

}︂
=

=
(︀
𝑍‖ + 𝑍⊥

)︀
𝑉𝐴𝐵 +

+
(︀
𝑉𝐴𝐴 − 𝑉𝐴𝐵

)︀ 𝑍‖+𝑍⊥∑︁
𝑖′=1

𝐶𝐴(𝑖
′), (4)

𝐸𝐵(𝑖𝑛) =

𝑍‖+𝑍⊥∑︁
𝑖𝑛′=1

{︂
𝐶𝐴(𝑖𝑛

′)𝑉𝐵𝐴 + 𝐶𝐵(𝑖𝑛
′)𝑉𝐵𝐵

}︂
=

=
(︀
𝑍‖ + 𝑍⊥

)︀
𝑉𝐵𝐵 +

+
(︀
𝑉𝐴𝐵 − 𝑉𝐴𝐴

)︀ 𝑍‖+𝑍⊥∑︁
𝑖𝑛′=1

𝐶𝐴(𝑖𝑛
′). (5)

Для розрахунку одночасного осадження на пло-
щину ⟨001⟩ ГЦК ґратки кiлькiсть найближчих су-
сiдiв у верхнiй площинi (разом з кiлькiстю можли-
вих атомних обмiнiв) вважалась рiвною 𝑍‖ = 4;
такою ж вважалась кiлькiсть найближчих сусiдiв
у попереднiй (пiдповерхневiй) площинi, 𝑍⊥ = 4.
Змiннi пiдсумовування “𝑖” i “𝑖𝑛” у формулах 4 та 5
позначають двi сусiднi дiлянки у верхнiй атомнiй
площинi, якi обмiнюються атомами. При фiксова-
нiй “𝑖” є 𝑍‖ = 4 можливостi для “𝑖𝑛”. Змiнна “𝑖′”
представляє найближчих взаємодiючих сусiдiв ву-
зла “𝑖”, а їх кiлькiсть дорiвнює 𝑍 = 𝑍‖+𝑍⊥ = 8; так
само змiнна “𝑖𝑛′” представляє найближчих взає-
модiючих сусiдiв вузла “𝑖𝑛”, i їх кiлькiсть також
становить 𝑍 = 𝑍‖ + 𝑍⊥ = 8.

Щоб спростити обчислення, ми постулюємо, що
ймовiрностi в пiдповерхневiй площинi (𝑘 = 1) пов-
нiстю визначаються їхнiми найближчими сусiдами
у верхнiй площинi (𝑘 = 0):

𝐶𝐴

(︀
𝑖, 𝑗, 𝑘 = 1

)︀
=

=
1

4

[︂
𝐶𝐴

(︀
𝑖+ 1, 𝑗, 𝑘 = 0

)︀
+ 𝐶𝐴

(︀
𝑖− 1, 𝑗, 𝑘 = 0

)︀
+

+𝐶𝐴

(︀
𝑖, 𝑗 + 1, 𝑘 = 0

)︀
+ 𝐶𝐴

(︀
𝑖, 𝑗 − 1, 𝑘 = 0

)︀]︂
. (6)
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Це припущення, як буде продемонстровано пiзнi-
ше, хоча i не є абсолютною iстиною, добре працює
для опису розкладання.

Для простоти ми також припускаємо, що 𝑉𝐴𝐴 =
= 0, 𝑉𝐵𝐵 = 0, та 𝑉𝐴𝐵 = 𝐸mix. Таким чином отри-
муємо

Γ𝐴𝐵

(︁
𝐴(𝑖) ↔ 𝐵(𝑖𝑛)

)︁
= 𝜈0 exp

[︂
−𝐸𝑠

𝑘𝑇

]︂
×

× exp

[︃
𝐸mix

𝑘𝑇

(︂
𝑍 −

𝑍∑︁
𝑖′=1

𝐶𝐴(𝑖
′) +

𝑍∑︁
𝑖𝑛′=1

𝐶𝐴(𝑖𝑛
′)

)︂]︃
, (7)

Γ𝐴𝐵

(︁
𝐴(𝑖𝑛) ↔ 𝐵(𝑖)

)︁
= 𝜈0 exp

[︂
−𝐸𝑠

𝑘𝑇

]︂
×

× exp

[︃
𝐸mix

𝑘𝑇

(︂
𝑍 −

𝑍∑︁
𝑖𝑛′=1

𝐶𝐴(𝑖𝑛
′) +

𝑍∑︁
𝑖′=1

𝐶𝐴(𝑖
′)

)︂]︃
. (8)

Головне рiвняння для ймовiрностей зайнятостi
вузла у поверхневому шарi (𝑘 = 0) має такий ви-
гляд:

𝜕𝐶𝐴(𝑖)

𝜕𝑡
=

𝑍‖∑︁
𝑖𝑛=1

{︃
−𝐶𝐴(𝑖)(1− 𝐶𝐴(𝑖𝑛))×

× exp

[︃
𝐸mix

𝑘𝑇

(︃
𝑍∑︁

𝑖𝑛′=1

𝐶𝐴(𝑖𝑛
′)−

𝑍∑︁
𝑖′=1

𝐶𝐴(𝑖
′)

)︃]︃
+

+
(︀
1− 𝐶𝐴(𝑖)

)︀
𝐶𝐴(𝑖𝑛)×

× exp

[︃
𝐸mix

𝑘𝑇

(︃
𝑍∑︁

𝑖′=1

𝐶𝐴(𝑖
′)−

𝑍∑︁
𝑖𝑛′=1

𝐶𝐴(𝑖𝑛
′)

)︃]︃}︃
+

+ 𝜐
(︀
𝐶dep − 𝐶𝐴(𝑖)

)︀
, (9)

де безрозмiрнi параметри часу та швидкостi дорiв-
нюють, вiдповiдно,

𝑡𝑡 = 𝑡 𝜈0 exp

[︃
𝑍𝐸mix − 𝐸𝑠

𝑘𝑇

]︃
,

𝜐 =
𝑉

𝛿 𝜈0 exp
[︀
𝑍𝐸mix−𝐸𝑠

𝑘𝑇

]︀ . (10)

У цьому дослiдженнi ми зосереджуємо увагу на
випадку позитивної енергiї змiшування, що вiдпо-
вiдає тенденцiї до розкладання. Залежно вiд тем-
ператури, складу та швидкостi осадження, розкла-
дання може вiдбуватися частково або не вiдбува-
тися зовсiм.

3. Бiнодаль i спiнодаль
у моделi KMF при нульовiй швидкостi
(розкладання в замкненiй системi)

У цьому роздiлi ми перевiримо, чи вiдповiдає на-
ша атомiстична нелiнiйна модель KMF (Kinetic
Mean-Filed) стандартним бiнодальним i спiнодаль-
ним концепцiям для замкнених систем (𝑉 = 0).

