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На основi топологiчного пiдходу доведено можливiсть iснування ламелярних гелiв. Осо-
бливiсть структури цього типу гелiв полягає в тому, що їхнiй каркас утворено з ла-
мел. Запропоновано модель iдеального ламелярного гелю та розраховано параметри його
структури. Визначено вид дефектiв, якi можуть виникати в реальному ламелярному
гелi. Виведено формулу, що описує транспорт води крiзь поверхню ламелярних гiдроге-
лiв. Можливiсть iснування ламелярних гелiв пiдтверджена експериментально за до-
помогою розсiяння свiтла водним розчином гiдроксопропiлцелюлози.
К люч о в i с л о в а: ламелярний гель, гiдроксипропiлцелюлоза, розсiяння свiтла.

1. Вступ
Як вiдомо [1], в полiмерному розчинi можуть iсну-
вати два типи структур: золь- та гель-структура.
Рiзниця мiж ними полягає в тому, що в першо-
му випадку взаємодiя мiж ланцюгами носить коро-
ткочасний характер, а в другому – призводить до
утворення в розчинi довготривалого у часi карка-
су, що складається з полiмерних ланцюгiв. Такий
розчин називають гелем. У випадку, коли розчин-
ником є вода, вживають також термiн “гiдрогель”.

Актуальнiсть дослiдження гелiв випливає, в
першу чергу, з потреб медицини [2–5]. Можливiсть
впровадження отриманих результатiв у медици-
нi стимулювала iнтенсивний розвиток дослiджен-
ня гелiв. Результати таких дослiджень ([6–9] i по-
силання там) дозволяють сьогоднi стверджувати
про наявнiсть нового наукового напрямку – фiзи-
ки гелiв.

Специфiка поведiнки гелiв визначається, в
основному, структурними особливостями їх карка-
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са. Одним iз багатьох питань, що стосуються фiзи-
ки гелiв, є створення теоретичних моделей їх кар-
каса. Розгляду саме цього питання присвячено да-
ну статтю.

Загальноприйнято вважати [1], що полiмерний
каркас – це сiтка (див. рис. 1), яку утворюють
ланцюги 1, з’єднуючись один з одним у вузлах
2. Ланцюг може проходити крiзь декiлька вузлiв.
Вiдрiзок ланцюга, обмежений двома сусiднiми ву-
злами, називають субланцюгом. Зображення лан-
цюгiв на рис. 1 вiдповiдає континуальнiй (перси-
стентнiй) моделi ланцюга [10]. Згiдно з цiєю моде-
ллю ланцюг розглядається як пружний стрижень.
Вважається, що дiаметр такого стрижня за поряд-
ком величини дорiвнює розмiру полiмерної ланки
𝑏. Згаданий стрижень на рис. 1 зображено лiнiєю,
що пов’язано з умовою

𝑏 ≪ ℎ, (1)

де ℎ – розмiр вибраної просторової шкали. Iнши-
ми словами, за умови (1) ланцюг розглядається як
одновимiрний об’єкт.

Як уже згадувалось, вважається, що сiтка – єди-
ний можливий тип гелевого каркаса. Натомiсть в
данiй статтi буде показано, що в гелях має iснувати
i ще один тип каркаса, який принципово вiдрiзня-
ється вiд сiтки.
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2. Каркас гелю з точки зору топологiї

Називатимемо далi полiмернi ланки частинками
полiмеру. Позначимо через 𝑏s розмiр частинки (мо-
лекули, iона) розчинника. Розмiри частинок полi-
меру та розчинника, як правило, мають однаковий
порядок, що дозволяє вважати виконаною рiвнiсть

𝑏 ≈ 𝑏s. (2)

Зважаючи на умову (1), розглядатимемо ча-
стинки полiмеру та розчинника як точки – силовi
центри. Будемо позначати через 𝑀 множину, еле-
ментами якої є частинки полiмеру та розчинника.
Слiдуючи [11], введемо у просторi, зайнятому роз-
чином, топологiю, виконавши розбивку множини
𝑀 на пiдмножини згiдно з виразом

𝑀 =

3⋃︁
𝑗=0

𝑀𝑗 , (3)

де 𝑀0, 𝑀1, 𝑀2, 𝑀3 – пiдмножини, елементами
яких є вiдповiдно нульвимiрнi, одновимiрнi, дво-
вимiрнi та тривимiрнi клiтини.

