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Features of the current and spin–orbit-coupling induced magnetic dynam-
ics in multilayer nanostructures with nonmagnetic heavy-metal layers 
possessing by a strong spin–orbit coupling are studied. The spin Hall ef-
fect of the conversion of an incoming charge current into a transverse 
(with respect to the charge current) spin current impacting on the mag-
netic dynamics through a spin-transfer torque provides the excitation of 
the magnetic dynamics including magnetic precession and switching. The 
magnetodynamic effect of a spin-current pumping generation together 
with the inverse spin Hall effect of conversion of the spin current into the 
incoming charge current provide the influence of the magnetic dynamics 
on the incoming charge current. These feedforward and feedback between 
the incoming charge current and the magnetic dynamics can be the basis 
for the spin–orbit-driven self-sustained and auto-oscillations of a mag-
netic order in ferro- and antiferromagnetics layers of the nanostructures. 
As shown, the considered magnetic nanostructures can possess by proper-
ties of controlled microwave radiation attaining tens THz in the anti-
ferromagnetic case. 

Вивчаються особливості магнетної динаміки, індукованої вхідним за-
рядовим струмом і спін-орбітальною взаємодією у багатошарових нано-
структурах з немагнетними прошарками на основі важких металів із 
сильною спін-орбітальною взаємодією. Спіновий Голлів ефект перетво-
рення вхідного зарядового струму в поперечний (відносно зарядового 
струму) спіновий струм, діючий на магнетну динаміку через переда-
вання спінового крутильного моменту, забезпечує збудження магнетної 
динаміки, включаючи прецесію та перемикання. Магнетодинамічний 
ефект ґенерування спінового струму помпування разом зі зворотнім 
Голловим ефектом перетворення спінового струму в зарядовий струм 
забезпечує вплив магнетної динаміки на вхідний зарядовий струм. Такі 
прямий і зворотній впливи між вхідним зарядовим струмом і магнет-
ною динамікою можуть становити основу спін-орбітально керованої ос-
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циляції магнетного порядку в феро- або антиферомагнетних прошарках 
наноструктур. Показано, що досліджувані магнетні наноструктури мо-
жуть мати властивості контрольованого мікрохвильового випромінен-
ня, що може сягати десятків ТГц у випадку антиферомагнетних мате-
ріялів. 

Изучаются особенности магнитной динамики, индуцируемой входным 
зарядовым током и спин-орбитальным взаимодействием в многослой-
ных наноструктурах с немагнитными прослойками на основе тяжёлых 
металлов с сильным спин-орбитальным взаимодействием. Спиновый 
эффект Холла превращения входного зарядового тока в поперечный 
(относительно зарядового тока) спиновый ток, действующий на маг-
нитную динамику через передачу спинового крутильного момента, 
обеспечивает изменение магнитной динамики, включающей прецессию 
и переключение. Магнитодинамический эффект генерирования спино-
вого тока накачки вместе с обратным эффектом Холла превращения 
спинового тока в зарядовый ток обеспечивает влияние магнитной ди-
намики на входной зарядовый ток. Такие прямое и обратное воздейст-
вия между входным зарядовым током и магнитной динамикой могут 
представлять основу для спин-орбитально управляемой осцилляции 
магнитного порядка в ферро- или антиферромагнитных прослойках. 
Показано, что исследуемые магнитные наноструктуры могут обладать 
свойствами контролируемого микроволнового излучения, достигающего 
десятков ТГц в случае антиферромагнитных материалов. 
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torque, magnetic dynamics, spin pumping effect, spin current, inverse 
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1. INTRODUCTION 