3.1. Бiнодаль (термодинамiчна двофазна
рiвновага, яку можна переформулювати
як детальний баланс потоку)

Спочатку розглянемо умову рiвноваги при 𝑉 = 0,
яка вiдповiдає рiвнянням балансу, отриманим з
рiвняння (2). Це –

𝐶𝐴(𝑖)
(︀
1− 𝐶𝐴(𝑖𝑛)

)︀
Γ𝐴𝐵

(︀
𝐴(𝑖) ↔ 𝐵(𝑖𝑛)

)︀
=

=
(︀
1− 𝐶𝐴(𝑖)

)︀
𝐶𝐴(𝑖𝑛) Γ𝐴𝐵

(︀
𝐴(𝑖𝑛) ↔ 𝐵(𝑖)

)︀
або

𝐶𝐴(𝑖)
(︀
1−𝐶𝐴(𝑖𝑛)

)︀
exp

[︂
−
𝐸𝑠 −

(︀
𝐸𝐴(𝑖)+𝐸𝐵(𝑖𝑛)

)︀
𝑘𝑇

]︂
=

=
(︀
1−𝐶𝐴(𝑖)

)︀
𝐶𝐴(𝑖𝑛) exp

[︂
−
𝐸𝑠 −

(︀
𝐸𝐴(𝑖𝑛) + 𝐸𝐵(𝑖)

)︀
𝑘𝑇

]︂
.

(11)

Їх можна переформулювати у такому виглядi:(︀
𝐸𝐴(𝑖) + 𝑘𝑇 ln𝐶𝐴(𝑖)

)︀
−
(︀
𝐸𝐵(𝑖) + 𝑘𝑇 ln𝐶𝐵(𝑖)

)︀
=

=
(︀
𝐸𝐴(𝑖𝑛) + 𝑘𝑇 ln𝐶𝐴(𝑖𝑛)

)︀
−

−
(︀
𝐸𝐵(𝑖𝑛) + 𝑘𝑇 ln𝐶𝐵(𝑖𝑛)

)︀
. (12)

Оскiльки 𝐸𝐴(𝑖) + 𝑘𝑇 ln𝐶𝐴(𝑖) = 𝜇𝐴(𝑖) є локаль-
ним хiмiчним потенцiалом для атома 𝐴, а 𝐸𝐵(𝑖)+
+ 𝑘𝑇 ln𝐶𝐵(𝑖) = 𝜇𝐵(𝑖) – тим самим для атома 𝐵, то
їх рiзниця 𝜇𝐴𝐵(𝑖) ≡ 𝜇𝐴(𝑖) − 𝜇𝐵(𝑖) є лише редуко-
ваним хiмiчним потенцiалом (змiна вiльної енергiї
Гiббса внаслiдок замiни атома 𝐵 на атом 𝐴). Рiв-
нiсть приведеного хiмiчного потенцiалу в рiзних
вузлах вказує на термодинамiчну рiвновагу, вклю-
чаючи випадки, коли цi вузли належать до рiзних
фаз (наприклад, твердi розчини на протилежних
сторонах бiнодалi). Для таких випадкiв

𝐶𝐴(𝑖) = 𝐶𝐴(𝑖
′) = 𝐶𝐴(𝛼),

𝐶𝐴(𝑖𝑛) = 𝐶𝐴(𝑖𝑛
′) = 𝐶𝐴(𝛽) = 1− 𝐶𝐴(𝛼).
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Пiдставляючи цi значення в рiвняння (9) та за умо-
ви
(︁
𝜐 = 0, 𝜕𝐶𝐴(𝑖)

𝜕𝑡𝑡 = 0
)︁
, пiсля простої алгебри отри-

муємо

𝐶𝐴(𝛼)

1− 𝐶𝐴(𝛼)
= exp

[︂
−8𝐸mix

𝑘𝑇

(︀
1− 2𝐶𝐴(𝛼)

)︀]︂
. (13)

Цей вираз узгоджується з бiнодальним рiвнянням
для моделi регулярного розчину з вiсьмома най-
ближчими сусiдами у кожного вузла.

3.2. Критерiй нестабiльностi
для замкнутої системи (спiнодаль)

Як правило, концепцiя нескiнченно малих концен-
трацiйних хвиль, якi можуть експоненцiйно зро-
стати або зменшуватися залежно вiд хвильового
вектора, температури та складу, приписується Ка-
ну та Хiллiарду в їх феноменологiчному аналi-
зi спiнодального розпаду [22]. Однак подiбна iдея
для критерiю нестабiльностi нелiнiйних кiнети-
чних рiвнянь була запропонована значно ранiше
на атомному масштабi Анатолiєм Власовим у його
нелокальному статистичному пiдходi до кристалiв
[23]. Пiзнiше аналогiчнi концепцiї були також за-
стосованi на атомному масштабi Арменом Хачату-
ряном у його теорiї концентрацiйних хвиль [24]. У
нашiй моделi KMF ми шукаємо рiшення у формi
атомної концентрацiйної хвилi з нескiнченно ма-
лою та залежною вiд часу амплiтудою 𝐴,

𝐶𝐴(𝑖, 𝑗, 𝑘 = 0) = 𝐶dep + 𝛿𝐶(𝑖, 𝑗, 𝑘 = 0) =

= 𝐶dep +𝐴(𝑡𝑡,q) exp
[︀
𝐼q · r𝑖,𝑗

]︀
=

= 𝐶dep +𝐴(𝑡𝑡, 𝑞𝑥, 𝑞𝑦) exp
[︁
𝐼
𝑎

2
(𝑞𝑥𝑖+ 𝑞𝑦𝑗)

]︁
. (14)

Тут i далi 𝐼 =
√
−1 – це уявна одиниця. Тодi, вiд-

повiдно до нашої умови (6), для вузлiв пiдрiвня
(𝑘 = 1) хвиля концентрацiї дорiвнює

𝐶𝐴(𝑖
′, 𝑗′, 𝑘 = 1) =

=
1

4

[︁
𝐶𝐴(𝑖

′ + 1, 𝑗′, 𝑘 = 0) + 𝐶𝐴(𝑖
′ − 1, 𝑗′, 𝑘 = 0)+

+𝐶𝐴(𝑖
′, 𝑗′ + 1, 𝑘 = 0) + 𝐶𝐴(𝑖

′, 𝑗′ − 1, 𝑘 = 0)
]︁
=

= 𝐶dep +𝐴 exp

[︂
𝐼
𝑎

2

(︀
𝑞𝑥𝑖

′ + 𝑞𝑦𝑗
′)︀]︂1

4

[︃
exp

(︂
𝐼
𝑎

2
𝑞𝑥

)︂
+

+ exp

(︂
−𝐼

𝑎

2
𝑞𝑥

)︂
+ exp

(︂
𝐼
𝑎

2
𝑞𝑦

)︂
+ exp

(︂
−𝐼

𝑎

2
𝑞𝑦

)︂]︃
=

= 𝐶dep +𝐴 exp

[︂
𝐼
𝑎

2

(︀
𝑞𝑥𝑖

′ + 𝑞𝑦𝑗
′)︀]︂×

× 1

2

[︂
cos

(︂
𝑎

2
𝑞𝑥

)︂
+ cos

(︂
𝑎

2
𝑞𝑦

)︂]︂
. (15)

