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ТРАНСКУТАНТНИЙ ВПЛИВ ЛАЗЕРНОГО
ВИПРОМIНЮВАННЯ НА ВЕЛИЧИНУ САТУРАЦIЇ
ВЕНОЗНОЇ КРОВI КИСНЕМУДК 539

Робота присвячена визначенню впливу зовнiшнього черезшкiрного лазерного випромi-
нювання на вiдносну концентрацiю оксигемоглобiну в венознiй кровi. Показано, що при
черезшкiрному лазерному опромiнюваннi бiологiчної кровонаповненної тканини змiна
величини сатурацiї венозної кровi киснем спостерiгається тiльки при досягненнi пев-
ного рiвня лазерностимульованої фотодисоцiацiї оксигемоглобiну в артерiальнiй кровi
(зменшення величини сатурацiї артерiальної кровi киснем бiльш нiж на 6%). На нашу
думку, цей процес не є безпосередньою лазерностимульованою фотодисоцiацiєю окси-
гемоглобiну в венознiй кровi, оскiльки крива дисоцiацiї знаходиться в областi високих
значень парцiального тиску кисню. Зменшення вiдносної концентрацiї оксигемоглобiну
у венознiй кровi скорiш за все пов’язано з компенсаторними механiзмами гiпоксiї пе-
риферичних тканин з врахуванням рекомбiнацiї молекул оксигемоглобiну на шляху вiд
точки опромiнювання до точки екстракцiї кисню клiтинами.
Ключ о в i с л о в а: оксигемоглобiн, венозна сатурацiя, фотодисоцiацiя, лазер, артерiаль-
на сатурацiя.

1. Вступ

Аеробний метаболiзм клiтин є первинним у механi-
змi забезпечення тканин ссавцiв енергiєю. Оксиге-
нацiя тканин вiдiграє важливу роль в ефективно-
стi перебiгу багатьох бiохiмiчних реакцiй. Значний
iнтерес становлять фактори, якi можуть вплину-
ти на доставку та вмiст кисню в тканинах, i одним
iз таких факторiв є опромiнювання тканин хвиля-
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ми оптичного дiапазону. Фотодисоцiацiя оксигемо-
глобiну (HbO2) вiдома понад 50 рокiв, починаючи
з роботи [1], але ще досi не вивченi всi механiзми
як вивiльнення кисню, так i змiн його споживання
клiтинами. Останнi десятилiття розповсюдження
набула низькоiнтенсивна лазерна терапiя, яка ви-
користовує зовнiшнє лазерне черезшкiрне опромi-
нювання, що призводить до фотодисоцiацiї оксиге-
моглобiну, для лiкування низки захворювань [2, 3].

Вiдноснi концентрацiї оксигемоглобiну в артерi-
альнiй та венознiй кровi (величини артерiальної
(SaO2) та венозної (SvO2) сатурацiї киснем) є дво-
ма основними параметрами, якi використовуються
для оцiнки процесу доставки кисню та контролю
за екстракцiєю кисню тканинами. Цi два параме-
три є важливими для аналiзу кисневої циркуляцiї
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у всьому органiзму. Величина екстракцiї кисню з
артерiальної кровi є показником адекватностi мi-
сцевої тканинної перфузiї. Її визначення необхiдне
при ранньому дiагностуваннi мiкроциркуляторної
дисфункцiї, зокрема при сепсисi та кардiогенному
шоцi. Таким чином, безперервний монiторинг як
SaO2, що на сьогоднi є “золотим стандартом”, так
i SvO2 є актуальним для гемодинамiчного та пер-
фузiйного контролю в клiнiчних умовах [4].

Параметри гемодинамiки, якi зазвичай викори-
стовують для оцiнки перфузiї органiв та тканин,
такi як артерiальний тиск кровi, частота серце-
вих скорочень, дiурез та газовий склад кровi, при
гiпоксiї тканин можуть перебувати в нормi, що
не виключає дисбаланс мiж загальною потребою
в киснi та його доставкою. Зменшення об’ємного
кровотоку в тканинi (iшемiя) або знижений вмiст
кисню в артерiальнiй кровi (гiпоксiя) формують
тканинний дефiцит кисню. Одним iз перших ком-
пенсаторних механiзмiв, спрямованих на лiквiда-
цiю тканинного дефiциту кисню, є збiльшення йо-
го екстракцiї з артерiальної кровi, що призводить
до неминучого зниження вмiсту кисню у венознiй
кровi [5–8].

