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ОСНОВНI ПОЛОЖЕННЯ
АЛГЕБРАЇЧНОЇ ВЕРСIЇ МЕТОДУ
РЕЗОНУЮЧИХ ГРУП У РАЗI ОДНОВИМIРНОГО
ВИПАДКУ. I. АНАЛIТИЧНI РЕЗУЛЬТАТИУДК 539.14

На прикладi одновимiрного випадку розглядаються особливостi проведення аналiтичних
розрахункiв в межах Алгебраїчної версiї методу резонуючих груп, яка ґрунтується
на розкладi хвильової функцiї квантової системи по осциляторному базису. Детально
обговорено побудову матричних елементiв гамiльтонiана за допомогою технiки твiр-
них функцiй та твiрних матричних елементiв. Знайдено асимптотичну поведiнку ко-
ефiцiєнтiв розкладу хвильової функцiї по осцiляторному базису при прямуваннi осциля-
торного квантового числа до нескiнченностi у випадку неперервного спектра. Отрима-
на асимптотична залежнiсть матричних елементiв потенцiальної енергiї вiд осциля-
торного квантового числа з гаусiвським потенцiалом.
Ключ о в i с л о в а: одновимiрний випадок, алгебраїчна версiї методу резонуючих груп,
осциляторний базис, матричнi елементи, асимптотика коефiцiєнтiв.

1. Вступ
Алгебраїчна версiя методу резонуючих груп (АВ
МРГ), основнi положення якого спочатку були
сформульованi в роботах [1, 2], – це кластерний
пiдхiд, технiчно ґрунтований на розкладаннi фун-
кцiй вiдносного руху кластерiв за осциляторним
базисом. Вiн вiд самого початку орiєнтований на
опис властивостей станiв дискретного та неперерв-
ного спектра легких атомних ядер з єдиних пози-
цiй. Останнє робить його особливо цiкавим, оскiль-
ки дослiдження станiв неперервного спектра лег-
ких атомних ядер уже багато рокiв привертає ува-
гу теоретикiв i експериментаторiв. Пояснення то-
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му просте. Цi ядра, як правило, мають лише не-
велику кiлькiсть станiв дискретного спектра. Пе-
реважна кiлькiсть їхнiх станiв перебуває у спектрi
неперервному.

З точки зору успiшностi використання, АВ МРГ
вже вiдбулася як факт. За роки її застосуван-
ня опублiкована вже дуже велика кiлькiсть робiт,
присвячених дослiдженню станiв дискретного спе-
ктра легких атомних ядер, одноканальних та ба-
гатоканальних реакцiй за участю легких атомних
ядер, зв’язку колективних та кластерних мод руху,
вплив урахування принципу Паулi на властивостi
легких атомних ядер, вивчення властивостей гiпе-
рядер та iнше [3–12]. При цьому, на жаль, завдяки
їх великiй кiлькостi, ми тут не зможемо надати по-
силання на багато i багато робiт, якi були виконанi
в рамках АВ МРГ, що не зменшує їх значущостi.
Тут вiдразу слiд вiдмiтити, що поряд з роботами
по розвитку i застосуванню АВ МРГ, слiд озна-
йомитись з роботами [13–16], тiсно пов’язаними з
останньою iдеологiчно.
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Для того, щоб легше було розiбратися в можли-
востях застосування АВ МРГ, бажано детальнi-
ше ознайомитися з особливостями роботи з осци-
ляторним базисом, використання якого є основою
останньої. Вiдповiдно, метою цiєї роботи є прагне-
ння допомогти читачевi на одновимiрних прикла-
дах, що не зменшує загальностi розгляду, глибше
проникнути в “таємницi” використання осцилятор-
ного базису для опису станiв як дискретного, так i
неперервного спектра квантових систем. Для цьо-
го ми розглядаємо одновимiрнi квантово-механiчнi
задачi, що моделюють наявнiсть зв’язаних або ква-
зiстацiонарних станiв з потенцiалами гаусiвсько-
го типу. Останнє не є дуже великим обмеженням
на системи, якi ми можемо розглядати, оскiльки
базис гаусiвських функцiй є повним i ми можемо
представити любий потенцiал з розумною точнi-
стю як суперпозицiю гаусiв.

На даний час нам вiдомо лише двi роботи, в яких
демонструвалась можливiсть використання осци-
ляторного базису для опису станiв неперервного
спектра одновимiрних квантових систем [17, 18].
Наша робота вiдрiзняється, в основному, вiд двох
останнiх тим, що ми значну увагу придiляємо де-
монстрацiї технiки аналiтичних розрахункiв роз-
винутiй в рамках АВ МРГ. Iдея виконання цiєї ро-
боти належить Г.Ф. Фiлiппову, який залишив свої
нотатки з приводу її написання.

Тобто нам належить розв’язувати рiвняння
Шредiнгера:

𝐻̂𝜓 (𝑥) = 𝐸𝜓 (𝑥) ,

𝐻̂ = 𝑇 + 𝑉 ,

де

𝑇 = − }2

2𝑚

𝑑2

𝑑𝑥2
,

а 𝑉 (𝑥) задається у виглядi гаусiвської функцiї або
суперпозицiї гаусiвських функцiй вигляду

𝑉0 exp

(︂
−𝑥

2

𝑟20

)︂
.

Як видно з останнього, наш потенцiал завжди є
функцiя парна, завдяки чому наша задача розпа-
дається практично на двi задачi: з додатною та
вiд’ємною парнiстю. Зазначимо, що надалi ми зде-
бiльшого будемо для скорочення тексту та бiльшої
визначеностi, виписувати формули для додатної

парностi. Всi необхiднi вирази для вiд’ємної парно-
стi отримуються аналогiчно для додатної, або мо-
жуть бути отриманi з формул для останньої про-
стим переозначенням iндексiв. Конкретнi ж роз-
рахунки, якi будуть представленi у другiй частинi
статтi, проводяться для обох випадкiв.