Пiдставляючи рiвняння (14) i (15) у рiвняння (9),
розкладаючи всi величини в ряд за малим пара-
метром 𝐴, та нехтуючи членами другого та вищо-
го порядкiв, ми отримуємо (див. Додаток A такий
критерiй стабiльностi/нестабiльностi для амплiтуд
хвиль коливань концентрацiї:

𝜕 ln𝐴

𝜕𝑡𝑡
= 4

[︂
1− cos

(︂
𝑞𝑥

𝑎

2

)︂
cos

(︂
𝑞𝑦

𝑎

2

)︂]︂
×

×
{︂
16𝐸mix

𝑘𝑇
𝐶dep

(︀
1− 𝐶dep

)︀
𝑓(𝑞𝑥, 𝑞𝑦)− 1

}︂
, (16)

де

𝑓(𝑞𝑥, 𝑞𝑦) =
1

2
cos

(︂
𝑞𝑥

𝑎

2

)︂
cos

(︂
𝑞𝑦

𝑎

2

)︂
+

+
1

8

(︂
cos

(︂
𝑞𝑥

𝑎

2

)︂
+ cos

(︂
𝑞𝑦

𝑎

2

)︂)︂2
. (17)

Випадку нестабiльностi вiдповiдає 𝜕 ln𝐴
𝜕𝑡𝑡 > 0. Вра-

ховуючи те, що 𝑓(𝑞𝑥, 𝑞𝑦) ≤ 1, умовою нестабiльно-
стi є

16𝐸mix

𝑘𝑇
𝐶dep(1− 𝐶dep) > 1,

що збiгається зi спiнодальним критерiєм у моделi
регулярного твердого розчину при 𝑍 = 8.

4. Залежна вiд швидкостi
бiнодаль у вiдкритiй системi

Давайте обговоримо бiнодальний розчин не в рiв-
новажному станi, а в стацiонарному. Як випли-
ває з рiвняння (7), у випадку вiдкритих си-
стем “бiнодаль-подiбна” умова включає додатко-
вий член, що залежить вiд швидкостi,

𝜐 (𝐶𝐴(𝑖)− 𝐶dep) =

𝑍‖∑︁
𝑖𝑛=1

{︃
−𝐶𝐴(𝑖)

(︀
1− 𝐶𝐴(𝑖𝑛)

)︀
×

× exp

[︃
𝐸mix

𝑘𝑇

(︃
𝑍∑︁

𝑖𝑛′=1

𝐶𝐴(𝑖𝑛
′)−

𝑍∑︁
𝑖′=1

𝐶𝐴(𝑖
′)

)︃]︃
+

+
(︀
1− 𝐶𝐴(𝑖)

)︀
𝐶𝐴(𝑖𝑛)+

+ exp

[︃
𝐸mix

𝑘𝑇

(︃
𝑍∑︁

𝑖′=1

𝐶𝐴(𝑖
′)−

𝑍∑︁
𝑖𝑛′=1

𝐶𝐴(𝑖𝑛
′)

)︃]︃}︃
. (18)
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Рис. 1. Залежнi вiд швидкостi бiнодалi та спiнодалi при
𝜐 = 0, 0,1, 0,2, 0,3, 0,4, 0,5, ... . Бiнодалi знаходять усередне-
нням граничних складiв

a

б
Рис. 2. Розмазана (розщеплена) бiнодаль для стацiонар-
них станiв у вiдкритiй системi. Гiстограма складiв у роз-
кладеному стацiонарному станi вiдкритої системи, 𝐶 = 0,4

(a). Бiнодаль як жмуток кривих; показанi лише граничнi
кривi та середня крива; областi всерединi бiнодалi будуть
описанi нижче (б ). На всiх рисунках далi по тексту зобра-
жується лише середня бiнодаль

Поки що ми не можемо запропонувати природну
iнтерпретацiю цiєї умови, як ми це зробили з де-
тальним балансом та рiвнiстю для приведених хi-
мiчних потенцiалiв у замкненої системи в рiвнян-
нях (11) i (12). Тому ми чисельно моделювали роз-
кладання шляхом розв’язку набору рiвнянь (9) та
вiдстежуючи розв’язок, доки вiн практично не за-
довольнив рiвняння (18). У цьому процесi ми за-
фiксували максимальну (права частина бiнодалi)
i мiнiмальну (лiва частина бiнодалi) концентрацiї
в нашiй системi, враховуючи невеликi шумовi по-
правки i поправки Гiббса–Томсона на вигнутих ме-
жах подiлу. Звичайно, тенденцiя змiн в напрямку
до стацiонарного розв’язку рiвняння (9) повинна
привести до задоволення рiвняння (18), принайм-
нi у випадку, коли початковi неоднорiдностi доста-
тньо великi, щоб подолати бар’єр зародження роз-
паду. В результатi ми отримали залежнi вiд швид-
костi бiнодалi (а також, див. нижче в роздiлi 5,
залежнi вiд швидкостi спiнодалi), якi показано на
рис. 1.

Пiдкреслимо важливу рiзницю мiж бiнодаллю
в замкнених i вiдкритих системах. У замкненiй
системi будь-яка точка нижче бiнодалi вiдповiд-
ає сплаву, що буде розкладатися або шляхом спi-
нодального розпаду абсолютно нестабiльного роз-
чину, якщо ця точка одночасно знаходиться нижче
спiнодалi, або через процес “зародження–зростан-
ня–дозрiвання” у метастабiльному розчинi, якщо
ця точка знаходиться мiж бiнодаллю та спiнодал-
лю. В обох випадках результат однаковий: систе-
ма переходить у двофазний стан з двома крайнiми
граничними складами, що вiдповiдають бiнодалi.
У вiдкритiй системi, як ми побачимо в роздiлi 7,
ситуацiя є неоднозначною в кiлькох аспектах:

1. Якщо склад вхiдного потоку належить спiн-
одальнiй областi та дорiвнює початковому складу,
то вiн розкладається i нарештi досягає стацiонар-
ної двофазної морфологiї, яка не є рiвноважною та
однорiдною в кожнiй фазi, оскiльки в стацiонарно-
му станi розбiжнiсть вхiдних i вихiдних потокiв по-
винна компенсуватися розбiжнiстю потокiв бiчно-
го перерозподiлу. Це означає, що в стацiонарному
станi, на вiдмiну вiд рiвноважного (що розклав-
ся) стану в замкненiй системi, система демонструє
не двi рiзнi композицiї бiнодальної кривої, а рад-
ше весь спектр композицiй. Приклад такої гiсто-
грами складу в стацiонарному станi наведено на
рис. 2, а. Можна приблизно iнтерпретувати ком-
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позицiї, що вiдповiдають мiнiмуму та максимуму
цiєї гiстограми, як “розмазану” бiнодаль; як пра-
вило, такi крайнi склади досить близькi до двох
пiкiв на згаданiй гiстограмi.

2. Як правило, граничнi склади близькi один до
одного, але рiзнi для двох рiзних сплавiв з рiзними
складами вхiдного потоку. Це означає, що, строго
кажучи, для вiдкритої системи бiнодаль, що зале-
жить вiд швидкостi, є не кривою, а скорiше чимось
на зразок “розмазаної” кривої або, iншими слова-
ми, “жмутком” бiнодалей. Приклад такого жмутка
показаний на рис. 2, б.

