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MODELLING OF PHASE FORMATION
IN SOLID-SOLID AND SOLID-LIQUID
INTERACTIONS: NEW DEVELOPMENTS

Recent developments (after 2016) in modelling of phase formation during solid—solid
and solid—liquid reactions by SKMF (Stochastic Kinetic Mean-Field) method, Monte
Carlo simulation and phenomenological modelling are reviewed. Reasonable results
of multiphase reactive diffusion modelling demonstrating distinct concentration
plateau for each intermediate ordered compound and distinct concentration steps
between these phases are obtained by the SKMF and Monte Carlo methods, if one
takes into account interatomic interactions within two coordination shells and if the
signs of mixing energies are ‘minus’ for the first coordination shell and ‘plus’ for
the second one. Second possibility for reasonable modelling results is consideration
of interatomic interactions depending on local concentration with maxima around
stoichiometric composition. In phenomenological modelling, the generalization of
Wagner diffusivity concept and respective superposition rule are introduced. New
mechanism of the lateral grain growth in the growing phase layers during reactive
diffusion is suggested. Anomalously fast grain growth at the final stages of solder-
ing in sandwich-like Cu—Sn—Cu contacts is reported and explained. Simple model of
Zn-additions’ influence on the Cu—Sn reaction is described.

Keywords: interdiffusion, intermediate phases, ordering, modelling, mean-field ap-
proximation, noise, Monte Carlo method, soldering

1. Introduction

Reactive diffusion is a process of interdiffusion (when both reagents are
in condensed state) or one-side diffusion (if one of reagents penetrates
into condensed phase from the gas phase) accompanied by the forma-
tion, growth and (in many cases) competition of chemical compounds
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which in most cases are in fact the ordered intermediate phases. Reac-
tive diffusion controls such important processes as soldering [1], braz-
ing, SHS and 3D-printing [2, 3], silicide formation in the integral cir-
cuits [4], at the point contacts of nanowires [5], sintering of binary and
multicomponent powders [6] etc. Our present topic, in short, is model-
ling (by various methods) of reactive diffusion. We mean the new re-
sults obtained during last few years, after the reviews [7, 8].

‘Solid-state reactions’ is a chemical term, but we will treat these
reactions from the physical point of view. For physicist, reaction in the
contact zone of two materials is a phase transformation in an open in-
homogeneous system. It includes nucleation, ordering, growth, coarsen-
ing of new phases in the sharp concentration gradients, which decrease
with time. Action of sharp concentration gradient is in some sense ana-
logical to high cooling rate [9]: High cooling rate (quenching) may sup-
press partially or practically all phase transformations. Sufficiently
sharp concentration gradient also may suppress partially or practically
all intermediate phase formations; this was demonstrated earlier in col-
laboration with Pierre Desre and Fiqiri Hodaj [10—-15].

Despite big progress in understanding of solid-state reactions, many
problems still remain unsolved (choice of reaction path in multiphase
system, interdependence of grain-structure evolution and reaction ki-
netics during reactive diffusion, influence of third component on the
product and kinetics of solid-state reactions, voiding during reactive
diffusion, phase competition in SHS reactions etc.)

We will discuss some new results on solid-state reactions modelling
obtained after 2016 by 3 methods — (1) stochastic kinetic mean-field
method, (2) Monte Carlo, and (3) phenomenological modelling.

2. Modelling of Solid-State Reactions
by Kinetic Mean-Field Method with Stochastic Additions

Since 2014 our group, jointly with the group of Professor Erdelyi, has been
developing the so-called Stochastic Kinetic Mean-Field method (further
below SKMF), which is, we would say, not a new method but a new ver-
sion, new development of non-linear Kinetic Mean-Field method (fur-
ther below KMF) suggested in 1990 by George Martin [16—23]. In 2013,
we generalized the quasi-one-dimensional Martin’s method on 3D-case
[18]. The main equations are, in fact, the master equations for the prob-
abilities of any site to be occupied by sort A or B (we shortly call these
probabilities ‘concentrations’). In the simplest case of exchange mecha-
nism within the first coordination shell, these equations are following:

dCc;t[i] ) ZZ; (=C,[i1C; [in] T [i(A), in(B)] + 1)

+ C, [i]C,[in] T [in(A), i(B)]).
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Change rate of these concentrations are determined by the transi-
tion frequencies, which exponentially depend on the energy change dur-
ing transition, and energies, in their turn, linearly depend on concen-
trations:

I'[i(A), in(B)] = v, exp( 2;;] _

2
( E' — (E,[i]+ EB[in])J @)
=V, exp| — ,
ET
E,[i]= f (C,lin] -V, + Cylinl-V,,). (32)
E,lin] = i (C,linn]- V,, + Cylinnl-Vy,). (3b)

We remind that the energies in these equations are the expectation
(mean) values of interaction energies with neighbours obtained under
neglecting of correlations (for example, here, C,[in] is a probability of
neighbouring site ‘in’ to be occupied by sort A even if the probability of
site ‘i’ to be occupied also by sort A is unity) — this is exactly the basic
simplification in mean-field models.

If we put time derivatives in eq. (1) to be zero, we get steady-state
condition, which, in closed system, means equilibrium:

C,[i]1C,lin] I'[i(A), in(B)] = Cgxli]lC,[in] I'[in(A), i(B)], (4)
or, in other form,

CA[i] ex (EA[i] — EB[i]J c [ln] ex (EA[in] — EB[in]j
c, i P kT C,lin] ¥ KT :

()

From thermodynamic point of view, equilibrium means constant
chemical potentials of any component. If one takes the logarithm of eq.
(5), one gets the constant value of reduced chemical potential in all sites:

AL = 0,1 - i1 = #7 In L] [l}+E [i] - E,[i] =
l

. (6)
Culi 2V, > Clinl+ Z - (Vg — Vi)

B[ in=1

=kTIn

Thus, comparison of two approaches gives quite realistic atomistic
treatment of reduced chemical potential (change of Gibbs free energy
due to replacement of atom B by atom A) in terms of occupation prob-
abilities and interaction energies. Condition of steady-state with con-
straint of constant reduced chemical potential provides the nonlinear
equation for determining the long-range order, coinciding with Khach-
aturyan’s equations [24], obtained by him in the frame of concentration
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waves method:

- Z n—2Z-(V,, =V,
C,lil1= (1 - CA[i])exp [% Z CA[in]] eXp(“ ( 48 28 )J - (1)

in=1 kT

Reduced chemical potential in eq. (7) is found from the constraint
N —
> c,lil=NC,. (8)
i=1

We proved that the change rate of Gibbs free energy of the system
can be expressed in the form of sum containing only positive summands
and global ‘minus’ [21,22]:

dG ( E* j
— = -V, exp| — X
dt kT
NZ/2 i ]
x> [CB [i]Cslinlexp (Wj (Lsli] - fiaslinl)x  (9)

(i,in)
Auplil) fuplin]
X (exp (Wj exp ( ET \]]:| )

dc
dt

< 0(= 0 atequilibrium). (10)

KMF

Mathematically, the proof in [21, 22] is very similar to the proof of
Boltzmann’s H-theorem for entropy evolution. So, we rigorously proved
that the Kinetic Mean Field model may describe only relaxation processes
without any overcoming of energetic barriers. Thus, KMF cannot descri-
be the first-order phase transformations, including the nucleation stage.

To describe the overcoming of nucleation barrier, one has to intro-
duce some noise. The usual way of introducing noise of the Langevin
type is the random additions to the probabilities (concentrations) and to
the local order parameter [25]. In our case, due to strictly positive (and
less than unit) nature of probabilities, and due to matter conservation,
we prefer to introduce noise to transition frequencies (in other words,
to the atom-range fluxes between neighbouring sites). For simplicity,
we treat this noise of frequencies as a white noise, without any time
correlations. Moreover, in our case we do not need any additional long-
range order (LRO) parameter since concentrations/probabilities are in-
troduced at the atomic scale and they determine automatically the local
order parameter for every site according to standard definition of order
applied to finite atomic clusters. Thus, our KMF scheme was modified
in the following manner:

dcC,

- _i[qa -C)(T,; + 30/ )=(1-C)C (T, +drp )} (11
j=1
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A
ST — 20 \[3(2. random - 1), 12
T ( ) (12)
< BL /4" (1) 8T (¢') >= A28,8,,8(t —1). (13)

If one uses standard mean-field approximation with account of only
nearest neighbours interactions (within the first coordination shell),
one gets the following dependence of Gibbs free energy per atom on
temperature, on concentration, and on local order for solid solution and
for the ordered f.c.c. phases L1, and L1,:

gaerdert =6(C,V,, + CV,, )+12C,CLV,. + kT (C,InC, + C,InCy), (14)

ix

g =6(C,V,, +CpVy)+12C,CLV,

n n _n _n
T (CA+2]ln(CA+2J+(CA zjln(CA 2)+ (15)

2 b
+(CB —g)ln(CB -gj + (cB +gjln(CB +gj

gL12 =6 (CAVAA + C'BIfBB)-'- 12CACBV + %Vmixnz +

o (CA—ngln[CA—32)+(CB+32j1n(CB+32)+ (16)

+3(CB —gjln(CB —2}3[@, +2Jln(CA +£j

If we now simulate, using SKMF method, the interdiffusion in the
diffusion couple A—B, both materials with f.c.c. lattice and with coher-
ent initial interface between them, and take the following interaction
energies: V,, = -1-10% J, V,, = -1-102 J, V,, = —14.04-102' J only
within the first coordination shell, we get the following typical concen-
tration profile and typical ‘occupation probabilities map’ (Fig. 1).

One may see that the profile in Fig. 1 is very far from the typical
experimental concentration profiles after reactive diffusion with almost
horizontal concentration plateau corresponding to intermediate com-
pounds with almost stoichiometric composition and with distinct con-
centration steps between these plateaus. Similar problems are encoun-
tered also in case of Monte Carlo simulation of reactive diffusion with
formation of the ordered intermediate phases [26, 27].

To avoid this problem, we use the model accounting interaction
within two coordination shells. In mean-field approximation, the Gibbs
free energy for the disordered solution and for intermediate ordered
phases acquires the following form:

2
+ Vmixn +

ISSN 1608-1021. Usp. Fiz. Met., 2021, Vol. 22, No. 4 485



A.M. Gusak and N.V. Storozhuk

CA
0.8

Fig. 1. Snapshots of the concen-
tration profile (averaged over each

. ' ' . couple of (100) planes), and the
corresponding occupation proba-
bilities map at some moment of in-
terdiffusion in the couple A-B.
Profile contains three subregions
corresponding to three ordered in-

termediate phases but does not contain (at least, in visible form), the concentration
steps between concentration plateau corresponding to three intermediate phases

glisordered _ @ (CAVAIA + CBVBIB)+ 3 (CAV[Z‘ + CBVBI){B )+

1., (17)
+12C,C, |V 2Vm +kT(C,InC, + C,1InC,),
g =6(C, Vi +Cy Vi )+3(C, - Vi +Cy - Vih )+
+12¢C,C, - V! +6C,C, -V + (V”flx—%V”{fx]n + (18)
n n n
C,+—|In|C, +=|+|C, —= |In|C, ——
+kT( aJm(eg) (e fm(e-3)
2 b
+(CB—2JIH(CB—2] (c +2]1n(c,3+gj
g =6(C, Vi +Cy V3 )+3(C, - Vih +Cy - Vi )+
+12C,C, - V! +6C,C, -V + i(v,,{m—gv,,{{xj (19)

ar (CA—32]1n(CA—32)+(CB+32j1n[CB+32j
. :
+3|c, - |n|c, -2 |+3[c, + 2 |m|c, +3
4 4 4 4

To obtain the reasonable phase diagram with intermediate com-

pounds with narrow concentration ranges and distinct concentration
intervals between these ranges, we choose the mixing energy in the first
coordination shell as negative (which is standard choice) and the mixing
energy in the second coordination shell as positive. Moreover, we choose
their magnitudes in such a way, that
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Fig. 2. Composition de-
pendences of the Gibbs
free energy per atom,
Ag(C), for disordered
phase and ordered phases
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T=750 K, constructed in
the frame of mean-field -8
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(1) the effective mixing energy for the disordered phases,
VI +1VI.I is positive (so that disordered phase has a tendency to

decomposition), and
(2) the energy for the ordered phases (coefficient before the squared

order parameter), | V! — =V |, is negative.