There is much current interest in dynamical processes in magneti-
cally ordered systems both from scientific and technological view-
points. The special interest is related to the problem of the inter-
coupling between a spin-polarized electron current and the magnetic 
dynamics in multilayer magnetic nanostructures that can be exhib-
ited in such phenomena, as magnetic switching and a sustained pre-
cession of magnetic-order vectors. 
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 The interrelation between the spin-polarized current and mag-
netic order vectors in magnetic multilayer nanostructures, permit-
ting their mutual control, constitutes the basis of the operation of 
novel nanodevices with properties of a magnetic random-access 
memory (MRAM), magnetic logic and coherent microwave radiation 
sources that presents considerable fundamental and application in-
terest [1–8]. The operation of these devices relies on the spin-
polarized current-induced magnetization switching together with 
tunnel magnetoresistance effect and the like induced magnetization 
precession. Such phenomena have real potential for application in 
systems of high-speed magnetic processing information and high 
frequency fine-tuned GHz and THz electromagnetic radiation. 
 The intercoupling between a spin current and magnetic state in 
magnetic nanostructures constitutes the basis of the current-
induced manipulation by magnetic dynamics and vice-versa, i.e. the 
magnetic state-induced manipulation by the spin current [9, 10]. 
The spin current can be converted from an incoming charge current 
under internal effective magnetic fields of interactions of a differ-
ent origin (including s–d exchange and spin–orbit interactions) with 
corresponding features of the action of a spin torque on the mag-
netic states and their dynamics. Inducing magnetic dynamics, such 
a spin torque can cause switching and precession of the magnetic 
order vectors (including ferro- and antiferromagnetic orders) in 
magnetic nanolayers with ferromagnetic (FM) and antiferromag-
netic (AF) interactions. The frequency of the magnetic dynamics is 
determined by the magnitude of magnetic exchange interaction, 
which is the largest for antiferromagnetic materials. The prospect 
of obtaining the technological magnetic nanostructures with low 
threshold incoming currents, low power consumption and controlled 
high frequency operation is related to utilization of the spin–orbit 
effects of the spin polarization and magnetic nanostructures with 
AF exchange interactions. 
 Generally, the spin–orbit interaction includes the bulk spin Hall 
(SH) effect [7, 8] of the transverse (relatively to an incoming cur-
rent) deflection of electrons with opposites spins in opposite sides 
and the interface (two-dimensional) Rashba spin–orbit (RSO) effect 
[9, 10] of the spin splitting of an electron disperse along an electron 
wave vector. The impact of the spin current on the magnetic states 
realizes via the spin torque T consisting of so-called a field-like and 
dumping-like part Tǁ and T⊥, respectively, which are related to the 
effects of magnetic-order switching and precession dumping or an-
tidumping. The field-like torque Tǁ originates predominantly by the 
spin–orbit coupling at the interface in combination with the pertur-
bation of the electron distribution function. The torque T⊥ origi-
nates predominantly by the perturbation of electronic states by the 
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applied electric field. 
 The current spin–orbit-controlled microwave magnetic dynamics 
is realized for nanostructures composed of a heavy metal nanolayer 
(for instance, Pt, Ta) possessing by the strong enough spin–orbit 
interaction and the adjacent active magnetic nanolayer with a 
strong exchange interaction attaining maximum values of the order 
of tens THz in the AF cases. For multisublattice magnetic struc-
tures (for instance, for AFs), a general magnetic dynamics is a 
combined effect of dynamics of each of magnetic sublattices coupled 
by the strong exchange interaction. The interconnection between 
the incoming charge current and magnetic dynamics occurs in the 
mentioned case via the spin current and the spin transfer effect for 
the each sublattice singly. The mentioned magnetic systems with 
feedback, realizing via the direct and inverse SH effects of the spin 
pumping with spin backflow, possess by properties of sustained 
steady-state microwave spin torque oscillations, convertible via a 
magnetoresistance effect into an ac voltage and high-frequency ra-
diation. 
 This paper is organized as follows. In section 2, the conversion of 
an incoming current into the spin current under internal effective 
bias fields of the exchange interactions of a different origin in 
magnetic nanostructures is studied. In Section 3, the spin and 
charge density diffusions in the bilayer magnetic structures with 
the strong spin–orbit interaction are considered in the framework 
of nonlinear kinetic leading to renormalization of parameters of a 
magnetic precession. Section 4 is devoted to dynamic feedback in 
F/SH nanostructures. It is shown that spin pumping and spin 
transfer torques as two reciprocal processes result in a dynamical 
feedback effect interconnecting energy dissipation channels of both 
magnetization and current. In Section 5, features of spin pumping 
and spin-transfer torques as two reciprocal phenomena are consid-
ered in AF-based nanostructures. In Section 6, the current-induced 
magnetic dynamics is considered in the bilayer nanostructures com-
posed of an insulating AF and adjusted heavy normal metal with 
the spin Hall effect. It is shown that the combined effect of cur-
rent-induced torque and spin pumping introduces a dynamical feed-
back that sustains steady-state oscillations with amplitudes control-
lable via the applied current. 

2. THE SPIN POLARIZATION AND SPIN CURRENT 

The electric control of the magnetic dynamics in the mentioned 
magnetic nanostructures occurs through the exchange interaction 
between the spin current and a localized magnetic order. The spin 
current induces the spin torque causing magnetic dynamics in the 
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form of the precession or switching of the magnetization in Fs and 
AF order in AFs [11–13]. The magnitude of the spin torque is de-
termined by the mechanism of the conversion of incoming charge 
current into the spin current interacting with the magnetic order 
via an exchange interaction. The conversion of the incoming electric 
current into spin polarization state in the ferromagnetic nanostruc-
tures can be produced by the effective bias field of the s–d-
exchange interaction in the magnetic layer acting as a spin polar-
izer. The spin polarization occurs as the results of the spin splitting 
of the electron band spectrum on the two branches with and without 
their intersection by the Fermi level (Fig. 1) (see [6]) that corre-
spond two (Fig. 1, b) and single (Fig. 1, c) channel conductions of 
the electrons with different spin projections relatively to the mag-
netization. 
 In the usual two-channel case, the majority electros with the spin 
projection parallel to the magnetization, occupy the one conduction 
channel and the minority electrons with the antiparallel spin projec-
tion occupy the another conduction channel. This results in the in-
complete spin polarization of the electric current. In the single-
channel case, which is realized for magnetic semi-metals [6], the 
conduction electrons with the fixed spin projection occupy only one 
conduction band and the incoming current converts into the pure 
spin current. 
 The impact of the polarized electric current on the magnetization 
occurs through the exchange interaction between the corresponding 
spin polarized current and the controlled localized spins. The pas-
sage of the spin-polarized current into the controlled magnetic 
nanolayer causes the spin torque exerting the magnetization switch-
ing or precession. 

 
a    b   c 

Fig. 1. Scheme of the spin splitting of the band spectrum caused by the 
exchange interaction Jex, where  and  are the densities of electron 
states with different spin projections (), M is the magnetization vector: 
a—nonmagnetic metal, b—ferromagnetic metal, c—magnetic semimetals. 
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 In the mentioned case, the transfer electron charges into the con-
trolled magnetic layer results in thermal losses and increase of a 
power consumption. This imposes restrictions on contact sizes, 
which have to provide the threshold density of the spin current sub-
ject to the condition that the electric current does not exceed the 
value of an electrical breakdown. These problems can be avoided by 
the utilizing the spin–orbit interaction for the spin polarization. In 
this case, the exchange interaction of the spin current with the lo-
calized spins is provided without passage of the charge current in 
the magnetic nanolayer [1–7]. 
 The spin–orbit interaction in the two-dimensional systems with 
the broken structure inversion symmetry, known as the Rashba 
spin–orbit interaction [1, 2, 10–11], is realized in the interfaces of 
the magnetic nanostructures with two-dimensional electron proper-
ties and an interfacial potential drop. In a single-electron approxi-
mation, this interaction is described by the two-dimensional expres-
sion for a quasi-relativistic correction [2]. Taking into account the 
electric field E  Ezz along growth direction z, the corresponding 
Rashba Hamiltonian can be represented as 

