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АЛГЕБРА КЛIФОРДА
ЯК ШЛЯХ ДО КВАНТОВОЇ ГРАВIТАЦIЇУДК 539

У статтi висувається нова гiпотеза щодо розв’язування проблеми квантування гравi-
тацiї. Метою дослiдження є демонстрацiя того, що геометричне представлення хви-
льової функцiї можна розглядати як характеристику просторово-часового многовиду.
У цьому пiдходi показано, що теорiя Дiрака для атома водню та динамiка Кеплера для
планетної системи описують аналогiчнi явища у просторi-часi. Стани цих систем ма-
ють параметри, що вiдповiдають дозволеним динамiчним станам простору-часу, тим
самим зберiгаючи iнформацiю щодо корпускулярної та хвильової природи. Запропонова-
ний пiдхiд проливає нове свiтло на потенцiйне вирiшення проблем квантової гравiтацiї.
К люч о в i с л о в а: алгебра Клiфорда, хвильова функцiя, пробна частинка, просторово-
часовий многовид.

1. Вступ

Один iз пiдходiв до квантової гравiтацiї [1–3] при-
пускає, що квантову теорiю можна представити в
геометричнiй формi, сумiснiй iз загальною теорiєю
вiдносностi, яку вона має представляти. Особли-
вий iнтерес у цьому вiдношеннi становить нещо-
давня стаття [3], у якiй пропонується квантова гра-
вiтацiя без метричного квантування. У цiй статтi
пропонується коварiантне розширення бомiвської
механiки у викривленому просторi-часi, де трає-
кторiї створюють “приховану кривину”, замiнюю-
чи метричну суперпозицiю статистичним ансам-
блем. У такому випадку гравiтацiйнi ефекти ви-
никають iз детермiнованих квантових траєкторiй.

Як показано в попереднiх дослiдженнях [4–14],
квантову механiку можна вивести з математичної
структури алгебри Клiфорда без звернення до
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зовнiшнього простору Гiльберта хвильових фун-
кцiй. Цiкавою в цьому напрямку є стаття [15],
де формалiзм геометричної алгебри використову-
ється для розробки теорiї, яка вдосконалює тра-
дицiйну квантову механiку. Використання алгебри
Клiфорда в квантовiй механiцi [4, 16] фактично
забезпечує лише алгебраїчну структуру та приво-
дить до квантово-механiчної теорiї, що не мiстить
додаткових вимог; мало того, в термiнах такого
пiдходу можна знайти основу для загального гео-
метричного опису як взаємодiї якогось окремого
типу, так i окремої частинки [17].

Просторово-часова алгебра Клiфорда є яскра-
вим прикладом альтернативного формулювання
хвильового рiвняння. Рiвняння Дiрака можна ро-
зумiти як правило перенесення для хвильової фун-
кцiї будь-якого многовиду, i воно має приховану
геометричну структуру [17, 18]. Це рiвняння вико-
ристовується як одна з можливих математичних
iнтерпретацiй квантової механiки. Бiльше того, во-
но не вiдступає вiд принципiв класичної фiзики
[19]. Також важливо, що в цьому випадку легко
забезпечити геометричне представлення генерато-
рiв для калiбрувальних перетворень. Як показано
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в роботах [20–22], поява полiв рiзної природи ди-
ктується квантовими флуктуацiями i обов’язково
залежить вiд геометричної природи фiзичного ва-
кууму, тобто вiд того, якi фiзичнi властивостi ми
йому приписуємо.

У нашiй iнтерпретацiї рiвняння перенесення для
хвильової функцiї пробної частинки на довiльно-
му многовидi використовується як прототип тео-
рiї простору-часу, що базується на загальних фi-
зичних принципах еквiвалентностi констант зв’яз-
ку частинок та динамiки цього многовиду. Як бу-
де показано, запропонований алгебраїчний пiдхiд
є ефективним засобом опису поведiнки електронiв
в атомi водню та планетарних системах. Геометри-
чне представлення загальної теорiї вiдносностi до-
зволяє вiдновити стандартний квантовий пiдхiд,
а також може бути використане для опису фi-
зичної поведiнки у великих масштабах. Хвильовi
властивостi макроскопiчних частинок проявляю-
ться в поведiнцi їхнiх “траєкторiй” у спостережу-
ваному просторi-часi.

Основна iдея статтi полягає в тому, щоб пока-
зати, що квантовi властивостi “пробної частинки”
можуть випливати з властивостей простору-часу,
в якому вiдбувається динамiка. Тестова частинка
проявляє корпускулярнi або хвильовi властивостi
на динамiчному многовидi, що залежить вiд мас-
штабу. Геометричне визначення хвильової функцiї
пропонує модель, де хвильова функцiя розглядає-
ться як властивiсть простору-часу та приймає ймо-
вiрнiсне значення з вiдповiдних станiв многовиду,
в яких “пробна частинка” присутня та має вiдпо-
вiднi коефiцiєнти зв’язку. Такий пiдхiд, на нашу
думку, вказує шлях до квантування гравiтацiйно-
го поля. Квантування викривленого простору-часу
в такому випадку здiйснюється через квантування
можливих траєкторiй руху пробної частинки, на-
дiленої вiдповiдними фiзичними властивостями.

2. Метод

2.1. Геометричне представлення
“пробної частинки”

По-перше, необхiдно зазначити, що стандартне ви-
значення пробної частинки є iдеалiзацiєю фiзично-
го об’єкта, властивостi якого (спiн, маса, заряд або
розмiр) використовуються для опису його динамi-
ки на довiльному просторово-часовому многовидi,
що безпосередньо впливає на довiльно вибранi вла-

стивостi в рiзних масштабах. Первинна концепцiя
базується на вiдповiдностi мiж спiнорними матри-
цями Дiрака 𝛾𝜇 та елементами зовнiшньої алгебри,
а також на визначеннi стану через представлен-
ня Клiфордової алгебри простору-часу Cl1,3. Мо-
жна постулювати, що кожне елементарне утворен-
ня в будь-якiй точцi можна описати в термiнах чи-
сла Клiфорда. Така характеристика просторово-
часового многовиду у вiдповiднiй точцi представ-
ляється як хвильова функцiя пробної частинки або
збудження.

Збудження просторово-часового многовиду в до-
вiльнiй точцi характеризується за допомогою пов-
ного геометричного об’єкта, що складається з пря-
мих форм iндукованого простору алгебри Клiфор-
да [18, 23–25]. У цьому випадку повний геометри-
чний об’єкт можна записати як пряму суму скаля-
ра, вектора, бiвектора, тривектора та псевдоска-
ляра, тобто Ψ = 𝑆 ⊕ 𝑉 ⊕ 𝐵 ⊕ 𝑇 ⊕ 𝑃 , де базисний
вектор представлений матрицею Дiрака 𝛾𝜇. Iншим
елементом симетрiї є замiна множення базисних
векторiв на оберненi у представленнi чисел Клi-
форда, що перетворює їх на Ψ̄ = 𝑆⊕𝑉 ⊖𝐵⊖𝑇 ⊕𝑃 .
Кiльцева структура задовольняється прямим до-
бутком у символьному записi ΨΦ = Ψ · Φ+Ψ ∧ Φ,
де Ψ · Φ – це скалярний добуток або згортка, яка
зменшує кiлькiсть базисних векторiв, а Ψ ∧Φ – це
зовнiшнiй добуток, який збiльшує кiлькiсть бази-
сних векторiв.