Замiсть того, щоб розв’язувати диференцiальне
рiвняння для хвильової функцiї Ψ(𝑥), ми пред-
ставляємо цю функцiю у виглядi ряду – розкладу
за функцiями Ермiта.

Ψ(𝑥) =

∞∑︁
𝑚=0

𝐶𝑚𝜑𝑚 (𝑥),

𝜑𝑚 (𝑥) =
1√︀

2𝑚𝑚! 𝑟0
√
𝜋
𝐻𝑚 (𝑥) exp

(︂
−𝑥

2

2

)︂
,

(1)

де змiнна 𝑥 знерозмiрена осциляторним радiусом
𝑟0. При цьому, коли розглядаються парнi стани, то
𝑚 – парне, а коли непарнi – 𝑚 – непарнi, що визна-
чається властивостями парностi полiномiв Ермiта.
Все це приводить нас до системи алгебраїчних рiв-
нянь вигляду
∞∑︁
𝑛̃

⟨𝑛| 𝐻̂ |𝑛̃⟩.𝐶𝑛̃ = 𝐸𝐶𝑛,

яку ми розв’язуємо, розглядаючи стани як дискре-
тного, так i неперервного спектра, задаючи вiд-
повiднi граничнi умови, знаходячи набiр коефi-
цiєнтiв, що являє собою хвильову функцiю зада-
чi в осциляторному поданнi та енергiї зв’язаних
станiв або характеристики процесу розсiювання.
Очевидно, що нашу систему рiвнянь елементарно
можливо переписати у матричному виглядi. Тоб-
то працюючi в АВ МРГ ми працюємо в рамках
матричної квантової механiки. Використовуване
представлення зазвичай називають енергетичним,
або 𝑛-представленням.

2. Обчислення матричних елементiв
гамiльтонiана, твiрнi функцiї та твiрнi
матричнi елементи

Матричнi елементи оператора кiнетичної енергiї,
обчисленi на осциляторних функцiях, вiдомi. У
нашому випадку, якщо їх виражати в одиницях
~2/𝑚𝑟20, мають вигляд:

⟨2𝑛|𝑇 |2𝑛− 1⟩ = −
√︀
2𝑛(2𝑛− 1)

4
,

⟨2𝑛|𝑇 |2𝑛⟩ = 𝑛+
1

4
,
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⟨2𝑛|𝑇 |2𝑛+ 1⟩ = −
√︀
(2𝑛+ 1)(2𝑛+ 2)

4
. (2)

Тут, вiдповiдно до нашої попередньої домовлено-
стi, ми виписали матричнi елементи оператора кi-
нетичної енергiї тiльки для випадку позитивної
парностi. А на що тут треба звернути увагу, так це
те, що матриця кiнетичної енергiї є тридiагональ-
ною, тобто матрицею Якобi, або 𝐽-матрицею. Ме-
тоди матричної квантової механiки, в яких кiнети-
чна енергiя тридiагональна, часто називають ме-
тодами 𝐽-матрицi, що стосується також i АВ МРГ.

Оскiльки на практицi обчислення матричних
елементiв оператора кiнетичної енергiї зазвичай не
викликає труднощiв, то бiльшою мiрою ми зосере-
димо свою увагу на обчисленнi матричних елемен-
тiв оператора потенцiальної енергiї. Для цього нам
потрiбно обчислювати iнтеграли вигляду

⟨2𝑛|𝑉 |2𝑛̃⟩ = 𝑉0

∞∫︁
−∞

𝜑*2𝑛 (𝑥) exp

(︂
−𝑥

2

𝑏20

)︂
𝜑2𝑛̃ (𝑥) 𝑑𝑥.

Формули для обчислень таких iнтегралiв вiдомi
(див., наприклад, [19]). Тому ми можемо вiдразу
записати, що

⟨2𝑛|𝑉 |2𝑛̃⟩ = (−1)
𝑛+𝑛̃

𝑉0𝑧
1/2 (1− 𝑧)

𝑛+𝑛̃ ×

×

√︃
(2𝑛− 1)!!(2𝑛̃− 1)!!

(2𝑛)!!(2𝑛̃)!!
2𝐹1

{︃
−𝑛,−𝑛̃; 1

2
;

(︂
𝑧

1− 𝑧

)︂2}︃
,(3)

або в розгорнутому виглядi:

⟨2𝑛|𝑉 |2𝑛̃⟩ = (−1)
𝑛+𝑛̃

𝑉0𝑧
1/2(1− 𝑧)𝑛+𝑛̃

√︂
(2𝑛)!(2𝑛̃)!

22𝑛22𝑛̃
×

×
min{𝑛,𝑛̃}∑︁

𝑘=0

22𝑘

(𝑛− 𝑘)! (𝑛̃− 𝑘)! (2𝑘)!

(︂
𝑧

1− 𝑧

)︂2𝑘
, (4)

де

1

𝑧
= 1 +

𝑟20
𝑏20
.

Хорошою перевiркою на справедливiсть формул
(3), (4) є вибiр в ролi оператора потенцiальної енер-
гiї одиницi. У нас це досягається тим, що ми може-
мо спрямувати до нескiнченностi 𝑏0, перетворюю-
чи 𝑧 на одиницю. Це повинно призвести до того,
що матриця потенцiальної енергiї перетвориться

на дiагональну матрицю з матричними елемента-
ми 𝑉0 завдяки ортонормованостi функцiй Ермiта.