 R R
 H B     R

R

 
   

 


  B z p  (1) 

where R  Ez is the Rashba parameter, BR is the effective Rashba 
magnetic field, which is dependent on the electron momentum p, 
and  is the vector of the Pauli spin matrices. Equation (1) de-
scribes the characteristic properties of the Rashba spin–orbit inter-
action, although in realistic systems, the broken inversion symme-
try causes distorts of the free electron wave functions near to 
atomic nuclei and consequently, it changes a spin–orbit interaction 
[2]. Due to Eq. (1), the effective Rashba field BR exerts the spin 
precession of the conduction electrons. In addition, one leads to the 
symmetric spin splitting of the single-electron dispersion along the 
conduction electron momentum that experimentally observed in in-
terfaces of magnetic nanostructures (Fig. 2). 
 The spin-polarized electric current lies in the plane of the mag-
netic layer and one does not pass in the normal direction. Its inter-
action with the localized magnetization occurs through s–d-
exchange interaction in the form of Hsd  JsdS, where Jsd  Jc, 
where Jc is the input electric current and S is the localized spin. 
Thereby, the change of the incoming electric current results in the 
corresponding change of the magnetization. The application of an 
electric field along the vector z results in changes of the Rashba 
parameter and magnetization dynamics, which is restricted by the 
magnetization switching. 
 The spin polarization of the electric current can be caused by the 
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spin Hall effect [7, 8], in which the passage of the electric current 
through heavy metal (for instance, Pt, Ta) with the strong spin–
orbit interaction exerts the spin dependent transverse deviation of 
the electric current and the transverse pure spin current. The spin 
orientation of the latter is perpendicular to the electric current and 
the interface normal (Fig. 3). The electric current lies in the plane 
of the adjacent heavy metal nanolayer and do not pass into the 
magnetic nanolayer. This avoids the mentioned constraints on con-
tact sizes in the magnetic nanostructure and leads to reduction of 
the threshold current densities and the energy consumption. 
 The additional transverse momentum component p⊥ in the spin 
Hall effect is proportional to the derivative of the spin–orbit inter-
action Hso  [Vp] with respect to the momentum p, i.e. p⊥   
(see [8]). The solution of the corresponding Schrödinger Hamilto-
nian with the spin–orbit interaction gives that the action of the lat-
ter on the conduction electrons is equivalent to the action of the 
effective spin-dependent Lorentz force F  [vB], where v is the 
electron velocity, and B  [A] is the spin-dependent effective 
magnetic field. Here, A  [Etot] is the effective magnetic poten-
tial with Etot being the total electric field [8]. The effective field B 
causes the transverse deviation of the electric current with genera-
tion of the transverse spin current. The charge current passes along 
the heavy-metal nanolayer and the generated spin current passes 
into the controlled magnetic layer where owing the exchange inter-
action through the torque changes the magnetization dynamics. 
This can lead to the magnetization precession or switching. 

 

Fig. 2. The dispersions of the two-dimensional electron gas previous to (on 
the left) and after (on the right) action of the Rashba spin–orbit interac-
tion causing the spin-splitting along the planar momentum vector k∥; R is 
the Rashba parameter, kR is the offset away from k∥  0 of the spectral 
curves relative to the initial position. 
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3. THE SPIN–ORBIT-INDUCED TORQUE 

Current-driven magnetization by spin–orbit torques related to the 
nonequilibrium spin density of different origin subject to contribu-
tions of the interface spin–orbit Rashba effect and the bulk spin 
Hall effect in the layered magnetic nanostructure. Dependences of 
the corresponding Rashba (TR) and spin Hall (TSH) torques on the 
spin polarization and localized magnetization are similar, though 
the ratios of longitudinal and transverse components of each are 
different. The latter is related to features of their spin and charge 
density diffusion. 
 Two different mechanisms have been suggested and give rise to 
spin–orbit torque in bilayers consisting of a heavy-metal substrate 
and a thin ferromagnetic layer deposited on top of it. The first 
mechanism is attributed to the spin Hall effect [2] that generates a 
spin current from the substrate towards the ferromagnet. The sec-
ond mechanism is due to the generation of a current-induced spin 
accumulation at the interface between the two materials, where 
magnetism, spin–orbit coupling, and broken inversion symmetry 
coexist. 
 The characteristic features of the spin–orbit torque in magnetic 
nanolayers can be described in the framework of the s–d model 
Hamiltonian [10, 11] 

 
 

     
 

     
2

2

1
( ) ( )

2 sd d
H V J

m mc
p

r sS V p s , (2) 

 

Fig. 3. The spin Hall effect of the spin–orbit conversion of the input elec-
tric current j in the transverse spin current js with the spin polarization 
denoted by arrows along the y axis in the two-layered magnetic nanostruc-
ture. The latter is composed of the bottom layer made of heavy normal 
metal (N) and the strong spin–orbit interaction and the upper ferromag-
netic layer (FM). The spin current exerts on the dynamics of magnetiza-
tion n of the magnetic layer; H is external magnetic field. 
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where the first bracket separated expression is the sum of kinetic 
and potential energy, the second term is the s–d-exchange interac-
tion between itinerant electron spin s and the localized spin Sd. In-
troduction of the spinor wave function (r,t)  [

(r,t), 
(r,t)], 

spin current density magnetization m  
*(r,t)s(r,t) and current 

density Js  (ћ/m)[ *(r,t)sr
*(r,t)] give equations, which after a 

quantum-mechanical averaging gives 

 

ex

2

ex

1
[ ]

s

Jd
J V

dt mc

Jd d
dt dt

         

