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ЯДЕРНI 𝑔-ФАКТОРИ IЗОМЕРНИХ
СТАНIВ IЗОТОПIВ 117Те, 121Те, 121Те ТА 126Те:
ПОРIВНЯННЯ З РОЗРАХУНКАМИ В РАМКАХ
КВАЗИЧАСТИНКОВО-ФОНОННОЇ МОДЕЛIУДК 539

За допомогою методу TDPAD отриманi такi значення 𝑔-факторiв iзотопiв телуру:
–0,306(9) для 5/2+ стану 117Te при 274,4 кеВ, –0,221(3) для 7/2+ стану 121Te при
443,1 кеВ, та –0,152(9) для 10+ стану 126Te при 2875 кеВ. Значення –0,35(8) для 5/2+

стану 119Te при 320,4 кеВ було отримано методом IPAD. Одержанi експериментальнi
значення порiвнюються з розрахунками в рамках квазичастинково-фононної моделi.
К люч о в i с л о в а: ядернi 𝑔-фактори, iзотопи Te, квазичастинково-фононна модель.

1. Вступ

Вiдомо, що магнiтнi моменти непарних ядер не збi-
гаються з їх одночастинковими значеннями. Розбi-
жнiсть мiж експериментальними магнiтними мо-
ментами та одночастинковими моментами зумов-
лена вiдмiннiстю оператора ядерного магнiтного
моменту вiд одночастинкового оператора та вiд-
мiннiстю хвильової функцiї ядра вiд її представ-
лення в моделi незалежних частинок. Рiзниця в
цих хвильових функцiях є наслiдком залишкової
взаємодiї, яка змiшує збудження остова з одноча-
стинковими станами.

Найбiльший внесок у магнiтний момент, який
приводить до рiзницi мiж експериментальними
та одночастинковими значеннями, пов’язаний з
𝜎𝜎-силами, що викликають вiртуальне збудження
спiн-орбiтального дублета поблизу поверхнi Фер-
мi (спiнова поляризацiя ядра). Поправки до опе-
ратора магнiтного моменту пов’язанi зi струмами
мезонного обмiну та вiдмiннiстю внутрiшнiх магнi-
тних моментiв нуклонiв вiд вакуумних. Кiлькiснi
оцiнки спiнової поляризацiї ядра вимагають зна-
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ння взаємодiї частинка-дiрка. Теорiю спiнової по-
ляризацiї ядра було запропоновано в роботах [1,2].
Взаємодiя частинка-дiрка в цих роботах була пара-
метризована або для неї використовувалися рiзнi
реалiстичнi сили.

Водночас спiнову поляризацiю ядра можна вра-
хувати в рамках квазичастинково-фононної моде-
лi [3] шляхом введення 1+-фононiв, оскiльки їх
структура iдентична структурi спiн-орбiтальних
дублетiв. Експериментальна iнформацiя про ло-
калiзацiю та силу 𝑀1-резонансiв у парно-парних
ядрах дозволяє визначити параметри взаємодiї
частинка-дiрка. Крiм того, хвильова функцiя в
цiй моделi враховує квадрупольне та октупольне
збудження остова. Це приводить до колективного
внеску в магнiтний момент. Ефекти, що виходять
за межi квазичастинково-фононної моделi (спiн-
орбiтальнi сили, внесок струмiв мезонного обмiну,
2𝑝-2ℎ-збудження тощо), певною мiрою компенсую-
ться введенням ефективних спiнових, 𝑔𝑠, та орбi-
тальних, 𝑔𝑙, факторiв (див. нижче). Такий пiдхiд
для непарних сферичних ядер був запропонований
та реалiзований у посиланнях [4, 5].

У пропонованiй роботi розрахунки квазичастин-
ково-фононної моделi перевiряються шляхом по-
рiвняння теоретичних 𝑔-факторiв з їх експери-
ментальними значеннями при збудженнi iзомер-
них станiв кiлькох iзотопiв телуру. Експеримен-
тальнi 𝑔-фактори стану 5/2+ в 117Te з енергiєю
274,4 кеВ та перiодом напiврозпаду 16,8 нс, ста-
ну 7/2+ в 121Te з енергiєю 443,1 кеВ та перiодом

ISSN 0372-400X. Укр. фiз. журн. 2025. Т. 70, № 7 439



О.I. Левон, В.А. Онiщук, К.П. Шевченко та iн.