За визначенням, нульвимiрна клiтина – це то-
чка. Одновимiрна, двовимiрна та тривимiрна клi-
тини гомоморфнi вiдповiдно вiдкритим вiдрiзку,
колу та кулi. Iншими словами, внаслiдок згада-
ної розбивки простiр розпадається на тривимiрнi
областi. Поверхнi, що вiддiляють цi областi одну
вiд одної – це двовимiрнi клiтини. Лiнiї перети-
ну вказаних поверхонь – одновимiрнi клiтини. Та-
кi лiнiї перетинаються в точках – одновимiрних
клiтинах.

Каркасом прийнято називати частину системи,
що не стосується областей, на якi каркас подiляє
систему. Згiдно з цим твердженням множина 𝑀 ′,

Рис. 1. Гелева сiтка – модель полiмерного каркаса: 1 –
ланцюг, 2 – вузол

елементами якої є частинки каркаса (частинки по-
лiмеру), має визначатися виразом

𝑀 ′ =

2⋃︁
𝑗=0

𝑀𝑗 . (4)

Як уже згадувалось, сiтка складається iз су-
бланцюгiв, з’єднаних мiж собою вузлами. Останнi
виступають як нульвимiрнi клiтини, субланцюги
ж вiдiграють роль одновимiрних. Таким чином, у
випадку, коли каркас є сiткою, частинки каркаса
є елементами множини

𝑀 ′′ =

1⋃︁
𝑗=0

𝑀𝑗 . (5)

Будемо називати далi сiтку ланцюговим карка-
сом (скорочено: C-каркас), а гель з таким карка-
сом – ланцюговим гелем (скорочено: C-гель). Як
видно iз виразiв (4) i (5), окрiм ланцюгового, в по-
лiмерному гелi може iснувати iнший тип каркаса,
до складу якого входять поверхнi. В реальностi ко-
жна така поверхня є широкою тонкою пластиною.
Будемо називати цю пластину ламелою, слiдуючи
прийнятiй термiнологiї [12], для опису зовнiшньо-
го вигляду кристалiв. Вiдповiдний каркас назива-
тимемо ламелярним (скорочено: L-каркас). Гель з
таким каркасом також називатимемо ламелярним
(скорочено: L-гель).

3. Iдеальнi гелi:
ланцюговий та ламелярний

Як вiдомо [1], для структури гелiв характерна зна-
чна невпорядкованiсть. Зрозумiло, що сам по собi
останнiй термiн залишається невизначеним допоки
не буде визначено термiн “порядок”. Iнакше кажу-
чи, ведучи мову про невпорядкованiсть гелю, ми
тим самим передбачаємо iснування деякої iдеаль-
ної – повнiстю впорядкованої структури. Назвемо
її iдеальним гелем.

Розглянемо можливий варiант такої структури.
При вирiшеннi цiєї задачi матимемо на увазi ту

обставину, що гелi, за своїми властивостями займа-
ють промiжне положення мiж рiдиною та твердим
тiлом, i певнi ознаки, притаманнi твердому тiлу,
спостерiгаються також у гелях [1]. Цей факт на-
штовхує на думку визначити структуру iдеально-
го гелю по аналогiї з тим, як питання про iдеаль-
ну структуру вирiшується в фiзицi твердого тiла.
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В фiзицi твердого тiла такою структурою є iде-
альний кристал – ґратка [12, 13], якiй вже за ви-
значенням властивий дальнiй порядок. Отже, ви-
бравши шлях аналогiй iз твердим тiлом, ми за цi-
єю логiкою мусимо припустити iснування ґратки в
iдеальному гелi. Таку ґратку може утворити лише
каркас. Як було показано, iснує два типи каркасiв,
тому i ґраток, утворених ними, має бути двi.