      

m
M m p s

M M
M H M M m+ +

 (3) 

where M is the unite vector of the localized magnetization, H is the 
effective field,  is the gyromagnetic ratio,  is the Gilbert damp-
ing. Here, the latter term in the first equation describes the spin–
orbit torque T, which at a uniform magnetization (Js  0) takes 
the form as follows: 

 ex

2

1
[ ]

J
V

mc
      T M m p s=  (4) 

The spin–orbit torque can be represented in the general form: 

 
  T T T  (5) 

where T∥ is the field-like torque dominating in interfaces with the 
spin–orbit Rashba effect leading to magnetization switching. The 
damping-like torque T⊥ is small in interfaces but large in the bulk 
of magnetic layer where the spin Hall effect operates. 
 For ferromagnetic nanolayers, 

 [ ]  T y M    [ ]

   T M y M  (6) 

where y is the spin-polarization direction. Omitted coefficients in 
Eq. (6) are determined by features of spin and charge density diffu-
sion, which have the form of the coupled system [11] in the two-
dimensional interfaces: 

 2
( ) )

z z

n
D n B n R R

t


        


s M M sM M(sM  (7) 

 2 1 1 1
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z sd z

sd

D B J B n
t T






             

  

s
s s s s s M M Ms  

            2 2 ( ) [ ( ) ( )]
z z z z

C R ns M M M M+ s s . (8) 

Here, n and s are the charge and spin densities, z  z. The spin 
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density s∥  sxx  syy relaxes at a rate 1/sd  1/sf while s⊥  szz has 
a rate 1/⊥  2/sd  1/sf. 
 For a broad range of the relative strength between spin–orbit 
coupling and the exchange splitting, Eq. (7) and Eq. (8) describe 
spin dynamics in ferromagnetic layer. The B-term provides a source 
that generates spin density electrically. The C-term describes the 
coherent precession of the spin density around the effective Rashba 
field. The precession of the spin density (induced by the Rashba 
field) around the exchange field is described by the -term. The R-
term contributes to the magnetization renormalization. 

4. CONDITIONS OF A ROBUSTNESS OF MAGNETIC DYNAMICS 

In ferromagnet (FM)/normal metal (NM) heterostructures, spin 
pumping and spin-transfer torques are two reciprocal processes that 
occur concomitantly. Their interplay introduces a dynamic feedback 
effect interconnecting energy dissipation channels of both magneti-
zation and current. The solution of the spin diffusion process in the 
presence of the spin Hall effect (SHE) in the normal metal shows 
that the dynamic feedback gives rise to a nonlinear magnetic damp-
ing that is crucial to sustain uniform steady-state oscillations of a 
spin Hall oscillator [14–17]. 
 In FM/NM heterostructures, nonlocal effects arise because con-
duction electrons and magnetization reside in different materials 
and couple only at the interface. In this regime, spin pumping plays 
the role of spin electromotive force (SMF), which refers to the gen-
eration of spin current from a precession FM into the NM [16]. The 
pumped spin current is accompanied by a backflow of spin current 
[15, 16], which reacts on the FM through the spin transfer torque 
(STT). The combined effect of spin pumping and backflow-induced 
STT renormalizes the spin-mixing conductance at the interface [12, 
14]. However, in the presence of the SHE, spin pumping and spin 
backflow are also connected by the combined effect of the SHE and 
its inverse process, which forms a feedback loop as illustrated in 
Fig. 4. 
 This additional feedback mechanism, proportional to 2

S, where S 
is the spin Hall angle, that is essential to the electron transport in 
FM/NM heterostructures. Consequently, this feedback effect is im-
portant to the magnetization dynamics. In a reciprocal sense, if we 
apply an ac current density to the NM, the SHE will drive the mag-
netization precession via the STT, which in turn can pump spin 
current back into the NM and renormalize the resistivity by means 
of the inverse SHE. 
 The feedback effect qualitatively modifies the dynamical behav-
iour of an FM/NM heterostructure. The feedback manifests as a 
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novel nonlinear damping effect in the magnetization dynamics. It 
enables uniform auto-oscillations of a spin Hall oscillator and pre-
vents magnetic switching. The feedback effect gives rise to a spin 
Hall magnetoimpedance in the electron transport, which reduces to 
the observed SMR in the dc limit. 
 Consider a FM/NM bilayer structure as shown in Fig. 4, where 
the layer thicknesses are dM and dN, respectively. The coordinate 
system is chosen such that the magnetization direction at rest is 
along x direction, and the interface normal is along z direction. It 
is assumed that the FM is insulating (e.g., YIG), but the essential 
physics remains valid for a conducting FM since the feedback proc-
ess takes place only on the NM side. Let 0/2 be the electrochemical 
potential and  the vector of spin accumulation in the NM. The 
charge (JC

i) and the spin (JS
ij) current densities are 

0
2

C

i i S ijk j k
J

c


            and 

0
2

S

ij i j S ijk k
J

c


           , 

respectively, with i denoting the transport direction and j denoting 
the direction of spin polarization. In given device geometry, only 
the spin current flowing along z-direction is relevant, thus we as-
sume   (z,t). Correspondingly, the spin current density reduces 
to a vector JS; we scale it in the same unit as the charge current 
density JC. The electron and spin dynamics in the NM are described 
by three equations 
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Fig. 4. In a FM/NM bilayer, spin pumping and spin backflow are connected 
by the SHE and it inverse process (ISHE). 



240 A. M. KOROSTIL and M. M. KRUPA 

 0
02 SS

J z
e z z
 
 
 

  
    

 
, (11) 

where D  is the diffusion constant, sf is the spin-flip relaxation 
time,  is the conductivity, e is the electron charge, and S is the 
spin Hall angle. 
 To solve the spin accumulation , we assume that the charge cur-
rent density JC is fixed by external circuit and is uniform in space. 
Besides that, we have two boundary conditions: JS(dN)  JS0  0 and 

  
.