Симплектична структура алгебри Клiфорда ви-
пливає з основного спiввiдношення для множення
двох базисних векторiв 𝛾𝜇𝛾𝜈 = 𝛾𝜇 · 𝛾𝜈 + 𝛾𝜇 ∧ 𝛾𝜈 ,
де одночасно присутнiй скаляр та зовнiшнiй до-
буток для базисних векторiв. Скалярний добуток
𝛾𝜇 · 𝛾𝜈 = 1

2 (𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇) = 𝜂𝜇𝜈𝐼 можна визначи-
ти як метричний тензор Мiнковського в евклiдо-
вому просторi (антикомутатор), а зовнiшнiй добу-
ток 𝛾𝜇 ∧ 𝛾𝜈 = 1

2 (𝛾𝜇𝛾𝜈 − 𝛾𝜈𝛾𝜇) = 𝑠𝜇𝜈 – як комутатор
базисних матриць.

Якщо ми помножимо кожне число Клiфорда на
фiксований стовпець 𝑢 iз чотирма елементами, де
перший елемент дорiвнює одиницi, а всi iншi дорiв-
нюють нулю, ми отримаємо бiспiнор Дiрака з чо-
тирма елементами 𝐵 = 𝑢Ψ. Використовуючи цей
стовпець, можна вiдтворити спiнорне представле-
ння кожного числа Клiфорда. Комплексний спря-
жений бiспiнор можна отримати множенням того
ж числа Клiфорда на рядок 𝑢+, перший елемент
якого дорiвнює одиницi, а всi iншi дорiвнюють ну-
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лю, 𝐵* = Ψ̄𝑢+, за умови, що 𝑢+𝑢 = 1. Iснує повна
вiдповiднiсть мiж отриманими таким чином бiспi-
норами та елементами зовнiшньої алгебри – iзо-
морфiзм [4].

Тепер визначимо правило порiвняння двох чи-
сел Клiфорда в рiзних точках многовиду. Довiльне
перетворення системи координат може бути зада-
не через базиснi деформацiї 𝑒𝜇 = 𝑅𝛾𝜇𝑅̃, де 𝑅 –
число Клiфорда, яке описує довiльнi змiни бази-
су (включаючи довiльнi перемiщення та оберта-
ння), що не порушують його нормалiзацiю, тоб-
то за умови 𝑅̃𝑅 = 1. Неважко перевiрити, що
𝑒2𝜇 = 𝑅𝛾𝜇𝑅̃𝑋𝛾𝜇𝑅̃ = 𝑅𝛾2𝜇𝑅̃ = 𝛾2𝜇, i це спiввiдно-
шення не порушує умови нормалiзацiї та комута-
цiйних спiввiдношень мiж новими матрицями [26].
Довiльний фiзичний об’єкт має бути представле-
ний математичним об’єктом, який може трансфор-
муватися пiд час обертань та перетворень. Геоме-
тричнi об’єкти, представленi тут, мають властиво-
стi спiнорного перетворення [27].

Для довiльного базису ми можемо визначити в
кожнiй точцi простору унiкальну повну лiнiйно-
незалежну форму як геометричну сутнiсть, що
характеризує цю точку многовиду. Якщо ця то-
чка многовиду зайнята, то її геометричнi ха-
рактеристики можуть бути описанi коефiцiєнта-
ми загального представлення. Добуток довiль-
них форм задається подiбною формою з новими
коефiцiєнтами, таким чином забезпечуючи стру-
ктуру кiльця. Такий пiдхiд дозволяє розглянути
взаємний зв’язок полiв рiзної фiзичної природи
[17, 28].

Визначення характеристик многовиду передба-
чає спiввiднесення кожної точки многовиду з чи-
слом Клiфорда та знаходження його значення.
Щоб визначити операцiю перенесення на довiль-
ному многовидi, ми повиннi визначити оператор
похiдної, наприклад, що задається формулою 𝑑 =
= 𝛾𝜇 𝜕

𝜕𝑥𝜇
= 𝛾𝜇𝜕𝜇 та представляє змiну вздовж кри-

вих, що проходять через задану точку в просто-
рi. Дiю цього оператора для будь-якого числа Клi-
форда можна представити у виглядi 𝑑Ψ = 𝑑 · Ψ+
+ 𝑑 ∧Ψ, де 𝑑·Ψ та 𝑑∧Ψ можна називати “диверген-
цiєю” та “ротором” вiдповiдного числа Клiфорда.
У контекстi визначення диференцiйованого много-
виду недостатньо мати одну спецiальну систему
координат, що охоплює многовид, топологiя яко-
го вiдрiзняється вiд топологiї вiдкритої множини
в евклiдовому просторi.

2.2. Правило перенесення
та iнтеграли руху на довiльному
просторово-часовому многовидi

Надання певної геометричної iнтерпретацiї хви-
льовiй функцiї “пробної частинки” дозволяє нам
отримати точнi правила перенесення для довiль-
ного просторово-часового многовиду [17? , 18], i
таким чином полегшує вiдкриття її природи. Для
хвильової функцiї як геометричної сутностi перше
структурне рiвняння можна записати у стандар-
тнiй формi:

𝐷Ψ = 𝑑Ψ+ΩΨ, (1)

де зв’язнiсть Ω включає вплив просторово-
часового многовиду. Пiсля цього викладу правила
перенесення слiд зробити кiлька важливих заува-
жень. У такiй формi оператор 𝑑 та зв’язнiсть Ω
є скалярними величинами та не змiнюються ра-
зом як координати за допомогою калiбрувальних
перетворень вiдповiдно до рiзних перетворень си-
метрiї. Що стосується перетворень координат, це
очевидно, оскiльки з таким перетворенням пов’я-
зана лише одна частина, а саме

𝑑𝑡 = 𝑅𝛾𝜇𝑅̃𝑅𝜕𝜇𝑅̃ = 𝑅𝛾𝜇𝜕𝜇𝑅̃ = 𝛾𝜇𝜕𝜇 = 𝑑.

Iснують два еквiвалентнi варiанти калiбруваль-
них перетворень Ψ𝑐 = 𝑅Ψ. Перший полягає в при-
рiвнюваннi коварiантного диференцiювання до ну-
ля, пiсля чого всi властивостi многовиду проявля-
ються як коефiцiєнти зв’язностi хвильової функцiї
з цим многовидом. При цьому калiбрувальне спiв-
вiдношення, яке застосовується до зв’язностi як
константи Ω, набуває вигляду

Ω𝑐 = 𝛾𝜇𝑅𝛾𝜇Ω𝑅̃− 𝛾𝜇𝜕𝜇𝑅𝑅̃. (2)

Другий метод можна використовувати, якщо
правила перенесення хвильової функцiї пропорцiй-
нi тiй самiй хвильовiй функцiї з вибраним ска-
лярним коефiцiєнтом 𝑀 i якi враховують окремий
зв’язок з многовидом

𝐷Ψ = 𝑑Ψ+Ω𝑔Ψ−𝑀Ψ. (3)

Якщо представити Ω𝑐 = 𝛾𝜇Γ𝜇 як добуток двох ве-
кторiв, де Γ𝜇 можна назвати вектор-потенцiалом,
та переписати попереднє рiвняння у виглядi

𝐷Ψ = 𝑑Ψ+Ω𝑐Ψ−𝑀Ψ = 0, 𝛾𝜇 · ∇𝜇Ψ =𝑀Ψ, (4)
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де ∇𝜇 = 𝜕𝜇−Γ𝜇 добре вiдома коварiантна похiдна,
то дiйсне калiбрувальне перетворення для цього
рiвняння набуває стандартного вигляду

Γ𝑐
𝜇 = 𝑅Γ𝜇𝑅̃− 𝜕𝜇𝑅𝑅̃. (5)

Таке ж перетворення можна отримати i в пер-
шому випадку, якщо представити загальну зв’я-
знiсть як Ω = Ω𝑐 −𝑀 . У цьому сенсi скалярну
масу також можна розглядати як коефiцiєнт зв’яз-
ку “пробної частинки” з просторово-часовим мно-
говидом. Це доводить еквiвалентнiсть двох пiдхо-
дiв. Рiзниця полягає лише в тому, що в першому
випадку це дозволяє використовувати рiвняння пе-
ренесення для нелiнiйного випадку, коли загальну
зв’язнiсть можна представити як скалярний добу-
ток Ω = ΨΨ̃ тих самих хвильових функцiй, що
використовувалися в статтях [8, 10, 11]. У стат-
тi [11] таке представлення зв’язностi було вико-
ристано для опису вакуумного стану многовиду
та передбачення його суперсиметричної поведiнки.
Представлення зв’язностi простору-часу у виглядi
Ω = 𝛾𝜇Γ𝜇 завжди можна виконати, якщо припу-
стити, що загальна форма зв’язностi має той са-
мий вигляд, що й хвильова функцiя, i помножити
цей вираз на 𝛾𝜇𝛾𝜇 = 1, а все, що помножене на
одиничний вектор 𝛾𝜇, можна використовувати як
вектор-потенцiал Γ𝜇 = 𝛾𝜇Ω.