Здається, що задача розрахункiв матричних еле-
ментiв гамiльтонiана розв’язана. Але пiд час роз-
гляду реальних задач фiзики доводиться стика-
тися i з набагато складнiшими виразами для ма-
тричних елементiв i працювати з матричними рiв-
няннями великої розмiрностi, де ситуацiя стає не
такою простою. Тому для обчислення матричних
елементiв гамiльтонiана було розроблено спецiаль-
ну технiку, що дiстала назву технiки твiрних фун-
кцiй i твiрних матричних елементiв [20, 21], тiсно
пов’язану з поданням Баргмана для осциляторних
функцiй.

Розглянемо похiдну функцiю для функцiй Ер-
мiта в запису, що збiгається за своїм виглядом
iз записом модифiкованої орбiталi Блоха–Брiнка.
Тобто

Φ𝑥 (𝑅) =
1

4
√
𝜋𝑟

1/2
0

exp

{︂
−𝑥

2

2
+

√
2𝑅𝑥− 𝑅2

2

}︂
=

=

∞∑︁
𝑛=0

1√
𝑛!
𝑅𝑛 1√︀

2𝑛𝑛!
√
𝜋
𝐻𝑛 (𝑥) exp

(︂
−𝑥

2

2

)︂
. (5)

Останнiй розклад ставить у вiдповiднiсть кожнiй
функцiї Ермiта вираз:

𝜑𝑛 (𝑅) =
1√
𝑛!
𝑅𝑛,

який можна розглядати як образ осциляторної
функцiї в представленнi генераторних параметрiв.
Вибiр коефiцiєнта 1/

√
𝑛! дає нам змогу працювати

з нормованими функцiями.
Для того, щоб обчислити твiрнi матричнi еле-

менти деякого оператора
⌢

𝑂(𝑥) введемо ще одну ор-
бiталь вигляду (5), у якiй генераторний параметр
𝑅 замiнено на генераторний параметр 𝑆.

Φ𝑥 (𝑆) =
1

4
√
𝜋𝑟

1/2
0

exp

{︂
−𝑥

2

2
+

√
2𝑆𝑥− 𝑆2

2

}︂
=

=

∞∑︁
𝑛=0

1√
𝑛!
𝑆𝑛 1√︀

22𝑛!
√
𝜋
𝐻𝑛 (𝑥) exp

(︂
−𝑥

2

2

)︂
. (6)

Iнтеграл

𝑂𝑅𝑆 =

∫︁
Φ𝑥 (𝑅)

⌢

𝑂 (𝑥) Φ𝑥 (𝑆) 𝑑𝑥

i називається твiрним матричним елементом опе-
ратора

⌢

𝑂(𝑥). Це пов’язано з тим, що його можна
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подати у виглядi розкладу:

𝑂𝑅𝑆 =

∞∑︁
𝑛=0

∞∑︁
𝑛̃=0

⟨𝑛|
⌢

𝑂(𝑥)|𝑛̃⟩ 1√
𝑛!
𝑅𝑛 1√

𝑛̃!
𝑆𝑛̃.

Звiдки видно, що коефiцiєнтами розкладу твiрного
матричного елемента за функцiями 𝜑𝑛 (𝑅) i 𝜑𝑛̃ (𝑆)
є шуканi матричнi елементи оператора

⌢

𝑂(𝑥) як
коефiцiєнти перед 𝜑𝑛 (𝑅)𝜑𝑛̃(𝑆). Очевидно, що у
повнiй вiдповiдностi з означенням твiрної функцiї
це еквiвалентно тому, що диференцiюючи остан-
нiй вираз потрiбну кiлькiсть разiв за 𝑅 i за 𝑆 з
подальшим їхнiм зануленням, ми можемо одержа-
ти будь-який потрiбний для нас матричний еле-
мент, що розраховується на осциляторних бази-
сних функцiях.

Виписавши основнi спiввiдношення для обчисле-
ння твiрних матричних елементiв, треба згадати
про те, що якщо ми маємо функцiї, заданi в про-
сторi генераторних змiнних, то вiдповiдно до кано-
нiв квантової механiки, можемо в цих самих змiн-
них записати оператори фiзичних величин. У де-
яких випадках це легко вдається зробити.

Так, в одиницях ~𝜔 оператор гамiльтонiана гар-
монiйного осцилятора набуває вигляду:

𝐻̂𝑜𝑐𝑐 = 𝑅
𝜕

𝜕𝑅
+

1

2
.

Це випливає з того очевидного факту, що 𝑅 мо-
жна розглядати як оператор народження осциля-
торного кванта, а 𝜕/𝜕𝑅 оператором його знищен-
ня, оскiльки:

𝑅𝜑𝑛 (𝑅) =
√
𝑛+ 1 𝜑𝑛+1, 𝜕

⧸︀
𝜕𝑅𝜑𝑛 =

√
𝑛𝜑𝑛−1,

𝐻̂𝑜𝑐𝑐𝜑𝑛(𝑅) =

(︂
𝑅
𝜕

𝜕𝑅
+

1

2

)︂
𝜑𝑛(𝑅) =

(︂
𝑛+

1

2

)︂
𝜑𝑛(𝑅).

Виявляється, що оператор:

𝑘 = −𝑖 𝑑
𝑑𝑥

⇒ − 𝑖√
2

(︂
𝑑

𝑑𝑅
−𝑅

)︂
i, вiдповiдно,

𝑘2

2
=

𝑑2

2𝑑𝑥2
⇒ 1

4

(︂
𝑑

𝑑𝑅
−𝑅

)︂2
=

=
1

4

(︂
𝑑2

𝑑𝑅2
− 2𝑅

𝑑

𝑑𝑅
− 1 +𝑅2

)︂
являють собою оператора iмпульсу та кiнетичної
енергiї.

Тобто

−𝑘
2

2
𝜑𝑛 (𝑅) = −1

4

√︀
𝑛 (𝑛− 1)𝜑𝑛−2 (𝑅)+

+
1

2

(︂
𝑛+

1

2

)︂
𝜑𝑛 (𝑅)−

1

4

√︀
(𝑛+ 1) (𝑛+ 2)𝜑𝑛+2 (𝑅).

