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Modelling of Phase Formation  
in Solid–Solid and Solid–Liquid  
Interactions: New Developments

Recent developments (after 2016) in modelling of phase formation during solid–solid 
and solid–liquid reactions by SKMF (Stochastic Kinetic Mean-Field) method, Monte 
Carlo simulation and phenomenological modelling are reviewed. Reasonable results 
of multiphase reactive diffusion modelling demonstrating distinct concentration 
plateau for each intermediate ordered compound and distinct concentration steps 
between these phases are obtained by the SKMF and Monte Carlo methods, if one 
takes into account interatomic interactions within two coordination shells and if the 
signs of mixing energies are ‘minus’ for the first coordination shell and ‘plus’ for 
the second one. Second possibility for reasonable modelling results is consideration 
of interatomic interactions depending on local concentration with maxima around 
stoichiometric composition. In phenomenological modelling, the generalization of 
Wagner diffusivity concept and respective superposition rule are introduced. New 
mechanism of the lateral grain growth in the growing phase layers during reactive 
diffusion is suggested. Anomalously fast grain growth at the final stages of solder-
ing in sandwich-like Cu–Sn–Cu contacts is reported and explained. Simple model of 
Zn-additions’ influence on the Cu–Sn reaction is described.

Keywords: interdiffusion, intermediate phases, ordering, modelling, mean-field ap-
proximation, noise, Monte Carlo method, soldering

C i t a t i on: A.M. Gusak and N.V. Storozhuk, Modelling of Phase Formation in Sol-
id–Solid and Solid–Liquid Interactions: New Developments, Progress in Physics of 
Metals, 22, No. 4: 481–510 (2021)

1. Introduction

Reactive diffusion is a process of interdiffusion (when both reagents are 
in condensed state) or one-side diffusion (if one of reagents penetrates 
into condensed phase from the gas phase) accompanied by the forma-
tion, growth and (in many cases) competition of chemical compounds 
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which in most cases are in fact the ordered intermediate phases. Reac-
tive diffusion controls such important processes as soldering [1], braz-
ing, SHS and 3D-printing [2, 3], silicide formation in the integral cir-
cuits [4], at the point contacts of nanowires [5], sintering of binary and 
multicomponent powders [6] etc. Our present topic, in short, is model-
ling (by various methods) of reactive diffusion. We mean the new re-
sults obtained during last few years, after the reviews [7, 8]. 

‘Solid-state reactions’ is a chemical term, but we will treat these 
reactions from the physical point of view. For physicist, reaction in the 
contact zone of two materials is a phase transformation in an open in-
homogeneous system. It includes nucleation, ordering, growth, coarsen-
ing of new phases in the sharp concentration gradients, which decrease 
with time. Action of sharp concentration gradient is in some sense ana-
logical to high cooling rate [9]: High cooling rate (quenching) may sup-
press partially or practically all phase transformations. Sufficiently 
sharp concentration gradient also may suppress partially or practically 
all intermediate phase formations; this was demonstrated earlier in col-
laboration with Pierre Desre and Fiqiri Hodaj [10–15].

Despite big progress in understanding of solid-state reactions, many 
problems still remain unsolved (choice of reaction path in multiphase 
system, interdependence of grain-structure evolution and reaction ki-
netics during reactive diffusion, influence of third component on the 
product and kinetics of solid-state reactions, voiding during reactive 
diffusion, phase competition in SHS reactions etc.)

We will discuss some new results on solid-state reactions modelling 
obtained after 2016 by 3 methods — (1) stochastic kinetic mean-field 
method, (2) Monte Carlo, and (3) phenomenological modelling.

2. Modelling of Solid-State Reactions  
by Kinetic Mean-Field Method with Stochastic Additions 

Since 2014 our group, jointly with the group of Professor Erdelyi, has been 
developing the so-called Stochastic Kinetic Mean-Field method (further 
below SKMF), which is, we would say, not a new method but a new ver-
sion, new development of non-linear Kinetic Mean-Field method (fur-
ther below KMF) suggested in 1990 by George Martin [16–23]. In 2013, 
we generalized the quasi-one-dimensional Martin’s method on 3D-case 
[18]. The main equations are, in fact, the master equations for the prob-
abilities of any site to be occupied by sort A or B (we shortly call these 
probabilities ‘concentrations’). In the simplest case of exchange mecha-
nism within the first coordination shell, these equations are following:
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Change rate of these concentrations are determined by the transi
tion frequencies, which exponentially depend on the energy change dur-
ing transition, and energies, in their turn, linearly depend on concen-
trations:
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We remind that the energies in these equations are the expectation 
(mean) values of interaction energies with neighbours obtained under 
neglecting of correlations (for example, here, CA [in] is a probability of 
neighbouring site ‘in’ to be occupied by sort A even if the probability of 
site ‘i’ to be occupied also by sort A is unity) — this is exactly the basic 
simplification in mean-field models.