For example, let us take the following interaction energies: V%, =
=Vi,=-102J, Vi, =-3.9-10% J, VI = Vi = -8.76-102 J, Vi, =
=-2.1072J.

Then, we construct the curve Ag(T,C) = g(T,C) - C-g(T,C = 1) —
-1 -0C)-g(T,C = 0) for disordered phase directly according to eq. (17).
In Egs. (18), (19), we at first minimize Ag(T,C,n) in respect to n at any
concentration C and temperature T. It gives the following curves Ag(C)
for disordered phase and ordered phases A,B, AB and AB, at T =750 K
(see Fig. 2).

Building such curves at various temperatures, and using the com-
mon tangent construction, we obtained the phase diagram [22] of our
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Fig. 4. Possible incre-
mental diffusion cou-
ples: (a) A—B with three
growing ordered phases
A,B (L1,), AB (L1,) and
AB, (L1,) (b) A—AB, with
two growing ordered
phases A,B and AB, (c)
A;B-AB, with single
growing ordered phase
FHBREPESEE Tl AB, (d) A-AB with sin-
d gle growing phase A,B

model system, and at once checked it by the method of diffusion cou-
ples. For example, we constructed the thin-film diffusion couple A—or-
dered A,B, and simulated interdiffusion until full equilibrium — two
plateaus with concentrations corresponding to two ends of the same tie
line between solution of B in A and compound A,B (see Fig. 3).

After this we simulated interdiffusion in the diffusion couples with
various starting compositions (incremental diffusion couples) — Fig. 4.

Now we show some of simulation results. Concentration is averaged
over each couple of (100)-planes.

Simulation of diffusion in A—AB couple (Fig. 5) shows the formation
of A,B concentration plateau with distinct concentration steps between
this phase and parent phases A and AB. Width of this plateau (actually,
of its ratio to the total size of diffusion couple) grows parabolically. The
rate constants obey Arrhenius law.

It is interesting to compare the simulation results with analytical
predictions, obtained in the frame of Matano—Boltzmann—Wagner anal-
ysis. It is well known that the kinetics of phase layer growth is deter-
mined by Wagner diffusivity, which is the integral of interdiffusivity
over the concentration range of intermediate phase [28, 29]. In the
frame of Matano—Boltzmann analysis for the infinite diffusion couple
with terminal concentrations C,, C,,

1

g 9c]
dx

D) =- j(x—xM)dc, (20)

Cy

c

and we derived the following expression for Wagner diffusivity, and
used it for direct calculation of Wagner diffusivity (here, x,, is a Ma-
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Fig. 5. (a) Concentration profile (averaged over each couple of neighbouring (100)
planes and site occupation map, (b) time dependence of the squared reduced phase
width & =2Ax/L (L is a total width of the diffusion couple), (¢) Arrhenius-type de-
pendence of growth rate constants on inverse temperature

tano plane coordinate):

1 R C(x)

CR
D, = Cj D(C)dC = z—tj dxé[ (2 — x(c))de’ (21)
or, in discreet form,
dx 2 iR-1 i+l ) ) ) )
W =SS @ - ety n-ci. (22)
t oL j=iL
iR-1

Here, dx = x[i + 1] - x[i], iM = ¥ i-(C[i + 11~ C[il) /(C, - C,) .

i=iL
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C'A
0.8
0.6 -
0.4+
Fig. 6. Growth of single
0.2 0 ! ! ! ! intermediate phase AB

in the couple A,B-AB.:
Concentration profile
(averaged over each cou-
ple of neighbouring
(100) planes, and the
site occupation map

If one adopts the steady-state approximation (almost the same flux
at both boundaries of the same phase layer), which works very well for
growing phase layers with narrow concentration range [30], if one also
neglects the solubility of B in A-solution and treats intermediate phase
A.B as almost stoichiometric, then the flux balance equations for the
growth of this phase boundaries (left L and right R) in the couple A-A,B
have the following simple form:

(l_ojde __DAC:de __4DAac

4 dt  Ax dt Ax

= Ax* =16(DAC)™" ¢, (23)

1 1)dx, DAC _dx, DAC
J—— =+ = =44
2 4) dt Ax dt Ax
or, for reduced phase thickness,
2
t Ax 64dt ,~ A,B T
Poptt 4| = | =—=(DAC)’ —, 24
éldt (Lj Lz()dt (24)
~ A, B I?
DAC)” =k —— | 25
(Dac) ' 64dt .
2 2
N_) dX
ﬁk =7.8-10" m®/s.
64dt

On the other hand, direct calculation of Wagner coefficient according
to eq. (22) via direct Matano—Boltzmann calculation gives 7.0 - 104 m?/s.
We can see that the difference seems reasonable — within 10 percent.

Analogical results are obtained for the growth of single ordered pha-
se AB in the couple A,B—AB; (see Fig. 6).

Note that the growing phase layer, in our case, consists of two
sublayers representing two antiphase domains of the AB ordering, with
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Fig. 7. Growth and competition
of two intermediate phases in the
couple A—AB, for late (parabolic)
stage. (a) Squared reduced phas-
es thicknesses versus number of
time steps, (b) Ratio of parabolic
growth rates versus asymmetry
parameter, (¢) Logarithm of this
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v _yl
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different orientations of AB-‘zebra’. Boundary between two domains
(sublayers) corresponds to a peak in the middle of concentration
plateau.

Analytic solution in the steady-state approximation and under
assumption of practically stoichiometric compounds A,B, AB and AB,
gives:

(1 1jde_ D, Ac

2 4)dt A .

o Axt =16(D,,00) ¢ (26)
3 1)dz, | DAc
4 2) dt Ax
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Fig. 8. Suppression of A,B-phase at the initial
stage: logarithm of delay time versus reduced
asymmetry parameter

LZ
64dt
and direct Matano—Boltzmann calcula-
tion according to eq. (22) gives DAC =
=7.8-10" m?/s.

Thus, the difference between the va-
lues of Wagner diffusivity, obtained via
(1) analytic solution from the parabolic
time dependence of the phase plateau
thickness, and, alternatively, (2) via direct Matano—Boltzmann calcula-
tion, is even less than in previous couple (within 5 percent).