Представимо явнi вигляди трьох цiкавих для нас
твiрних матричних елементiв та їх формальних
розкладiв.

Це iнтеграл перекриття з одиничним операто-
ром, або iнтеграл нормування:

𝐼𝑅𝑆 = exp(𝑅𝑆)=

∞∑︁
𝑛=0

1

𝑛!
𝑅𝑛𝑆𝑛̃=

∞∑︁
𝑛=0

1√
𝑛!
𝑅𝑛 1√

𝑛!
𝑆𝑛̃ =

=

∞∑︁
𝑛=0

𝜑𝑛(𝑅)𝜑𝑛(𝑆) =

𝜑𝑛∑︁
𝑛=0,𝑛̃=0

(𝑅)𝜑𝑛̃(𝑆)𝛿𝑛,𝑛̃. (7)

Твiрний матричний елемент кiнетичної енергiї:

𝑇𝑅𝑆 = 1/2 exp(𝑅𝑆)
(︀
−1 + (𝑅− 𝑆)2

)︀
=

=

∞∑︁
𝑛=0,𝑛̃=0

𝜑𝑛 (𝑅)𝜑𝑛̃ (𝑆) 𝛿𝑛,𝑛̃ =

=
1

2

(︀
−1 + (𝑅− 𝑆)2

)︀ ∞∑︁
𝑛=0

𝜑𝑛(𝑅)𝜑𝑛(𝑆). (8)

Твiрний матричний оператора потенцiальної енер-
гiї:

𝑉𝑅𝑆 = 𝑉0𝑧
1/2 exp

{︂
𝑧𝑅𝑆 − 1− 𝑧

2

(︀
𝑅2 + 𝑆2

)︀}︂
=

=

∞∑︁
𝑛=0

∞∑︁
𝑛̃=0

⟨𝑛|𝑉 |𝑛̃⟩𝜑𝑛 (𝑅)𝜑𝑛̃ (𝑆). (9)

З цих виразiв видно: матриця перекриття з одини-
цею є одиничною матрицею, що очевидно, оскiль-
ки власнi функцiї гармонiчного осцилятора орто-
нормованi. Матриця оператора кiнетичної енергiї
тридiагональна, з елементами, якi наведенi в (5). I,
звичайно, розглядаючи ⟨𝑛|𝑉 |𝑛̃⟩ з позитивною пар-
нiстю, ми отримуємо матричний елемент у виглядi
(3) або (4).

Наведенi твiрнi матричнi елементи (7), (8), (9) не
мають властивостi парностi. Але їх можна спрое-
ктувати на стан iз певною парнiстю стандартним
чином. У нашому випадку це можливо зробити
вже на рiвнi твiрних матричних елементiв, скори-
ставшись зокрема тим, що твiрнi функцiї вигля-
ду (5), (6) влаштованi таким чином, що для них
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замiна 𝑥 на −𝑥 еквiвалентна замiнi 𝑅 на −𝑅. По-
кажемо результат на прикладi твiрних матричних
елементiв оператора потенцiальної енергiї:

𝑉 +
𝑅𝑆 = 𝑧1/2ch (𝑧𝑅𝑆) exp

{︂
− (1− 𝑧)

2

(︀
𝑅2 + 𝑆2

)︀}︂
=

= 𝑧1/2
∞∑︁

𝑛=0,𝑛̃=0

⟨2𝑛|𝑉 |2𝑛̃⟩𝜑2𝑛 (𝑅)𝜑2𝑛̃ (𝑆),

𝑉 −
𝑅𝑆 = 𝑧1/2sh (𝑧𝑅𝑆) exp

{︂
− (1− 𝑧)

2

(︀
𝑅2 + 𝑆2

)︀}︂
=

= 𝑧1/2
∞∑︁

𝑛=0,𝑛̃=0

⟨2𝑛+ 1|𝑉 |2𝑛̃+ 1⟩𝜑2𝑛+1 (𝑅)𝜑2𝑛̃+1 (𝑆).

Можна й не робити такого проектування, але при
цьому треба весь час пам’ятати про особливостi
парностi полiномiв Ермiта.

Розвиток АВ МРГ досяг рiвня розгляду бага-
токластерних задач, де, зважаючи на величезну
складнiсть прямих формул для обчислення матри-
чних елементiв потенцiальної енергiї, практично
єдиним способом їхнього обчислення є використан-
ня рекурентних спiввiдношень, джерелом яких мо-
же бути метод похiдних функцiй i похiдних ма-
тричних елементiв. Тут же, на простому прикладi,
ми спробуємо викласти основнi принципи їхнього
отримання в рамках цього методу. Звернемося до
твiрного матричного елемента (9)

𝑉𝑅𝑆 = 𝑉0𝑧
1/2 exp

{︂
𝑧𝑅𝑆 − 1− 𝑧

2

(︀
𝑅2 + 𝑆2

)︀}︂
=

=

∞∑︁
𝑛=0

∞∑︁
𝑛̃=0

⟨𝑛|𝑉 |𝑛̃⟩𝜑𝑛 (𝑅)𝜑𝑛̃ (𝑆). (10)

Подiємо оператором знищення кванта 𝜕/𝜕𝑅 на
праву та лiву частину останньої рiвностi:

𝜕𝑉𝑅𝑆

𝜕𝑅
=
∑︁
𝑛,𝑛̃

⟨𝑛|𝑉 |𝑛̃⟩
√
𝑛𝜑𝑛−1 (𝑅)𝜑𝑛̃ (𝑆),

та

𝜕𝑉𝑅𝑆

𝜕𝑅
= {𝑧𝑆 − (1− 𝑧)𝑅}𝑉𝑅𝑆 =

=
∑︁
𝑛,𝑛̃

⟨𝑛|𝑉 |𝑛̃⟩
{︁
𝑧
√
𝑛̃+ 1𝜑𝑛 (𝑅)𝜑𝑛̃+1 (𝑆) −

− (1− 𝑧)
√
𝑛+ 1𝜑𝑛+1 (𝑅)𝜑𝑛̃ (𝑆)

}︁
.