Рис. 1. Сума часових спектрiв, скоригована на фон (див.
текст) (𝑎), та часово-диференцiальна спiнова прецесiя 𝑅(𝑡)

для переходу 274 кеВ, що дезбуджує стан 5/2+ в 117Te (𝑏).
Суцiльнi кривi є результатом достосування згiдно з рiвня-
нням (3)

напiврозпаду 78,8 нс, а також стану 10+ в 126Te з
енергiєю 2975 кеВ та перiодом напiврозпаду 10,6 нс
були вимiрянi методом збуреного кутового розпо-
дiлу (time-differential perturbed angular distributi-
on, TDPAD) 𝛾-променiв. Магнiтний момент стану
5/2+ в 119Te з енергiєю 320,4 кеВ та дуже коротким
перiодом напiврозпаду у 2,2 нс було отримано ме-
тодом iнтегрованого збуреного кутового розподiлу
(integrated perturbed angular distribution, IPAD) 𝛾-
променiв.

2. Експериментальна частина

Збудженi стани в ядрах Te були заселенi в ре-
акцiї (𝛼, 2𝑛) за допомогою iмпульсного пучка 𝛼-
частинок з енергiєю 27 МеВ на циклотронi U-120 з
часом повторення ≈90 нс та тривалiстю iмпульсу
≈4 нс. Мiшень у такому експериментi розташову-
валась у магнiтному полi, направленому перпен-
дикулярно до напрямку пучка. Це приводить до
прецесiї магнiтного диполя iзомерного стану з лар-

морiвською частотою

𝜔𝐿 = −𝑔𝜇𝑁𝐵/~, (1)

де 𝑔 – це 𝑔-фактор ядерного стану, 𝜇𝑁 – ядерний
магнетон, а 𝐵 – магнiтне поле в одиницях Тесла.

В результатi, експериментальнi часовi спектри
гамма-променiв, що випромiнюються iзомерним
станом та що слiдують за iзомерним переходом,
демонструють, окрiм експоненцiального розпаду,
також модуляцiю з ларморiвською частотою

𝑁𝛾(𝑡, 𝜃, 𝐵) = 𝑁0 exp(−𝑡/𝜏)𝑊 (𝜃 − 𝜔𝐿𝑡), (2)

де 𝜏 визначається перiодом напiврозпаду (𝜏 ln 2 =
= 𝑇1/2), а 𝑊 (𝜃) – це кутовий розподiл.

У методi TDPAD часовi спектри 𝛾-променiв ре-
єструвались вiдносно фази циклотронної частоти
за допомогою двох детекторiв NaJ(Tl), розташова-
ними пiд кутами ±135∘ вiдносно напрямку пучка.
Ларморiвську частоту було визначено шляхом до-
стування до експериментальних даних аналiтично-
го виразу

𝑅(𝑡𝛾𝜃𝛾𝐵) =
𝑁𝛾(𝑡, 𝜃, 𝐵)−𝑁𝛾(𝑡, 𝜃 + 𝜋/2, 𝐵)

𝑁𝛾(𝑡, 𝜃, 𝐵) +𝑁𝛾(𝑡, 𝜃 + 𝜋/2, 𝐵)
=

=
3𝐴2

4 +𝐴2
cos(𝜃 − 𝜔𝐿𝑡), (3)

де 𝑁𝛾(𝑡, 𝜃, 𝐵) – це експериментальнi часовi спе-
ктри, скоригованi на фон, а 𝐴2 – коефiцiєнт ку-
тового розподiлу. Ми врахували рiзницю в ефе-
ктивностi детекторiв, виконавши вимiрювання у
двох однакових експозицiях зi змiною детекторiв
мiсцями.