Even more interesting are the results for the competition of two
intermediate phases, obtained from simulation of the couple A-AB, (see
Fig. 7). At the late stage, both phases grow parabolically, and the ratio

of rate constants exponentially depends on the diffusion asymmetry
I I
A4~ "BB

So, (DaC)” = k* —7.4-10 m?/s,

-1 -0.8 -0.6
2M/(kT)

7.6

parameter , which is directly related to the difference of in-

teratomic interaction energies between two materials:

B VI _ VI
A zexp(SM):exp(4%j. 27
At the initial stage of phase competition and under significant
diffusion asymmetry, the formation of one of two phases is temporarily
suppressed, and the time delay (incubation time) also exponentially de-
pends on the diffusion asymmetry (see Fig. 8):

I I
1% ~ const - exp 4 Yan =V
kT

3. Monte Carlo Simulation of Reactive Diffusion

Similar trick with two coordination shells with opposite signs of mixing
energy we tried in Monte Carlo simulations [31]. Results are similar,
but, of course, due to Monte Carlo peculiarities, the concentration curves
are not so smooth anymoreio.

Just for illustration, we show the typical concentration profile
(averaged over YZ-planes) and snapshot of components redistribution
during Monte Carlo simulation of A-AB, diffusion couple (Fig. 9). We
can see the distinct plateau for both phases and sharp interfaces
between them.
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Fig. 9. Typical concen-

tration profile (averaged

over each pair of neigh- 0.3
bouring YZ-planes) and
snapshot of components 0.2 L L L L L L | . .
redistribution during Mon- 0 10 20 30 40 50 60 70 80 90 100
te Carlo simulation of i

A-AB, diffusion couple. Seeneasls 2
Parameters V,,, = —2.9x
x1072 J, Ve = +6.76 %

mix

x10*" J, T =750 K
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Fig. 10. Account of interactions depending on local surrounding, in Gibbs free en-
ergy per atom for the case of single (a) and three (b) intermediate compounds

We also try alternative way to get steep plateau and distinct inter-
faces in simulation. The main idea is an account of interactions depend-
ing on local surrounding of interacting atoms. We suggest the exponen-
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Fig. 11. Concentration
profile (averaged over
each couple of atomic

0 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100 YZ planes) and corres-
. ponding snapshot of the

cross-section, obtained
by MC-simulation of

y B el
~ ! |“::: b.c.c.-couple A-B with
2% composition-dependent
oo sl e $ s interactions
2
nx
800
600 -
400
. . 200
Fig. 12. Squared number of planes with av-
erage concentration within the range
(0.425-0.575 versus number of Monte Car-

0 1 1
lo steps). E;= 8.5 16000 32000 ¢

tial dependency of interaction intensity on the squared deviation of
cluster concentration from the stoichiometric value, corresponding to
the strongest bond energy [32]:

v

mix E
kB_T = - 7R exp (_(X (Ccluster - CIMC )2 )’ (29)
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Fig. 13. Concentration

L L L L profile (local concentra-
0 10 20 30 40 50 60 70 80 90 100 tjons averaged over pla-
i nes YZ) and snapshot
of cross-section for the
transient moment of in-
terdiffusion in A,B-—
AB, couple

E _ Z|Emix|
kT
Vmix E
kBT = - ZRI exp (_aq(Ccluster - 1 / 4)2)
- E'ZR2 exp (_G‘Z (Ccluster -1 / 2)2) (30)

E
- ? exp (_a3 (Ccluster - 3 / 4)2 )'

In Fig. 10, we show the characteristic Gibbs free energy dependence
on concentration for the cases of single intermediate phase and three
intermediate phases with nonlinear concentration dependence of intera-
tomic interactions.

Cluster concentration around interacting atoms is calculated as fol-
lows: at first, we calculate an average concentration within both sub-
clusters around each atom, and then we take the average:

_C@+CH)

cluster — 9

(31)

ISSN 1608-1021. Usp. Fiz. Met., 2021, Vol. 22, No. 4 495



A.M. Gusak and N.V. Storozhuk

C C

1.0 1.0
0.8

0.8
0.6 -

0.6
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Fig. 14. Couple A-AB. Single ordered intermediate phase A,B with structure L1, is
formed and grows

Fig. 15. Couple A—AB,. Two ordered intermediate phases A,B with structure L1, and
AB with structure L1, are formed and grow simultaneously

In case of b.c.c. lattice,

cm+1icm
C ) = Zm , (32a)

Cl)+52C0)

C(j) = B (32b)
In case of f.c.c. lattice,
C(i)+liC(in)
C ()= 4;":1 : (33a)
R .
~ C(])"'ZZC(JH)
C(j) = nl . (33b)

4

Here, we show the results of simulation of the intermediate AB-layer
growth (with structure B,) in b.c.c. diffusion couple. Interfaces are not
as distinct as in previous cases, but quite sufficient to distinguish the
different phases (see Fig. 11).
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Parabolic law for the square phase thickness is also satisfied (more
or less) (see Fig. 12).

Another example is a simulation of interdiffusion in f.c.c. lattice
between ordered A,B and ordered AB, phases, when the ordered phase
AB (L1,) is growing in the contact zone (Fig. 13).

Similar picture is obtained in Monte Carlo simulation of the f.c.c.
couple A—-AB. Single ordered intermediate phase A,B with structure L1,
is formed and grows (Fig. 14).

We also made Monte Carlo simulation of the couple A-AB,. Two
ordered intermediate phases A,B with structure L1, and AB with struc-
ture L1, are formed and grow simultaneously (Fig. 15).

4. New Phenomenological Results
in Description of Reactive Diffusion

4.1. Generdlization of the Wagner Diffusivity Concept

Now, we come to some new phenomenological results in reactive diffu-
sion description. First of these results is related to the generalization of
Wagner diffusivity concept, which was introduced as an integral of in-
terdiffusion coefficient over the concentration range of some phase:

D,, (phase k)= j D(N)dN . (34)
AN (k)

Wagner diffusivity is a very useful concept for description of reac-
tive phase growth with very narrow concentration range. Sometimes,
one can even say that this concentration range tends to zero. In this
case, the thermodynamic factor of the interdiffusion coefficient tends
to infinity, so that the product of average (over the concentration range)
interdiffusion coefficient and concentration interval remains finite and
reasonable. Indeed, according to the common tangent rule, applied to
equilibria of intermediate compound with the ‘right’ and ‘left’ phases,
tending of concentration interval between ‘right’ and ‘left’ points of
contact tangents is proportional to the second derivative of Gibbs free
energy pet atom over concentration. Thus, when AC, — 0, then,

Cc,C, 0’g
k,T oC?