Прирiвнюючи два останнi вирази i зiставляючи ко-
ефiцiєнти при однакових функцiях, отримуємо ре-
курентне спiввiдношення для матричних елемен-
тiв оператора потенцiальної енергiї:

⟨𝑛|𝑉 |𝑛̃⟩ = 1√
𝑛

{︁
𝑧
√
𝑛̃ ⟨𝑛− 1|𝑉 |𝑛̃− 1⟩ −

−
√
𝑛− 1 (1− 𝑧) ⟨𝑛− 2|𝑉 |𝑛̃⟩

}︁
. (11)

Особливiстю цього рекурентного спiввiдношення є
те, що воно не працює при 𝑛 = 0, тобто для пер-
шого рядка матрицi гамiльтонiана з додатною пар-
нiстю. Тому нам потрiбно доповнити наше перше
рекурентне спiввiдношення ще хоча б одним, яке
нiвелює цей недолiк i приводить нас до повного
набору рекурентних спiввiдношень.

Подiємо оператором знищення кванта 𝜕/𝜕𝑆 на
праву та лiву частину рiвностi (10) i отримаємо:

⟨𝑛|𝑉 |𝑛̃⟩ = 1√
𝑛̃

{︁
𝑧
√
𝑛 ⟨𝑛− 1|𝑉 |𝑛̃− 1⟩ −

−
√
𝑛̃− 1 (1− 𝑧) ⟨𝑛|𝑉 |𝑛̃− 2⟩

}︁
. (12)

Цих двох рекурентних спiввiдношень цiлком до-
статньо для отримання елементiв повної матри-
цi потенцiальної енергiї, якщо задати отриманi за
прямими формулами найпростiшi з них для розго-
ну рекурентних спiввiдношень.

Iнодi спочатку отриманi рекурентнi спiввiдно-
шення не є найзручнiшими для проведення число-
вих розрахункiв. Тодi, маючи їх повний набiр, мо-
жливо побудувати їх лiнiйнi комбiнацiї, якi є бiльш
цiкавими. З нашими рекурентними спiввiдношен-
нями можливо проробити таке:

1. Помножимо обидвi частини рекурентного
спiввiдношення (11) на

√︀
𝑛/𝑛̃.

2. Помножимо обидвi частини рекурентного
спiввiдношення (12) на

√︀
𝑛/𝑛̃.

3. Вiднiмемо вiд першого результату другий i
отримаємо нове рекурентне спiввiдношення(︃√︂

𝑛

𝑛̃
−
√︂
𝑛̃

𝑛

)︃
⟨𝑛|𝑉 |𝑛̃⟩ = (1− 𝑧)×

×

(︃√︂
𝑛̃− 1

𝑛
⟨𝑛|

⌢

𝑉 |𝑛̃− 1⟩ −
√︂
𝑛− 1

𝑛̃
⟨𝑛− 2|

⌢

𝑉 |𝑛̃⟩

)︃
.

Воно симетричне по вiдношенню до перестанов-
ки 𝑛 та 𝑛̃ i дозволяє розраховувати всi матричнi
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елементи матрицi оператора потенцiальної енергiї
крiм дiагональних. При цьому з нього видно, що
всi недiагональнi матричнi елементи обертаються
на нуль при 𝑧 = 1.

4. Пiсля виконання пунктiв 1 та 2 додамо (11)
до (12) i покладемо 𝑛̃ дорiвнює 𝑛. Отримаємо

⟨𝑛|𝑉 |𝑛⟩ = 𝑧 ⟨𝑛− 1|
⌢

𝑉 |𝑛− 1⟩−

− (1− 𝑧)

√︂
𝑛− 1

𝑛
⟨𝑛− 2|

⌢

𝑉 |𝑛⟩.

Це рекурентне спiввiдношення дозволяє розрахо-
вувати матричнi елементи оператора потенцiаль-
ної енергiї, якi розмiщенi на головнiй дiагона-
лi. При 𝑧 = 1 всi матричнi елементи дорiвню-
ють 𝑉0 вiдповiдно до ортонормованостi функцiй
Ермiта.

Дiючи в попереднiй спосiб, можливо отрима-
ти i iншi рекурентнi спiввiдношення. Наприклад,
використовуючи оператори 𝜕2/𝜕𝑅2, 𝜕2/𝜕𝑆2 та
𝜕2/(𝜕/𝑅𝜕𝑆), можливо знайти повний набiр з трьох
рекурентних спiввiдношень. Вiдзначимо, що реку-
рентнi спiввiдношення, якi ми отримуємо, не є суть
породження методу твiрних функцiй та твiрних
матричних елементiв, а прямий наслiдок власти-
востей функцiй Ермiта. Питання тiльки в тому, в
якому представленнi їх шукати – в координатно-
му, чи в представленнi генераторних параметрiв.
Цiкавi для нас вiдомостi про властивостi функцiй
Ермiта неважко знайти в книзi [22].