0 0S S

G
e
 

     
 

J M M M Mr  , (12) 

where S0  (0) and Gr is the real part of the areal density of the 
spin-mixing conductance (the imaginary part is the real part of the 
areal density of the spin-mixing conductance (the imaginary part Gi 
is neglected since Gr  Gi). On the right hand side of Eq. (12), the 
first term is the STT and the second term is the spin pumping. 
They are two fundamental ingredients bridging the electron (spin) 
transport in the NM with the magnetization dynamics of the FM. 
Due to the conservation of spin angular momentum, the spin cur-
rent density JS0 is absorbed by the FM, which is reflected by the 
Landau–Lifshitz–Gilbert (LLG) equation: 

 


     ex
eff 0 02 S

S M

d d
dt dt eM d
M M

H M M J+ + , (13) 

where  is the gyromagnetic ratio, ћ is the reduced Planck constant, 
MS is the saturation magnetization, 0 is the Gilbert damping con-
stant, and Heff is the effective magnetic field. For typical FMs, the 
magnetization dynamics is much slower than the spin relaxation 
rate in the NM so that rsf  1. In this limit, the spin accumula-
tion (z,t) adapts to the instantaneous magnetization orientation 
and is kept quasi-equilibrium. As a result, the spin dynamics de-
scribed by Eq. (9) reduces to a stationary spin diffusion process at 
any specified time. Retaining to second order in 2

S, Eq. (9) is 
solved as 
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where sfD   is the spin diffusion length. Here, it is suppressed 
the t variable in (z) since its time dependence simply originates 
from JC and JS0. Combining Eq. (9), Eq. (14), we can either elimi-
nate the electron degrees of freedom (JC and JS0) to derive an effec-
tive dynamics of the magnetization, or eliminate the time derivative 
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of the magnetization (M) to get an effective magnetotransport of 
the electrons. These operations amount to invoking the dynamic 
feedback mechanism. 
 Assume that JC is an applied dc charge current density. Our goal 
is to express the total spin current density JS0 flowing into the FM 
in terms of the magnetization M(t), by which the LLG Eq. (13) will 
no longer involve any electron degrees of freedom, and the feedback 
effect is thus implemented mathematically. To this end, we combine 
Eq. (12) and Eq. (13), which gives two convoluted relations of JS0 
and S0. By means of iterations truncating at 2

S order, we can solve 
JS0 as a function of JC, M(t) and its time derivative. Then, we insert 
this JC into Eq. (13), which yields the effective magnetization dy-
namics: 
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where jS is the unite vector of JC, and 
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is the strength of the STT (driven by JC) scaled in the frequency 
dimension. The two damping coefficients are 
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Here, asp describes the conventional enhanced damping from spin 
pumping with the spin backflow effects taken into account [16]; it 
is independent of the SHE. By contrast, the asp term is completely 
new. It reflects the dynamic feedback realized by virtue of the com-
bined effect of the SHE and its inverse process as schematically 
shown in Fig. 11. Equation (15) shows that this novel damping term 
is nonlinear in M⊥: the component of M transverse to the effective 
field Heff, whereas the Gilbert damping term is linear in M⊥. 
 The feedback-induced nonlinear damping effect can be understood 
in an intuitive way. If the magnetization precession is getting lar-
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ger, it will trigger a chain reaction: first, the pumped spin current 
JS0 increases, then the spin diffusion becomes stronger (i.e., |zS| 
gets larger). This will necessarily lead to a larger 0 in the NM ac-
cording to Eq. (10), as we have fixed the current density JS. Fi-
nally, the change of the emf will feed back into JS0 according to Eq. 
(11), preventing its further increase. As a consequence, the growing 
magnetization precession is inhibited. The entire process realizes a 
negative feedback and respects Lenz’s law. 

5. INTERCONNECTION OF SPIN CURRENTS AND MAGNETIC 
DYNAMICS IN AF BASED NANOSTRUCTURES 

The spin pumping and spin-transfer torque in AF based nanostruc-
tures represent the combined effect of their action in each of mag-
netic sublattices of the AF coupled by a strong exchange interac-
tion. Magnetization dynamics of these coupled sublattices leads to 
an AF order (l) dynamics manifesting as precession and switching. 
Similarly, to the magnetization in the ferromagnetic case, the AF 
order precession generates the spin pumping current, which via the 
inverse spin Hall effect in adjacent nonmagnetic nanolayers can 
converts into the transverse charge current. Thereby, the influence 
of the AF dynamics on the charge current in AF nanostructures is 
realized [17]. The inverse impact of the charge current on the AF 
precession is realized via the spin Hall effect of the conversation of 
the charge current into the transverse spin current that owing to 
the exchange interaction exerts the spin transfer torque on the AF 
order precession. 
 Characteristic features of the AF dynamics and its interconnec-
tion with the spin currents in the form of the precession-induced 
spin pump and spin transfer torque is manifested in the AF two-
sublattice model with an easy axis is directed along the axis z with 
magnetization unite vectors m1 and m2. These vectors are driven by 
the exchange interaction, the anisotropy, and a magnetic field in 
the z direction. In units of frequency, they are represented by F, 
A, and H  H0, respectively. The equations of motion in a free 
precession approximation are 

   ( ) ( )               
1 1 2 1 2 2 1 2

,  ,
E E H E E H

m m m z T m m m z T   

(19) 

where the effective field causing the magnetization precession in a 
magnetic sublattice contains the contribution from the exchange 
interaction with an adjacent magnetic sublattice. In line response, 
when m1(2)  z  m1(2)⊥e

it at |m⊥|  1, the resonance frequencies are 
then 
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 ( 2 )
H R H A A E