Величина сатурацiї венозної кровi киснем є ва-
жливим показником обмiну кисню у тканинах i
є критерiєм адекватностi доставки кисню потребi
тканин у ньому. SvO2 вiдображає баланс мiж до-
ставкою кисню та його споживанням тканинами.
Доставка кисню залежить вiд серцевого викиду,
насичення артерiальної кровi киснем та концен-
трацiї гемоглобiну. Ступiнь екстракцiї кисню ви-
значається вiдношенням споживання кисню до йо-
го доставки, та в нормi зазвичай становить близь-
ко 25%. За нормальних умов споживання кисню
не залежить вiд його доставки, оскiльки ткани-
ни можуть компенсувати свою потребу за раху-
нок пiдвищення ступеня екстракцiї кисню. Коли
компенсаторний механiзм виснажується, спожива-
ння кисню стає залежним вiд доставки. При цьому
виникає анаеробний метаболiзм, i починає пiдви-
щуватися рiвень лактатiв. Доставка та споживан-
ня кисню залежать вiд навантаження на фiзiоло-
гiчнi органи (системи) та вiд їх клiнiчного стану.
У здорової людини анаеробний метаболiзм зазви-
чай виникає, коли SvO2 падає нижче 40–50%. У
пацiєнтiв iз серцевою недостатнiстю ступiнь екс-
тракцiї кисню у спокої збiльшений, i вони можуть
жити зi значеннями SvO2 у цьому низькому дiапа-

зонi без видимих проявiв гiпоксiї завдяки адапта-
цiйним механiзмам (зсув кривої дисоцiацiї оксиге-
моглобiну в область бiльших значень парцiального
тиску кисню, адаптацiя периферичного мiкроцир-
куляторного русла) [9].

Нашi попереднi дослiдження були сфокусованi
на визначеннi ефективностi фотодисоцiацiї окси-
гемоглобiну в залежностi вiд рiзних параметрiв.
Зокрема було з’ясовано, що спектри дiї мають ма-
ксимуми в областi 525, 605 та 850 нм [10].

Метою нашої роботи є визначення впливу зовнi-
шнього черезшкiрного лазерного випромiнювання
на вiдносну концентрацiю оксигемоглобiну в вено-
знiй кровi. Це дозволить оцiнити вплив фотоди-
соцiацiї оксигемоглобiну на ефективнiсть екстра-
кцiї кисню з кровi, тобто кисеньспоживання тка-
нин. Для дослiджень було вибрано саме тi довжи-
ни хвиль, на яких спостерiгається максимальна дiя
лазерного випромiнювання (525 i 605 нм).

2. Матерiали i методи

2.1. Експериментальна установка

В експериментi проводився запис сигналiв фото-
плетизмограми на двох довжинах хвиль у черво-
ному (660 нм) та ближньому iнфрачервоному IЧ
(940 нм) дiапазонi з частотою опитування 𝑓1 =
= 348 Гц. У роботi використано пульсоксиметри-
чний датчик для пальця з використанням свiтла,
що проходить наскрiзь для зменшення вiдстанi
проходження свiтла через тканину. Датчик був
зiбраний на базi стандартної пульсоксиметричної
пари свiтлодiодiв з довжинами хвиль випромiню-
вання 660 i 940 нм i кремнiєвого фотодiода BPW34
(OSRAM). Керування роботою датчика, збирання
i передача даних забезпечувалися вимiрювальним
блоком, з’єднаним з персональним комп’ютером,
який здiйснював обробку iнформацiї, виведення її
на екран монiтору i збереження тренду сигналiв
на жорсткому диску.

Вимiрювальний блок мiстив вхiдний та вихiдний
тракти i мiкроконтролер, який керував роботою
обох трактiв i забезпечував двостороннiй обмiн
iнформацiєю з персональним комп’ютером (ПК).
Апаратна побудова вимiрювального блока дозво-
ляла здiйснювати запис 8-ми незалежних сигналiв.