D =< (C,Dj, + C,D}) > 0, (35)
DAC, - ©0x0=D, #0and+ .

Let us explain this point more rigorously and explicitly. Wagner
diffusivity can be expressed in terms of combination of the tracer dif-
fusivities of both components multiplied by the thermodynamic driving
force of the phase formation from the neighbouring phases [8]. Indeed,
if one substitutes Darken expression for interdiffusion coefficient into
the integral (24), one gets:
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i1
Fig. 16. Schematic pic-
-------------------------------- <loeen ture of common tan-
"""" gents rule and thermo-
dynamic driving force
for narrow intermediate
phases, used for deriva-
tion of explicit form
(36) of the Wagner dif-
L R S
w1 Cpoy fusivity

8ri1

[ it

a f---

Dy, (phase k)= I D(C,)dC, =

ac,=(ck.cf)

R

= .f((l—C)D; vop)A=OC 08 4o

4 kT OC?
. . (d-0)C% &g
=((1-0)D; +CcD})~—=—= dC ~
(( )D, ) k,T (;l; oc?
_ _ 1 _ C C a common a common
~ (1 -C,)Dy(k) + C,D, (k) % ((%J - [%J ] -
B k/k+1 k=1/k

~((1 - C,)Dy(k) + C,D, (k)

1- Ck)Ck (gkn — & _ & _gli
kBT Ck+1 - Ck Ck B Ck—l

b b
Here, we used, first, the theorem J'f(x) ¢ (x)dx =f . J'q)(x) dx , where

‘mean value’ f is a value of functionaf with some ‘meaan’ (more accu-
rately, intermediate) argument f = f(x), a < x < b. Secondly, we used the
fact of narrow concentration range, so that the “mean” (in general, un-
known) intermediate value within concentration range is, anyway, close
to the stoichiometric value C,, Also, in the common tangent equations

(see Fig. 16) (a—gj ~ M’(a_gj ~ B "8 , We approxi-
oC k/k+1 Ch+1 - Ck oC k-1/k Ck - Ck—l
mated the values of g(C) in the points of contact tangent by the minimal
value of this function g(C})~ g(CF) ~ming(C,C} <C<Cl)=g,.
On the other hand, the thermodynamic driving force of reaction
phase(k — 1) + phase(k + 1) — phase(k) can be found as
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C,-C Ci —C
Ag(k—l,k+1—>k)=(ck o St o gk_l}—gk
k+1 k-1 k+1 k-1

2

and difference of ‘right’ and ‘left’ first derivatives for the right and
left common tangents is:

8ra — 8 _ 8 — 8k —

Ck+1 - Ck Ck - Ck—l

_ (Ck — Ck—l)gk+1 — (Ck — Ck—l)gk — (Ck+1 — Ck)gk + (Ck+1 — Ck)gk—l _
(C/m - Ck )(Ck - Ck—l)

(Ck+1 _ Ck—l) (Ck — Ck—l)gk+1 + (Ck+1 B Ck)gk—l _ (Ck+1 B Ck—l)gk —

T (Ga -GG, -Gy (i = Cp1)
= €1 = i) Ag(k-1,k+1 > k).
(Ck+1 - Ck )(Ck - Ck—l)
Thus,
D, (phase k) = (1 - C,)D; (k) + C, D, (k)) x
X(l_Ck)Ck Chs —C) Ag(k—l,k—i—l—)k)’ (36)
(Ck+1 - Ck )(Ck - Ck—l) kBT

Thus, Wagner diffusivity is proportional to the product of mean
mobility (actually, combination of mean tracer diffusivities) and to the
driving force of this phase production.

In the case of single intermediate phase growth, the time law for the
squared phase layer thickness is described as well by Wagner diffusivity
multiplied by time — this equation is very well known [8]:

dAX D, 1 2D,

= — = AX)Y=—Y . (37a,b)
dt CIMC (1 - CIMC) AX CIMC (1 - CIMC)

It is less known that we can express the average squared interpen-
etration distance also in terms of Wagner interdiffusivity [29].

Cf(X—XM)ZdC

<(X-X,)>=2 _ 2D (G, Ca)
M - .

C,-C, c,-C,

(38)

Let us prove it. We start from Boltzmann—Matano transformation
of the second Fick’s law under initial and boundary conditions compat-
ible with parabolic substitution C(¢,x) = C(§ = (X - X,,) / \/Z) :

1.dC d| -~ dc
3 e PO |

ISSN 1608-1021. Usp. Fiz. Met., 2021, Vol. 22, No. 4 499



A.M. Gusak and N.V. Storozhuk

This equation can be found in any book on mathematics of diffu-
sion. All we need to do now is to multiply both parts of this equation by
x and integrate over total length of diffusion couple (formally, from
minus infinity to plus infinity). Then,

——jaz 9€ 4z - ja—(D(C)d—ajda (39)

Elementary transformations of the left-hand side and right-hand side of
eq. (39) give:

©

j (D (C)—j de =

=0- j D(C)dC = -D,,(C,,C,).

——j&_,dc g D(C)

(40)

Eq. (40) immediately leads to eq. (38). So, the theorem is proved.

If system contains several intermediate phases and marginal solid
solutions, one should just take the function D (N) equal to zero within
all two-phase intervals, since within any two-phase interval of binary
system the gradient of concentration means zero gradient of chemical
potentials and, hence, zero flux, which is equivalent to zero interdif-
fusivity. Then, eq. (38) transforms into

< (AX)? >=2 jD(C)dC+Z [ D,©dc+[D©adc|t. (41

k=1 (aC,) Gy

To the best of our knowledge, nobody before us [29] obtained the
generalization of the property (37) on the case of average squared inter-
penetration distance for arbitrary number of intermediate phases. Actu-
ally, it is a kind of superposition law for Wagner diffusivity. Once
more: average squared interpenetration distance is equal to the product
2 multiplied by time and multiplied by the sum of Wagner diffusivities
for all intermediate phases and also of terminal solid solutions.