Тепер можна показати, що форма правила пере-
несення характеристики точки довiльного много-
виду 4 повнiстю узгоджується з рiвнянням Дiрака
в геометричному представленнi [18]. У загальному
випадку зв’язнiсть мiстить як дiйсну, так i уявну
частини, Γ𝜇 = Γ𝜇 + 𝑖𝑈𝜇. Наприклад, якщо є ли-
ше уявна частина, достатньо представити загаль-
ну зв’язнiсть як Ω = 𝛾𝜇Γ𝜇 = 𝑖𝛾𝜇𝑈𝜇 = 𝑖𝑞𝛾𝜇𝐴𝜇, де
𝐴𝜇 – векторний потенцiал електромагнiтного поля
з коефiцiєнтом 𝑞 = 𝑒

~𝑐 та 𝑖𝑀 = 𝑚𝑐
~ , де 𝑚 – маса,

𝑒 – заряд пробної частинки, i ~ – стала Планка, i
тодi рiвняння перенесення для хвильової функцiї
електрона в просторi-часi перетворюється на добре
вiдоме стандартне рiвняння Дiрака

𝛾𝜇
(︁
𝑖~𝜕𝜇 − 𝑒

𝑐
𝐴𝜇

)︁
Ψ = 𝑚0𝑐Ψ, (6)

або у канонiчнiй формi [19]

𝛾𝜇∇𝜇Ψ = −𝑖𝑚0𝑐

~
Ψ. (7)

Для повної групи лiнiйних перетворень Ψ′ =
= Ψ𝑅, де 𝑅 визначає елементи вiдображення та

задовольняє умову 𝑅̃𝑅 = 1, калiбрувальне пере-
творення для зв’язностi 𝐴𝜇 визначено як i ранiше:

𝐴′
𝜇 = 𝑅𝐴𝜇𝑅̃−𝑅𝜕𝜇𝑅̃. (8)

Тестова частинка (електрон) впливає на много-
вид лише через свої фiзичнi характеристики (масу,
заряд, спiн) як коефiцiєнти загального представ-
лення. Тiльки в цьому пiдходi динамiчне рiвнян-
ня для хвильової функцiї електрона представлено
як паралельне правило перенесення на довiльному
просторово-часовому многовидi зi зв’язнiстю, що
описує електромагнiтне поле. З цiєї причини пра-
вила перенесення 4 для хвильової функцiї можна
назвати рiвнянням типу Дiрака.

Слiд зазначити, що для визначення правил пе-
ренесення не потрiбно вводити сталу Планка. Во-
на з’являється лише тодi, коли ми хочемо зна-
йти хвильове рiшення у представленнi де Бройля
Ψ ∼ exp

(︀
𝑖𝑆ℎ

)︀
, де 𝑆 – це дiя, а стала Планка ℎ – це

мiра фазового простору, що вiдповiдає одному ста-
ну, який описується заданою хвильовою функцiєю.
Вiдповiдно, розмiр комiрки фазового простору, що
належить одному стану, безпосередньо залежить
вiд масштабiв iмпульсу та координат. Масштаби
поведiнки електронiв та планет суттєво вiдрiзня-
ються, i тому це вiдiграє вирiшальну роль у хви-
льовiй поведiнцi пробної частинки.

Симплектична структура алгебри Клiфорда до-
зволяє негайно iдентифiкувати всi iнтеграли руху
для такої динамiки. Алгебра Клiфорда дозволяє
одночасно вводити скалярний добуток та комута-
тор цих величин завдяки наявностi внутрiшнього
та зовнiшнього добуткiв. У попереднiх дослiдже-
ннях [12, 19] було встановлено, що динамiчнi iнте-
грали руху, якi зберiгаються для рiвняння Дiрака,
а також i в нашому випадку iз загальними прави-
лами перенесення, мають вигляд

𝐽𝜇 = Ψ̄𝛾𝜇Ψ, 𝐽5 = Ψ̄𝛾5Ψ, (9)

𝐽𝜇𝜈 = Ψ̄𝑠𝜇𝜈Ψ, 𝐽5𝜈 = Ψ̄𝛾5𝛾𝜈Ψ, (10)

де 𝑠𝜇𝜈 = [𝛾𝜇𝛾𝜈 ] = 𝛾𝜇𝛾𝜈 − 𝛾𝜈𝛾𝜇 – це комутатор
матрицi Дiрака, а 𝛾5 = 𝛾0𝛾1𝛾2𝛾3 – добуток усiх
матриць Дiрака. Величина Ψ̄𝛾0 = Ψ*, тодi iнте-
грал руху 𝐽0 = 𝜌 = Ψ*Ψ чiтко визначається як
ймовiрнiсть знаходження пробної частинки у вiд-
повiднiй точцi на траєкторiї. Iнтеграл руху 𝐽𝜇 =
= Ψ̄𝛾𝜇Ψ = Ψ*𝜎𝜇Ψ, де 𝜎𝜇 – це матриця Паулi у чо-
тирьох вимiрах, вiдповiдає потоку ймовiрностей
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на просторово-часовому многовидi [19]. Збережен-
ня потоку ймовiрностей можна продемонструвати,
перевiривши, що 𝜕𝜇𝐽𝜇 = 0 дорiвнює нулю [13]. Iн-
теграл руху 𝐽𝜇𝜈 = Ψ̄𝑠𝜇𝜈Ψ вiдповiдає за збереження
моменту iмпульсу, а iнтеграл руху 𝐽5𝜈 = Ψ̄𝛾5𝛾𝜈Ψ
визначає вектор Рунге–Ленца, який безсумнiвно
зберiгається в центрально-симетричному полi [29].

Слiд зазначити, що отриманi iнтеграли руху
повнiстю вiдтворюють дуже важливу приховану
лоренцеву коварiантнiсть квантової механiки, яка
була повнiстю дослiджена у статтi [30]. Загалом,
комутатори двох довiльних матриць 𝐴 та 𝐵 мо-
жна записати у виглядi

[Ψ̄𝐴Ψ, Ψ̄𝐵Ψ] = Ψ̄(𝐴𝐵 −𝐵𝐴)Ψ. (11)

У введених позначеннях для наших iнтегралiв ру-
ху 𝐽𝑚𝑢 ми можемо отримати

[𝐽𝜇, 𝐽𝜈 ] = 𝜌Ψ̄(𝛾𝜇𝛾𝜈−𝛾𝜇𝛾𝜈)Ψ = 𝜌Ψ̄𝑠𝜇𝜈Ψ = 𝜌𝐽𝜇𝜈 , (12)

а для iнтегралiв руху 𝐽𝜇𝜈 має мiсце таке спiввiд-
ношення:

[𝐽𝜇𝜈 , 𝐽𝜌𝜎] = 𝜌Ψ̄(𝑠𝜇𝜈𝑠𝜌𝜎 − 𝑠𝜌𝜎𝑠𝜇𝜈)Ψ, (13)

або в бiльш зручнiй формi через ранiше введенi
iнтеграли руху,

[𝐽𝜇𝜈 , 𝐽𝜌𝜎] = 𝜌
(︁
𝛿𝜇𝜈𝐽𝜌𝜎 + 𝛿𝜈𝜎𝐽𝜇𝜌 − 𝛿𝜇𝜎𝐽𝜈𝜌 − 𝛿𝜈𝜌𝐽𝜇𝜎

)︁
,

(14)

що повнiстю вiдповiдає спiввiдношенням, отрима-
ним у статтi [30], та пiдтверджує приховану лорен-
цеву коварiантнiсть представленого пiдходу. Вико-
ристовуючи заданi iнтеграли, завжди можна отри-
мати розв’язок у загальному випадку.