Часовi спектри фону вимiрювалися для тiєї ча-
стини 𝛾-спектра, яка не мiстить затриманої скла-
дової, одночасно з часовими спектрами 𝛾-проме-
нiв, що випромiнюються iзомерним станом. Для
правильного врахування фону використовувалася
така процедура. Iз суми часових 𝛾-спектрiв для
iзомерних переходiв 𝑁 𝑖

𝛾(𝑡), отриманих обома дете-
кторами за двi експозицiї, вiднiмається та сума фо-
нових спектрiв 𝑁 𝑖

𝑏𝑔(𝑡), помножена на коефiцiєнт 𝑘,

𝑇 (𝑡) =

4∑︁
𝑖

𝑁 𝑖
𝛾(𝑡)− 𝑘

4∑︁
𝑖

𝑁 𝑖
𝑏𝑔(𝑡) = 𝑁0 exp(−𝑡/𝜏). (4)

Сума 𝑇 (𝑡) експериментальних часових спектрiв,
скоригованих за фоном, бiльше не модулюється
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частотою Лармора. Варiацiя множника 𝑘 дозволяє
отримати експоненцiальну залежнiсть суми 𝑇 (𝑡)
вiд часу, апроксимацiя якої дозволяє отримати час
життя iзомерних станiв. Результати показано на
верхнiх панелях рис. 1, 3 та 4. Визначений таким
чином множник 𝑘 використовується для правиль-
ного врахування фону.

Величина магнiтного поля в центрi розташува-
ння мiшенi становила 𝐵 = 3,266(9) Тл. Потрiбно
було точно врахувати кут вiдхилення пучка в ма-
гнiтному полi. Це особливо важливо, коли можна
спостерiгати лише частину перiоду прецесiї (як це
було в одному з наших експериментiв), оскiльки
отримане значення 𝜔𝐿 помiтно залежить вiд ви-
бору початкової фази апроксимуючої функцiї (3)
при її достосуваннi до експериментальних даних.
Кут вiдхилення пучка було розраховано за допо-
могою вимiряної топографiї поля. Величину поля
та вiдхилення променя було перевiрено в незале-
жному експериментi для стану 197 кеВ ядра 19F,
𝑔-фактор якого вiдомий з високою точнiстю [6].

Металевi мiшенi, виготовленi з iзотопiв олова,
якi використовувалися в експериментах, мали не-
кубiчну структуру ґратки. Олово за кiмнатної тем-
ператури має сумiш кубiчних та тетрагональних
центрованих ґраток. Але оскiльки часи життя iзо-
мерiв малi, так само як i квадрупольнi моменти
в цiй областi мас, то очiкувалося, що явища ре-
лаксацiї будуть нехтувально малими. Це пiдтвер-
джується вiдсутнiстю згасання функцiї 𝑅(𝑡𝛾𝜃𝛾𝐵)
для стану 7/2+ ядра 121Te з довгим часом життя
(див. нижче).

117Te, 5/2+, 274,4 кеВ. Залежнiсть iнтенсивно-
стi 𝛾-променiв з енергiєю 274,4 кеВ вiд часу ви-
мiрювалася методом TDPAD у зовнiшньому ма-
гнiтному полi. Картина обертання спiну та кри-
ва згасання показанi на рис. 1. Наступнi результа-
ти отриманi в результатi апроксимацiї експеримен-
тальних даних за допомогою функцiї згасання (4)
та функцiї обертання спiну (3): 𝑇1/2 = 16, 8 нс та
𝑔 = −0,306(9). Магнiтний момент цього iзомеру та-
кож вимiрювався групою Россендорфа в роботi [7]
методом TDPAD з двома планарними Ge(Li) дете-
кторами. Реакцiю (𝛼, 2𝑛) використовували на роз-
плавленiй мiшенi у зовнiшньому магнiтному полi
𝐵 = 2,539 Тл. При меншому магнiтному полi дифе-
ренцiальна у часi картина займала навiть не пов-
ний перiод осциляцiї, тому результат має нижчу
точнiсть: 𝑔 = −0,30(2).

Рис. 2. 𝛾-спектр реакцiї 117Sn(𝛼,2n)119Te на товстiй iзото-
пнiй мiшенi з олова

119Te, 5/2+, 320,4 кеВ. У роботi [8] збуджений
стан 5/2+, 320,4 кеВ був iдентифiкований як iзо-
мер 119Te з перiодом напiврозпаду 𝑇1/2 = 2,2(2) нс.
Для вимiрювання 𝑔-фактора цього iзомеру було
застосовано метод IPAD з двома Ge(Li) детекто-
рами пiд кутами ±𝜃 до напрямку пучка. Вимiрю-
вання проводилися у двох експозицiях з протиле-
жними напрямками магнiтного поля. Для визначе-
ння 𝜔𝐿𝜏 було застосовано процедуру, яка не вима-
гає суворої рiвностi експозицiй. Утворюється таке
спiввiдношення:

𝜉 =
𝑁(𝜃,𝐵 ↑)
𝑁(𝜃,𝐵 ↓)

𝑁(−𝜃,𝐵 ↑)
𝑁(−𝜃,𝐵 ↓)

, (5)

де 𝑁(𝜃,𝐵 ↑) та 𝑁(𝜃,𝐵 ↓) – це вiдлiки в експери-
ментальних спектрах для вибраних 𝛾-лiнiй, скори-
гованi на фон, для напрямкiв поля вгору та вниз. З
цього спiввiдношення отримуємо функцiю 𝑅, подi-
бну до тiєї, що використовується в методi TDPAD,

𝑅 =
(
√
𝜉 − 1)

(
√
𝜉 + 1)

=
1

𝑊

𝑑𝑊

𝑑𝜃
(Δ𝜃𝐿 +Δ𝜃𝐵), (6)

де Δ𝜃𝐿 = 𝜔𝐿𝜏 – кут прецесiї, а Δ𝜃𝐵 – кут вiдхи-
лення пучка в розсiяному магнiтному полi перед
зiткненням з мiшенню. Кут 𝜃 було вибрано рiв-
ним ±135∘ з умови максимального значення лога-
рифмiчної похiдної 𝑑𝑊/𝑑𝜃 кутового розподiлу 𝛾-
променiв.

Спектр 𝛾-променiв, вимiряний Ge(Li) детекто-
ром, показано на рис. 2. Кут прецесiї Δ𝜃𝐿 визна-
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Рис. 3. Сума часових спектрiв, скоригована на фон (див.
текст) (𝑎), та часово-диференцiальна спiнова прецесiя 𝑅(𝑡)

для переходiв 212 та 231 кеВ, що дезбуджують стан 7/2+ в
121Te (𝑏). Суцiльнi кривi є результатом достосування згiдно
з рiвнянням (3)

чено для 𝛾-переходу при 320,4 кеВ. Iнший iзомер-
ний перехiд при 257,5 кеВ має невелику анiзотро-
пiю, тому неiнформативний. Для визначення кута
Δ𝜃𝐵 вiдхилення пучка було використано iншi лiнiї
в спектрi, а саме при 242,8; 348,7; 382,6; 482,9 та
577,8 кеВ, що вiдповiдають швидким переходам.
Значення цього кута, усереднене по всiх швидких
переходах, Δ𝜃𝐵 = 11,1(8) мрад, потрiбно вiдняти
вiд загального кута Δ𝜃 = 20,9(10) мрад для iзо-
мерного переходу при 320,4 кеВ. Таким чином, кут
прецесiї для iзомеру дорiвнює Δ𝜃𝐿 = 9,8(19) мрад.
Значення 𝑔-фактора, знайдене з Δ𝜃𝐿 та використо-
вуючи значення 𝐵 = 3,266(9) Tл та 𝜏 = 3,17(29) нс,
дорiвнює 𝑔 = −0,35(8).

121Te, 7/2+, 443,1 кеВ. Вимiрювання для цього
стану проводилися за допомогою системи “проми-
гування” [9], яка дозволила збiльшити перiод по-
вторення iмпульсiв пучка на мiшенi у кiлька ра-
зiв; у цьому випадку – в чотири рази. Це дозво-
лило спостерiгати обертання спiну протягом три-
валiшого часу (∼360 нс), а також переконатися
у вiдсутностi згасання функцiї (3) у металевiй
олов’янiй мiшенi. Були записанi часовi розподi-

Рис. 4. Сума часових спектрiв, скоригована на фон (див.
текст) (𝑎), та часово-диференцiальна спiнова прецесiя 𝑅(𝑡)

для переходiв 666, 695 та 990 кеВ, що дезбуджують стан
10+ в 126Te (𝑏). Суцiльнi кривi є результатом достосування
згiдно з рiвнянням (3)

ли iнтенсивностi 𝛾-променiв з енергiями 212,2 та
230,9 кеВ. Шляхом достосування функцiй (4) та
(3) до експериментальних даних були отриманi та-
кi результати: 𝑇1/2 = 78,8(5) нс, 𝜔𝐿 = 34,5(5) МГц
та 𝑔 = +0,221(3). Результат групи Россендорфа
[7] становить 𝑔 = +0,18(2). Нижча точнiсть 𝑔-
фактора пояснюється тим, що внаслiдок слабшо-
го магнiтного поля та використання одного перiо-
ду повторення пучка (чотири перiоди в цьому до-
слiдженнi) спостерiгалося менше половини перiоду
картини обертання.