If we put time derivatives in eq. (1) to be zero, we get steady-state 
condition, which, in closed system, means equilibrium:
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or, in other form,
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From thermodynamic point of view, equilibrium means constant 
chemical potentials of any component. If one takes the logarithm of eq. 
(5), one gets the constant value of reduced chemical potential in all sites:
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Thus, comparison of two approaches gives quite realistic atomistic 
treatment of reduced chemical potential (change of Gibbs free energy 
due to replacement of atom B by atom A) in terms of occupation prob-
abilities and interaction energies. Condition of steady-state with con-
straint of constant reduced chemical potential provides the nonlinear 
equation for determining the long-range order, coinciding with Khach-
aturyan’s equations [24], obtained by him in the frame of concentration 
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waves method: 
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Reduced chemical potential in eq. (7) is found from the constraint
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We proved that the change rate of Gibbs free energy of the system 
can be expressed in the form of sum containing only positive summands 
and global ‘minus’ [21,22]:
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	 0 ( 0 at equilibrium)
KMF

dG
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≤ = .	 (10)

Mathematically, the proof in [21, 22] is very similar to the proof of 
Boltzmann’s H-theorem for entropy evolution. So, we rigorously proved 
that the Kinetic Mean Field model may describe only relaxation processes 
without any overcoming of energetic barriers. Thus, KMF cannot descri
be the first-order phase transformations, including the nucleation stage.

To describe the overcoming of nucleation barrier, one has to intro-
duce some noise. The usual way of introducing noise of the Langevin 
type is the random additions to the probabilities (concentrations) and to 
the local order parameter [25]. In our case, due to strictly positive (and 
less than unit) nature of probabilities, and due to matter conservation, 
we prefer to introduce noise to transition frequencies (in other words, 
to the atom-range fluxes between neighbouring sites). For simplicity, 
we treat this noise of frequencies as a white noise, without any time 
correlations. Moreover, in our case we do not need any additional long-
range order (LRO) parameter since concentrations/probabilities are in-
troduced at the atomic scale and they determine automatically the local 
order parameter for every site according to standard definition of order 
applied to finite atomic clusters. Thus, our KMF scheme was modified 
in the following manner:
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If one uses standard mean-field approximation with account of only 
nearest neighbours interactions (within the first coordination shell), 
one gets the following dependence of Gibbs free energy per atom on 
temperature, on concentration, and on local order for solid solution and 
for the ordered f.c.c. phases L12 and L10:
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If we now simulate, using SKMF method, the interdiffusion in the 
diffusion couple A–B, both materials with f.c.c. lattice and with coher-
ent initial interface between them, and take the following interaction 
energies: VAA = –1 ⋅ 10−21 J, VBB = –1 ⋅ 10−21 J, VBB = –14.04 ⋅ 10−21 J only 
within the first coordination shell, we get the following typical concen-
tration profile and typical ‘occupation probabilities map’ (Fig. 1).

One may see that the profile in Fig. 1 is very far from the typical 
experimental concentration profiles after reactive diffusion with almost 
horizontal concentration plateau corresponding to intermediate com-
pounds with almost stoichiometric composition and with distinct con-
centration steps between these plateaus. Similar problems are encoun-
tered also in case of Monte Carlo simulation of reactive diffusion with 
formation of the ordered intermediate phases [26, 27].

To avoid this problem, we use the model accounting interaction 
within two coordination shells. In mean-field approximation, the Gibbs 
free energy for the disordered solution and for intermediate ordered 
phases acquires the following form: 
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To obtain the reasonable phase diagram with intermediate com-
pounds with narrow concentration ranges and distinct concentration 
intervals between these ranges, we choose the mixing energy in the first 
coordination shell as negative (which is standard choice) and the mixing 
energy in the second coordination shell as positive. Moreover, we choose 
their magnitudes in such a way, that 

Fig.  1. Snapshots of the concen-
tration profile (averaged over each 
couple of (100) planes), and the 
corresponding occupation proba-
bilities map at some moment of in
terdiffusion in the couple A–B. 
Profile contains three subregions 
corresponding to three ordered in-

termediate phases but does not contain (at least, in visible form), the concentration 
steps between concentration plateau corresponding to three intermediate phases
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(1) the effective mixing energy for the disordered phases, 
1

2
I II

mix mixV V + 
 

 is positive (so that disordered phase has a tendency to 

decomposition), and
(2) the energy for the ordered phases (coefficient before the squared 

order parameter),  − 
 

3

2
I II

mix mixV V , is negative.

For example, let us take the following interaction energies: VI
AA = 

= VI
BB = −10−21 J, VI

AB = −3.9 ⋅ 10−21 J, VII
AA = VII

BB = −8.76 ⋅ 10−21 J, VII
AB = 

= −2 ⋅ 10−21 J.
Then, we construct the curve ∆g (T,C) = g (T,C) − C ⋅ g (T,C = 1) −  

− (1 − C) ⋅ g (T,C = 0) for disordered phase directly according to eq. (17). 
In Eqs. (18), (19), we at first minimize ∆g (T, C, η) in respect to η at any 
concentration C and temperature T. It gives the following curves ∆g (C) 
for disordered phase and ordered phases A3B, AB and AB3 at T = 750 K 
(see Fig. 2).

Building such curves at various temperatures, and using the com-
mon tangent construction, we obtained the phase diagram [22] of our 

Fig.  2. Composition de-
pendences of the Gibbs 
free energy per atom, 
Δg(C), for disordered 
phase and ordered phases 
A3B, AB and AB3 at 
T=750 K, constructed in 
the frame of mean-field 
approximation

Fig.  3. Dependences 
T–C for the margins of 
the concentration rang-
es of all existing phases 
in A–B system calculat-
ed by the common tan-
gents’ rule
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model system, and at once checked it by the method of diffusion cou-
ples. For example, we constructed the thin-film diffusion couple A–or-
dered A3B, and simulated interdiffusion until full equilibrium — two 
plateaus with concentrations corresponding to two ends of the same tie 
line between solution of B in A and compound A3B (see Fig. 3).