2.3. Алгебра Клiфорда
в загальнiй теорiї вiдносностi

Як показано у вiдомих статтях [20–22], пробле-
му виникнення гравiтацiйного поля можна вирi-
шити, враховуючи флуктуацiї вакууму. Таким чи-
ном, рiвняння Дiрака з гравiтацiєю постає як про-
тотип теорiї взаємодiї, заснованої на узагальнено-
му принципi еквiвалентностi [21]. У запропонова-
ному геометричному пiдходi це можна врахувати
за допомогою нелiнiйних перетворень системи ко-
ординат. Основну складнiсть теорiї гравiтацiї мо-
жна подолати завдяки квантовим флуктуацiям ва-
кууму, основного стану, вiдносно якого матерiя яв-
ляє собою збудження та очiкуванi значення якого

дорiвнюють нулю, але його квадрат дає ненульове
значення. Це – найпростiший випадок квантової
теорiї поля, який задовольняє вимогу еквiвален-
тностi. Як показано в [18], рiвняння Дiрака в гео-
метричнiй iнтерпретацiї, ймовiрно, є прототипом
бiльш загального рiвняння, що включає електро-
магнетизм, а також iншi взаємодiї. Таке рiвняння є
лiнiйним щодо додаткового поля, що є необхiдною
умовою для виконання твердження еквiвалентно-
стi. У геометричнiй iнтерпретацiї, густину Лагран-
жа для рiвнянь правила перенесення можна пред-
ставити у виглядi

𝐿 = Ψ̄𝐷Ψ = Ψ̄(𝛾𝜇 · ∇𝜇 −𝑀)Ψ, (15)

де оператор ∇𝜇 = 𝜕𝜇 − Γ𝜇. Таке зображення зав-
жди виникає навiть у випадку нелiнiйної залежно-
стi зв’язностi вiд самої хвильової функцiї. Скаляр-
ну величину Ω ∼ 𝛾𝜇Γ𝜇 завжди можна предста-
вити як скалярний добуток одиничного вектора
та “векторного потенцiала” з невiдомим фiзичним
змiстом. Було введено чотири додатковi “вектор-
нi потенцiали” Γ𝜇 у просторi-часi, для яких щiль-
нiсть лагранжiана буде iнварiантною не лише вiд-
носно унiтарних перетворень координат, а й вiдно-
сно бiльш загальних калiбрувальних перетворень.
Що стосується параметра маси 𝑀 , то в цьому пiд-
ходi вiн розглядається як формальна величина, що
буде обговорено пiзнiше.

Тепер ми можемо ввести конформне перетворе-
ння поля, Φ̄ =

√
𝑔Ψ̄ та Φ =

√
𝑔Ψ, де 𝑔, як зав-

жди, величина визначника матричного тензора. У
термiнi нових змiнних густину лагранжiана можна
представити у виглядi

𝐿 =
√
𝑔Φ̄(𝛾𝜇 · ∇𝜇 −𝑀)Φ. (16)

У цьому випадку перетворення координат не є унi-
тарними. Важлива властивiсть густини лагранжi-
ана задовольняє твердження еквiвалентностi в то-
му сенсi, що в будь-якiй точцi простору-часу першi
похiднi матрицi Дiрака по координатах можна зве-
сти до нуля, що було показано в роботi [8]. Мiнiмi-
зуючи дiю з новим лагранжiаном густини [21, 28],
можна отримати рiвняння 𝑀Φ = = 𝛾𝜇 · ∇𝜇Φ та
𝑀 Φ̄ = 𝛾𝜇 · ∇𝜇Φ̄. Беручи до уваги те, що 𝛾𝜇 · ∇𝜇 =
= 1√

𝑔𝛾
𝜇 · ∇𝜇

√
𝑔 та (𝛾𝜇 · ∇𝜇)

2 =
√
𝑔(𝜕𝜇 −Γ𝜇)

√
𝑔(𝜕𝜈 −

−Γ𝜈)𝑔
𝜇𝜈 − 𝑅

4 , де 𝑅 – це скалярна кривина Ейн-
штейна, ми можемо отримати кiнцевий вираз для
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дiї у формi

𝑆=

∫︁
√
𝑔Φ̄

(︁√
𝑔(𝜕𝜇−Γ𝜇)

√
𝑔(𝜕𝜈−Γ𝜈)𝑔

𝜇𝜈−𝑅

4
−𝑀2

)︁
Φ.

(17)

Таким чином, враховуючи флуктуацiї спiнор-
ного поля в алгебрi Клiфорда, можна описати
рух пробної частинки у спотвореному евклiдово-
му просторi-часi. Для вакууму цей пiдхiд припу-
скає пружну деформацiю простору-часу через на-
явнiсть спiнорного поля [18].

3. Результати

3.1. Гравiтацiйне поле в алгебрi Клiфорда

Розглянемо тепер дуже важливе питання про мо-
жливе поєднання квантової теорiї та загальної те-
орiї вiдносностi. Попереднє визначення правил пе-
ренесення на довiльному многовидi (простiр-час),
а також iснування вiдповiдних iнтегралiв руху для
коварiантного перенесення, вже мiстять таку мо-
жливiсть. Достатньо змiнити акцент iнтерпретацiї
самої хвильової функцiї.

Нехай фiзичний об’єкт є хвильовою функцiєю iз
заданим геометричним представленням, що описує
динамiчну траєкторiю. Тобто хвильова функцiя
описує пробну частинку на вiдповiднiй траєкторiї.
На цiй траєкторiї можна ввести вiдповiднi коорди-
нати у виглядi 𝑥𝜇 = 𝐽𝜇 = Ψ̄𝛾𝜇Ψ, якi точно вiд-
повiдають першим iнтегралам руху. Тепер можна
ввести визначення iнтервалу на вiдповiднiй трає-
кторiї: 𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 = 𝑔𝜇𝜈𝑑Ψ̄𝛾
𝜇Ψ𝑑Ψ̄𝛾𝜇Ψ. Якщо

тепер використати рiвняння перенесення для хви-
льової функцiї (4) та ввести нове визначення ме-
тричного тензора через введенi хвильовi функцiї
як 𝑔𝜇𝜈 = Ψ̄𝛾𝜇𝛾𝜈Ψ, то ми можемо отримати iн-
тервал на будь-якiй траєкторiї у виглядi 𝑑𝑠2 =
= Ψ̄ΨΓ2 = 𝐵*𝐵Γ2 = 𝜌Γ2, де присутня лише дiйсна
частина просторово-часового зв’язку Γ = 𝛾𝜇Γ

𝜇. Як
видно, це – векторний потенцiал гравiтацiйного по-
ля у представленнi Фока–Iваненка [8, 19], а 𝜌 – це
щiльнiсть ймовiрностi.