4.2. Synergy of Phase Layer Growth and Lateral Grain Growth
during Reactive Diffusion at Low Temperatures

Another fresh semi-phenomenological result is an idea of a so-called Flux-
Driven Lateral Grain Growth. Lateral grain growth accompanies inter-
metallic compound growth. Moreover, it can be induced by reactive phase
transformation at low temperatures (at frozen bulk diffusion). In its turn,
the evolution of grain size influences the rate of diffusive reaction. This
synergy of the Reaction-Driven Grain Growth and Diffusion-controlled
Reaction was recently analysed [33]. Power laws for the intermetallic
compound growth with time exponent 0.4 and the lateral grain growth
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with time exponent 0.2 were predic-
ted. Let us see the details.

In general, one should distinguish
two different mechanisms of lateral
Grain growth during reactive growth
of the phase layer with longitudinal
bamboo structure.

First mechanism (Fig. 17) is an a b
ordinary curvature-driven lateral Fig. 17. Diffusion-controlled phase
grain growth simultaneously (but in- growth by diffusion along GB in the
dependently on) the phase growth. In  bamboo structure. Longitudinal (a)
this case, the lateral grain growth and lateral (b) cross-sections.
proceeds simultaneously along each entire grain-boundary and changes
the mean lateral size everywhere along the thickness of phase layer. Of
course, this growth decreases the effective diffusivity §,,Dew" / R, and
hence, influences the rate of phase growth, but not vice versa, (phase
growth does not influence the grain growth).

For simplicity, assume that the lateral size of each grain is the same
along the phase layer and changes with time simultaneously in the same
way in all sections. In other words, R depends on time but does not de-
pend on coordinate within phase. Then the ratio between the fast diffu-
sion path along the cross-section of the grain boundaries and the full

cross-section of the grain is %8 . ZRRJ /nR?> =8/ R, so that the effec-

tive diffusivity across the layer is

. 5
Dt () x 2 DL, 42
@) Ry e (42)

Substitution of eq. (42) into eq. (37a) gives:

dAX N 'SDGB ' lAC‘ . (43)
dt C'1-C) R AX?

Now we consider the typical case when the diameter 2R of the bam-
boo-type grain in the IMC grows with time according to power law
R =At", m < 1. Then,

dt

(AX)'dAX =~ 43, DS (Ch/5" — cg;i“m)A—tm, (44)

1-m

8 uzZn n —inter v
dos Do " (C™ = Cp ™ )/Aj te . (45)

sz(_
1-m

For example, if the lateral grain growth obeys parabolic law (m = 0.5),
typical for normal grain growth, then the time exponent for phase
growth becomes n = (1 — 1/2)/2 = 0.25. Another familiar possibility is
similar to Flux-Driven Ripening [34-36]: m=1/3, n=(1-1/3)/2=1/3.
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Second mechanism of grain growth (Fig. 18)
proceeds only at the joints of grain-boundaries
and the interphase interfaces: the upcoming (via
grain-boundary) atoms choose the host grain ac-
cording to probabilities depending on curvature.

In case of the second mechanism, we as-
sume that the IMC growth proceeds mainly due
to transfer of A atoms from interface A/(GB in
IMC) to the interface (GB in IMC)/B with a
consequential lateral redistribution along this
interface and reaction with B. Driving force of
this process coincides with the driving force of
reaction, which is the gradient of chemical po-
tentials. We assume (and it could be a reason-
able assumption at comparatively low tempera-
ture) that the normal curvature driven lateral movement of grain
boundaries is frozen or pinned by some impurities. We assume that the

Fig. 18. Lateral grain
growth induced by phase
growth

only place where the capillary forces and corresponding Gibbs-Thomson
potential % may play a crucial role, is the redistribution of the atoms

arriving at the joint, between the neighbouring grains. If lateral redis-
tribution proceeds faster than the transport through the IMC layer, we
may use the Boltzmann distribution for finding the fraction of atoms
going to lone of two opposite sides of the GB junction with interface.
The difference between thermodynamic driving forces of reactions at

the two sides of the curved junction with curvature radius r is
¥Q_yQ [ Q@

r 2r 2r
the adjacent (to the junction with curvature radius r) grains are equal to

=ex ﬂ /| ex ﬂ +exp| — v {2
P, P 2rkT P 2rkT P 2rkT
y Q2 yQ yQ
= —_—— —_— + — .
P- eXp( 2rkT)/ (eXp(ZrkT) eXp[ 2rkTD

Then, the average local lateral shift of the curved grain boundary
junction with interface after the formation of a new atomic layer of
thickness d will be equal to

j. Therefore, the probabilities of sticking to one of

an

yQ
Ay = d tanh . 46
Y (Zrij (46)
For r larger than 100 nm and temperature higher than 400 K,
v <Q <« 1= tanh e zﬁ
2rkT rkT 2rkT
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The inverse mean curvature radius r is proportional to the mean
grain size (see, for example, [37]):
1 1
= b 7’ 47)
with b of the order of magnitude about 1. According to [38], mean grain
intercept A for grain growth in Al is equal to 0.31r. If one takes ap-
proximately that the mean grain intercept is half of grain diameter
(R =1/2x2R), then, b ~ 0.3.
Combing above equations, we derive the following relation for de-
pendence of the mean lateral grain size at the ‘right’ interface on the

phase layer thickness:
dR _ yQ 1

dAX 2T R’
If we approximate the initial condition as R ~ 0 at AX ~ 0, then the in-
tegration of Eq. (48) gives the following parabolic dependence:

(48)

R’ szz—AX, R = bk—AX. (49)

Substitution of eq. (49) into eq. (37a) leads to the new time law of
the IMC growth (which has never been predicted before but found ex-

perimentally). _ A _
dAX' 3Dy, 1 AC

dt ~ Ci(l_Ci) bﬁ (AXi)s/z ’ (50)
ET
so that , ,
AX' ~ 58_DEBAC_I kT A (51a)
2C'(1-C)\byQ