3. Якщо склад вхiдного потоку належить до
областi мiж куполами (поза спiнодаллю, але все-
рединi бiнодалi), це дiйсно приводить до розкла-
ду (якщо iснуючi до цього структури використо-
вуються в ролi початкового стану), тодi як iнша
частина демонструє повну вiдсутнiсть розкладу. У
цьому сенсi залежна вiд швидкостi бiнодаль є “роз-
мазаною”, подiбно до залежної вiд розмiру бiнодалi
для наночастинок [25–27].

5. Залежна вiд швидкостi
спiнодаль. Нестабiльнiсть
вiдносно нескiнченно малих збурень

За повною аналогiєю з пiдроздiлом 3.2, критерiй
абсолютної нестабiльностi та подальшого розпаду
для вiдкритої системи зводиться до позитивностi
знака такої похiдної:

𝜕 ln𝐴

𝜕𝑡𝑡
= −𝜐 + 4

[︃
1− cos

(︂
𝑞𝑥

𝑎

2

)︂
cos

(︂
𝑞𝑦

𝑎

2

)︂]︃
×

×

{︃
8𝐸mix

𝑘𝑇
𝐶dep

(︀
1− 𝐶dep

)︀
𝑓(𝑞𝑥, 𝑞𝑦)− 1

}︃
, (19)

де 𝑓 визначається рiвнянням (17). Це означає, що
при фiксованому складi потоку осадження i фiксо-
ванiй температурi сплав можна стабiлiзувати вiд
розкладання за допомогою швидкостi,

𝜐 > 𝜐critical = max (in respect to 𝑞𝑥, 𝑞𝑦)×

×

{︃
4

[︂
1− cos

(︂
𝑞𝑥

𝑎

2

)︂
cos

(︂
𝑞𝑦

𝑎

2

)︂]︂
×

×
[︂
8𝐸mix

𝑘𝑇
𝐶dep (1− 𝐶dep) 𝑓(𝑞𝑥, 𝑞𝑦)− 1

]︂}︃
. (20)

У Додатку Б ми показуємо, що максимум досягає-
ться для хвиль концентрацiї вздовж дiагонального
напрямку ⟨110⟩,

q =

(︂
𝑞√
2
,
𝑞√
2
, 0

)︂
, cos2

(︂
𝑞𝑎

2
√
2

)︂
=

𝑊 + 1

2𝑊
,

де

𝑊 =
16𝐸mix

𝑘𝑇
𝐶dep

(︀
1− 𝐶dep

)︀
> 1.

Отже, критична швидкiсть дорiвнює

𝜐critical (⟨110⟩) = (𝑊 − 1)
2

𝑊
. (21)

З рiвняння (21) ми отримуємо залежну вiд швид-
костi спiнодальну криву для вiдкритої системи,

𝑘𝑇

4𝐸mix
=

4𝐶
(︀
1− 𝐶

)︀
1 + 𝜐

2 +

√︂(︁
1 + 𝜐

2

)︁2
− 1

. (22)

6. Морфологiчнi карти
для стацiонарного стану (амплiтуда
початкового шуму 0,001, нульовий
динамiчний шум)

В однорiдному сплавi iз невеликими початковими
коливаннями складу (наприклад, 0,01), розклад в
стацiонарному станi вiдбувається лише для кон-
центрацiй i температур, що знаходяться пiд зале-
жними вiд швидкостi спiнодалями. Цi областi подi-
ляються на три типи остаточної стiйкої морфоло-
гiї: “гепард” (плями), “зебра” (смугаста морфоло-
гiя: лабiринт або ламелi), та змiшана морфологiя
“гепард + зебра”; див. рис. 3 i 4.

7. Вплив уже iснуючих
структур. Розклад поза межами залежної
вiд швидкостi спiнодалi (як результат
виходу зi спiнодальної областi при зсувi
по складу або температурi)

У замкнених системах будь-який сплав, фазова
точка якого знаходиться мiж спiнодаллю та бiно-
даллю, зазнає розпаду через механiзм нуклеацiя–
осадження–огрубiння. Оскiльки очiкування ну-
клеацiї може зайняти дуже тривалий час, можна
скористатись вже iснуючими структурами, щоб
iнiцiювати розклад. У випадку вiдкритої системи
для прискорення процесу ми використовуємо стру-
ктури, сформованi при попередньому складi або
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температурi. За допомогою цього методу ми змо-
гли досягти стацiонарного розкладу лише в тiй ча-
стинi областi мiж бiнодаллю та спiнодаллю, що
межує зi спiнодаллю; див. рис. 5.

Рис. 3. Три основнi типи морфологiї у випадку розкла-
деного стацiонарного стану: “гепардоподiбна” (плями), “зе-
броподiбна” (смуги, що утворюють лабiринт, або ламелi),
та змiшана морфологiя “гепард+ зебра”

Рис. 4. Карта стацiонарних морфологiй, отриманих при
початковому станi однорiдного сплаву з малою амплiтудою
шуму при швидкостях 0, 0,1, 0,2, 0,3, 0,4, 0,5, ... . Тут ви-
бране середнє значення з жмутка бiнодалей

8. Гiстерезис

Як можна бачити з наведеного вище, наша модель-
на система демонструє у кiнцевому станi деяку па-
м’ять щодо початкових умов. Це означає, що мо-
жна очiкувати ефект гiстерезису, коли кожна нова
морфологiя отримується в системi з використан-
ням попередньої морфологiї як початкової умови.
У цьому випадку ми можемо крок за кроком змi-
щувати початкову концентрацiю (спочатку справа
налiво, а потiм у зворотному напрямку; див. пiд-
роздiл 8.1), або можемо змiнювати, також крок за
кроком, температуру (спочатку вiд низької до ви-
сокої, а потiм вiд високої до низької; див. пiдроз-
дiл 8.2).

8.1. Гiстерезис складу

Спочатку ми отримали стацiонарну конфiгурацiю
для складу 𝐶 = 0, 50, змодельовану з однорi-
дних початкових умов з малою початковою ам-
плiтудою шуму у 0,001 при постiйнiй температу-
рi, 𝑘𝑇/𝐸mix = 2. Ми використали це як початкову
умову для розрахунку зразка з 𝐶 = 0,49. Процеду-
ра повторювалася i далi, поки ми не досягли значе-
ння 𝐶 = 0,20. Потiм почався зворотнiй рух вгору
по концентрацiї до значення 𝐶 = 0,50.

На рис. 6 порiвнюються стацiонарнi морфологiї
для 𝐶 = 0,50, отриманi з однорiдних початкових
умов (верхнiй ряд) i отриманi на останньому кроцi
при покроковому збiльшеннi 𝐶, починаючи з 0,20
(нижнiй ряд). Двi морфологiї отримують, напри-
клад, для 𝐶 = 0,49: рухаючись вiд 𝐶 = 0,50 вниз i
вiд 𝐶 = 0,48 вверх; i так далi. Спостерiгається зна-

Рис. 5. Фiолетовi областi за межами спiнодалi вiдповiда-
ють формуванню стацiонарної “гепардоподiбної” морфоло-
гiї на основi вже iснуючих структур. Швидкiсть 𝜐 = 0,1
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чний гiстерезис щодо напрямку зсуву концентра-
цiї: зниження вiд 0,50 зберiгає морфологiю “зебра”
до 𝐶 = 0, 38, тодi як пiдвищення зберiгає морфо-
логiю “гепард” до 𝐶 = 0,47.