В алгебрi Клiфорда, Ψ̄Ψ = 𝜌 визначає щiльнiсть
ймовiрностi для хвильової функцiї, яка представ-
лена в канонiчнiй формi [7, 19] Ψ = 𝜌

1
2𝑅, де 𝑅 –

це число Клiфорда, що визначає всi можливi пере-
творення хвильової функцiї за умови 𝑅̄𝑅 = 1. Те-
пер введемо нове визначення метричного тензора

через канонiчну форму хвильової функцiї 𝑔𝜇𝜈 =
= Ψ̄𝛾𝜇𝛾𝜈Ψ = 𝜌𝑅̄𝛾𝜇𝛾𝜈𝑅 = 𝜌𝑅̄𝛾𝜇𝑅̄𝑅𝛾𝜈𝑅 = 𝜌𝑒𝜇𝑒𝜇. У
цiй iнтерпретацiї метричний тензор являє собою
ймовiрнiсть вiдповiдного деформованого базису,
що вiдповiдає геометричному представленню за-
гальної теорiї вiдносностi. За такого визначення
метричний тензор може набувати як дiйсних, так
i уявних значень. Це визначає приховану некласи-
чну геометрiю простору-часу. Саме в такiй iнтер-
претацiї метрики й прихована стохастична (кван-
това) поведiнка.

Можна зробити припущення, що якщо тепер
ввести координату на траєкторiї, де знаходиться
пробна частинка, як це було продемонстровано в
статтях [31,32] ранiше, в термiнах спiнорного пред-
ставлення 𝑥𝜇 = 𝐽𝜇 = Ψ̄𝛾𝜇Ψ, та використати рiв-
няння геодезичної траєкторiї в гравiтацiйному по-
лi, то можна отримати рiвняння для швидкостi
𝑣𝜇 =

𝑑𝑥𝜇

𝑑𝑠 =
𝑑𝐽𝜇

𝑑𝑠 =
𝑑(Ψ̄𝛾𝜇Ψ)

𝑑𝑠 у виглядi

𝑑𝑣𝜇

𝑑𝑠
+ Γ𝜇

𝜈𝜆𝑣𝜈𝑣𝜆 =
𝑑2𝐽𝜇

𝑑𝑠2
+ Γ𝜇

𝜈𝜆

𝑑𝐽𝜈
𝑑𝑠

𝑑𝐽𝜆
𝑑𝑠

= 0. (18)

Опублiкування статей [31, 32], в яких було запро-
поновано спiнорну регуляризацiю руху Кеплера,
допомогло знайти приховану симетрiю атома во-
дню та звести проблему до опису поведiнки гар-
монiчного осцилятора. Пiсля цього можна викори-
стовувати квантування потоку можливих траєкто-
рiй. Спостережувана траєкторiя може вiдповiдати
зв’язаному стану в множинi можливих траєкторiй.
Наприклад, для замкнутих перiодичних траєкто-
рiй 𝑑Ψ

𝑑𝑠 = 𝑖𝜔Ψ з частотою 𝜔, що вiдповiдає атому
водню та руху Кеплера, вищезазначене спiввiдно-
шення (18) виконується точно. Для вiдкритих тра-
єкторiй 𝑑Ψ

𝑑𝑠 = ±𝜔Ψ, що вiдповiдають вiльному ру-
ху в гравiтацiйному полi, ми можемо отримати, що
𝜌 = 𝛾𝜎

𝜕𝑔𝜇𝜈

𝜕𝑥𝜎 𝑔
𝜇𝜈 визначається лише через метричний

тензор простору-часу.
Тепер необхiдно розглянути правила перетворе-

ння чисел Клiфорда в неевклiдовiй системi коор-
динат. Для вирiшення питання коварiантного ви-
ведення теорiї важливо включити внутрiшнiй зв’я-
зок чисел Клiфорда в контекст довiльної геометрiї
Рiмана, де метрику Мiнковського можна вважати
вiдносно простим наближенням. У пiдходi Фока-
Iваненка, як описано в статтях [8, 21, 28, 33], бу-
ло використано аналогiю з електродинамiкою для
визначення суттєвих властивостей, необхiдних для
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коварiантного виведення, якi використовуються в
контекстi чисел Клiфорда. У статтi [9] показано,
що модифiкацiя просторово-часової метрики до-
зволяє розглянути геометризацiю квантової меха-
нiки у формулюваннi де Бройля–Бома з викори-
станням нерiманiвської структури Вейля. У цьо-
му контекстi запишемо правило перенесення на
довiльному многовидi, представленому полем “ве-
кторного потенцiалу” Γ𝜇, завдяки якому густина
Лагранжа буде iнварiантною не лише вiдносно пе-
ретворень координат, а й вiдносно бiльш загальних
унiтарних перетворень,

𝛾𝜇∇𝜇Ψ = 𝛾𝜇(𝜕𝜇 − Γ𝜇)Ψ =𝑀Ψ. (19)

У загальнiй релятивiстськiй теорiї рiвняння
перенесення можна записати аналогiчним чи-
ном, якщо ввести матрицi Дiрака як функцiї
просторово-часових координат, якi утворюють
контраварiантне векторне поле. Антикомутатори
цих матриць мають бути кратними одиничнiй ма-
трицi, 𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 2𝑔𝜇𝜈𝐼, де 𝑔𝜇𝜈 ототожнюється
з полем метрики. Крiм того, зручно використову-
вати такi визначення: 2𝑠𝜇𝜈 = [𝛾𝜇𝛾𝜈 ] = 𝛾𝜇𝛾𝜈−𝛾𝜈𝛾𝜇 i
𝑔 = det(−𝑔𝜇𝜈). Для загальної теорiї вiдносностi ко-
варiантна похiдна метричного тензора ∇𝜆𝑔𝜇𝜈 = 0.
Матриця Дiрака 𝛾𝜇 зазвичай не є коварiантною
вiдносно 𝑅-перетворень 𝛾𝑟𝜇 = 𝑅𝛾𝜇𝑅̃. Перетворення
елементiв алгебри Клiфорда має бути певним чи-
ном модифiковане. Як показано нижче, представ-
лена форма отримана за допомогою властивостi
алгебри Клiфорда. У новому польовому матрично-
му представленнi многовиду Γ𝜇 коварiантну похi-
дну 𝛾𝜇 можна визначити таким чином [33]:

∇𝜈𝛾𝜇 = 𝜕𝜈𝛾𝜇 + [𝛾𝜇Γ𝜈 ], (20)

де для введеного додаткового поля виконується ка-
лiбрувальне перетворення (5), яке дозволяє при-
рiвняти коварiантну похiдну матрицi Дiрака до ну-
ля. З добре вiдомої умови для метричного тензора,
∇𝜆𝑔𝜇𝜈 = 0, можна отримати [8], що

Γ0
𝜇 =

1

8

(︁
𝛾𝛼𝛾𝜇,𝛼 − 𝛾𝜇,𝛼𝛾

𝛼 + Γ𝛽
𝜇,𝜈(𝛾𝛽𝛾

𝜈 − 𝛾𝜈𝛾𝛽)
)︁
, (21)

де Γ𝛽
𝜇,𝜈 – символ Крiстофеля. Нульовий iндекс —

це лише нагадування про те, що ми маємо справу
з фоном Мiнковського в довiльнiй системi коорди-
нат. Ми можемо глобально анулювати такий зв’я-
зок, перейшовши до евклiдової системи координат.

У будь-якiй точцi простору-часу першi координа-
тнi похiднi 𝛾𝜇, якi представляють поле, можуть бу-
ти зведенi до нуля, тодi як самi 𝛾𝜇 стають рiвними
матрицям Дiрака. Прямим наслiдком спiввiдноше-
ння ∇𝜇𝛾𝜈 = 0 є те, що коварiантна похiдна всiх
𝛾𝜇 обертається на нуль. Це є наслiдком того, що
метрика є рiманiвською: ∇𝜆𝑔𝜇,𝜈 = 0. Хоча умова,
що коварiантнi похiднi дорiвнюють нулю, є доста-
тньою для гарантiї структури Рiмана, геометричне
представлення числа Клiфорда є необов’язковим.