            , (20) 

where the two corresponding eigenmodes are characterized by dif-
ferent chiralities. The left-handed (right-handed) mode, both m1and 
m2 undergo a circular clockwise (counterclockwise) precession with 
 phase difference. In the absence of magnetic field, viz. H  0, the 
two modes are degenerate. 
 Due to grasp, the essential feature of spin pumping by AF is to 
consider m1 and m2 as two independent F subsystems. Then, spin 

currents pumped from them will be proportional to 
1 1
m m  and 

2 2
,m m  respectively. Since from 

1 2
 m m  and 

1 2
, m m  the to-

tal spin current is roughly proportional to l l , where l  (m1 – m2)/2 
is the staggered field. However, a more careful analysis reveals that 
the cone angles of m1 and m2 are different: in the left-handed 

(right-handed) mode, 2/1   (1/2  ), where      2
(1 / )

A E , 

so that a small magnetization m  (m1  m2)/2 will be induced in the 
AF dynamics state. 
 The spin currents in AF nanostructure determined by mixed scat-
tering channels associated with different sublattices on the N/AF. 
Typical AF materials are insulators and incident electrons from the 
normal metal cannot penetrate far. Only a single atomic layer of AF 
directly connected to N suffices to describe the dominant contribu-
tion to interface scattering. Therefore, the essential physics is cap-
tured by modelling the N/AF interface as being semi-infinite in the 
transport direction and infinite in the transverse direction. 
 In the nearest-neighbour tight-binding model on a cubic lattice, 
in terms of the hopping energy in N and AF t and tm, respectively, 
and the exchange coupling J between the conduction electron spins 
and the magnetic moments, in the linear approximation in the small 
the small m, the scattering matrix S is 

 0 1 0 3 0
[ ( ) ( )]S S S S


            l m , (21) 

where 1,2,3 are pseudospin Pauli matrices for sublattice degree of 
freedom,  are the vector of spin Pauli matrices, and 0 and 0 are 
identity matrices. The last two terms of Eq. (21) with a common 
coefficient S are spin dependent and represent the umklapp scat-
terings and normal ones, respectively. Pumping currents are related 
to the coefficients in Eq. (21) through the spin-mixing conductance, 

mix r i
G G iG  , 

2
2 2

( / ) | |
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G dk dk  e A S S , 
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where dky and dkz are the transverse momentums and A the inter-
face cross section. The conductance is determined by the scattering 
matrices with spin flip on the N/AF interface. By integrating over 
the Fermi surface, it can be shown that spin transfer on a compen-
sated N/AF interface is similar in magnitude to the case of an un-
compensated N/F interface. This implies a similarity between the 
natures of spin pumping and spins transfer torque effects in AF 
and F nanosystems. 
 Although the AF resonance frequency reaches the THz region (1–
10 meV), the motion of the staggered field remains adiabatic, as 
evidenced by comparing the resonance frequency with two charac-
teristic energy scales: (i) the Fermi energy in N is a few eV; (ii) the 
exchange coupling between conduction electron spins and magnetic 
moments can be as large as eV. As a result, the spin eigenstates and 
the scattering matrix Eq. (21) adiabatically adapt to the instantane-
ous configuration of AFs. Regarding the staggered field l and the 
magnetization m as two independent adiabatic parameters [19], we 
obtain the pumped spin current IS with the scattering matrix S in 
Eq. (21) 

  s r i

e
G G    l l m m mI . (22) 

Equation (22) can indeed be interpreted as arising from a coherent 
sum of two independent F spin pumping contributions by m1 and 
m2. However, the spin-mixing conductance Gr and Gi are different 
from those of F due to the mixing of scattering channels from dif-
ferent magnetic sublattices. Moreover, AF dynamics is much faster 
than F that corresponds to a stronger spin pumping. 
 By taking a time average of Eq. (22) over one period of oscilla-
tion, only the first two terms survive and contribute to the dc com-
ponent of spin current 

dc

s
I . Despite that |m|  |l|, the contribution of 

m m  to 
dc

s
I  can be comparable to that of l l . This is because 

dc

s
I

is proportional to the cone angle 2 of precession and the cone angle 
associated with the staggered field is much smaller than the one as-
sociated with the magnetization, l  0 but m  /2. 
 From the sublattice degree of freedom involved in the AF dynam-
ics, it follows a staggered spin pumping. A staggered spin current 
represents the imbalance between the spin current carried by the 
two sublattices. It has three components 

( )i

ss
I  (i  1, 2, 3) associated 

with three pseudospin Pauli matrices. In a similar manner as spin 
pumping, we find that 

 
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where 

e A S S
 
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y z
G dk dk  

results from intersublattice scattering that is unique to AFs. After 
the time average, (1)

ss
I and (2)

ss
I drop out, only (3)

ss
I survives. This time, 

the dc component dc

ss
I  is an even function of  in the absence of 

static magnetic field. Elastic scattering in the normal metal will de-
stroy any staggered spin accumulation, which decays on the time 
scale of ћ/t. Therefore, the staggered spin current can only be well 
defined within a distance of the mean free path away from the in-
terface. 
 The reciprocal effect of spin pumping is STT, which describes the 
back action that a spin current exerts on the AF. In linear response, 
an AF is driven by two thermodynamic forces /

l
  f lF  and 

/
m
  f mF  (energy dimension), where 
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is the free energy. Here, 0 and n are the homogeneous and inho-
mogeneous exchange frequencies, respectively. It can be easily 
shown that 0  A  2E. Enforced by ml  0 and (l)2  1, the sym-
metry allowed dynamics are ( )3