Одну з ґраток називатимемо iдеальним C-
каркасом, iншу – iдеальним L-каркасом. Вiдповiд-
нi гелi з такими каркасами називатимемо: iдеаль-
ний C-гель та iдеальний L-гель. Елементарнi ко-
мiрки першого та другого гелiв наведенi вiдповiд-
но на рис. 2, a та b.

На рис. 2, c зображено перерiз елементарної ко-
мiрки, наведеної на рис. 2, b, площиною P. Частин-
ки полiмеру зображено незафарбованими, частин-
ки розчинника – зафарбованими кружальцями.

Як видно з рис. 2, a, в iдеальному C-гелi лан-
цюги мають повнiстю випрямлену конфiгурацiю:
вони направленi уздовж кристалографiчних осей
X, Y, Z.

Згiдно з рис. 2, b та c, в iдеальному L-гелi ча-
стинки полiмеру заповнюють гранi елементарної
комiрки. Ланцюги, що складаються з цих части-
нок, направленi уздовж осей X, Y, Z (рис. 2, d).
Як видно з рис. 2, b та c, частинки розчинника за-
мкненi у межах елементарної комiрки L-каркаса,
не маючи змоги перемiщуватись по своєму об’ємо-
вi, зайнятому iдеальним L-гелем.

Позначимо через 𝑎C та 𝑎L трансляцiйнi перiоди
ґраток iдеального C- та L-гелю, через 𝑛 – кiлькiсть
частинок полiмеру, через 𝑁 – загальну кiлькiсть
частинок в гелi. Концентрацiю 𝜑 полiмеру в гелi
визначатимемо рiвнiстю

𝜑 = 𝑛/𝑁. (6)

Згiдно з рiвностями (6) та (2) величина 𝜑 являє
собою вiдносний об’єм, зайнятий в гелi полiмером.
Вважатимемо виконаною умову

𝜑 ≪ 1. (7)

Очевидними наслiдками цiєї умови є нерiвностi

𝑎C, 𝑎L ≫ 𝑏. (8)

В моделях, зображених на рис. 2, субланцюг
та ламела мають вiдповiдно розмiри 𝑎C × 𝑏× 𝑏 та

Рис. 2. Типи iдеального гелю: ланцюговий (a) та ламеляр-
ний (b, c, d)

𝑎L × 𝑎L × 𝑏. Виконавши елементарнi геометричнi
розрахунки, для вiдносних об’ємiв 𝜃C та 𝜃L, зайня-
тих полiмером в iдеальних C- та L-гелях, отрима-
ємо рiвностi

𝜃C = 3𝑏2/𝑎2C, (9)
𝜃L = 3𝑏/𝑎L, (10)

з яких випливають формули

𝑎C = 𝑏(3/𝜑)1/2, (11)
𝑎L = 3𝑏/𝜑. (12)

Вiдповiдно для кiлькостi субланцюгiв 𝑛C та 𝑛L
маємо формули

𝑛C = 3𝑁(𝜑/3)3/2, (13)
𝑛L = 3𝑁(𝜑/3)3. (14)

Формули (10)–(14) виражають характерну осо-
бливiсть ґраток iдеального гелю: параметри цих
ґраток залежать вiд концентрацiї полiмеру в гелi.

4. Реальний ламелярний гель

Як вiдомо, в фiзицi твердого тiла, поряд iз мо-
деллю iдеального кристала, для опису поведiнки
твердих тiл застосовують рiзноманiтнi моделi ре-
альних кристалiв. Утворення реального кристала
розглядають як наслiдок накопичення в ґратцi де-
фектiв [12]. Йдеться про дефекти рiзної розмiрно-
стi: нульвимiрнi i т. д. До нульвимiрних вiдноси-
ться вид дефектiв, якi називають дефектами замi-
щення. Такими дефектами є домiшкова частинка
та вакансiя.
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Рис. 3. Типи дефектiв ламелярного каркаса: пара домi-
шкових частинок (a), вакансiя (b), бiвакансiя (c), комплекси
вакансiй (щiлини) (d, e). Номерами позначено: 1 – ланцюг,
2 – кiнцева ланка

Рис. 4. Температурна залежнiсть iнтенсивностей прохiдно-
го (𝐽𝑇 ) та вiдбитого (𝐽𝑅) свiтлових пучкiв для 2% (мас.) во-
дного розчину гiдроксипропiлцелюлози. Швидкiсть нагрiву
1,1 ∘C/хв.