Мiкроконтролер керував послiдовнiстю подачi
живлення на свiтлодiоди та опитування фотодiо-
дiв, забезпечував неперервнiсть даних вимiрюва-
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ння, зберiгаючи їх у внутрiшнiй пам’ятi блока у
тi перiоди, коли ПК переривав обмiн. Мiкрокон-
тролер являв собою мiкропроцесорний блок, до
складу якого входили мiкропроцесор, ОЗП, ПЗП,
дешифратор, таймер, стабiлiзований кварцом та-
ктовий генератор i порти введення-виведення.
Вхiдний тракт вимiрювального блока складався
з пiдсилювачiв з колами узгодження з джере-
лом сигналiв, комутатора входiв, пристрою вибiр-
ки i зберiгання (ПВЗ) сигналiв i 16-розрядного
АЦП. Вхiдний тракт працював з роздiленням
каналiв у часi. Частота опитування датчикiв
𝑓1 = 348 Гц. Вихiдний тракт включав в себе 10-
розрядний ЦАП, формувачi iмпульсiв i комутато-
ри вихiдних сигналiв. Режим роботи вимiрюваль-
ного блока задавався спецiальним програмним
забезпеченням. Програмна оболонка дозволяла
оператору задавати в ПК необхiднi параметри ро-
боти: вибiр кiлькостi свiтлодiодiв i фотодiодiв; по-
слiдовнiсть вмикання вихiдних сигналiв (свiтiн-
ня свiтлодiодiв); вибiр режиму установки коефi-
цiєнта пiдсилення вхiдних сигналiв i амплiтуди
вихiдних iмпульсiв (автоматичний i ручний ре-
жими). На екран монiтора виводилися сигнали
(за вибором) вiд усiх каналiв датчика в реаль-
ному масштабi часу. Данi всiх каналiв записува-
лися в файл (*.log) у кодах ASCII i зберiгалися
на жорсткому диску. Для контролю режиму ро-
боти свiтлодiодiв було знято залежнiсть потужно-
стi випромiнювання вiд струму живлення свiтло-
дiодiв. Вимiрювання проводились IМО-2Н (вимi-
рювач середньої потужностi та енергiї лазерно-
го випромiнювання). Отриманi результати усере-
днювалися лiнiйною апроксимацiєю кiлькох серiй
вимiрювань методом найменших квадратiв. Нада-
лi потужнiсть випромiнення контролювалася че-
рез вимiрювання падiння напруги на еталонно-
му (калiброваному) резисторi у колi живлення
свiтлодiода.

2.2. Вимiрювання та обробка даних

Для кожної з довжин хвиль зовнiшнього опромi-
нювання було зроблено вiд 15 до 20 записiв сигна-
лiв за схемою: 30 сек без випромiнювання, 30 сек
при включеному випромiнюваннi, i 30 сек без ви-
промiнювання. Для кожного запису обчислювали-
ся середнi значення локальної сатурацiї артерiаль-
ної кровi SaO2 на iнтервалах без опромiнення та з

опромiненням i змiна SaO2 пiд дiєю опромiнення,
яке потiм усереднювали за кiлькiстю записiв. По-
хибки обчислювалися з допомогою t-таблиць для
ймовiрностi 𝑝 = 0,95.

Iз записаних фотоплетизмограм визначалися ко-
ефiцiєнти лiнiйної регресiї та кореляцiї сигналiв
червоного та iнфрачервоного каналiв з дискретнi-
стю 1/𝑓1 = 0,00287 с. За змiнами парного кое-
фiцiєнта кореляцiї оцiнювалася якiсть сигналу –
за наявностi рiзких стрибкiв i падiннi коефiцiєнта
нижче 0,95 запис виключався з подальшого ана-
лiзу. Коефiцiєнт лiнiйної регресiї має той самий
фiзичний змiст, що i вiдношення коефiцiєнтiв мо-
дуляцiї сигналiв на двох довжинах хвиль, але дає
можливiсть визначити величину сатурацiї артерi-
альної кровi SaO2 за промiжок часу, менший за
тривалiсть кардiоциклу. Значення SaO2 розрахо-
вувалися з тiєю ж дискретнiстю 1/𝑓1, хiд кривої
дозволяв контролювати якiсть сигналу. Нижче в
результатах експерименту скрiзь наводяться сере-
днi значення SaO2.

Для визначення величини венозної сатурацiї на-
ми застосовувався метод, заснований на модуляцiї
оптичних сигналiв природних дихальних ритмiв
людини. Такий пiдхiд заснований на тому, що мо-
дуляцiя величини вiдносної концентрацiї окисле-
ного та вiдновленого гемоглобiну з частотою диха-
ння вiдбувається переважно у венознiй складовiй
судинної системи [11–17].