/
m
l f l= a v  and ( )3

/
l

a v  m f l  

m
 f m  [20], where v is the system volume. Inserting them into Eq. 
(22) gives the response of the spin current to fm and fl. Invoking the 
Onsager reciprocity relation, we derive the response of l and m to a 
given spin voltage Vs in the normal metal, which are identified as 
two STT terms l and m. To linear order in m, 
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that treats STTs on the two sublattices as completely independent. 
 In solving the AF dynamics, it is instructive to eliminate m and 
derive a closed equation of motion in terms of l alone [21]. Truncat-
ing to linear order in Vs, m, and l, we obtain the effective dynamics 

    
3

2 0

0

r
R s

a G

ev
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where —the Gilbert damping constant, and l⊥ are perpendicular 
components of l with respect to the easy axis. Since the STT only 
acts on the interface and we consider a thin AF film, we have dis-
regarded a possible nonuniform motion of l. Solution of Eq. (25) for 
the spectrum in the case Vs, which is collinear with the easy axis, 
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has the form 
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For small Vs,  has a negative imaginary part so that any perturbed 
motion will decay exponentially in time and the system is stable. 
However, a sufficiently large Vs will flip the sign of Im[], which 
makes the system unstable and marks the onset of uniform AF exci-
tation. The condition Im[]  0 determines the threshold spin volt-
age 3

/( )
th

s l r
V ev a G   , where  () corresponds to the excitation 

of the right-handed (left-handed) mode. The chirality selection by 
the sign of the spin voltage is just consistent with the direction 
control of spin pumping by the microwave polarization. Since Gr 
scales linearly with the interface area, th

s
V  scales linearly with the 

thickness of the AF layer. 
 In real experiments, a challenge arises from the large R, but we 
can still get reasonable th

s
V  by reducing the layer thickness. For 

MnF2 of few nm thick, the threshold spin voltage is estimated to be 
10–100 V. The STT-driven AF dynamics suggests the feasibility of 
building a spin-torque nanooscillator using AFs, which generates a 
THz signal from a dc input without the need of static magnetic 
field. 

6. THE CURRENT-INDUCED DYNAMICS OF AFS IN SPIN HALL 
GEOMETRY 

In the framework of the current-induced dynamics of insulating an-
tiferromagnets in a spin Hall geometry, sufficiently large in-plane 
currents perpendicular to the Néel AF order can trigger spontane-
ous oscillations at frequencies between the acoustic and the optical 
eigenmodes [12, 14, 17]. The direction of the driving current de-
termines the chirality of the excitation. When the current exceeds a 
threshold, the combined effect of current-induced torques and spin 
pumping introduces a dynamic feedback that sustains steady-state 
oscillations with amplitudes controllable via the applied current. 
This permits to obtain the spin Hall (SH) nanooscillator with oper-
ating frequencies in THz range. 
 When an applied STT compensates the magnetic damping, the 
magnetization becomes unstable: it either switches to another direc-
tion or evolves into a steady-state oscillation. While the former im-
proves writing operations in magnetic memory devices, the latter 
enables sustainable ac signal generation from dc inputs, giving rise 
to spin-torque oscillators (STOs) [22, 23]. In ferromagnets, currents 



FEATURES OF MICROWAVE MAGNETIC DYNAMICS IN NANOSTRUCTURES 247 

or magnetic fields can tune the STO output frequency from the 
MHz to the GHz regime. 
 STOs can potentially be operated at much higher THz frequencies 
when antiferromagnets (AFs) replace ferromagnets. Two features 
make this possible: (1) the eigenfrequencies of typical AFs fall into 
the THz range; (2) an anti-damping STTs can trigger spontaneous 
excitations of an AF. While most AFs are insulators where STTs 
cannot be operated by passing through a current, the spin Hall ef-
fect (SHE) can produce STTs even when electrons do not flow 
through the magnet [16]. Therefore, integrating STOs with the SHE 
paves the way towards low-dissipation spin Hall nanooscillators 
(SHNOs). 
 However, to realize AF-based SHNOs, current-induced excitations 
should not grow indefinitely, but instead should evolve into steady-
state oscillations and generate a substantial ac output. Although an 
AF under the action of an anti-damping STT does not suffer mag-
netic switching, its Néel AF vector experiences either no dynamics 
or a right-angle precession around the direction of the spin accumu-
lation [5]. Since the oscillation amplitude is not continuously tune-
able via the applied current, the device does not meet the require-
ments of an SHNO. 
 Steady-state oscillations are realizable in ferromagnetic STOs for 
the following reasons. In a spin-valve device, the angle dependence 
of the Gilbert damping and that of the anti-damping STT differ. As 
a result, when the driving current is above the threshold, there ex-
ists a unique angle where the two competing effects compensate; a 
steady-state oscillation is stabilized at that angle. 
 However, this feature is no longer active where the SHE creates 
the anti-damping STT. Therefore, one needs to introduce alternative 
mechanisms to prevent a spontaneous excitation from growing into 
magnetic switching. For instance, the bullet mode localized in space 
exhibits a strong noncollinearity that can sustain auto-oscillations. 
On the other hand, to enable uniform excitations, the dipolar inter-
action is required. However, the dipolar interaction is negligible in 
AFs where the magnetization is vanishingly small. 
 We will exploit an above-mentioned feedback mechanism to jus-
tify that a THz SHNO is realizable in an AF/heavy-metal het-
erostructure. The feedback effect originates from the combined ef-
fect of the SHE and its reverse process that connects the spin 
pumping with the spin backflow [24, 25], which is independent of 
the dipolar interaction. First, we determine the threshold of spon-
taneous excitations by solving the AF order dynamics in the linear 
response regime and relate the threshold to a current density by 
studying the SHE in the heavy metal. Then, we numerically explore 
the nonlinear Néel AF order dynamics beyond the threshold by con-
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sidering the feedback effect, and show that the feedback is indis-
pensable to sustain uniform auto-oscillations. In the considerate 
case, THz SHNO generates a substantial ac voltage output with its 
amplitude continuously tuneable via the applied dc current. 
 For description of magnetic dynamics, we assume that the AF has 
the two-sublattice crystal structure with the sublattice magnetiza-
tions characterized by two unit vectors MA and MB. We introduce 
the AF vector l  (MA  MB)/2 and the small magnetization M  (MA  
 MB)/2; they satisfy Ml  0 and M2