8.2. Температурний гiстерезис

При сталiй концентрацiї 𝐶 = 0, 30 ми пiдвищили
безрозмiрну температуру 𝑘𝑇/𝐸mix вiд 0,8 до 2,4, а
потiм знову її знизили. Результат розрахунку по-
казано на рис. 7. Можна помiтити, що тип мор-
фологiї залишається майже таким самим (якщо
ми iгноруємо огранювання), але середнiй розмiр
i мiжчастинковi вiдстанi вiдрiзняються.

9. Критерiй еволюцiї

Для замкнутої системи в термальнiй ваннi при фi-
ксованiй температурi та об’ємi критерiй еволюцiї
повинен збiгатися з другим законом термодинамi-
ки: похiдна за часом вiд вiльної енергiї Гельмголь-
ца має бути вiд’ємною та прямувати до нуля, що
вказує на стан рiвноваги з мiнiмальною вiльною
енергiєю. Розглянемо поведiнку вiльної енергiї в
нашiй спрощенiй модельнiй системi (i перевiримо,
чи зводиться вона до мiнiмiзацiї вiльної енергiї у
випадку нульової швидкостi). У загальному випад-
ку швидкiсть змiни вiльної енергiї повинна склада-
тися з таких складових: (1) приплив вiльної енер-
гiї, що вiдповiдає однорiдному твердому розчину
𝑉
𝛿 𝐹

{︀
𝐶dep

}︀
у всiх вузлах: (2) вихiдний потiк вiль-

ної енергiї з фактично перерозподiленою концен-
трацiєю −𝑉

𝛿 𝐹 {𝐶(r)}; (3) швидкiсть змiни через
атомнi обмiни в системi[︂
𝑑𝐹

𝑑𝑡

]︂
inner

=

𝑁𝑍‖/2∑︁
(𝑖,𝑖𝑛)

[𝜇𝐴𝐵(𝑖)− 𝜇𝐴𝐵(𝑖𝑛)]
𝑑𝐶𝑖,𝑖𝑛

𝑑𝑡
,

де

𝑑𝐶𝑖,𝑖𝑛

𝑑𝑡
= −𝐶𝐴(𝑖)𝐶𝐵(𝑖𝑛) Γ𝐴𝐵

(︀
𝐴(𝑖) ↔ 𝐵(𝑖𝑛)

)︀
+

+𝐶𝐵(𝑖)𝐶𝐴(𝑖𝑛) Γ𝐴𝐵

(︀
𝐴(𝑖𝑛) ↔ 𝐵(𝑖)

)︀
.

– це часткова швидкiсть змiни зайнятостi вузла
“𝑖” на атом 𝐴 i водночас часткова швидкiсть змiни
зайнятостi вузла “𝑖𝑛” на атом 𝐵 завдяки обмiну
лише мiж цими двома вузлами: Як показано в ро-
ботi [8], [𝑑𝐹/𝑑𝑡]inner можна переписати у формi

[𝑑𝐹/𝑑𝑡]inner = −𝜈0 exp

[︂
−𝐸𝑠

𝑘𝑇

]︂
×

Рис. 6. Порiвняння стацiонарних морфологiй для того са-
мого складу, отриманих з попередньо iснуючих структур з
вищими (верхнiй ряд) та нижчими (нижнiй ряд) концен-
трацiями атомiв 𝐴 у початковому станi

Рис. 7. Порiвняння стацiонарних морфологiй при однако-
вiй температурi, отриманих зi структур, попередньо iсную-
чих при нижчих (верхнiй ряд) та вищих (нижнiй ряд) по-
чаткових температурах
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Рис. 8. Порiвняння морфологiчних карт для моделей з
двома площинами та однiєю площиною. Можна побачити,
що пiсля перемасштабування до безрозмiрної температури
𝑇/𝑇crit карти практично спiвпадають

×
𝑁𝑍‖/2∑︁
(𝑖,𝑖𝑛)

(︁
𝜇𝐴𝐵(𝑖)− 𝜇𝐴𝐵(𝑖𝑛)

)︁{︂
exp

[︂
𝜇𝐴𝐵(𝑖)

𝑘𝑇

]︂
−

− exp

[︂
𝜇𝐴𝐵(𝑖𝑛)

𝑘𝑇

]︂}︂
× 𝐶𝐵(𝑖)𝐶𝐵(𝑖𝑛)×

× exp

[︂
𝐸𝐵(𝑖) + 𝐸𝐵(𝑖𝑛)

𝑘𝑇

]︂
,

яка подiбна до виразу при больцманiвському виве-
деннi Н-теореми i завжди вiд’ємна. Таким чином,

𝑑𝐹

𝑑𝑡
=

𝑉

𝛿

[︁
𝐹
{︀
𝐶dep

}︀
− 𝐹

]︁
+
[︁
𝑑𝐹/𝑑𝑡

]︁
inner

,[︁
𝑑𝐹/𝑑𝑡

]︁
inner

≤ 0

для замкненої системи при фiксованiй 𝑇 . Цю вла-
стивiсть можна переформулювати як{︂
exp

[︂
−𝑉

𝛿
𝑡

]︂
𝑑

𝑑𝑡
exp

[︂
𝑉

𝛿
𝑡

]︂}︂(︁
𝐹 − 𝐹

{︀
𝐶dep

}︀)︁
≤ 0. (23)

a. Двi верхнi площини

б. Одна верхня площина
Рис. 9. Вiдношення 𝑉1 розкиду вiдстаней до середньої вiд-
станi мiж найближчими 6-ма сусiдами та вiдношення 𝑉2

розкиду розмiрiв кластерiв до їх середнього розмiру як
функцiї приведеної температури (𝑘𝑇/4𝐸mix для панелi (a)
i 𝑘𝑇/2𝐸mix для панелi (б )) при рiзних приведених швидко-
стях 𝜐 = 0,1 − 0,5. Склад вхiдного потоку 𝐶 = 0,3 у всiх
випадках

Рiвняння (23) є узагальненим еволюцiйним крите-
рiєм для нашої моделi вiдкритої системи.