Для обчислення значень венозної сатурацiї здiй-
снювалося фур’є-перетворення сигналiв (мето-
дом вiкна Хана) з отриманням їх амплiтудно-
частотних спектрiв. За спектрами визначалася ча-
стота максимуму дихального ритму, i до фотопле-
тизмографiчного сигналу застосовувався вузько-
смуговий фур’є-фiльтр з центром на знайденiй ча-
стотi i з шириною смуги, що дозволяє видiлити
тiльки дихальнi коливання. Фур’є-фiльтрацiя про-
водилася з урахуванням постiйної складової сигна-
лу. По видiленим дихальним коливанням для двох
довжин хвиль визначалося вiдношення коефiцiєн-
тiв модуляцiї дихального ритму, за яким обчислю-
валася величина насичення венозної кровi киснем
SvO2 [18].

В дослiдженнях приймали участь 8 доброволь-
цiв у вiцi вiд 25 до 54 рокiв. Рiвень потужностi ви-
користаного опромiнювання вiдповiдав такому, що
використовується при низькоiнтенсивнiй лазернiй
терапiї i є безпечним для людини, а опромiнюван-
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Рис. 1. Схема опромiнювання

Рис. 2. Змiна величини сатурацiї артерiальної SaO2 та ве-
нозної SvO2 кровi киснем при опромiнюваннi пальця (1-
ї фаланги) лазерним випромiнюванням з довжиною хвилi
525 нм

Рис. 3. Величина падiння ΔSaO2 i Δ SvO2 при опромiню-
ваннi 1-ї фаланги пальця довжиною хвилi 525 нм в зале-
жностi вiд потужностi

Рис. 4. Величина падiння ΔSaO2 i ΔSvO2 при опромiню-
ваннi 1-ї фаланги пальця довжиною хвилi 605 нм в зале-
жностi вiд потужностi

ня вiдбувалося неiнвазивним шляхом. Схема роз-
мiщення датчика та зовнiшнього джерела опромi-
нювання наведена на рис. 1.

3. Результати

При малих потужностях опромiнення на обох дов-
жинах хвиль, що дослiджуються, добре спостерi-
гається змiна величини сатурацiї артерiальної кро-
вi киснем при незмiннiй величинi сатурацiї вено-
зної кровi киснем. Тiльки за потужностях лазер-
ного випромiнювання, що забезпечують зниження
величини сатурацiї артерiальної кровi киснем бiль-
ше 8%, з’являється змiна величини венозної сату-
рацiї. На рис. 2 наведено приклад експерименталь-
них даних, де спостерiгається змiна одночасно ве-
личини сатурацiї як артерiальної, так i венозної
кровi киснем.

На рис. 3 наведена залежнiсть величини змен-
шення сатурацiї артерiальної ΔSaO2 i венозної
SvO2 кровi вiд потужностi опромiнювання з дов-
жиною хвилi 525 нм. Середнi значення SaO2 i
SvO2 без опромiнювання для серiй експериментiв
з рiзною потужнiстю мають певну варiативнiсть
(95,4± 0,4 SD% и 78,6± 0,33 SD% вiдповiдно).

Змiна величини SvO2 починається при величинi
зовнiшнього опромiнювання 15 мВт, в той момент,
коли змiна величини SaO2 стає бiльшою за 6%.

На рис. 4 приведена залежнiсть величини змен-
шення сатурацiї артерiальної ΔSaO2 i венозної
ΔSvO2 кровi киснем вiд потужностi опромiню-
вання з довжиною хвилi 605 нм. Середнi значе-
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ння SaO2 i SvO2 без опромiнювання становили
95,8± 0,4 SD% i 78,5± 0,28 SD% вiдповiдно.

На цiй довжинi хвилi змiна величини SvO2 почи-
нається при величинi зовнiшнього опромiнювання,
яке перевищує 20 мВт, в той момент, коли змiна
величини SaO2 теж стає бiльшою за 6%. Оскiльки
взаємодiя оптичного випромiнювання з гемоглобi-
нами кровi є однофотонним процесом, для кращо-
го розумiння та порiвняння перебiгу процесiв на
рiзних довжинах хвиль на рис. 5 наведено зале-
жнiсть змiни величини венозної сатурацiї вiд пото-
ку фотонiв. Слiд вiдмiтити, що на довжинi хвилi
525 нм процес виходить на насичення при меншо-
му значеннi величини потоку.

4. Обговорення

Змiна вiдносної концентрацiї оксигемоглобiну в
венознiй кровi може змiнюватися двома механi-
змами. Перший – це безпосередня фотодисоцiа-
цiя оксигемоглобiну в венознiй кровi, другий – на-
слiдок зменшення величини сатурацiї артерiальної
кровi i дiї компенсаторних механiзмiв.