A  M
2
B  1. In the exchange 

limit, M  1, thus l  1 and 0ll . The Cartesian coordinates are 
chosen such that the hard axis is along z, and the in-plane easy-axis 
along x. We scale everything in (positive) angular frequency, where 
the hard axis anisotropy is described by ⊥, the easy in-plane ani-
sotropy ǁ, and the Heisenberg exchange interaction E. In the mac-
rospin description, the free energy 
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which defines two thermodynamic forces ћfl  F/l, ћfM  F/M. 
The coupled equations of motion are as follow: 
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where  is the Gilbert damping constant, TM and Tl are the STTs 
given by [25] 
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Here, S is the vector of spin accumulation; its magnitude (in fre-
quency unit) represents the STT strength. To derive the current-
induced excitations, we decompose the AF vector as l  l⊥e

it, as-
suming |l⊥|  1. Restricting to linear order in l⊥, we eliminate M in 
Eq. (26), and obtain the eigenfrequencies as 
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where the  () sign corresponds to the optical (acoustic) mode. Due to 

the latter equation, the dependences of the real and imaginary parts 

Re[] and Im[] are characterized by degenerate lower of which 

Im[] remain degenerate and unaffected. However, at S  ⊥/2, 

Im[] reduces (grows) rapidly, indicating that the damping is dimin-
ished (enhanced) by the STT. At the threshold [25], 
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2

2
(2 )

4

th

S E


 


        . (29) 

Im[] vanishes, which marks the onset of spontaneous excitation of 
the optical mode and the breakdown of the linear response approxi-
mation. The uniaxial symmetry enforces that Im[] also vanishes 
for 

th

S
  so that the auto-oscillation can be triggered by a reversed 

current as well. 
 In the absence of the hard-axis anisotropy (⊥  0), the threshold 
Eq. (27) is linear in , so the anti-damping effect occurs when the 
STT is turned on. However, in the general case when ⊥  0, the 
anti-damping effect appears only when S  ⊥/2. Vectors MA and 
MB always exhibit opposite chiralities, i.e., they rotates counter-
clockwise (clock-wise). However, at the degenerate point S  ⊥/2, 
the chirality of MA (MB) in the optical (acoustic) mode reverses. 
Consequently, when S  ⊥/2, both MA and MB, hence the Néel vec-
tor l, all acquire the same chirality. At the threshold 

th

S
 , the ex-

cited optical mode is right-handed. If S changes sign, the optical 
mode is still excited, but its chirality becomes left-handed. These 
suggest that the direction of the current determines the chirality of 
the excitation. 
 Let us consider the critical-current two-layered nanostructure in-
sulating AF/heavy normal metal (HM) with strong spin–orbit cou-
pling (Fig. 5). 
 A current density Jc is applied along the y-direction; it is perpen-
dicular to the Néel vector of the AF. The SHE in the HM generates 
anti-damping STTs to drive the Néel vector dynamics, which in turn 
pumps spin current back into the HM. The pumped spin current 
converts into a charge voltage due to the inverse SHE. By solving 

 

Fig. 5. An insulating AF/HM heterostructure. The applied dc current den-
sity Jc drives the AF via the SHE. The dynamics of the AF pumps spin 
current back into N, and converts into electric field via the inverse SHE, 
which is monitored by two voltmeters. 
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the spin diffusion equation in the presence of the SHE under 
boundary conditions involving both spin-pumping and STT, we re-
late the threshold STT Eq. (27) to a critical current density 

 

2

3

( 2 cth )

2 th

N
M r

th th

c c
N

S r

d
d h e g

J
d

eg

 
 

  


, (30) 

where S is the spin Hall angle, gr is the areal density of the trans-
verse mixing conductance [25]. From Eq. (28), it is follows that the 
critical current density th

c
J  can be lowered by reducing (increasing) 

the thickness of the AF dM (HM dM). 
 The sustained steady-state oscillation of the Néel vector in the 
mentioned nanostructure can be realized via the dynamic feedback 
effect. The pumped spin current from a processing AF vector into 
the HM experiences a backflow [25]. In HMs, however, the spin 
pumping and the spin backflow are also connected via the combined 
effect of the SHE and its inverse process, which feeds the Néel vec-
tor dynamics back into itself. In ferromagnets, such a feedback 
mechanism manifests as a nonlinear damping effect in the magneti-
zation dynamics. Similar feedback-induced damping effect can oc-
curs for AFs. In this case, the pumped spin current into the HM 
converts into an electric field E due to the inverse SHE. 
 According to Ohm’s law, Jc  E  S[/(2e)]zzS, where S is 
the spin accumulation in the HM. At the fixed current density Jc 
through external circuits, a change of the electric field E necessar-
ily leads to a change of the spin accumulation S. Subsequently, the 
change of S diffuses and generates an additional spin current, 
which will finally deliver the influence of spin pumping back into 
the Néel vector through STTs. By closing such a feedback loop, we 
obtain a feedback torque that should be added to Eq. (27) as 

      2
( )

FB NL z z
l lT l l z l  (31) 

where the feedback coefficient is 
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r

d
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e g
 
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 
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 



. (32) 

While the feedback effect seems to be a higher-order effect as aNL is 
proportional to 2

S, it can be significantly enhanced by searching 
for materials with large S. The feedback-induced nonlinear damp-
ing is a critical ingredient because it dramatically modifies the dy-
namical behaviour of an SHNO using AF. 
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