3.2. Приховане квантування
траєкторiй “пробних” частинок

У статтi [8] розглядається випадок, коли динамi-
ка визначається структурою алгебри Клiфорда за
умови комутацiї

∇𝜇𝛾𝜈 = [𝑈𝜇, 𝛾𝜈 ], (22)

де 𝑈𝜇 – це довiльний елемент алгебри Клiфор-
да, який може бути представлений у виглядi суми
вектора та псевдовектора, 𝑈𝜇 = 𝐴𝜇 + 𝐵𝜇𝛾5. Мо-
жна отримати, що ∇𝜆𝑔𝜇,𝜈 =[𝑈𝜆, 𝛾𝜇]𝛾𝜈+𝛾𝜇[𝑈𝜆, 𝛾𝜈 ] +
+ [𝑈𝜆, 𝛾𝜈 ]𝛾𝜇 + 𝛾𝜈 [𝑈𝜆, 𝛾𝜇], звiдки, завдяки антико-
мутуванню з усiма 𝛾𝜇, випливає, що ∇𝜆𝑔𝜇,𝜈 = 0.
Це справедливо для довiльних векторiв 𝐴𝜇 i 𝐵𝜇

та забезпечує зручний еквiвалентний спосiб опи-
су нелiнiйної структури при виборi спiнорiв 𝑈𝜇.
Таким чином, внутрiшнiй зв’язок набуває вигля-
ду Γ𝜇 = Γ0

𝜇 − 𝑖𝑈𝜇, де Γ0
𝜇 — це “векторний потен-

цiал” у просторi Мiнковського. У такому випадку
можна обчислити векторний потенцiал у малому
центральному гравiтацiйному полi [8] та предста-
вити гамiльтонiан у класичному випадку у вiдомiй
формi

𝐻 = 𝐸(p) = 𝑚𝑐2 +
p2

2𝑚
− 𝐺𝑚𝑀

𝑟
. (23)

У задачi Кеплера 𝑀 — це маса Сонця, 𝑚 – маса
планети, i перший член вiдсутнiй. У цьому роздiлi
ми продовжимо обчислення з гамiльтонiаном (23)
без першого члена.

Публiкацiя статей [31, 32], в яких було запропо-
новано спiнорну регуляризацiю руху Кеплера, до-
помогла знайти приховану симетрiю атома водню
та звести проблему до опису поведiнки гармонi-
чного осцилятора. Надалi ми будемо використо-
вувати лише остаточнi формули спiнорного пред-
ставлення динамiки Кеплера. Рух планет по їхнiх
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орбiтах навколо Сонця можна описати рiвнянням
Ньютона

𝑚r̈+ 𝛼
r

𝑟2
= 0, (24)

де 𝛼 = 𝐺𝑀𝑚 – це коефiцiєнт гравiтацiйної взаємо-
дiї мiж центральною масою 𝑀 та пробною частин-
кою з масою 𝑚. Додатковими умовами для розв’я-
зання цiєї задачi є закони збереження енергiї

𝐸 = 𝑚ṙ2 − 𝛼

𝑟
, (25)

вектора моменту iмпульсу

M =
𝑚

𝑟
(r× ṙ), (26)

та вектора Рунге–Ленца

A =
1

𝑟
(M× ṙ) + 𝛼

r

𝑟
. (27)

Останнiй iнтеграл руху враховує змiну положен-
ня орбiт у просторi, а також форму цих орбiт з
постiйною енергiєю.

Важливим моментом було використання нової
кутової змiнної пiд назвою “ексцентрична анома-
лiя” для опису положення планет на їхнiх орбiтах
[31, 32]. За допомогою цiєї змiнної та використову-
ючи закони Кеплера, можна точно описати плоску
траєкторiю орбiти, а також визначити всi можли-
вi iнтеграли динамiчного руху. Якщо положення
планети на її орбiтi описувати не радiус-вектором
r, а його представленням через двокомпонентний
спiнор 𝜓 та матрицю Паулi 𝜎 у виглядi r = 𝜓*𝜎𝜓,
то легко перевiрити, що спiнорне рiвняння

𝜓 + 𝜔2𝜓 = 0 (28)

повнiстю описує динамiку планет на кеплерiвських
орбiтах, де 𝜔 = 𝑎

𝜏 , 𝑎 – значення великої осi елiпсої-
да, а 𝜏 – перiод обертання навколо масивного тiла
в центрi. Крапка означає похiдну вiдносно параме-
тра 𝑠 = 𝜏𝜒

2𝑚𝑎 , де 𝜒 – ексцентрична аномалiя елiпти-
чної орбiти, яка фактично визначає, чим елiптична
орбiта вiдрiзняється вiд кругової. Для кругової ор-
бiти це буде кут, що вказує на орiєнтацiю радiус-
вектора до довiльної точки кругової орбiти.

Алгебраїчна симетрiя 𝑂(4) вихiдної задачi стає
очевидною, особливо якщо ввести бiспiнор

Ψ =

√︂
2𝑚

𝜔

(︂
𝜓̇

−𝑖𝜔𝜓

)︂
,

з яким попереднi рiвняння перетворюються на
одне рiвняння

Ψ̇ = 𝑖𝜔𝛾5Ψ, (29)

де 𝛾5 = 𝛾0𝛾1𝛾2𝛾3 є добутком усiх матриць Дiра-
ка. Представлений розв’язок у бiспiнорнiй фор-
мi можна розглядати як число Клiфорда. Рiвня-
ння (29) є iнварiантним вiдносно перетворень Ψ́ =
= Ψexp (𝑖𝑄), де 𝑄 – це 4×4-матриця, яка повинна
комутувати з 𝛾5.

Симплектична структура алгебри Клiфорда до-
зволяє iдентифiкувати всi iнтеграли руху для та-
кої динамiки, оскiльки вона дозволяє одночасно
ввести скалярний добуток i комутатор цих вели-
чин завдяки наявностi внутрiшнього та зовнiшньо-
го добуткiв. У нашому випадку, динамiчнi iнте-
грали руху (9) та (10) були визначенi як iнтегра-
ли руху для рiвняння Дiрака в ролi правил пе-
ренесення числа Клiфорда на многовид [18]. На-
явнiсть виявлених iнтегралiв руху дозволяє “кван-
тувати” вiдповiдний адiабатичний iнварiант. Якщо
тепер звернути увагу на iнтеграли руху, то величи-
на Ψ̄𝛾5 = Ψ* буде чiтко визначена як ймовiрнiсть
знаходження пробної частинки на вiдповiднiй ор-
бiтi, 𝜌 = Ψ*Ψ. Такий iнтеграл руху вiдповiдає ймо-
вiрностi знаходження пробної частинки (планети)
у вiдповiднiй точцi орбiти за умови, що 𝜕𝜇𝐽𝜇 = 0.
Перший iнтеграл руху можна iнтерпретувати як
гамiльтонiан пробної частинки (планети). Окрiм
одиничної матрицi, комутатор гамма-матрицi 𝑠𝜇,𝜈
також комутує з 𝛾5 i має тi самi iнтеграли руху (9)
та (10), що й у теорiї Дiрака для атома водню. За-
стосування цих iнтегралiв дозволяє отримати оста-
точний розв’язок задачi.

Якщо тепер ввести комплексно-спряжений бiспi-
нор Дiрака Ψ̄ = Ψ*𝛾5 =

√︁
2𝑚
𝜔 (−𝑖𝜔𝜓*,−𝜓*), гамiль-

тонiан можна представити у виглядi

𝐻 = 𝜔Ψ̄𝛾5Ψ, (30)

з додатковим спiввiдношенням Ψ̄Ψ = 0 та записати
динамiчне рiвняння руху у виглядi дужки Пуас-
сона

Ψ̇ = (Ψ, 𝐻). (31)

Вiдмiннiсть вiд задачi електрона в атомi во-
дню полягає в тому, що в нашому випадку зада-
ча вирiшується через функцiю, яка описує дiапа-
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зон потенцiйних траєкторiй. Цi траєкторiї форму-
ються простором-часом, що генерується централь-
ним полем. У нашому випадку це – класичнi тра-
єкторiї, але не позбавленi можливостi флуктуацiй
простору-часу, якi можуть змiнити вiдповiдне по-
ложення планети. Проблему можливих стабiльних
траєкторiй можна вирiшити навiть шляхом кван-
тування класичного моменту [33] i таким чином
звести її до “квантового” аналога.