10. Можлива модифiкацiя
моделi: одна площина замiсть
двох

(︀
𝑍‖ = 4, 𝑍⊥ = 0

)︀
Модель можна ще бiльше спростити, якщо розгля-
дати не тiльки обмiни, а й взаємодiї в однiй тiльки
верхнiй площинi. Елементарний розгляд (схожий
на приведений в Додатках A i Б) приводять до та-
ких рiвнянь для безрозмiрної критичної швидкостi
та залежної вiд швидкостi спiнодалi:

𝜐critical
(︀
single top plane

)︀
=

(︀
𝑊 − 2

)︀2
2𝑊

, (24)(︂
𝑘𝑇

2𝐸mix

)︂
single top plane

=
4𝐶

(︀
1− 𝐶

)︀
1 + 𝜐

2 +

√︁(︀
1 + 𝜐

2

)︀2 − 1
. (25)

На рис. 8 порiвнюються вiдображення структур
як функцiй температури та швидкостi осадження
для основної моделi з двома площинами та моде-
лi з однiєю верхньою площиною. Видно, що пiсля
перемасштабування температури в два рази карти
практично спiвпадають.
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11. Упорядкування структур
зi змiною швидкостi та температури

Зi збiльшенням швидкостi 𝜐 i температури
𝑘𝑇/𝐸mix структури мають тенденцiю до впорядку-
вання. А саме: розподiли вiдстаней мiж найближ-
чими сусiдами та розмiрiв стають бiльш вузькими.
Ми перевiрили цю тенденцiю на “гепардовiй” мор-
фологiю в обох моделях: у початковiй (з обмiна-
ми в однiй площинi, але з взаємодiєю в двох пло-
щинах) i спрощенiй (обмiни та взаємодiї тiльки в
однiй площинi). Спочатку ми розрахували вiдстанi
вiд центрiв кластерiв до центрiв шести найближ-
чих сусiдiв для кожної плями, потiм знайшли рi-
зницю максимальної та мiнiмальної вiдстаней мiж
цими шiстьма сусiдами, потiм обчислили вiдноше-
ння цiєї рiзницi до середньої вiдстанi, а потiм узя-
ли середнє по всiх плямах. На додачу, ми обчи-
слили розмiри (кiлькiсть атомiв) у кожному кла-
стерi, знайшли вiдхилення розмiрiв для всiх плям,
та обчислили вiдношення вiдхилення та середньо-
го розмiру. Типовi результати показанi на рис. 9
для початкової (𝑎) та спрощеної (б ) моделей.

12. Модель Монте-Карло

До цього часу все моделювання проводилося в
рамках нелiнiйної самоузгодженої атомної апро-
ксимацiї середнього поля KMF (Kinetic Mean-
Field). Щоб побудувати версiю Монте-Карло для
нашої спрощеної моделi, яка включала б взаємо-
дiї тiльки в однiй верхнiй площинi, ми застосували
стандартний алгоритм Метрополiса для механiзму
обмiну в двовимiрнiй ґратцi, але додали ймовiр-
нiсть 𝑃dep замiни будь-якого атома новим атомом
типу 𝐴 з ймовiрнiстю 𝐶dep i типу 𝐵 з ймовiрнiстю
1−𝐶dep. Ймовiрнiсть 𝑃dep пропорцiйна швидкостi
безрозмiрного осадження, 𝑃dep = 𝛼𝜐. Щоб знайти
коефiцiєнт пропорцiйностi 𝛼, ми обчислили крити-
чну температуру (вершина залежної вiд швидкостi
спiнодалi) з рiвняння (25):

𝑘𝑇crit

2𝐸mix
=

1

1 + 𝜐
2 +

√︁(︀
1 + 𝜐

2

)︀2 − 1
.

Для 𝜐 = 0, 1 знайдене вiдношення дорiвнювало
0,642. Потiм, у схемi Монте-Карло для цiєї тем-
ператури та для 𝐶dep = 0,5, ми знайшли, для якої
ймовiрностi 𝑃dep ми отримуємо граничну стабiль-
нiсть (бiльшi за 𝑃dep значення вiдповiдають ста-
бiльним сплавам, при менших вiд 𝑃dep значеннях

Рис. 10. Типовi морфологiї, отриманi для моделi з однiєю
площиною методом Монте-Карло: плями (“гепард”; 𝐶dep =

= 0,2, 𝜐 = 0,1 (𝑃dep = 0,000083), 𝑘𝑇/𝐸mix = 0, 4 (a); змiшанi
(“гепард+ зебра”, 𝐶dep = 0,3, 𝜐 = 0,1 (𝑃dep = 0, 000083),
𝑘𝑇/𝐸mix = 0,4 (б ); смуги-лабiринт (“зебра1”, 𝐶dep = 0,5,
𝜐 = 0,1 (𝑃dep = 0,000083), 𝑘𝑇/𝐸mix = 0,452 (в); смуги-
ламелi (“зебра2”, 𝐶dep = 0,4, 𝜐 = 0,1 (𝑃dep = 0,000083),
𝑘𝑇/𝐸mix = 0,557) (г)

починається розпад). Таке достосування привело
до значення

𝛼 = 0,00083. (26)

Типовi морфологiї, отриманi методом Монте-
Карло при рiзних складах вхiдного потоку, при тiй
самiй швидкостi, але при рiзних температурах по-
казанi на рис. 10.

13. Висновки

1. Розроблена модель двовимiрного регулярного
твердого розчину для вiдкритої системи, що хара-
ктеризується додатковим параметром швидкостi,
швидкiстю осадження 𝑉 . Для ненульової констан-
ти 𝑉 ця модельна система досягає стацiонарного
стану, а не рiвноваги.

2. Аналiтично виведена та чисельно пiдтвердже-
на залежна вiд швидкостi спiнодаль для сплавiв,
якi є абсолютно нестабiльними щодо будь-яких ко-
ливань. Збiльшення 𝑉 стабiлiзує сплав, знижую-
чи спiнодальний криву, як показано рiвняннями
(20) i (21).
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3. Якщо початковий склад системи є майже
однорiдним з незначними флуктуацiями, а точка
склад осаду–температура на фазовiй дiаграмi ле-
жить нижче залежної вiд швидкостi спiнодалi, то
результуючий стан стабiлiзується в одну з двох
основних морфологiй (рис. 3 та 4): “гепардоподiб-
нi” (плямистi) або “зеброподiбнi” (смугастi, у ви-
глядi лабiринтiв або паралельних ламелей). У
вузькiй перехiднiй зонi виникає сумiш цих двох
морфологiй.

4. Залежна вiд швидкостi бiнодаль була визна-
чена лише чисельно шляхом прямого вимiрювання
граничних складiв в асимптотичних стацiонарних
станах (рис. 1). “Мiжкупольна область” на фазо-
вiй дiаграмi (точки поза спiнодаллю, але всереди-
нi бiнодалi) пiдроздiляється на двi пiдобластi: див.
наступний висновок.

5. У вказаних вище промiжних областях мiж за-
лежними вiд швидкостi бiнодалями та залежни-
ми вiд швидкостi спiнодалями структура стацiо-
нарних станiв суттєво залежить вiд уже iсную-
чих структур (ефект пам’ятi). Для однорiдного
початкового сплаву з невеликим початковим шу-
мом розкладання пригнiчується скрiзь поза зале-
жною вiд швидкостi спiнодаллю. Якщо початко-
ву структуру готують шляхом змiщення складу
або температури в область нестабiльностi, а по-
тiм повертають її пiсля часткового розкладання
за межi спiнодалi, то поведiнка сплаву змiнює-
ться. Ближче до спiнодалi (але все ще за її ме-
жами) стацiонарний стан прагне до “гепардоподi-
бного” розкладання, а в областi, що залишилася
мiж спiнодаллю та бiнодаллю, сплав залишається
однорiдним.