After this we simulated interdiffusion in the diffusion couples with 
various starting compositions (incremental diffusion couples) — Fig. 4. 

Now we show some of simulation results. Concentration is averaged 
over each couple of (100)-planes. 

Simulation of diffusion in A–AB couple (Fig. 5) shows the formation 
of A3B concentration plateau with distinct concentration steps between 
this phase and parent phases A and AB. Width of this plateau (actually, 
of its ratio to the total size of diffusion couple) grows parabolically. The 
rate constants obey Arrhenius law.

It is interesting to compare the simulation results with analytical 
predictions, obtained in the frame of Matano–Boltzmann–Wagner anal-
ysis. It is well known that the kinetics of phase layer growth is deter-
mined by Wagner diffusivity, which is the integral of interdiffusivity 
over the concentration range of intermediate phase [28, 29]. In the 
frame of Matano–Boltzmann analysis for the infinite diffusion couple 
with terminal concentrations CL, CR,

	
1

( ) ( )

2 L

C

M

C

C

D C x x dc
dc

t
dx

= − −∫ ,	 (20)

and we derived the following expression for Wagner diffusivity, and 
used it for direct calculation of Wagner diffusivity (here, xM is a Ma-

Fig.  4. Possible incre-
mental diffusion cou-
ples: (a) A–B with three 
growing ordered phases 
A3B (L12), AB (L10) and 
AB3 (L12) (b) A–AB3 with 
two growing ordered 
phases A3B and AB, (c) 
A3B–AB3 with single 
growing ordered phase 
AB, (d) A–AB with sin-
gle growing phase A3B
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tano plane coordinate):
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Fig. 5. (a) Concentration profile (averaged over each couple of neighbouring (100) 
planes and site occupation map, (b) time dependence of the squared reduced phase 
width ξ = 2 ∆х /L (L is a total width of the diffusion couple), (c) Arrhenius-type de-
pendence of growth rate constants on inverse temperature
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If one adopts the steady-state approximation (almost the same flux 
at both boundaries of the same phase layer), which works very well for 
growing phase layers with narrow concentration range [30], if one also 
neglects the solubility of B in A-solution and treats intermediate phase 
A3B as almost stoichiometric, then the flux balance equations for the 
growth of this phase boundaries (left L and right R) in the couple A–A3B 
have the following simple form:
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or, for reduced phase thickness,
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On the other hand, direct calculation of Wagner coefficient according 
to eq. (22) via direct Matano–Boltzmann calculation gives 7.0  · 10−14 m2/s. 
We can see that the difference seems reasonable — within 10 percent.

Analogical results are obtained for the growth of single ordered pha
se AB in the couple A3B–AB3 (see Fig. 6).

Note that the growing phase layer, in our case, consists of two  
sublayers representing two antiphase domains of the AB ordering, with 

Fig. 6. Growth of single 
intermediate phase AB 
in the couple А3В–АВ3: 
Concentration profile 
(averaged over each cou-
ple of neighbouring 
(100) planes, and the 
site occupation map
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different orientations of AB-‘zebra’. Boundary between two domains 
(sublayers) corresponds to a peak in the middle of concentration  
plateau. 

Analytic solution in the steady-state approximation and under 
assumption of practically stoichiometric compounds A3B, AB and AB3 
gives:
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Fig. 7. Growth and competition 
of two intermediate phases in the 
couple А–АВ3 for late (parabolic) 
stage. (a) Squared reduced phas-
es thicknesses versus number of 
time steps, (b) Ratio of parabolic 
growth rates versus asymmetry 
parameter, (c) Logarithm of this 

ratio versus asymmetry parame-

ter −
≡

2

I I
AA BBV V

M
kT
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So, ( )
2

14 2
1 7.4 10  m /s

64

AB AB L
D C k

dt
−∆ = = ⋅ , 

and direct Matano–Boltzmann calcula-
tion according to eq. (22) gives 14 27.8 10  m /sD C −∆ = ⋅  

14 27.8 10  m /sD C −∆ = ⋅ .
Thus, the difference between the va

lues of Wagner diffusivity, obtained via 
(1) analytic solution from the parabolic 
time dependence of the phase plateau 

thickness, and, alternatively, (2) via direct Matano–Boltzmann calcula-
tion, is even less than in previous couple (within 5 percent).

Even more interesting are the results for the competition of two 
intermediate phases, obtained from simulation of the couple A–AB3 (see 
Fig. 7). At the late stage, both phases grow parabolically, and the ratio 
of rate constants exponentially depends on the diffusion asymmetry 

parameter 
I I
AA BBV V

kT

−
, which is directly related to the difference of in-

teratomic interaction energies between two materials:

	 ( )3 / exp 8 exp 4
I I

A B AB AA BBV V
k k M

kT

 −
≈ =  

 
.	 (27)

At the initial stage of phase competition and under significant  
diffusion asymmetry, the formation of one of two phases is temporarily 
suppressed, and the time delay (incubation time) also exponentially de-
pends on the diffusion asymmetry (see Fig. 8): 

	 const exp 4
I I

delay AA BBV V

kT

 −
τ ≈ ⋅  

 

3. Monte Carlo Simulation of Reactive Diffusion

Similar trick with two coordination shells with opposite signs of mixing 
energy we tried in Monte Carlo simulations [31]. Results are similar, 
but, of course, due to Monte Carlo peculiarities, the concentration curves 
are not so smooth anymoreю.