Розгляд цiєї бiльшої групи iнварiантiв дозволить
нам побачити речi по-iншому та зрозумiти, чому
стала Планка не є абсолютно однаковою для рi-
зних випадкiв. Це пов’язано, головним чином, з
тим, що представлення де Бройля Ψ ∼ exp

(︀
𝑖 𝑆
ℎeff

)︀
,

яке визначає хвильовi властивостi, прийшло до нас
з розумiння адiабатичного iнварiанта

∫︀
𝑝𝑑𝑞, який

представляє дiю 𝑆. Для “пробної частини”, якою в
задачах Кеплера є планета, максимальний iмпульс
можна оцiнити як 𝑝 ∼ 𝑀𝑐, а мiнiмальне збуджен-
ня, яке може змiнити положення планети, як вiд-
повiдне до її розмiру 𝑅. Звiдси випливає, що ре-
альна дiя набуває дуже великого значення. Для
того, щоб хвильовi властивостi проявилися, необ-
хiдно, щоб розмiр комiрки у фазовому просторi
був порядку самої дiї, тобто ℎeff = 𝑆. Тут є два
дуже важливi моменти. Перший полягає в тому,
що навiть для класичних частинок iснує правило
Паулi, згiдно з яким двi класичнi частинки скiн-
ченного розмiру не можуть перебувати в одному
станi, оскiльки вони не можуть займати однакове
просторове положення, навiть якщо мають одна-
ковий iмпульс, що також недосяжно через флу-
ктуацiї. Мало того, симплектична структура ма-
тематичного опису передбачає, що має зберiгатися
адiабатичний iнварiант, який не може дорiвнювати
звичайнiй, загальноприйнятiй квантовiй констан-
тi Планка ℎ, якщо розглядати вiдповiднi значення
iмпульсу та координат пробної частинки (плане-
ти). Вiдповiдно, стала Планка залежить вiд роз-
мiрiв та маси “пробної частинки”, встановлюючи
таким чином масштаб вiдповiдних збурень много-
виду, якi можуть змiнити стан системи.

Тепер ми можемо перейти до квантового опи-
су класичних траєкторiй. Можна спробувати пред-
ставити “квантову версiю” розв’язку цiєї проблеми.
Згiдно з пiдходом Дiрака, перехiд вiд класично-
го до квантового опису базується на замiнi класи-
чних дужок Пуассона комутацiйними спiввiдноше-
ннями. Саме симплектична структура многовиду

приводить до можливостi квантування класичних
гамiльтонових систем [29, 34]. Квантове динамiчне
рiвняння в нашому випадку можна переписати у
добре вiдомiй формi

𝑖ℎeffΨ̇ = [Ψ, 𝐻], (32)

де ℎeff – це нова ефективна “стала Планка”. Умови
комутацiї можуть бути повнiстю виконанi, якщо
функцiя представлена у спiнорнiй формi. Спробу-
ємо показати, що енергiї планет квантуються вiд-
повiдно до зайнятих орбiт, i це можна зробити дво-
ма способами. Один iз них запропоновано у статтi
[35], але ми продовжимо використовувати запро-
понований пiдхiд геометричного опису, коли отри-
маний бiспiнор набуває вигляду

Ψ =

√︂
ℎeff
2

(︂
𝑢+ + 𝑣

−𝑢+ + 𝑣

)︂
,

Ψ̄ =

√︂
ℎeff
2

(𝑢− 𝑣+,−𝑢− 𝑣+),

(33)

але надаючи введенiй величинi iншого фiзичного
змiсту. Це – оператори народження та знищення
вiдповiдних компонентiв координат планети на ор-
бiтi, яку можна пронумерувати числом 𝑛. Гамiль-
тонiан задачi, що описує рух вiдповiдної планети
по вiдповiднiй елiптичнiй орбiтi 𝑛, можна отрима-
ти у виглядi

𝐻 = 𝜔Ψ̄𝛾5Ψ = 𝜔Ψ+Ψ = ℎeff𝜔(𝑢
+𝑢+ 𝑣+𝑣 + 2). (34)

За симетричних умов Ψ̄Ψ+ΨΨ̄ = ℎ̄(𝑢+𝑢−𝑣+𝑣) = 0
ми знаходимо, що

𝐻 |Ψ⟩ = 2ℎeff𝜔(𝑢
+𝑢+ 1) |Ψ⟩ = 2ℎeff𝑛𝜔 |Ψ⟩. (35)

Якщо тепер врахувати, що енергiя кеплерiвського
руху є постiйною та дорiвнює 𝐸 = −2𝜔2𝑚, то ми
можемо отримати такий вираз для енергетичних
рiвнiв планети з масою 𝑚 на вiдповiднiй орбiтi у
центрально-симетричному полi:

𝐸𝑛 = −𝑚(𝐺𝑀𝑚)2

2ℎ2eff𝑛
2

. (36)

Таким чином, запропоноване геометричне пред-
ставлення “пробної частинки” дозволяє розв’язати
задачу Кеплера як у класичному, так i в кванто-
вому пiдходах.
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Те саме можна зробити у випадку атома водню,
якщо припустити ймовiрнiсть iснування електрон-
них орбiт навколо ядра. Аналогiчно, всю вищеза-
значену математичну процедуру можна виконати
для класичного атома водню. У нерелятивiстсько-
му випадку класичний гамiльтонiан для атома во-
дню можна записати у вiдомому виглядi

𝐻 = 𝐸(p) =
p2

2𝑚
− 𝑍𝑒2

𝑟
, (37)

що буде використано нижче для iншого представ-
лення в термiнах спiнора. Використовуючи геоме-
тричнi представлення хвильової функцiї на рiв-
нi знаходження розв’язкiв рiвняння Дiрака для
атома водню, можна знайти всi необхiднi власти-
востi релятивiстської елементарної частинки. То-
чний розв’язок рiвняння Дiрака в викривленому
просторi-часi був запропонований в роботi [36]. У
запропонованому вище простому пiдходi для зада-
чi Кеплера ми можемо визначити вираз для енер-
гетичних рiвнiв електронiв з масою 𝑚 на вiдповiд-
нiй орбiтi таким чином:

𝐸𝑛 = −𝑚(𝑍𝑒2)2

2ℎ2𝑛2
, (38)

де ℎ – звичайна стала Планка, що повнiстю вiд-
творює вiдомi результати квантової механiки. А
це означає, що з квантування орбiт можна отри-
мати вiдповiднi значення енергiї електронiв ато-
ма водню. Тепер квадрат хвильової функцiї визна-
чає ймовiрнiсть перебування на вiдповiднiй орбiтi.
Неможливо визначити, на якiй саме, але така iн-
терпретацiя також вiдповiдає нашим знанням про
квантову поведiнку атома.

4. Обговорення та висновки

Звичайно, класичний гамiльтонiан для електрона
в атомi водню, як i гамiльтонiан у задачi Кепле-
ра, можна було б записати одразу, використову-
ючи простi пiдручники. Але для узгодженостi за-
пропонованого пiдходу ми вивели цi вирази з пра-
вил перенесення для вiдповiдного геометричного
об’єкта, що описує фiзичну ситуацiю. Це зроблено
для того, щоб показати, що математична структу-
ра не допускає жодного iншого виду гамiльтонiа-
на в запропонованому розглядi. Вiдповiдна фор-
ма гамiльтонiана дозволяє представити многовид
завдяки характеристикам “пробної частинки”, яка

сканує цей многовид. Отже, можна описати дина-
мiку фiзичної системи в термiнах геометричного
представлення пробної частинки та вивчати дина-
мiку простору-часу.