Thus, the time law for grain size will be

R~ [[p22 5dDsAC s o quis, (51b)
kT 2C'(1-C')

More rigorous version of this model is suggested in [33]. It takes
into account that the lateral grain size is not the same along the IMC
thickness, but it varies with IMC thickness and it is a descending func-
tion of x. If we take x = 0 at left boundary and x = AX" at the right

boundary, then, 5
R(x) ~ /bL—Tx, 0<x<AX. (52)

In the steady state approximation, one gets [33]:
dAXL N 1 6 . DgVBagner
dt ca-cH 2

=z bE(AX)S/Q
3\ kT
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AXi ~ § 56DGBAC kT ~t2/5, (54&)
22C'A-CH\byQ
chzaxﬁzdblgAxfz Jblglﬁﬂkﬁﬁlfw, (54b)
kT ET 4C'A-C")

So, the only difference of this more rigorous approach, in compari-
son with Eqgs. (51a, b), is the factor 3/2.

Thus, power laws for the intermetallic compound growth with time
exponent 0.4 and the lateral grain growth with time exponent 0.2 are
predicted. Direct experimental check of this prediction would be very
interesting.

4.3. Reactions in Solid-Liquid Interactions

Now we come to reactions solid-liquid (actually, to soldering). Main
references to our previous work can be found in [34-41].

After 2017, the two important new results were obtained in [42,
43]: (1) Extremely rapid grain growth in scallop-type CusSn, during
solid-liquid interdiffusion reactions in microbump solder joint and (2)
Ultrathin intermetallic compound formation in micro bump technology
by the control of a low Zn concentration in solder.

4.3.1. Extremely Rapid Grain Growth in Scallop-Type Cu,Sn,
during Solid—-Liquid Interdiffusion Reactions in Microbump Solder Joints

Modern packaging of microelectronic devices uses sandwich contacts
copper—solder copper with solder thickness of 10 microns. Fast growth
of Cu,Sn, scallops during reflow from both sides arranges their meeting.
After meeting, very fast, in a few seconds, the bamboo structure of
Cu,Sn, phase forms, which means very fast grain growth among Cu,Sn,
grains (Fig. 19).

In [42], we presented a simple model of this process. If the touching
opposite scallops of Cu,Sn, have close orientation, the may just merge,
but in most cases one grain consumes another one due to fast transfer
of atoms via thin liquid channels between grains. Existence of liquid
channels is the consequence of wetting of the grain-boundaries between
grains by the liquid solder. Velocity of both sides of the liquid channel
between two grains is proportional to the product of copper mobility via
liquid solder and the difference of chemical potential between neigh-
bouring grains, and inversely proportional to the width of liquid channel:
1 Ceu " Dey" m—m[m}

V=—-—"(Qd,-0)=
q-qﬁ( e~ 0) (C, - CI"YET &

(59)
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Fig. 19. Extremely rapid grain growth Cu
in scallop-type CuySn; during solid—lig- Cu.,Sn
uid interdiffusion reactions in micro-
bump solder joints

Difference between chemical
potentials is determined by the
Gibbs—Thomson potential, so that

. 4CCrrLelth:lelt Yn/meth

(C,—CI'YET & R

(56)

We managed also to estimate
theoretically the width & of chan-

nel:
5 = Yom — zyn/liquid 0 (57)
A ge+solder~>n
Taking reasonable values of Cu.on
main parameters, L _ _ o o __ Cuw
il 6 melt J T SCU
%:ﬁw%:mmﬂwqmw Upol
3 2
Q — 10—29 m Dmelt — 10—9 m_
atom =~ S

R=5-10"m §_15.10° m,
J

2 K

Yam = 2Yiqua = 0-6

Cu.Sn
Cu

AZ ~ 0.4 , we get

e+solder »n

atom
8 ~1.5nm, V=75-10° —.
S
These values correspond to experimental data [42].

4.3.2. Ultra-Thin Intermetallic Compound Formation
in Micro Bump Technology by the Control of a Low Zn Concentration in Solder

Another interesting phenomenological result is a simple model describ-
ing the influence of small addition of Zn to tin, on the kinetics and
phase spectrum of soldering. Reaction between copper and liquid Sn—
Zn—Bi—In solder containing low concentration of Zn was studied [43].
We found an extremely slow reaction rate with Cu substrate [43]. Other
researchers have already found that the adding of Zn to Sn-based solder
slows down the reaction kinetics and the phase spectrum of reaction
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CuZn Cu,;Zng
— at%Zn

CuZng

Fig. 20. Isothermal section of phase diagram
Cu—Sn—Zn [44]

max-f Cmin-y
— VYZn

< 7Zn

~

-min Cyr:l ~
Con ’
Fig. 21. Simplified phase diagram and alterna-
tive diffusion paths

zone. However, the IMC
growth rate [43] was found to
be much slower than usually.
We developed a theoretical
model for a systematic dis-
cussion of the competition
among evolution paths in re-
actions between Cu with Sn—
Zn solder. We explained that
only a small amount of Zn can
lead to the extremely slow re-
action rate in IMC formation
[43]. It is an important prop-
erty for electronic packaging
technology.

5-component system of
Cu—Sn—Zn-Bi—In is too com-
plicated for theoretical analy-
sis. Because we treat mainly
the formation of intermetallic
phases on the basis of binary
compounds of CugSn,, CuZn,
and Cu,Zng, we simplify our
analysis by considering the
ternary system of Cu—Sn—Zn
(Fig. 20), assuming that the
role of Bi and In is in the re-
duction of eutectic tempera-
ture, but not the formation of
new compounds in soldering
reaction.

Even in this case, the sit-
uation with the choice of re-
action path is complicated.
At Fig. 21, you may see at

least three possible alternative diffusion paths:
(a) Blue path, Cu—CuZn(B2-phase)—(Sn + Zn);
(b) Green path, Cu—CuZn(B2-phase)—Cu,Zny(y-phase)—(Sn + Zn);
(c) Red path, Cu—Cu4Sn,(n)—CuZn(B)—(Sn + Zn).
Please note that these paths do not demonstrate explicitly the shape

of S-curve, predicted by Kirkaldy. Yet, it is not a mistake. Simply, in
our case, one of the marginal phases of diffusion couple is liquid solder,
diffusion in liquid is much faster than in solid part, so that the liquid
section of the diffusion path in the concentration triangle (almost along
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the tin—zinc side) is very short and tends just to point, coinciding with
initial composition of liquid solder.