Just for illustration, we show the typical concentration profile  
(averaged over YZ-planes) and snapshot of components redistribution 
during Monte Carlo simulation of A–AB3 diffusion couple (Fig. 9). We 
can see the distinct plateau for both phases and sharp interfaces  
between them.

Fig. 8. Suppression of А3В-phase at the initial 
stage: logarithm of delay time versus reduced 
asymmetry parameter
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We also try alternative way to get steep plateau and distinct inter-
faces in simulation. The main idea is an account of interactions depend-
ing on local surrounding of interacting atoms. We suggest the exponen-

Fig. 10. Account of interactions depending on local surrounding, in Gibbs free en-
ergy per atom for the case of single (a) and three (b) intermediate compounds

Fig.  9. Typical concen-
tration profile (averaged 
over each pair of neigh-
bouring YZ-planes) and 
snapshot of components 
redistribution during Mon- 
te Carlo simulation of 
A–AB3 diffusion couple. 
Parameters I 212.9 10  JmixV −= − ⋅× 
× I 212.9 10  JmixV −= − ⋅ , II 216.76 10  JmixV −= + ⋅× 
×II 216.76 10  JmixV −= + ⋅ , 750 KT =
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tial dependency of interaction intensity on the squared deviation of 
cluster concentration from the stoichiometric value, corresponding to 
the strongest bond energy [32]:

	 ( )2exp ( )mix R
cluster IMC

B

V E
C C

k T Z
= − −α − ,	 (29)

Fig. 12. Squared number of planes with av-
erage concentration within the range 
(0.425–0.575 versus number of Monte Car-
lo steps). ER = 8.5

Fig.  11. Concentration 
profile (averaged over 
each couple of atomic 
YZ planes) and corres
ponding snapshot of the 
cross-section, obtained 
by MC-simulation of 
b.c.c.-couple A–B with 
composition-dependent 
interactions
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mix
R

B

Z E
E

k T
= ,

	

( )

( )

( )

21
1

22
2

23
3

exp ( 1 / 4)

exp ( 1 / 2)

exp ( 3 / 4) .

mix R
cluster

B

R
cluster

R
cluster

V E
C

k T Z

E
C

Z
E

C
Z

= − −α −

− −α −

− −α −

	 (30)

In Fig. 10, we show the characteristic Gibbs free energy dependence 
on concentration for the cases of single intermediate phase and three 
intermediate phases with nonlinear concentration dependence of intera-
tomic interactions.

Cluster concentration around interacting atoms is calculated as fol-
lows: at first, we calculate an average concentration within both sub-
clusters around each atom, and then we take the average:

	
( ) ( )

2cluster

C i C j
C

+
= .	 (31)

Fig.  13. Concentration 
profile (local concentra-
tions averaged over pla
nes YZ) and snapshot 
of cross-section for the 
transient moment of in-
terdiffusion in A3B–
AB3 couple
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In case of b.c.c. lattice,

	

81
( ) ( )

8
( )

2
in

C i C i
C i

+
=

∑
,	 (32a)

	

81
( ) ( )

8
( )

2
jn

C j C j

C j

+
=

∑
.	 (32b)

In case of f.c.c. lattice,

	

12

1

1
( ) ( )

4
( )

4
in

C i C in
C i =

+
=

∑
,	 (33a)

	

12

1

1
( ) ( )

4
( )

4
jn

C j C jn

C j =

+
=

∑
.	 (33b)

Here, we show the results of simulation of the intermediate AB-layer 
growth (with structure B2) in b.c.c. diffusion couple. Interfaces are not 
as distinct as in previous cases, but quite sufficient to distinguish the 
different phases (see Fig. 11).

Fig. 15. Couple A–AB3. Two ordered intermediate phases A3B with structure L12 and 
AB with structure L10 are formed and grow simultaneously

Fig. 14. Couple A–AB. Single ordered intermediate phase A3B with structure L12 is 
formed and grows
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Parabolic law for the square phase thickness is also satisfied (more 
or less) (see Fig. 12).

Another example is a simulation of interdiffusion in f.c.c. lattice 
between ordered A3B and ordered AB3 phases, when the ordered phase 
AB (L10) is growing in the contact zone (Fig. 13).

Similar picture is obtained in Monte Carlo simulation of the f.c.c. 
couple A–AB. Single ordered intermediate phase A3B with structure L12 
is formed and grows (Fig. 14).

We also made Monte Carlo simulation of the couple A–AB3. Two 
ordered intermediate phases A3B with structure L12 and AB with struc-
ture L10 are formed and grow simultaneously (Fig. 15).