126Te, 10+, 2975 кеВ. У ядрах перехiдної обла-
стi спостерiгається ряд багаточастинкових високо-
енергетичних станiв. Для них отримано рiзнома-
нiтну експериментальну iнформацiю. Зокрема, iн-
формацiя про 𝑔-фактори дуже корисна для розу-
мiння їхньої структури, принаймнi чи цi стани є
протонними або нейтронними. Вимiрювання для
цих станiв мають ту особливiсть, що можна спо-
стерiгати лише частину перiоду прецесiї. Тому кут
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Внески рiзних компонентiв до 𝑔-факторiв: результати розрахункiв
у квазичастинково-фононнiй моделi та порiвняння з експериментальними даними

Ядро 𝐽𝜋 𝐶2
𝐽 𝑔ef1SP 𝑔ef2SP 𝑔1 𝑔2 𝑔𝑇 𝑔ef1𝑇 𝑔ef2𝑇 𝑔exp

117Te 5/2+ 0,805 –0,673 –0,695 –0,050 0,282 –0,429 –0,355 –0,367 –0,306(9)
119Te 5/2+ 0,809 –0,673 –0,695 –0,053 0,266 –0,445 –0,370 –0,383 –0,35(8)
121Te 7/2+ 0,868 0,374 0,343 0,048 –0,188 0,247 0,203 0,180 0,221(3)
125Te 11/2− 0,942 –0,306 –0,331 –0,014 0,101 –0,246 –0,206 –0,221 –0,179(1)
126Te 10+ 0,942 –0,306 –0,331 –0,014 0,101 –0,246 –0,206 –0,221 –0,152(9)

П о з н а ч е н н я: 𝐽𝜋 – спiн та парнiсть станiв; 𝐶2
𝐽 – квадрати коефiцiєнтiв хвильової функцiї (7); 𝑔ef1𝑆𝑃 та 𝑔ef2𝑆𝑃 – одночас-

тинковi 𝑔-фактори, розрахованi з ефективними 𝑔𝑠-факторами та ефективними 𝑔𝑠- плюс 𝑔𝑙-факторами, вiдповiдно; 𝑔1 –
загальний колективний внесок; 𝑔2 – внесок спiнової поляризацiї ядра до 𝑔-фактора; 𝑔𝑇 – загальний 𝑔-фактор, розрахова-
ний з вакуумними значеннями 𝑔𝑠; 𝑔ef1𝑇 та 𝑔ef2𝑇 – загальнi 𝑔-фактори, розрахованi з 𝑔ef1𝑆𝑃 та 𝑔ef2𝑆𝑃 вiдповiдно; 𝑔exp – експери-
ментальнi значення 𝑔-факторiв.

вiдхилення пучка в розсiяному магнiтному полi
повинен бути точно визначений, а детектори по-
виннi бути встановленi точно пiд кутами ±135∘ до
напрямку променя, враховуючи вiдхилення пучка.
За таких умов фаза апроксимуючої функцiї (3)
приймається рiвною нулю. Кут вiдхилення пучка
був розрахований з вимiряної топографiї магнiтно-
го поля та визначений незалежно з експерименту
TDPAD для стану 197 кеВ в 19F з вiдомим точним
𝑔-фактором [6]. Експериментальнi результати на-
веденi на рис. 4. Часовi спектри були вимiрянi для
суми швидких переходiв, що вiдбуваються за iзо-
мерним переходом. Картина обертання спiну бу-
ла апроксимована функцiєю 𝑎+ 𝑏2 sin(2𝜔𝐿𝑡+Δ𝜃).
Корекцiя експериментальних спектрiв на фон була
задовiльною, якщо обидва значення 𝑎 та Δ𝜃 близь-
кi до нуля. Результати апроксимацiї мають такий
вигляд: 𝑇1/2 = = 10,6(10) нс, 𝜔𝐿 = 23,6(13) МГц та
𝑔 = −0,152(9).