Механiзм фотодисоцiацiї комплексу гем-лiганд
в артерiальнiй кровi можна описати таким чином
згiдно з [19]. Поглинання свiтла запускає фотолiз
двохатомного лiганду та спiновий перехiд в ато-
мi залiза (II), який iнiцiює конформацiйнi змiни
бiлка. Реакцiї фотолiзу та перехресного спiнового
переходу вiдбуваються одночасно на фемтосекун-
днiй шкалi часу. Спостерiгаються когерентнi ко-
ливання вiдстанi зв’язку з амплiтудою ∼1 Å. Цi
рухи ядер викликають виражену геометричну ре-
органiзацiю, що робить дисоцiацiю необоротною.
У реакцiї спочатку переважають коливання, що
порушують симетрiю та призводять до перено-
су електрона з порфiрину на залiзо. Згодом хви-
льовий пакет послаблюється до триплетного на-
бору впродовж ∼75 фс i до квiнтетного набору
впродовж ∼430 фс. Результати висвiтлюють цен-
тральну роль ядерних коливань у виникненнi над-
швидкої фотодинамiки металоорганiчних компле-
ксiв [19]. Для венозної кровi цей механiзм, на на-
шу думку, не працює, оскiльки частково молекула
О2 замiнена на молекулу СО2 i, вiдповiдно, крива
дисоцiацiї зсувається в область бiльших значень
парцiального тиску кисню. Зменшення величини
венозної сатурацiї, скорiш за все, зумовлено робо-
тою компенсаторних механiзмiв киснеспоживання
периферiйних клiтин, якi брак кисню в артерiаль-

Рис. 5. Величина падiння Δ SvO2 в залежностi вiд потоку
фотонiв

нiй кровi компенсують бiльшою його екстракцiєю
з оксигемоглобiну. Також слiд врахувати, що при
малих змiнах величини сатурацiї артерiальної кро-
вi на шляху вiд точки опромiнювання до точки
екстракцiї кисню клiтинами буде вiдбуватися ре-
комбiнацiя молекул оксигемоглобину.

5. Висновки

Ми показали, що при черезшкiрному лазерному
опромiнюваннi бiологiчної кровонаповненної тка-
нини змiна величини сатурацiї венозної кровi ки-
снем спостерiгається тiльки при досягненнi пев-
ного рiвня лазерностимульованої фотодисоцiацiї
оксигемоглобiну в артерiальнiй кровi (зменшення
величини сатурацiї артерiальної кровi киснем бiль-
ше 6 вiдсоткiв). На нашу думку, цей процес не є
безпосередньою лазерностимульованою фотодисо-
цiацiєю оксигемоглобiну в венознiй кровi, оскiль-
ки крива дисоцiацiї знаходиться в областi висо-
ких значень парцiального тиску кисню. Зменшен-
ня вiдносної концентрацiї оксигемоглобiну у вено-
знiй кровi скорiш за все пов’язано з компенсатор-
ними механiзмами гiпоксiї периферичних тканин
з врахуванням рекомбiнацiї молекул оксигемогло-
бiну на шляху вiд точки опромiнювання до точки
екстракцiї кисню клiтинами.

Ця робота була пiдтримана Мiнiстерством
освiти i науки України, №ДР 0124U000326 та
IEEE Magnetics Society Program Magnetism for
Ukraine – 2025 (STCU Project No. 9918).
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TRANSCUTANEOUS INFLUENCE
OF LASER RADIATION ON THE OXYGEN
SATURATION OF VENOUS BLOOD

The work is devoted to the determination of the external tran-

scutaneous laser radiation effect on the relative concentration

of oxyhemoglobin in venous blood. It is shown that transcuta-

neous laser irradiation of biological blood-filled tissue changes

the venous blood oxygen saturation value only if a certain level

of laser-stimulated photodissociation of oxyhemoglobin in ar-

terial blood is reached (more than 6% decrease of the arte-

rial blood oxygen saturation value). From our point of view,

this process is not a direct laser-stimulated photodissociation

of oxyhemoglobin in venous blood, because the dissociation

curve is situated in the region with high values of partial oxy-

gen pressure. The decrease in the relative concentration of oxy-

hemoglobin in venous blood is most likely related to compen-

satory mechanisms of hypoxia in peripheral tissues, accounting

for the recombination of oxyhemoglobin molecules during their

passage from the point of irradiation to the point of oxygen ex-

traction by cells.

Ke yw o r d s: oxyhemoglobin, venous saturation, photodissoci-
ation, laser irradiation, arterial saturation.
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