4. New Phenomenological Results  
in Description of Reactive Diffusion

4.1. Generalization of the Wagner Diffusivity Concept

Now, we come to some new phenomenological results in reactive diffu-
sion description. First of these results is related to the generalization of 
Wagner diffusivity concept, which was introduced as an integral of in-
terdiffusion coefficient over the concentration range of some phase:

	 ( )
( )

phase ( )W

N k

D k D N dN
∆

= ∫  .	 (34)

Wagner diffusivity is a very useful concept for description of reac-
tive phase growth with very narrow concentration range. Sometimes, 
one can even say that this concentration range tends to zero. In this 
case, the thermodynamic factor of the interdiffusion coefficient tends 
to infinity, so that the product of average (over the concentration range) 
interdiffusion coefficient and concentration interval remains finite and 
reasonable. Indeed, according to the common tangent rule, applied to 
equilibria of intermediate compound with the ‘right’ and ‘left’ phases, 
tending of concentration interval between ‘right’ and ‘left’ points of 
contact tangents is proportional to the second derivative of Gibbs free 
energy pet atom over concentration. Thus, when ∆СB → 0, then,

	
2

* *

2
( ) A B

A B B A
B B

C C g
D C D C D

k T C

∂
=< + >→ ∞

∂
 ,	 (35)

0 0B WD C D and∆ → ∞ × = ≠ ≠ ∞ .
Let us explain this point more rigorously and explicitly. Wagner 

diffusivity can be expressed in terms of combination of the tracer dif-
fusivities of both components multiplied by the thermodynamic driving 
force of the phase formation from the neighbouring phases [8]. Indeed, 
if one substitutes Darken expression for interdiffusion coefficient into 
the integral (24), one gets:
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( )
( ),

2
* *

2

2
* *

2

* *

/ 1 1/

phase ( )

(1 )
((1 ) )

(1 )
((1 ) )

(1 )
((1 ) ( ) ( ))

L R
k k k

R
k

L
k

R
k

L
k

W B B

C C C

C

B A
BC

C

B A
B C

common common

k k
k B k A

k k k kB

D k D C dC

C C g
C D CD dC

k T C

C C g
C D CD dC

k T C

C C g g
C D k C D k

k T C C

∆ =

+ −

= =

− ∂
= − + =

∂

− ∂
= − + ≈

∂

 − ∂ ∂   ≈ − + − =     ∂ ∂    

∫

∫

∫



* * 1 1

1 1

(1 )
((1 ) ( ) ( )) .k k k k k k

k B k A
B k k k k

C C g g g g
C D k C D k

k T C C C C
+ −

+ −

 − − −
≈ − + − − − 

Here, we used, first, the theorem ( ) ( ) ( )
b b

a a

f x x dx f x dxϕ = ⋅ ϕ∫ ∫ , where 

‘mean value’ 
−
f is a value of function f with some ‘mean’ (more accu-

rately, intermediate) argument 
−
f = f (x), a < 

−
x < b. Secondly, we used the 

fact of narrow concentration range, so that the “mean” (in general, un-
known) intermediate value within concentration range is, anyway, close 
to the stoichiometric value Ck, Also, in the common tangent equations 

(see Fig. 16) 1 1

/ 1 1/1 1

,
common common

k k k k

k k k kk k k k

g g g gg g

C C C C C C
+ −

+ −+ −

 − −∂ ∂   ≈ ≈     ∂ − ∂ −    
, we approxi-

mated the values of g (C) in the points of contact tangent by the minimal 
value of this function ( ) ( ) min ( , )L R L L

k k k k kg C g C g C C C C g≈ ≈ < < ≡ .

On the other hand, the thermodynamic driving force of reaction 
phase (k − 1) + phase (k + 1) → phase (k) can be found as 

Fig. 16. Schematic pic-
ture of common tan-
gents rule and thermo-
dynamic driving force 
for narrow intermediate 
phases, used for deriva-
tion of explicit form 
(36) of the Wagner dif-
fusivity
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( ) 1 1
1 1

1 1 1 1

1, 1 k k k k
k k k

k k k k

C C C C
g k k k g g g

C C C C
− +

+ −
+ − + −

 − −
∆ − + → = + − − −  ,

and difference of ‘right’ and ‘left’ first derivatives for the right and 
left common tangents is:

1 1

1 1

1 1 1 1 1 1

1 1

1 1 1 1 1 1 1 1

1 1 1 1

1 1

( ) ( ) ( ) ( )

( )( )

( ) ( ) ( ) ( )

( )( ) ( )

( )

(

k k k k

k k k k

k k k k k k k k k k k k

k k k k

k k k k k k k k k k k

k k k k k k

k k
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g g g g

C C C C

C C g C C g C C g C C g

C C C C

C C C C g C C g C C g

C C C C C C

C C

C

+ −

+ −

− + − + + −
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+ − − + + − + −

+ − + −

+ −

+

− −
− =

− −

− − − − − + −
= =

− −

− − + − − −
= =

− − −

−
=

1 1

( 1, 1 ).
)( )k k k

g k k k
C C C −

∆ − + →
− −

Thus,

	

* *

1 1

1 1

(phase ) ((1 ) ( ) ( ))

(1 ) ( ) ( 1, 1 )
.

( )( )

W k B k A

k k k k

k k k k B

D k C D k C D k

C C C C g k k k

C C C C k T
+ −

+ −

= − + ×

− − ∆ − + →
×

− −
	 (36)

Thus, Wagner diffusivity is proportional to the product of mean 
mobility (actually, combination of mean tracer diffusivities) and to the 
driving force of this phase production.

In the case of single intermediate phase growth, the time law for the 
squared phase layer thickness is described as well by Wagner diffusivity 
multiplied by time — this equation is very well known [8]:

	 2 21
( ) .

(1 ) (1 )
W W

IMC IMC IMC IMC

D Dd X
X t

dt C C X C C

∆
= ⇒ ∆ =

− ∆ −
	 (37a,b)

It is less known that we can express the average squared interpen-
etration distance also in terms of Wagner interdiffusivity [29]. 