Продовжуючи притримуватись пiдходу, прийня-
тому в фiзицi твердого тiла, перенесемо уявлення
про дефекти структури в фiзику гелiв, маючи на
увазi L-каркас та використовуючи термiни “реаль-
ний L-каркас” та “реальний L-гель”.

Прийнято роздiляти внутрiшнi та кiнцевi ланки
полiмерного ланцюга. Останнi вiдрiзняються вiд
перших за своїм хiмiчним складом та характером
взаємодiї з сусiднiми частинками. Кiнцевi ланки
порушують просторову перiодичнiсть ґратки геле-
вого каркаса. Вiдповiдно цi ланки вiдiграють роль
домiшкових частинок (за термiнологiєю, прийня-
тою в фiзицi твердого тiла [13]).

На рис. 3, a наведений один з можливих варi-
антiв розташування кiнцевих ланок в ламелi. В
цьому варiантi вказанi ланки є найближчими су-
сiдами, i їх, в принципi можна розглядати як єди-
ний нульвимiрний дефект – пару домiшкових ча-
стинок. Кiнцевi ланки можуть розташовуватись
уздовж напрямку ланцюгiв на певнiй вiдстанi одна
вiд одної. Якщо ця вiдстань дорiвнює 𝑏, то утво-
рена пустота (рис. 3, b) являє собою вакансiю (за

термiнологiєю, прийнятою в фiзицi твердого тiла),
якщо вiдстань дорiвнює 2𝑏, то йдеться про бiва-
кансiю (рис. 3, c) i т. д. При вiдстанях, якi суттє-
во перевищують 𝑏, йдеться про виникнення одно-
вимiрного дефекта – комплекса вакансiй (щiлини)
(рис. 3, d). Щiлина може виникнути також внаслi-
док вигину ланцюга (рис. 3, e).

Наявнiсть в ламелах реального L-гелю пустот,
зображених на рис. 3, дозволяє частинкам розчин-
ника перемiщуватись з однiєї комiрки в iншу, ман-
друючи у такий спосiб по всьому об’ємовi, зайня-
тому гелем.

Вважатимемо, що вакансiї та вакансiйнi ком-
плекси утворюються за нефлуктуацiйним механi-
змом [14], що має забезпечити в ламелах кiль-
кiсть пустот, необхiдну для перемiщення частинок
в об’ємi гелю.

Вiдповiдь на питання, чи iснує в дiйсностi ла-
мелярний гель, як те передбачає топологiя, може
дати вимiрювання мутностi полiмерного розчину
в процесi золь-гель переходу.

Дiйсно, в золь-структурi в ролi розсiювачiв свi-
тла виступають полiмернi ланцюги. При утвореннi
C-гелю ця роль переходить до субланцюгiв. Тому
в розбавлених розчинах, коли кiлькiсть ланцюгiв
незначна, розсiяння свiтла, спричинене виникнен-
ням C-гелю, не може привести до помiтного вiдби-
вання свiтла.

Як уже згадувалось, при виникненнi ламеляр-
ного гелю полiмернi ланцюги утворюють поверхнi,
складовими яких є ламели. Сукупнiсть таких по-
верхонь є непроникною для свiтлових хвиль, тобто
при утвореннi ламелярного гелю має спостерiга-
тись вiдбивання свiтла.

За допомогою методики, описаної в [15], дослi-
джувалось розсiяння свiтла 2% (мас.) водним роз-
чином гiдроксипропiлцелюлози. Результати експе-
рименту наведенi на рис. 4.