3. Асимптотичнi спiввiдношення

Вiдомо, яке важливе значення вiдiграє знання
асимптотичної поведiнки хвильової функцiї при
проведеннi квантово-механiчних розрахункiв в ко-
ординатному представленнi. Така сама картина
спостерiгається i при використаннi розкладу по
осциляторному базису, особливо коли це стосує-
ться дослiдження станiв неперервного спектра, де
в ролi хвильової функцiї, як i для станiв дискре-
тного спектра, виступає набiр коефiцiєнтiв роз-
кладу хвильової функцiї по осциляторному базису
{𝐶𝑛}. Властивiстю осциляторного розкладу є те,
що чим бiльше значення квантового числа 𝑛, тим
бiльшим вiдстаням вiд початку координат вiдпо-
вiдає внесок вiд базисної функцiя 𝜑𝑛(𝑥). Тому нас
буде цiкавити асимптотична поведiнка коефiцiєн-
тiв розкладу {𝐶𝑛} i деяких iнших величин при ве-
ликих значеннях 𝑛.

Рiвняння Шредiнгера в координатному пред-
ставленнi{︂
− }2

2𝑚

𝑑2

𝑑𝑥2
− exp

(︂
−𝑥

2

𝑏2

)︂}︂
Ψ(𝑥) = 𝐸Ψ(𝑥)

у мiру збiльшення |𝑥| спрощується i стає хвильо-
вим рiвнянням вiльного руху

− }2

2𝑚

𝑑2

𝑑𝑥2
Ψ(𝑥) = 𝐸Ψ(𝑥). (13)

Загальний розв’язок цього рiвняння можна запи-
сати у виглядi суперпозицiї парного i непарного
розв’язку:

Ψ(𝑥) = 𝐴 sin 𝑘𝑥+𝐵 cos 𝑘𝑥,

де

𝑘 =

√︂
2𝑚𝐸

}2
.

У дискретному представленнi з огляду на прин-
цип вiдповiдностi мiж дискретним i континуаль-
ним представленнями має вiдбуватися те саме.
При цьому природним є граничний перехiд до рiв-
нянь
∞∑︁
𝑛̃

⟨𝑛|𝑇 |𝑛̃⟩𝐶𝑛̃ = 𝐸𝑛𝐶𝑛. (14)

Для того, щоб краще зрозумiти логiку наших
подальших мiркувань, перш нiж перейти до аналi-
зу цiєї системи рiвнянь, розглянемо асимптотичну
поведiнку коефiцiєнтiв, спираючись на властивостi
полiномiв Ермiта у разi значень 𝑛, що набагато пе-
ревищують одиницю. Тобто, розглянемо iнтеграл

𝐶2𝑛 =

+∞∫︁
−∞

𝜑2𝑛 (𝑥) cos (𝑘𝑥) 𝑑𝑥,

обчислення якого дає нам коефiцiєнти розкладу
функцiї вiльного руху.

Вiдомо, що полiноми Ермiта задовольняють iн-
тегральне рiвняння (див., наприклад, [23]):

𝑒−
𝑥2

2 𝐻2𝑛 (𝑥) = (−1)
𝑛

√︂
2

𝜋

∞∫︁
0

𝑒−
𝑡2

2 𝐻2𝑛 (𝑡) cos (𝑥𝑡) 𝑑𝑡.

Ця чудова рiвнiсть, зокрема, означає iнварiан-
тнiсть функцiй Ермiта, щодо перетворення Фур’є.
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Використання останньої рiвностi одразу приво-
дить нас до спiввiдношення

𝐶2𝑛 = 𝐴𝑟0 (−1) 𝑛
√
2𝜋𝐻2𝑛 (𝑘𝑟0) 𝑒

− 𝑘2𝑟20
2 , (15)

де 𝐴 – нормувальний множник, явно виписаний у
формулi (1).

Знайшовши точнi вирази для коефiцiєнтiв роз-
кладу cos (𝑘𝑥) по осциляторному базису, нам слiд
продемонструвати, наскiльки реально на практицi
може бути реалiзовано розклад хвильової функцiї
вiльного руху за скiнченним числом осциляторних
функцiй. Для цього поставимо собi завдання чи-
сельно вiдновити функцiю неперервного спектра
з використанням отриманих коефiцiєнтiв розкла-
ду в наперед заданiй областi змiни аргументу. Ре-
зультати такого чисельного експерименту наведе-
но на рис. 1. Як область змiни незалежної змiнної
𝑥 взято вiдрiзок, кiнцi якого розташованi в точках
–50 Фм i 50 Фм. Розглянуто три варiанти резуль-
татiв розрахункiв, якi вiдповiдають використанню
рiзного числа базисних функцiй, тобто 𝑛 = 50,
𝑛 = 100 i 𝑛 = 200.

Наведенi графiки демонструють те, що за до-
помогою розкладу по осциляторних функцiях до-
сить легко передати функцiю вiльного руху ча-
стинки. При енергiї 10 МеВ нам потрiбно викори-
стати парнi функцiї з 𝑛 = 50 для передачi фун-
кцiї вiльного руху до вiдстанi приблизно у 25 Фм,
𝑛 = 100–40 Фм, а при 𝑛 = 200 бiльше 50 Фм. Вiд-
мiтимо, що з точки зору АВ МРГ, оскiльки в її
рамках зазвичай розглядається взаємодiя легких
атомних ядер, вiдстанi, якi ми представили на ри-
сунку, є достатньо великими навiть при врахуван-
нi кулонiвської взаємодiї, яка є далекодiючою, а
асимптотика є iншою. Тут ми просто спробували
як найкраще продемонструвати певнi можливостi
розкладу функцiї вiльного руху по осциляторному
базису.

Перехiд до асимптотичного виразу полiномiв
Ермiта в формулi (1) може бути здiйснено за
допомогою асимптотичної рiвностi (див., напри-
клад, [23]):

𝐻𝑛 (𝑥) =
√
2

(︂
2𝑛

𝑒

)︂𝑛
2

𝑒
𝑥2

2

[︃
cos
(︁
𝑁𝑥− 𝑛𝜋

2

)︁
+

+𝑂

(︂
1

𝑛

)︂
+𝑂

(︁
𝑛−

1
4 |𝑥|

5
2

)︁]︃
, (16)

Рис. 1. Подання функцiї вiльного руху у виглядi ряду за
власними функцiями гармонiйного осцилятора

де 𝑁 =
√
2𝑛+ 1. Тут вiдразу ж слiд пiдкреслити

той факт, що застосовнiсть цiєї формули значною
мiрою залежить вiд спiввiдношення значень вели-
чин 𝑛 i |𝑥|.