	

2

2

( )
2 ( , )

( )

R

L

C

M

C W L R
M

R L R L

X X dC
D C C

X X t
C C C C

−

< − >≡ = ⋅
− −

∫
.	 (38)

Let us prove it. We start from Boltzmann–Matano transformation 
of the second Fick’s law under initial and boundary conditions compat-
ible with parabolic substitution , ( ( ) / ) :( ) Mt x C X X tC = ξ = −

1
( )

2

dC d dC
D C

d d d

 
− ξ =  ξ ξ ξ 

 .
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This equation can be found in any book on mathematics of diffu-
sion. All we need to do now is to multiply both parts of this equation by 
x and integrate over total length of diffusion couple (formally, from 
minus infinity to plus infinity). Then,

	 21
( )

2

dC d dC
d D C d

d d d

∞ ∞

−∞ −∞

 
− ξ ξ = ξ ξ ξ ξ ξ 

∫ ∫  .	 (39)

Elementary transformations of the left-hand side and right-hand side of 
eq. (39) give:

	

21
( ) ( )

2

0 ( ) ( , ).

R

L

R

L

C

C

N

W L R

N

dC dC
dC D C D C d

d d

D C dC D C C

∞ ∞

−∞−∞

 
− ξ = ξ ⋅ − ξ = ξ ξ 

= − = −

∫ ∫

∫

 



	 (40)

Eq. (40) immediately leads to eq. (38). So, the theorem is proved.
If system contains several intermediate phases and marginal solid 

solutions, one should just take the function D
~
 (N) equal to zero within 

all two-phase intervals, since within any two-phase interval of binary 
system the gradient of concentration means zero gradient of chemical 
potentials and, hence, zero flux, which is equivalent to zero interdif-
fusivity. Then, eq. (38) transforms into

	
( )

1
2

10

( ) 2 ( ) ( ) ( )
k

C n

k
k C C

X D C dC D C dC D C dC t
α

β
= ∆

 
 < ∆ >= + +
 
 

∑∫ ∫ ∫   .	 (41)

To the best of our knowledge, nobody before us [29] obtained the 
generalization of the property (37) on the case of average squared inter-
penetration distance for arbitrary number of intermediate phases. Actu-
ally, it is a kind of superposition law for Wagner diffusivity. Once 
more: average squared interpenetration distance is equal to the product 
2 multiplied by time and multiplied by the sum of Wagner diffusivities 
for all intermediate phases and also of terminal solid solutions.

4.2. Synergy of Phase Layer Growth and Lateral Grain Growth  
during Reactive Diffusion at Low Temperatures

Another fresh semi-phenomenological result is an idea of a so-called Flux-
Driven Lateral Grain Growth. Lateral grain growth accompanies inter-
metallic compound growth. Moreover, it can be induced by reactive phase 
transformation at low temperatures (at frozen bulk diffusion). In its turn, 
the evolution of grain size influences the rate of diffusive reaction. This 
synergy of the Reaction-Driven Grain Growth and Diffusion-controlled 
Reaction was recently analysed [33]. Power laws for the intermetallic 
compound growth with time exponent 0.4 and the lateral grain growth 
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with time exponent 0.2 were predic
ted. Let us see the details.

In general, one should distinguish 
two different mechanisms of lateral 
Grain growth during reactive growth 
of the phase layer with longitudinal 
bamboo structure. 

First mechanism (Fig. 17) is an 
ordinary curvature-driven lateral 
grain growth simultaneously (but in-
dependently on) the phase growth. In 
this case, the lateral grain growth 
proceeds simultaneously along each entire grain-boundary and changes 
the mean lateral size everywhere along the thickness of phase layer. Of 
course, this growth decreases the effective diffusivity /CuZn

GB GBD Rδ , and 
hence, influences the rate of phase growth, but not vice versa, (phase 
growth does not influence the grain growth).

For simplicity, assume that the lateral size of each grain is the same 
along the phase layer and changes with time simultaneously in the same 
way in all sections. In other words, R depends on time but does not de-
pend on coordinate within phase. Then the ratio between the fast diffu-
sion path along the cross-section of the grain boundaries and the full 

cross-section of the grain is 21
2 / /

2
R R R δ ⋅ π π = δ 

 
, so that the effec-

tive diffusivity across the layer is 

	 ( )
( )

effective i
GBD t D

R t

δ
≈ .	 (42)

Substitution of eq. (42) into eq. (37a) gives:

	
1

(1 )

ii i
GB

i i i

Dd X C

dt C C R X

δ∆ ∆
≈

− ∆
.	 (43)

Now we consider the typical case when the diameter 2R of the bam-
boo-type grain in the IMC grows with time according to power law  
R = Atm, m < 1. Then,

	 1 cuzn /Sn int er
zn zn( ) 4 ( )GB GB m

dt
X d X D C C

At
β β−∆ ∆ ≈ δ − ,	 (44)

	
1/2 1

cuzn /Sn inter 2
zn zn

8
( ) /

1

m

GB GBX D C C A t
m

−
− ∆ = − − 

b bd .	 (45)

For example, if the lateral grain growth obeys parabolic law (m = 0.5), 
typical for normal grain growth, then the time exponent for phase 
growth becomes n = (1 − 1/2)/2 = 0.25. Another familiar possibility is 
similar to Flux-Driven Ripening [34–36]: m = 1/3, n = (1 − 1/3)/2 = 1/3.