3. Розрахунки
у квазичастинково-фононнiй моделi

При розрахунках магнiтних моментiв у рамках
квазiчастинково-фононної моделi хвильову функ-
цiю непарного сферичного ядра можна записати у
такому виглядi:

𝜓𝜈(𝐽𝑀) =

= 𝐶𝜈
𝐽

{︂
𝛼+
𝐽𝑀 +

∑︁
𝜆

𝐷𝜆𝑖
𝑗 (𝐽𝜈)[𝛼+

𝑗𝑚𝑄
+
𝜆𝜇𝑖]𝐽𝑀

}︂
𝜓0, (7)

де 𝜓0 – фононний вакуум. Вирази для [𝛼+
𝑗𝑚𝑄

+
𝜆𝜇𝑖]𝐽𝑀

i коефiцiєнтiв 𝐶𝜈
𝐽 та 𝐷𝜆𝑖

𝑗 (𝐽𝜈) можна знайти в ро-
ботi [3], а деталi розрахункiв магнiтного моменту
представленi в роботi [5].

Як бачимо, враховуються квадрупольнi 2+ та
октупольнi 3− збудження парно-парного остова, а
також 1+-збудження з 𝜆 = 0 та 𝐿 = 1. Вони опи-
сують спiнову поляризацiю парно-парного ядра в
наближеннi випадкових фаз. Розглядаються лише
однофононнi збудження. Остаточний вираз для 𝑔-
фактора стану 𝜓𝜈(𝐽𝑀) можна записати у виглядi

𝑔𝐽 = 𝐶2
𝐽 [𝑔𝑆𝑃 + 𝑔1 + 𝑔2], (8)

де 𝑔𝑆𝑃 – це одночастинковий 𝑔-фактор, а 𝑔1 та
𝑔2 є квадратичними та лiнiйними вiдносно кое-
фiцiєнтiв 𝐷𝜆𝑖

𝐽 доданками. Вирази для оператора
магнiтного моменту в квазичастинково-фононнiй
моделi та для 𝑔1 та 𝑔2 можна знайти за поси-
ланням [5]. Таким чином, iснують одночастинко-
вий внесок 𝑔𝑆𝑃 до 𝑔-фактора, внесок, пов’язаний з
1+-збудженнями ядра, та колективний внесок 𝑔1,
що виникає вiд домiшок станiв квазичастинково-
фононного типу (2+ та 3−) у хвильовiй функцiї
(7), (𝑔1 = 𝑔

(2)
1 + 𝑔

(3)
1 ). Внесок 1+-збуджень ядра

дозволяє врахувати спiнову поляризацiю ядра.
Константи спiн-мультипольної взаємодiї визна-

чалися положенням 𝑀1-резонансiв [10–12],

𝜒
(01)
1 = −(28/𝐴) MeB, 𝜒

(01)
0 ≃ 0,8𝜒

(01)
1 , (9)

де 𝐴 – кiлькiсть частинок. Невизначенiсть зна-
чення iзовекторної константи 𝜒

(01)
1 , отриманої з

аналiзу експериментальних даних у рiзних моде-
лях, невелика, 𝜒(01)

1 ∼ (23–28)/𝐴 MeB. Iзоскаляр-
на константа 𝜒

(01)
0 визначається дещо гiрше [13],

але її змiна спричинює незначнi змiни магнiтних
моментiв.
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Рис. 5. 𝑔-фактори станiв 11/2− та 10+ в iзотопах ядер Sn, Cd, Te та Xe. Штри-
ховi лiнiї – одночастинковi значення 𝑔𝑆𝑃 , тонкi суцiльнi лiнiї – значення 𝑔ef1𝑇 ,
жирнi суцiльнi лiнiї – значення 𝑔ef2𝑇 , бiлi кола – експериментальнi 𝑔-фактори
11/2− станiв, чорнi квадрати – 𝑔-фактори 10+ станiв