Пiсля використання спiввiдношень (15) i (16), а
також застосування формули Стiрлiнга до спро-
щення виразу для нормувального множника ми
доходимо до остаточного виразу, який можна по-
дати у виглядi

𝐶2𝑛 =
2𝑟0

𝑟
1/2
0

4
√
4𝑛+ 1

cos
(︀
𝑘𝑟0

√
4𝑛+ 1

)︀
. (17)

Тут слiд звернути увагу на те, що величина 𝑁 =
= 𝑟0

√
4𝑛+ 1 являє собою координату квазiкласи-

чної точки повороту одновимiрного гармонiчного
осцилятора. Ця точка вiдiграє дуже важливу роль
в теорiї гармонiчного осцилятора, яка полягає у
дедалi суттєвiшiй концентрацiї хвильової функцiї
осцилятора в областi точок повороту в мiру пе-
реходу до дедалi бiльших значень осциляторного
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Рис. 2. Порiвняння точних значень коефiцiєнтiв розкладу
функцiї вiльного руху за осциляторними функцiями з їхнi-
ми асимптотичними значеннями за рiзних значень енергiї

квантового числа. При 𝑛 → ∞ поведiнка хвильо-
вої функцiї набуває 𝛿-подiбного характеру. Тра-
ктування цього факту можна дати вже в межах
класичних уявлень, де зрозумiло, що за великих
значень енергiї осцилятора частинка з великою
швидкiстю проходить точку рiвноваги, перебува-
ючи при цьому найбiльш тривалий час у районi
точок повороту.

Поглянемо на отримання асимптотичних вира-
зiв з iншого боку. Повернемося до рiвнянь (14).
Вони є дискретними рiвняннями типу

−1

2

√︃
𝑛

(︂
𝑛− 1

2

)︂
𝐶2𝑛−2 +

[︂
1

2

(︂
2𝑛+

1

2

)︂
+

1

2
𝑘2𝑟20

]︂
×

×𝐶2𝑛 − 1

2

√︃
(𝑛+ 1)

(︂
𝑛+

(︂
1

2

)︂)︂
𝐶2𝑛+2 = 0.

За великих значень 𝑛 ми можемо розглядати ко-
ефiцiєнти розкладу 𝐶2𝑛 як функцiю неперервної

змiнної 2𝑛

𝐶2𝑛 = 𝐶 (2𝑛).

При цьому записати, що 𝐶 (2𝑛± 2) → 𝐶 (𝑥±Δ𝑥).
(𝑥 = 2𝑛, Δ𝑥 = 2) i скористатися розкладом в ряд
Тейлора

𝐶 (𝑥±Δ𝑥) ≈ 𝐶 (𝑥)±Δ𝑥
𝑑𝐶 (𝑥)

𝑑𝑥
+

1

2
(Δ𝑥)

2 𝑑
2𝐶 (𝑥)

𝑑𝑥2
,

що дає змогу трансформувати алгебраїчне рiвня-
ння в диференцiйне

−1

2

√︃
𝑛

(︂
𝑛− 1

2

)︂[︂
𝐶 (𝑥)− 2

𝑑𝐶 (𝑥)

𝑑𝑥
+ 2

𝑑2𝐶 (𝑥)

𝑑𝑥2

]︂
+

+

[︂
1

2

(︂
2𝑛+

1

2

)︂
+

1

2
𝑘2𝑟20

]︂
𝐶 (𝑥)−

+
1

2

√︃
(𝑛+ 1)

(︂
𝑛+

(︂
1

2

)︂)︂
×

×
[︂
𝐶 (𝑥) + 2

𝑑𝐶 (𝑥)

𝑑𝑥
+ 2

𝑑2𝐶 (𝑥)

𝑑𝑥2

]︂
= 0.

Спираючись на попереднiй досвiд введемо нову
змiнну 𝑅𝑛 замiсть змiнної 𝑥 = 2𝑛

𝑅𝑛 =
√
4𝑛+ 1 =

√
2𝑥+ 1.

Переводячи похiднi та коефiцiєнти рiвняння до но-
вих змiнних i розкладаючи останнi в ряд за ступе-
нями 1/𝑅𝑛 з утриманням четвертих ступенiв цiєї
величини, приходимо до рiвняння

𝑅2
𝑛

𝑑2𝐶 (𝑅𝑛)

𝑑𝑅2
𝑛

+𝑅𝑛
𝑑𝐶 (𝑅𝑛)

𝑑𝑅𝑛
+

+

[︂
−1

4
+𝑅2

𝑛𝑘
2𝑟20

]︂
𝐶 (𝑅𝑛) = 0.

Тобто в результатi всiх перетворень ми при-
йшли до рiвняння Бесселя порядку 1/2. Розв’язка-
ми цього рiвняння є функцiї 𝐽1/2

(︁√︀
𝑘𝑟0 (4𝑛+ 1)

)︁
i 𝑁1/2

(︁√︀
𝑘𝑟0 (4𝑛+ 1)

)︁
друга з них з точнiстю до

коефiцiєнта i позначень збiгається з виразом (17).
Проiлюструємо на конкретних прикладах те, ко-

ли коефiцiєнти розкладу функцiї вiльного руху за
осциляторним базисом можуть бути замiненi їхнi-
ми асимптотичними виразами. Для цього зверне-
мося до рис. 2. На ньому проведено порiвняння то-
чних значень коефiцiєнтiв розкладу функцiй вiль-
ного руху за осциляторним базисом з їхнiми асим-
птотичними значеннями за рiзних значень енергiї.