Fig.  17. Diffusion-controlled phase 
growth by diffusion along GB in the 
bamboo structure. Longitudinal (a) 
and lateral (b) cross-sections.
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Second mechanism of grain growth (Fig. 18) 
proceeds only at the joints of grain-boundaries 
and the interphase interfaces: the upcoming (via 
grain-boundary) atoms choose the host grain ac
cording to probabilities depending on curvature.

In case of the second mechanism, we as-
sume that the IMC growth proceeds mainly due 
to transfer of A atoms from interface A/(GB in 
IMC) to the interface (GB in IMC)/B with a 
consequential lateral redistribution along this 
interface and reaction with B. Driving force of 
this process coincides with the driving force of 
reaction, which is the gradient of chemical po-
tentials. We assume (and it could be a reason-
able assumption at comparatively low tempera-

ture) that the normal curvature driven lateral movement of grain 
boundaries is frozen or pinned by some impurities. We assume that the 

only place where the capillary forces and corresponding Gibbs-Thomson 

potential 
R

γ Ω
 may play a crucial role, is the redistribution of the atoms 

arriving at the joint, between the neighbouring grains. If lateral redis-
tribution proceeds faster than the transport through the IMC layer, we 
may use the Boltzmann distribution for finding the fraction of atoms 
going to lone of two opposite sides of the GB junction with interface. 
The difference between thermodynamic driving forces of reactions at 

the two sides of the curved junction with curvature radius r is 

2 2r r r

γ Ω γ Ω γ Ω = − − 
 

. Therefore, the probabilities of sticking to one of 

the adjacent (to the junction with curvature radius r) grains are equal to 

exp / exp exp
2 2 2

p
rkT rkT rkT+

γ Ω γ Ω γ Ω      = + −      
      

and 

exp / exp exp
2 2 2

p
rkT rkT rkT−

γ Ω γ Ω γ Ω      = − + −      
      

.

Then, the average local lateral shift of the curved grain boundary 
junction with interface after the formation of a new atomic layer of 
thickness d will be equal to

	 tanh
2

y d
rkT

γ Ω ∆ =  
 

.	 (46)

For r larger than 100  nm and temperature higher than 400  K, 

1 tanh
2 2rkT rkT rkT

γ Ω γ Ω γ Ω ⇒ ≈ 
 

 .

Fig.  18. Lateral grain 
growth induced by phase 
growth



ISSN 1608-1021. Usp. Fiz. Met., 2021, Vol. 22, No. 4	 503

Modelling of Phase Formation in Solid–Solid and Solid–Liquid Interactions

The inverse mean curvature radius r is proportional to the mean 
grain size (see, for example, [37]):

	
1 1

b
r R
= ,	 (47)

with b of the order of magnitude about 1. According to [38], mean grain 
intercept λ for grain growth in Al is equal to 0.31r. If one takes ap-
proximately that the mean grain intercept is half of grain diameter  
(R = 1/2 × 2R), then, b ≈ 0.3.

Combing above equations, we derive the following relation for de-
pendence of the mean lateral grain size at the ‘right’ interface on the 
phase layer thickness:
	

1

2

dR
b

d X kT R

γ Ω
≈

∆
.	 (48)

If we approximate the initial condition as R ≈ 0 at ∆X ≈ 0, then the in-
tegration of Eq. (48) gives the following parabolic dependence:

	 2 2 ,
2

R b X R b X
kT kT

γ Ω γ Ω
≈ ∆ ≈ ∆ .	 (49)

Substitution of eq. (49) into eq. (37a) leads to the new time law of 
the IMC growth (which has never been predicted before but found ex-
perimentally).
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dt C C X
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δ∆ ∆
≈
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,	 (50)

so that

	 2/55

2 (1 )

i i
i GB

i i

D C kT
X t

C C b

δ ∆
∆ ≈ ⋅

− γ Ω
.	 (51a)

Thus, the time law for grain size will be 

	 2/5 1/55

2 (1 )

i i
GB

i i

D C
R b t t

kT C C

∆Ω
≈ ⋅ ∝

−
dg

.	 (51b)

More rigorous version of this model is suggested in [33]. It takes 
into account that the lateral grain size is not the same along the IMC 
thickness, but it varies with IMC thickness and it is a descending func-
tion of x. If we take x = 0 at left boundary and x = ∆Xi at the right 
boundary, then,

	 ( ) , 0R x b x x X
kT

γ Ω
≈ < < ∆ .	 (52)

In the steady state approximation, one gets [33]:

	
3/2

1

(1 ) 2
( )

3

Wagneri
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i i

Dd X

dt C C
b X

kT

δ ⋅∆
≈

− γ Ω
∆

,	 (53)
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δ ∆
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− γ Ω
,	 (54a)
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i i
i i GB

i i

D C
R x X b X b t

kT kT C C

δ ∆γ Ω γ Ω
= ∆ ≈ ∆ =

−
.	 (54b)

So, the only difference of this more rigorous approach, in compari-
son with Eqs. (51a, b), is the factor 3/2.

Thus, power laws for the intermetallic compound growth with time 
exponent 0.4 and the lateral grain growth with time exponent 0.2 are 
predicted. Direct experimental check of this prediction would be very 
interesting.

4.3. Reactions in Solid–Liquid Interactions

Now we come to reactions solid–liquid (actually, to soldering). Main 
references to our previous work can be found in [34–41]. 

After 2017, the two important new results were obtained in [42, 
43]: (1) Extremely rapid grain growth in scallop-type Cu6Sn5 during 
solid–liquid interdiffusion reactions in microbump solder joint and (2) 
Ultrathin intermetallic compound formation in micro bump technology 
by the control of a low Zn concentration in solder.