Вiдомо, що спостерiгається ослаблення ймовiр-
ностей переходiв 𝐵(𝑀1), переходiв Гамова–Тел-
лера та магнiтних моментiв, що не можна по-
яснити лише поляризацiєю остова. Це тiсно пов’я-
зано зi збудженням ненуклонних ступенiв свобо-
ди 𝜎𝜎-силами (Δ𝑁−1-збудженнями), якi перено-
сять в область високих енергiй (∼300 МеВ) ча-
стину сили переходу, а також з наявнiстю збу-
джень, складнiших за 1𝑝 − 1ℎ (2𝑝 − 2ℎ i скла-
днiшi), зi спiн-орбiтальними силами та мезонним
внеском. Цi ефекти можна певною мiрою враху-
вати феноменологiчно, вводячи ефективнi 𝑔𝑠- та
𝑔𝑙-фактори. Розрахунки в роботi [5] були проведе-
нi з вакуумними, 𝑔𝑠, та ефективними, 𝑔ef1𝑠 , значен-
нями 𝑔𝑠-факторiв. Ефективнi 𝑔𝑠-фактори 𝑔ef𝑠 (𝑛) =
= 0,88𝑔𝑠(𝑛) та 𝑔ef𝑠 (𝑝) = 0,91𝑔𝑠(𝑝) були визначенi
за умови, що оцiненi в квазичастинково-фононнiй
моделi та експериментальнi значення 𝑔-факторiв
𝑠1/2-станiв ядер 119

50 Sn та 197
51 Tl збiгаються. Цi ста-

ни вибранi тому, що в них вiдсутнi як поправки,
пов’язанi зi спiн-орбiтальною взаємодiєю, так i ме-
зоннi поправки до орбiтального 𝑔𝑙-фактора, але
залишаються ефекти, пов’язанi iз затуханням 𝑔𝑠-
факторiв.

Розбiжнiсть мiж розрахунковими та експери-
ментальними значеннями зазвичай становила 15–
20%. Зазначимо, що квазичастинково-фононна мо-
дель враховує основнi ефекти, даючи внесок у 𝑔-
фактори. Але деякi стани, наприклад, у Cd та
Te, вказують на те, що iснують фактори, якi не
враховуються в розрахунках, але вони вiдiграють
суттєву роль у цих випадках. Спiнова поляриза-

цiя ядра другого (2-частинково-2-дiркового збу-
дження або збудження до енергiй 2~𝜔) та ви-
щих порядкiв приводить до перенормування як
𝑔𝑠-, так i 𝑔𝑙-фактора. Перенормування орбiталь-
ного 𝑔𝑙-фактора переважно зумовлене мезонним
обмiном. Результуючий внесок є позитивним для
протонiв та негативним для нейтронiв. Аномаль-
нi 𝑔𝑙-фактори були знайденi за допомогою експе-
риментальних 𝑔-факторiв специфiчних двочастин-
кових станiв, в яких спiновi внески в магнiтний
момент компенсують один одного, а внески орбi-
тальних 𝑔𝑙-факторiв складаються [14,15]. Для ней-
тронiв такий аналiз був виконаний у роботi [16].
З 𝑔-факторiв 10− станiв у 190Pt та 192Pt, якi ма-
ють конфiгурацiю 𝜈9/2−[505] ⊗ 𝜈11/2+[615], був
отриманий аномальний 𝑔𝑙-фактор для нейтронiв,
𝛿𝑔𝑙 = −0,028(6).

Результати розрахункiв наведенi в таблицi. На-
веденi значення колективного внеску 𝑔1 = 𝑔

(2)
1 +

+ 𝑔
(3)
1 вiд квадрупольного, 𝑔(2)1 , та октупольного,

𝑔
(3)
1 , фононiв, а також внеску 𝑔2 вiд 𝑀1-фононiв.

У таблицi представленi цi значення та загальний
𝑔-фактор 𝑔ef1𝑇 , розрахований з ефективними зна-
ченнями 𝑔𝑠-факторiв, та 𝑔ef2𝑇 , розрахований з ефе-
ктивними спiновими 𝑔𝑠- та аномальними орбiталь-
ними 𝑔𝑙-факторами. Також представлено загаль-
ний 𝑔-фактор 𝑔𝑇 , розрахований з вакуумними зна-
ченнями 𝑔𝑠-факторiв. Загалом, 𝑔-фактори досить
добре описанi в цiй моделi, причому вiдхилення
як 𝑔ef1𝑇 , так i 𝑔ef2𝑇 , вiд 𝑔exp знаходяться в межах
10–20%. Значення 𝑔ef1𝑇 ближче до експерименталь-
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них значень, нiж 𝑔ef2𝑇 . Очевидно, внески вiд ме-
зонного обмiну, спiнової поляризацiї другого по-
рядку та збудження Δ-iзобарiв взаємно компен-
суються. Слiд зазначити, що високоспiновi стани
описуються краще, нiж низькоспiновi. I в цьому
вiдношеннi розбiжнiсть мiж експериментальними
𝑔-факторами станiв 11/2− в 125Te та 10+ в 126Te
виглядає разюче. Правило адитивностi 𝑔-факторiв
порушується.