436 ISSN 0372-400X. Укр. фiз. журн. 2025. Т. 70, № 7



Основнi положення алгебраїчної версiї методу резонуючих груп

Наведенi на рисунку результати вказують на те,
що вихiд на асимптотичний режим коефiцiєнтiв
розкладу функцiї вiльного руху вiдбувається за рi-
зних значень квантового числа залежно вiд енергiї
частинки, що налiтає. Чим вона бiльша, тим бiль-
ше осциляторних функцiй слiд залучити для цьо-
го. Це нескладно зрозумiти, якщо звернутися до
коментаря до формули (16).

На останньому етапi цього роздiлу розгляне-
мо поведiнку матричних елементiв потенцiальної
енергiї пiд час переходу до великих значень 𝑛 i
𝑛̃, використовуючи формулу (3). Для спрощення
будемо вважати що 𝑧 = 1/2. Вiдповiдно до цього
отримаємо(︂

𝑧

1− 𝑧

)︂2
= 1.

Згiдно з цим отримаємо

2𝐹1

{︃
−𝑛,−𝑛̃; 1

2
;

(︂
𝑧

1− 𝑧

)︂2}︃
=

= 2𝐹1

{︂
−𝑛,−𝑛̃; 1

2
; 1

}︂
=

Γ (1/2) Γ (𝑛+ 𝑛̃+ 1/2)

Γ (𝑛+ 1/2) Γ (𝑛̃+ 1/2)
.

А матричний елемент оператора потенцiальної
енергiї з гаусiвською залежнiстю набуває вигляду

⟨2𝑛|𝑉 |2𝑛̃⟩ = (−1)
𝑛+𝑛̃

𝑉0

(︂
1

2

)︂𝑛+𝑛̃+ 1
2

×

×

√︃
(2𝑛− 1)!! (2𝑛̃− 1)!!

(2𝑛)!! (2𝑛̃)!!

Γ (1/2) Γ (𝑛+ 𝑛̃+ 1/2)

Γ (𝑛+ 1/2) Γ (𝑛̃+ 1/2)
. (18)

Використовуючи формули Стiрлiнга, у випадку,
що розглядається, можна дiйти до такого спiввiд-
ношення:

⟨2𝑛|𝑉 |2𝑛̃⟩ ≈ 1

2
𝑉0

(︂
−1

2

)︂𝑛+𝑛̃

×

×

√︃
1

𝜋
√
𝑛𝑛̃

(︂
1 +

𝑛̃

𝑛

)︂𝑛 (︁
1 +

𝑛

𝑛̃

)︁𝑛̃
. (19)

Тут можна побачити, що для головної дiагоналi зi
зростанням 𝑛 спостерiгається спадання величини
матричного елемента потенцiальної енергiї за за-
коном 1/

√
𝑛, що видно зi спiввiдношення

⟨2𝑛|𝑉 |2𝑛̃⟩ ≈ 𝑉 0

2
√
𝜋𝑛

,

Рис. 3. Порiвняння точних i асимптотичних значень ма-
тричних елементiв потенцiальної енергiї

тодi як матричнi елементи оператора кiнетичної
енергiї зростають пропорцiйно 𝑛. Тобто, на яко-
мусь етапi розширення матрицi ми можемо знехту-
вати матричними елементами потенцiальної енер-
гiї в порiвняннi з матричними елементами кiнети-
чної енергiї вважаючи, що з цього мiсця матриця
гамiльтонiана є тридiагональною.

Порiвняння результатiв розрахункiв матричних
елементiв за формулами (18) i (19) iлюструється
рис. 3. На ньому наведено рiзницi модулiв зазна-
чених матричних елементiв, розгляд яких показує,
що в мiру збiльшення квантових чисел лiвої та
правої функцiй точнi значення матричних елемен-
тiв досить швидко виходять на їхнi асимптотичнi
значення.

4. Висновки

Оскiльки мета, до якої ми прагнули при написан-
нi цiєї роботи полягала в тому, щоб використову-
ючи досить негромiсткий з аналiтичної точки зо-
ру одновимiрний випадок, ми показали, якi прийо-
ми можна використати для побудови матрицi га-
мiльтонiана при використаннi Алгебраїчної версiї
методу резонуючих груп. Показали, в який спо-
сiб отримати асимптотичну поведiнку коефiцiєнтiв
розкладу хвильової функцiї по осциляторних фун-
кцiях при спрямуваннi осциляторного квантового
числа до нескiнченностi у випадку розгляду ста-
нiв неперервного спектра. Продемонстрували збi-
жнiсть матричних елементiв потенцiальної енергiї
до їх асимптотичних значень.
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FUNDAMENTALS OF THE ALGEBRAIC
VERSION OF THE RESONATING-GROUP
METHOD IN THE ONE-DIMENSIONAL
CASE. I. ANALYTIC RESULTS

The features of analytic calculations in the framework of the

algebraic version of the resonating-group method, which is

based on expanding the wave function of a quantum sys-

tem on the basis of oscillator functions, have been exam-

ined in the one-dimensional case. The construction of the Ha-

miltonian matrix elements using the technique of generat-

ing functions and generating matrix elements has been dis-

cussed in detail. The asymptotic behavior is found for the

coefficients in the wave function expansion in the oscillator

function basis as the oscillator quantum number tends to in-

finity in the continuous spectrum case. The asymptotic de-

pendence of the potential-energy matrix elements on the os-

cillator quantum number has been obtained for a Gaussian

potential.

Ke yw o r d s: one-dimensional case, algebraic version of the
resonating-group method, oscillator basis, matrix elements,
asymptotics of coefficients.
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