Аналiз рис. 4 показує, що iнтенсивнiсть свiтла,
що проходить крiзь полiмерний розчин, практи-
чно обертається на нуль при температурi, вищiй за
41 ∘C. Цей факт свiдчить про те, що в дослiджених
розчинах утворюється ламелярний гiдрогель.

Згiдно з лiтературними даними [16], розмiр полi-
мерної ланки гiдроксипропiлцелюлози 𝑏 ≃ 0,8 нм.
Розрахований за формулою (12) розмiр ламели в
гiдрогелi, дослiдженому в даному експериментi,
дорiвнює приблизно 150 нм.
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5. Транспорт води
через поверхню гiдрогелiв

Як вiдомо [2–5], гiдрогелi широко використовую-
ться в медицинi як компонент пов’язок для ран.
Фактором, який прискорює процес загоєння ран,
є пiдтримання вологостi рани, отже гiдрогель вi-
дiграє роль “донора вологостi”. Гiдрогель, призна-
чений для цiєї ролi, має вiдповiдати, принаймнi,
двом вимогам:

1) утримувати воду в незмiннiй кiлькостi протя-
гом усього часу терапевтичної дiї пов’язки;

2) мати можливiсть регулювання кiлькостi води,
яка надходить до рани.

Ламелярний гiдрогель вiдповiдає цим вимогам
у бiльшiй мiрi, нiж ланцюговий. Дiйсно, перша
вимога забезпечується тим, що вода знаходиться
у комiрках з полiмерними стiнками. Друга вимо-
га може бути виконана через змiну кiлькостi по-
рожнин у ламелах. Таких змiн можна досягнути
шляхом введення в гель iонiв [17, 18].

В [19] було показано, що для рiдин розмiр фiзи-
чного нескiнченно малого об’єму (областi, де вста-
новлюється локальна рiвновага) за порядком вели-
чини становить 100 нм. Це означає, що комiрка ла-
мелярного гiдрогелю, яка має розмiр 𝑎L ≃ 150 нм,
з термодинамiчної точки зору є фiзичним нескiн-
ченно малим об’ємом. Ця обставина дозволяє роз-
глядати ламелярний гiдрогель як певний конти-
нуум, на якому визначено скалярне поле 𝐶(r), де
𝐶 – концентрацiя молекул води, r – радiус-вектор
точок континууму (за фiзичним змiстом це радiус-
вектор центра iнерцiї комiрки). Поведiнку такого
поля має визначати рiвняння дифузiї:

𝜕𝐶

𝜕𝑡
= 𝐷eΔ𝐶, (15)

де 𝐷e – ефективний коефiцiєнт дифузiї.
Позначимо розмiр отвору – вакансiйного ком-

плексу, що утворюється, через 𝑓 × 𝑔 × 𝑏 (гранi еле-
ментарної комiрки). Визначимо залежнiсть 𝐷e вiд
параметрiв структури ламелярного кристала: 𝑓 , 𝑔
та 𝑎L.

Слiдуючи [20], запишемо формулу для середньої
швидкостi 𝑣 поступального дифузiйного руху ча-
стинок у рiдинi

𝑣 = 𝐷/(𝑏𝑔), (16)

де 𝐷 – коефiцiєнт самодифузiї частинок.

В рамках мiкроскопiчної моделi, для кiлькостi
частинок (молекул води) 𝑄, що в середньому про-
ходять крiзь отвiр за одиницю часу, маємо вираз

𝑄 = 𝑣𝐶𝑓𝑔. (17)

Вiдповiдно потiк частинок для континуальної мо-
делi визначається формулою

𝐽 = 𝑄/𝑎2L = 𝑣𝐶𝑓𝑔/𝑎2L. (18)

Для цiєї ж моделi потiк крiзь грань комiрки ви-
значається формулою

𝐽 = −𝐷
𝜕𝐶

𝜕𝑥
. (19)

Записуючи похiдну у формулi (19) у наближеному
виглядi

𝜕𝐶/𝜕𝑥 ∼ 𝐶/𝑎L (20)

i порiвнюючи вирази (18) та (19), одержуємо

𝐷e = 𝐷
𝑓𝑔

𝑏s𝑎L
, (21)

що разом iз формулою (15) визначає характер
транспорту води крiзь поверхню гiдрогелю.