Дiйсно, перетворення, яке приводить рiвняння
Дiрака до його канонiчної форми як правило пе-
ренесення хвильової функцiї, не залежить вiд по-
стiйної Планка. Фактично, ця незалежнiсть є за-
гальним фактом. Таким чином, нормальнi пред-
ставлення (або канонiчнi форми) рiвнянь Дiрака
є кращими представленнями для вираження уза-
гальнених спiввiдношень де Бройля у викривлено-
му просторi-часi. Отриманi результати вказують
на те, що рiвняння Дiрака в геометричному пред-
ставленнi загальної теорiї вiдносностi є рiвнянням
перенесення на довiльному многовидi. Як обгово-
рювалося ранiше, повний набiр перетворень коор-
динат, пов’язаних зi структурним рiвнянням, iснує
лише у представленнi хвильової функцiї числа-
ми Клiфорда. Початкове структурне рiвняння для
хвильової функцiї виявляється iдентичним рiвнян-
ню Дiрака. Як показали численнi автори, включа-
ючи [4] та [19], розв’язки цього рiвняння для визна-
чених iнтегралiв руху iдентичнi тим, що отриманi
у спiнорному представленнi.

З усього вищесказаного можна припустити, що
таке представлення хвильової функцiї мiстить як
корпускулярнi, так i хвильовi властивостi. Здає-
ться можливим приписати такi властивостi насам-
перед многовиду, на якому розглядається вiдпо-
вiдне явище. Стацiонарнi стани пробної частинки
вiдповiдають стацiонарним станам многовиду. Во-
дночас не дуже важливо, яку квантову чи класи-
чну iнтерпретацiю ми їй надаємо. Важливо те, що
ця хвильова функцiя описує многовид, а це озна-
чає, що дуальна корпускулярна та хвильова при-
рода многовиду вбудована в поведiнку геометри-
чного представлення. Справжнє значення кванто-
вої сталої Планка визначається масштабами руху,
оскiльки на динамiку “пробної частинки” можуть
впливати лише збурення або флуктуацiї, чиї роз-
мiри спiвмiрнi з розмiром самих пробних частинок.

У статтях [35, 37] показано, що орбiти планет i
супутникiв навколо великої центральної маси в на-
шiй Сонячнiй системi квантуються. Зараз прово-
диться перевiрка передбачень закону Тiцiуса–Боде
для рiзних багатопланетних систем Кеплера. Сло-
во “квантувати” зазвичай застосовується до фiзи-
ки на субатомному рiвнi. Згiдно з наведеними ви-
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ще результатами, орбiти в гравiтацiйнiй системi
квантуються, тобто вiдстань, перiод i швидкiсть
можуть мати лише певнi дискретнi значення. Для
опису цього необхiдно використовувати особливо-
стi не лише “пробної частинки”, а й простору-часу,
в якому вiдбувається її динамiка.

Хвильову функцiю “пробної частинки” на гiпер-
поверхнi постiйної енергiї у фазовому просторi мо-
жна записати у всiх випадках у виглядi хвилi де
Бройля. Визначення введених коефiцiєнтiв випли-
ває з того, що ми шукаємо квадрат комплексної
хвильової функцiї, модуль якої не перевищує оди-
ницi. Крiм того, нам потрiбно мати представлен-
ня всiх можливих станiв у фазовому просторi, але
це можливо, якщо фаза цiєї комплексної функцiї
представлена в цьому фазовому просторi. Такою
функцiєю є дiя, мiнiмум якої визначає класичну
траєкторiю. Нарештi, кiлькiсть станiв у фазовому
просторi залежатиме вiд розмiру комiрки, до якої
можна вiднести лише один стан. Розмiр елемен-
тарної комiрки у фазовому просторi визначається
сталою Планка ℎ. Тодi загальну форму хвильової
функцiї можна задати так: Ψ ∼ 𝜌

1
2 exp( 𝑖

~𝑆), де дiя
𝑆 =

∫︀
[𝐻(𝑝, 𝑞)𝑑𝑡 − 𝑝𝑑𝑞] записується через коорди-

нати 𝑞 та iмпульси 𝑝. Всi необхiднi атрибути та-
кої форми хвильової функцiї присутнi в геометри-
чному представленнi [18, 19, 26]. Крiм того, тiльки
таке представлення мiстить всi необхiднi детальнi
визначення зв’язку мiж енергiєю та iмпульсом у
теорiї вiдносностi.

Можна оцiнити значення ефективної “сталої
Планка” як ℎeff = 𝑚𝑐𝑅, що полегшує застосуван-
ня цього визначення в рiзних масштабах. Для кон-
кретних значень маси електрона та розмiру атома
водню ефективна константа ℎeff = ℎ збiгається з тi-
єю, що була введена Планком. Отже, можна зроби-
ти висновок про те, що ефективна константа кван-
тування залежить вiд масштабу дослiджуваних
об’єктiв. З цього можна отримати спiввiдношення
для ефективних констант Планка, ℎeff

ℎ ∼ 𝑅4

𝑅4
atom

, яке
для значень радiуса орбiти Землi 𝑅 та електрона
𝑅atom в атомi водню дає ℎeff

ℎ ∼ 1080.
Також можна ввести значення довжини хвилi

збурення 𝜆𝑔 = ℎeff

𝑚𝐸𝑐 , аналогiчне комптонiвськiй
довжинi для атома водню 𝜆𝑐 = ℎ

𝑚𝐸𝑐 , та порiвня-
ти цi двi величини. Спiввiдношення мiж сталою
Планка для гравiтацiйних збурень та комптонiв-
ською довжиною атома водню можна оцiнити як
ℎeff

ℎ =
𝜆𝑔𝑚𝐸

𝜆𝑐𝑚𝑒
. Це значення можна назвати мас-

штабним коефiцiєнтом. Якщо взяти довжину хви-
лi гравiтацiйного збурення порядку астрономiчної
одиницi 𝜆𝑔 ≈ 149 ·109 м та значення мас електрона
𝑚𝑒 ≈ 9,1 · 10−31 кг та Землi 𝑚𝐸 ∼ 1024 кг, то для
комптонiвської довжини хвилi 𝜆𝑐 ≈ 2,4 · 10−12 м
отримаємо ℎeff ∼ 1078ℎ, що узгоджується з оцiнка-
ми попереднiх авторiв [35, 38].

Необхiдно зробити важливе зауваження щодо
рiвняння перенесення на довiльному многовидi,
оскiльки в загальному випадку зв’язнiсть може бу-
ти представлена також числом Клiфорда, а окре-
мi компоненти можуть i повиннi мати рiзнi ко-
ефiцiєнти вiдгуку для полiв рiзної природи. Але
математична структура такого представлення [17]
ще далека вiд завершення та потребує бiльш по-
слiдовного розвитку. Навiть найпростiша реалiза-
цiя дає нетривiальнi результати, оскiльки мiстить
бiльше iнформацiї про можливу природу многови-
ду та хвильову функцiю “пробної частинки”. Це
вимагає бiльш ретельного пояснення i, ймовiрно,
буде зроблено в майбутньому.

Ця робота була пiдтримана Нацiональним фон-
дом дослiджень України (проєкт 2023.03/0165
“Квантовi кореляцiї електромагнiтного випромi-
нювання”).
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CLIFFORD ALGEBRA
AS A WAY TO QUANTUM GRAVITY

This article puts forward a novel hypothesis for a solution to

the problem of quantization of gravity. The objective of this

study is to demonstrate that the geometric representation of

the wave function can be considered as a characteristic of the

space-time manifold. In this approach, it is shown that the

Dirac theory for the hydrogen atom and the Kepler dynam-

ics for the planetary system describe analogous phenomena in

the space-time. The states of these systems possess parameters

that correspond to the permitted dynamic states of the space-

time, thereby maintaining information regarding the corpus-

cular and wave nature. The proposed approach sheds a new

light on the potential resolution of the problems of quantum

gravity.

Ke yw o r d s: Clifford algebra, wave function, test particle,
space-time manifold.
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