6. Наша система проявляє як композицiйний,
так i температурний гiстерезис. Використовуючи
попередню структуру як початкову умову для но-
вого моделювання зi змiненим складом або темпе-
ратурою осадження, показано, що стацiонарнi ста-
ни в сплавах з таким самим складом, але рiзними
початковими умовами, можуть привести до помi-
тно вiдмiнних морфологiй.

7. Виведено узагальнений критерiй еволюцiї
(рiвняння (23)) для вiльної енергiї нашої вiдкри-
тої системи.

8. Вивчались також властивостi ще бiльш спро-
щеної моделi, коли i обмiни, i енергiї взаємодiї
враховуються лише в межах однiєї верхньої пло-
щини. Результати практично збiгаються з основ-

ною моделлю пiсля подвiйного перемасштабуван-
ня температури.

9. Виявлено упорядкування структур: в обох мо-
делях як розподiл розмiрiв редукованих кластерiв,
так i розподiл вiдстаней мiж найближчими сусiда-
ми демонструють тенденцiю ставати все бiльш i
бiльш вузькими при збiльшеннi швидкостi та тем-
ператури.

10. Також використана версiя Монте-Карло для
спрощеної моделi. Отримано якiсно схожi резуль-
тати. Детальний аналiз впливу шуму (як тепло-
вого шуму частот атомних стрибкiв, так i шуму
вiд потоку осадження) на гiстерезис i пам’ять бу-
де опублiковано в деiнде.

11. Версiя середнього поля нашої моделi вида-
ється кращою для подальших дослiджень фун-
даментальної фiзики вiдкритих систем, включаю-
чи кiнетичнi рiвняння для переходiв мiж рiзними
стацiонарними станами через змiни температури,
швидкостi осадження, або початкової структури.

Робота виконувалася в рамках проєкту
“ENSEMBLE3-Center of Excellence for Nanophono-
nics, Advanced Materials and Novel Crystal Growth-
Based Technologies” (GA No.MAB/2020/14), який
виконується в рамках програм International
Research Agenda Фундацiї польської науки, що
спiвфiнансуються Європейським Союзом у рам-
ках Європейського фонду регiонального розвитку
та Європейським Союзом Horizon 2020 Research
and Innovation Programmeing for Excellence (GA
No. 857543). Публiкацiя становить частину про-
єкту Мiнiстерства науки та вищої освiти “Пiд-
тримка дiяльностi центрiв передового досвiду,
створених у Польщi в рамках програми Горизонт
2020” (контракт No.MEiN/2023/DIR/3797).

Автори також вдячнi професору Кiнг Нiнг Ту,
докторам Iгорю Радченку та Анастасiї Титовiй
за плiдне обговорення фазових i структурних пе-
реходiв у вiдкритих системах.

ДОДАТОК А.
Критерiй абсолютної нестабiльностi
для замкнених систем (𝜐 = 0)

Вiдповiдно до рiвнянь (9) та (10), ми шукатимемо розв’язок
у виглядi хвилi концентрацiї з нескiнченно малою амплiту-
дою 𝐴 для двох площин ГЦК-ґратки: при 𝑖+ 𝑗 = 2𝑚,

𝐶𝐴 (𝑖, 𝑗, 𝑘 = 0) = 𝐶dep +𝐴 exp
[︁
𝐼
𝑎

2
(𝑞𝑥𝑖+ 𝑞𝑦𝑗)

]︁
, (A1)
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при 𝑖′ + 𝑗′ = 2𝑚+ 1,

𝐶𝐴 (𝑖, 𝑗, 𝑘 = 1) = 𝐶dep +𝐴 exp
[︁
𝐼
𝑎

2

(︀
𝑞𝑥𝑖

′ + 𝑞𝑦𝑗
′)︀]︁×

×
1

2

[︁
cos
(︁𝑞𝑥𝑎

2

)︁
+ cos

(︁𝑞𝑦𝑎
2

)︁]︁
. (A2)

Пiдставляємо рiвняння (A1) i (A2) у рiвняння (8), розклада-
ємо все в ряд за малим параметром 𝐴, i нехтуємо доданками
другого та вищого порядкiв. Наприклад,

exp

[︃
𝐸mix

𝑘𝑇

(︃
𝑍∑︁

𝑖𝑛′=1

𝛿𝐶(𝑖𝑛′)−
𝑍∑︁

𝑖′=1

𝛿𝐶(𝑖′)

)︃]︃
≈

≈ 1 +
𝐸mix

𝑘𝑇

(︃
𝑍∑︁

𝑖𝑛′=1

𝛿𝐶(𝑖𝑛′)−
𝑍∑︁

𝑖′=1

𝛿𝐶(𝑖′)

)︃
.

Отримуємо

𝜕𝛿𝐶(𝑖)

𝜕𝑡𝑡
= −𝑍‖𝛿𝐶(𝑖)+

+

𝑍‖∑︁
𝑖𝑛=1

𝛿𝐶(𝑖𝑛)−
2𝐸mix

𝑘𝑇
𝐶dep

(︁
1− 𝐶dep

)︁
×

×
(︃

𝑍∑︁
𝑖𝑛′=1

𝛿𝐶(𝑖𝑛′)−
𝑍∑︁

𝑖′=1

𝛿𝐶(𝑖′)

)︃
. (A3)

Множимо обидвi частини цього рiвняння на
1
𝐴

exp (−𝐼q · r𝑖). Тодi

𝜕 ln𝐴

𝜕𝑡2
=

𝑍‖∑︁
𝑖𝑛=1

exp [𝐼 q · (r𝑖𝑛 − r𝑖)]− 𝑍‖ −

−
2𝐸mix

𝑘𝑇
𝐶dep

(︁
1− 𝐶dep

)︁
×

×
𝑍‖∑︁

𝑖𝑛=1

{︃ 𝑍‖∑︁
𝑖𝑛′=1

exp [𝐼 q · ((r𝑖𝑛′ − r𝑖𝑛) + (r𝑖𝑛 − r𝑖))]+

+

𝑍⊥∑︁
𝑖𝑛′=1

𝛿𝐶(𝑖𝑛′)
1

𝐴
exp (−𝐼 q · r𝑖𝑛)×

× exp [𝐼 q · (r𝑖𝑛 − r𝑖)]−
𝑍‖∑︁
𝑖′=1

exp [𝐼 q (r𝑖′ − r𝑖)]−

−
𝑍⊥∑︁
𝑖′=1

𝛿𝐶(𝑖′)
1

𝐴
exp (−𝐼 q · r𝑖)

}︃
. (A4)

Ми приходимо природним чином до структурних факторiв
двох типiв, пов’язаних з рiзними сумами:

(1) по найближчих сусiдах в площинi 𝑘 = 0; це (𝑎
2
, 𝑎
2
),

(𝑎
2
,−𝑎

2
), (−𝑎

2
, 𝑎
2
), та (−𝑎

2
,−𝑎

2
);