Тому цiкаво розглянути ситуацiю з 𝑔-факторами
станiв 11/2− в iнших сусiднiх ядрах. Вони наведе-
нi на рис. 5 для ядер Sn, Cd, Te та Xe. Знову ж
таки, узгодження розрахованих значень з експе-
риментом є досить добрим. Узгодження з експе-
риментом покращується у випадку використання
ефективних 𝑔-факторiв на вiдмiну вiд використа-
ння одночастинкових значень. Для ядер Cd, Te та
Xe поправки, пов’язанi з орбiтальним 𝑔𝑙-фактором,
не є необхiдними для гарної узгодженостi з експе-
риментом. Водночас, для покращення опису ста-
нiв 11/2− ядер Sn, цю поправку слiд враховувати.
Внесок спiнової поляризацiї ядра виявляється за-
вищеним для iзотопiв Sn.

Значення 𝑔-факторiв станiв 10+ у деяких iзото-
пах Sn та Cd також виявляються значно меншими,
нiж для станiв 11/2−, що порушує правило адитив-
ностi (порушення в межах похибки вiдсутнi для
iзотопiв Xe). Домiшка колективних станiв занадто
мала, щоб пояснити порушення правила адитив-
ностi. Невелика домiшка стану (𝜈ℎ11/2𝜈ℎ9/2)10

+

(це – внесок недiагональних елементiв) може до-
сить сильно змiнити значення 𝑔-фактора. Домi-
шки 𝛼2 = 0,04 такого стану достатньо, щоб поясни-
ти рiзницю мiж 𝑔-факторами станiв 10+ та 11/2−
для iзотопiв Te. Це значення трохи бiльше, нiж для
iнших ядер.

4. Висновки

Були вимiрянi ядернi 𝑔-фактори стану 5/2+,
274,4 кеВ в 117Te; стану 5/2+, 320,4 кеВ в 119Te; ста-
ну 7/2+, 443,1 кеВ в 121Te; та стану 10+, 2875 кеВ
в 126Te. Отриманi експериментальнi данi проаналi-
зовано в рамках квазичастинково-фононної моде-
лi. Для всiх вимiряних 𝑔-факторiв достатньо вра-
хувати внесок спiнової поляризацiї остова та коле-
ктивних фононiв з ефективним 𝑔𝑠-фактором ней-
тронiв, щоб отримати досить хорошу вiдповiднiсть
з експериментальними значеннями. Через поруше-
ння правила адитивностi для 𝑔-фактора стану 10+

у ядрi 126Te, також були проаналiзованi 𝑔-фактори
парних та непарних iзотопiв сусiднiх ядер Sn, Cd,
Te та Xe. Правило адитивностi для 𝑔-факторiв ста-
ну 10+ у Sn, Cd та Te пояснюється домiшкою ста-
нiв (𝜈ℎ11/2𝜈ℎ9/2)10

+. Також виявилося, що враху-
вання внеску аномального орбiтального 𝑔-фактора
нейтронiв, 𝛿𝑔𝑙, необхiдне для станiв 11/2− непар-
них iзотопiв Sn, щоб покращити узгодження з екс-
периментальними даними. Такий внесок не потрi-
бен для iзотопiв Cd, Te та Xe.
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A.I. Levon, V.A.Onischuk,
K.P. Shevchenko, A.A. Shevchuk

NUCLEAR 𝑔-FACTORS OF ISOMERIC STATES
IN 117Te, 119Te, 121Te, AND 126Te AND CALCULATIONS
WITHIN THE QUASIPARTICLE-PHONON MODEL

The nuclear 𝑔-factors of the 5/2+ state at 274.4 keV in
117Te, of the 7/2+ state, at 443.1 keV in 121Te, and the 10+

state at 2875 keV in 126Te have been obtained as –0.306(9),

–0.221(3), and –0.152(9), respectively, using the TDPAD

method. Nuclear 𝑔-factor of the 5/2+ state at 320.4 keV in
119Te has been found as –0.35(8) by the same method. These

experimental data are analyzed using the quasiparticle-phonon

model.

Ke yw o r d s: 𝑔-factors, Te-isotops, quasiparticle-phonon model.
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