6. Висновки

На сьогоднi у фiзицi гелiв загально прийнято, що
каркас – це сiтка, утворена полiмерними ланцю-
гами, якi з’єднуються один з одним у вузлах. В
данiй статтi показано, що не лише сiтка може слу-
жити моделлю каркаса. Iснують гелi, в яких кар-
кас утворено ламелами, що складаються iз щiльно
прилягаючих один до одного полiмерних ланцюгiв.
Такi гелi логiчно називати ламелярними.

Каркас iдеального ламелярного гелю є ґраткою.
В такiй ґратцi стiнки елементарної комiрки – це
ламели з розмiром порядка 100 нанометрiв.

Каркас реального ламелярного гелю – це ґра-
тка, ламели якої мiстять дефекти типу вакансiй-
них комплексiв. Останнi є отворами в ламелах.
Завдяки цим отворам частинки розчинника мо-
жуть переходити з одної комiрки в iншу, перемi-
щуючись по всьому об’ємовi, зайнятому гелем.

Як вiдомо [2–5], гiдрогелi широко застосовую-
ться в тканиннiй iнженерiї. На сьогоднi в цiй галу-
зi iснує проблема створення штучних матерiалiв,
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якi могли б замiняти жорсткi бiотканини – такi як
м’язи, кровеноснi судини та iн. Ламелярнi гiдро-
гелi з їхнiм жорстким каркасом можуть допомог-
ти вирiшити цю проблему. Наприклад, в роботах
[21,22] показано, як на основi водорозчинних дери-
ватiв целюлози за певних температурних умов та
присутностi зв’язуючих агентiв полiмеризацiї бу-
дуються ламелярнi полiмернi матрицi iз заданими
фiзико-механiчними властивостями.

Питанням, що має важливе прикладне значен-
ня, є також створення мiкрогелiв на основi роз-
бавлених полiмерних розчинiв з iонними домiшка-
ми [18]. Такi мiкрогелi складаються з полiмерних
агрегатiв (кластерiв), якi теж мають ламелярну
структуру. Шляхом введення iонiв у такi розчи-
ни можна змiнювати розмiр ламел та вiдповiдну
пористiсть кластерiв, що дозволяє використовува-
ти мiкрогелi як носiї активних речовин у суча-
сних технологiях виготовлення нанокомпозитних
плiвок, каталiзаторiв, бактерицидних полiмерних
плiвок та систем доставки лiкiв [23–26]. Як ви-
пливає з одержаної вище формули (21), транспорт
розчинника через поверхню гiдрогелю визначає-
ться геометричними характеристиками елементар-
ної комiрки. Отже, швидкiсть вивiльнення препа-
рату визначатиметься пористiстю гiдрогелю, яка
може бути створена шляхом спрямованої полiме-
ризацiї з метою одержання ламелярного каркаса
iз заданою структурою [27].

Робота була пiдтримана Мiнiстерством освi-
ти i науки України в рамках проекту “Молекуляр-
нi механiзми фiзичних процесiв, якi визначають
застосування гiдрогелiв у вiйськово-медичних те-
хнологiях” (№0123U101955).
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LAMELLAR GELS:
STRUCTURAL PECULIARITIES

The possibility of the existence of lamellar gels has been for-

mulated using the topological approach. The structural pecu-

liarity of the gels of this type consists in that their framework

is formed by lamellae. A model of an ideal lamellar gel has

been proposed, and its structural parameters have been calcu-

lated. The type of defects that can emerge in a real lamellar

gel has been determined. A formula has been derived that de-

scribes water transport through the surface of lamellar hydro-

gels. The possibility of the existence of lamellar gels has been

confirmed experimentally via light scattering in the aqueous

solution of hydroxypropyl cellulose.

Ke yw o r d s: lamellar gel, hydroxypropylcellulose, light scat-
tering.
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