𝑆1(q) =

𝑍‖=4∑︁
𝑖𝑛=1

exp [𝐼 q · (r𝑖𝑛 − r𝑖)] =

= exp
[︁
𝐼
(︁
𝑞𝑥

𝑎

2
+ 𝑞𝑦

𝑎

2

)︁]︁
+ exp

[︁
𝐼
(︁
𝑞𝑥

𝑎

2
− 𝑞𝑦

𝑎

2

)︁]︁
+

+exp
[︁
𝐼
(︁
−𝑞𝑥

𝑎

2
+ 𝑞𝑦

𝑎

2

)︁]︁
+exp

[︁
𝐼
(︁
−𝑞𝑥

𝑎

2
− 𝑞𝑦

𝑎

2

)︁]︁
=

= 2
{︁
cos
[︁
(𝑞𝑥 + 𝑞𝑦)

𝑎

2

]︁
+ cos

[︁
(𝑞𝑥 − 𝑞𝑦)

𝑎

2

]︁}︁
=

= 4 cos
(︁
𝑞𝑥

𝑎

2

)︁
cos
(︁
𝑞𝑦

𝑎

2

)︁
; (A5)

(2) по найближчих сусiдах, що лежать у нижнiй площинi
𝑘 = 1; це (𝑎

2
, 0), (−𝑎

2
, 0), (0, 𝑎

2
), та (0,−𝑎

2
);

𝑆2(q) =

𝑍⊥=4∑︁
𝑖𝑛′=1

𝛿𝐶(𝑖′)
1

𝐴
exp (−𝐼 q · r𝑖) =

=

{︂
exp

(︁
𝐼 𝑞𝑥

𝑎

2

)︁
+ exp

(︁
−𝐼 𝑞𝑥

𝑎

2

)︁
+

+exp
(︁
𝐼 𝑞𝑦

𝑎

2

)︁
+ exp

(︁
−𝐼 𝑞𝑦

𝑎

2

)︁}︂
×

×
1

2

[︁
cos
(︁𝑎
2
𝑞𝑥
)︁
+ cos

(︁𝑎
2
𝑞𝑦
)︁]︁

=

=
[︁
cos
(︁
𝑞𝑥

𝑎

2

)︁
+ cos

(︁
𝑞𝑦

𝑎

2

)︁]︁2
. (A6)

У цих термiнах рiвняння (A4) перетворюється на таке:

𝜕 ln𝐴

𝜕𝑡𝑡
= (𝑆1 − 4)×

×
[︂
1−

2𝐸mix

𝑘𝑇
𝐶dep

(︁
1− 𝐶dep

)︁
(𝑆1 + 𝑆2)

]︂
=

= 4
[︁
1− cos

(︁
𝑞𝑥

𝑎

2

)︁
cos
(︁
𝑞𝑦

𝑎

2

)︁]︁
×

×
{︂
8𝐸mix

𝑘𝑇
𝐶dep

(︁
1− 𝐶dep

)︁
×

×
[︂
cos
(︁
𝑞𝑥

𝑎

2

)︁
cos
(︁
𝑞𝑦

𝑎

2

)︁
+

+
1

4

(︁
cos
(︁
𝑞𝑥

𝑎

2

)︁
+ cos

(︁
𝑞𝑦

𝑎

2

)︁)︁2]︂
− 1

}︂
.

ДОДАТОК Б. Критична швидкiсть

𝜐critical = max
(𝑞𝑥,𝑞𝑦)

{︃
4
[︁
1− cos

(︁
𝑞𝑥

𝑎

2

)︁
cos
(︁
𝑞𝑦

𝑎

2

)︁]︁
×

×
[︃
𝑊

2

(︃
cos
(︁
𝑞𝑥

𝑎

2

)︁
cos
(︁
𝑞𝑦

𝑎

2

)︁
+

+

(︃
cos
(︀
𝑞𝑥

𝑎
2

)︀
+ cos

(︀
𝑞𝑦

𝑎
2

)︀
2

)︃2)︃
− 1

]︃}︃
. (Б1)

Нехай 𝑥 = cos
(︀
𝑞𝑥

𝑎
2

)︀
, та 𝑦 = cos

(︀
𝑞𝑦

𝑎
2

)︀
. Тодi

𝜐critical = maxΨ(𝑥, 𝑦) = max

{︃
4 (1− 𝑥𝑦)×

×
[︃
𝑊

2

(︃
𝑥𝑦 +

(︂
𝑥+ 𝑦

2

)︂2)︃
− 1

]︃}︃
. (Б2)

Частковi похiднi вiд Ψ по 𝑥 i 𝑦 повиннi дорiвнювати ну-
лю в максимумi. Таким чином, комбiнацiя 𝑥 𝜕Ψ

𝜕𝑥
− 𝑦 𝜕Ψ

𝜕𝑦
=

= 2𝑊 (𝑥2 − 𝑦2) = 0, що вказує на те, що хвиля оптималь-
ної концентрацiї має створюватися вздовж дiагонального
напрямку. Взявши 𝑥 = 𝑦 у Ψ, можна легко знайти макси-
мальну умову та максимальне значення:

Ψ(𝑥 = 𝑦) = 4
(︀
1− 𝑥2

)︀ (︀
𝑊𝑥2 − 1

)︀
= max =⇒ (Б3)
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=⇒ 𝑥2
opt =

𝑊 + 1

2𝑊
, (Б4)

𝜐critical (⟨110⟩) = Ψ (𝑥opt) =
(𝑊 − 1)2

𝑊
. (Б5)
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A.M.Gusak, S.O.Abakumov

SIMPLIFIED KINETIC MODEL
OF FLUX-DRIVEN PHASE TRANSITIONS
AND PATTERNS COMPETITION IN OPEN 2D SYSTEM

The regular solution approximation has a successful history

of applications in the thermodynamics and kinetics of decom-

position in alloys, treated as closed systems. It provides a

qualitatively proper description of all stages of spinodal and

nucleation-mediated decomposition for alloys under homoge-

neous external conditions without external fluxes. In this ar-

ticle, the kinetic mean-field model for open (flux-driven) sys-

tems is extended by incorporating the divergence of in- and

out-fluxes into the master equations for occupation proba-
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bilities. The closest experimental analog of this model is the

pattern formation during the co-deposition of a binary alloy

under frozen bulk diffusion, but with reasonable surface dif-

fusion, where the deposition rate 𝑉 serves as the main ex-

ternal parameter. However, some peculiarities of the model

may also be useful for describing eutectic and off-eutectic

crystallizations. Rate-dependent phase 𝑇 −𝐶 diagrams are de-

termined for the steady the states of such an open system. The

rate-dependent instability region is subdivided into three dis-

tinct steady-state morphologies: spots (“gepard”-like), layers

(“zebra”-like) – labyrinth or lamellae, and mixed patterns (a

combination of “gepard” and “zebra”). This morphology map

depends on the initial conditions, revealing memory effects and

hysteresis. This implies that, unlike the equilibrium state of

a closed system, which acts as an attractor for the evolution

paths, the steady states of flux-driven systems may not be at-

tractors. Variations of the model, including Monte Carlo sim-

ulations, are also discussed.

Ke yw o r d s: open system, flux-driven transformation, spi-
nodal decomposition, pattern formation, rate-dependent phase
diagram, hysteresis.
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