Moreover, some of intermediate phases along the indicated diffu-
sion paths may be kinetically suppressed.

In the conditions described in [43], we found that the growing phase
belongs to copper—zinc side and was close to gamma-phase.

We demonstrated that the growth rate is proportional to the cubic
root of concentration difference between actual composition of zinc in
solder, and the threshold composition in zinc, corresponding to ternary
equilibrium between three phases: liquid solder, gamma-phase and beta-
phase. In simplified case, when the grain size is proportional to the
layer thickness, one gets:

CSn—infinity _Cmin—y 1/3 .
AXT =( c - j (12:6 8, Din(C,™ = CL™ ). (58)

max-—y min—y
CZn - CZn
In more general case,

AX _ 8.4 dGBDgB C;ﬂn—infinity _ C;nﬂin—g
1-m A OO — o

12 1 .,

(anm—cgnmi“)J t2 . (59)

5. Main Conclusions

I. Recent stochastic modification of Kinetic Mean-Field, as well as Ki-
netic Monte Carlo, enables to model nucleation, simultaneous ordering
and growth, and competition of the intermediate phases in solid-solid
interactions, if one uses one of two tricks:

(a) Constant interaction energies within two coordination shells with
opposite signs of mixing energies.

(b) Exponential dependence of interaction energy between two atoms
on the local composition of the surrounding cluster.

II. Superposition law for Wagner diffusivity in multiphase reactive
diffusion is found and proved: Interpenetration of components in para-
bolic regime of diffusion is proportional to the sum of Wagner diffu-
sivities of all intermediate phases:

<X =Xy >=2| [ D)dC+Y [ D,©)dc+ [D(C)dCt.

k=1 (AC(k)) Gy

III. At low temperatures, when the interdiffusion proceeds mainly
via grain-boundaries, the rate of lateral grain growth may be driven by
interdiffusion flux, leading to time exponents 2/5 for phase thickness
and 1/5 for lateral grain size.

IV. At the last stages of reaction in sandwich-like samples Cu—sol-
der—Cu, the grains of Cu,Sn, grow extremely fast, because they are
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separated by liquid channels instead of usual grain boundaries, due to
high diffusivity within liquid channels, and nanometric thickness of
these channels.

V. Small addition of Zn to Sn may drastically change the phase spec-

trum of soldering as well as to slow down the reaction rate.
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A.M. I'ycax, H.B. Cmopoxcyk
YepracbKuil HallioHANbHUI yHiBepcuTeT iMeHi Borgana XMeabHUIIBKOTO,
oyabB. IlleBuenka, 81, 18031 Yepkacu, Ykpaina

MOJIEJIIOBAHHSI ®AB0YTBOPEHHS ¥ IIPOITECAX
TBEPIO-TBEPIO®ABHOI TA TBEPJIO-PIITKO®ABHOI BBAEMO/III:
HOBI PE3YJIBTATH

Posrasagarorbes HOBi pesyabraTu, ofep:kani micaa 2016 poky B ramysi MomeioBaHHSA
(a3oyTBOpPEHHS 3a TBEPAO-TBepAO(Ma3HUX i TBepAO-piAKo(dasHUX peakrIliili MeTomaMu
CKCII (cToxacTuuHmU# KiHeTUUHUI cepeqHbO-I0Nb0oBUL), MouTe-Kapio Ta dherHoMeHO-
goriuaum. IIpaBmomomiOHiI pesysbTaTu MOAENIOBAHHSA peakiliiiHoi 6araTodasHoi qu-
(ysii, B30KpeMa YyTBOPEHHA YiTKMX KOHIEHTPAIINHUX TJIATO AJIA KOYKHOI BIIOPAIKOBA-
HOI IPOMisKHOI (padu Ta YiTKUX KOHIIEHTPAI[iHUX IIepelnaiiB MidK HUMU OJePKYIOThCA
meronamu CKCII ra MouTe-Kapiio, aximo B Mozesi BpaxyBaTy MijKaTOMHI B3aeMOJil B
OPYrifi KoopAuHAIIHIN cdepi Tak, 1110 eHepria 3MimanHsa B mepimii chepi — Big’ em-
Ha, a B IPYTii — pomarHa. IHITIOI0 MOXKINBiICTIO OfepsKaTH MPaBAONIOAiOH] pesyabTaTu
MO/JIeJIIOBAHHA PeakIiiiHol nudysii € BUKOPUCTAHHA MiKaTOMHUX B3a€MOJil, 3aJIEK-
HUX BiJl JIOKaJIbHOTO XiMiUHOTO CKJIaZy, i3 MAKCUMyMaMU /IS CTEXiOMeTPUYHUX KOH-
meHTpain. ¥ (eHOMeHOJIOTiYHOMY MO/eJI0BaHHI BBOAATHCA y3arajJbHEHHS KOHIIEII-
il KoedimnienTa BzaeMHOI Audysii 3a Baruepom i BiATIOBifHE MIPAaBUJIO CYIIEPIO3UITii.
3amponIOHOBAHO HOBUM MeXaHi3M JIaTePaJbHOTO POCTY 3€PEeH Y 3POCTAIUUX IIPOIIap-
Kax mpoMikHuUX (a3 mig yac peakififinoi audysii. IToBimomaseTbecsa mpo BigKpuTTsa
AaHOMAJILHO IITBUAKOTO POCTY 3epeH Ha (piHaNBHIN cTazxil magdHHSA KOHTAKTIiB «CaHABI-
YeBOTO» TUIY MiAb—IMHA—MiAb i PO Teopifo 1bOTo ABUINA. TaKOXK OMMCAHO IPOCTY
MOZieJIb BpaXyBaHHs BILIUBY A00aBOK IIMHKY Ha peakIliro Migb—IiuHA.

Karouosi croBa: BzaemHa gudysisa, npomixkHi (asu, BIOPALKYBAHHS, MOAEJIOBAHHS,
cepenHbO-II0JILOBE HAOIMMKeHH A, 1ryM, meron MouTe-Kapio, nasuaas
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