4.3.1. Extremely Rapid Grain Growth in Scallop-Type Cu6Sn5  
during Solid–Liquid Interdiffusion Reactions in Microbump Solder Joints

Modern packaging of microelectronic devices uses sandwich contacts 
copper–solder copper with solder thickness of 10 microns. Fast growth 
of Cu6Sn5 scallops during reflow from both sides arranges their meeting. 
After meeting, very fast, in a few seconds, the bamboo structure of 
Cu6Sn5 phase forms, which means very fast grain growth among Cu6Sn5 
grains (Fig. 19).

In [42], we presented a simple model of this process. If the touching 
opposite scallops of Cu6Sn5 have close orientation, the may just merge, 
but in most cases one grain consumes another one due to fast transfer 
of atoms via thin liquid channels between grains. Existence of liquid 
channels is the consequence of wetting of the grain-boundaries between 
grains by the liquid solder. Velocity of both sides of the liquid channel 
between two grains is proportional to the product of copper mobility via 
liquid solder and the difference of chemical potential between neigh-
bouring grains, and inversely proportional to the width of liquid channel:

	

cu cu 2 1
cu

cu cu

1 m
( 0)  

( ) s

melt melt

melt melt
i i

C D
V J

C C C C kT

µ − µ  = Ω − =  − − δ  
.
 
	 (55)
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Difference between chemical 
potentials is determined by the 
Gibbs–Thomson potential, so that
	

/cu cu

cu

4

( )

melt melt
melt

melt
i

C D
V

C C kT R
ηγ Ω

≈
− δ ⋅

.

We managed also to estimate 
theoretically the width δ of chan-
nel:

	

/ /liquid*

+solder

2

g
η η η

ε →η

γ − γ
δ = Ω

∆
.	 (57)

Taking reasonable values of 
main parameters,

cu

6
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2
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29 m
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−Ω = , 

2
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m
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s
meltD −= , 
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/ /liquid 2

J
2 0.6 

mη η ηγ − γ ≈ , 
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J
0.4 

atom
gε →η∆ ≈ , we get 

* 1.5 nmδ ≈ , 6 m
7.5 10  

s
V −= ⋅ .

These values correspond to experimental data [42].

4.3.2. Ultra-Thin Intermetallic Compound Formation  
in Micro Bump Technology by the Control of a Low Zn Concentration in Solder

Another interesting phenomenological result is a simple model describ-
ing the influence of small addition of Zn to tin, on the kinetics and 
phase spectrum of soldering. Reaction between copper and liquid Sn–
Zn–Bi–In solder containing low concentration of Zn was studied [43]. 
We found an extremely slow reaction rate with Cu substrate [43]. Other 
researchers have already found that the adding of Zn to Sn-based solder 
slows down the reaction kinetics and the phase spectrum of reaction 

Fig. 19. Extremely rapid grain growth 
in scallop-type Cu6Sn5 during solid–liq-
uid interdiffusion reactions in micro-
bump solder joints

(56)
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zone. However, the IMC 
growth rate [43] was found to 
be much slower than usually. 
We developed a theoretical 
model for a systematic dis-
cussion of the competition 
among evolution paths in re-
actions between Cu with Sn–
Zn solder. We explained that 
only a small amount of Zn can 
lead to the extremely slow re-
action rate in IMC formation 
[43]. It is an important prop-
erty for electronic packaging 
technology.

5-component system of 
Cu–Sn–Zn–Bi–In is too com-
plicated for theoretical analy-
sis. Because we treat mainly 
the formation of intermetallic 
phases on the basis of binary 
compounds of Cu6Sn5, CuZn, 
and Cu5Zn8, we simplify our 
analysis by considering the 
ternary system of Cu–Sn–Zn 
(Fig. 20), assuming that the 
role of Bi and In is in the re-
duction of eutectic tempera-
ture, but not the formation of 
new compounds in soldering 
reaction.

Even in this case, the sit-
uation with the choice of re-
action path is complicated. 
At Fig. 21, you may see at 

least three possible alternative diffusion paths: 
Blue path, Cu–CuZn((a)	 B2-phase)–(Sn + Zn);
Green path, Cu–CuZn((b)	 B2-phase)–Cu5Zn8(γ-phase)–(Sn + Zn); 
Red path, Cu–Cu(c)	 6Sn5(η)–CuZn(β)–(Sn + Zn).

Please note that these paths do not demonstrate explicitly the shape 
of S-curve, predicted by Kirkaldy. Yet, it is not a mistake. Simply, in 
our case, one of the marginal phases of diffusion couple is liquid solder, 
diffusion in liquid is much faster than in solid part, so that the liquid 
section of the diffusion path in the concentration triangle (almost along 

Fig. 21. Simplified phase diagram and alterna-
tive diffusion paths

Fig. 20. Isothermal section of phase diagram 
Cu–Sn–Zn [44]
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the tin–zinc side) is very short and tends just to point, coinciding with 
initial composition of liquid solder.

Moreover, some of intermediate phases along the indicated diffu-
sion paths may be kinetically suppressed.

In the conditions described in [43], we found that the growing phase 
belongs to copper–zinc side and was close to gamma-phase.

We demonstrated that the growth rate is proportional to the cubic 
root of concentration difference between actual composition of zinc in 
solder, and the threshold composition in zinc, corresponding to ternary 
equilibrium between three phases: liquid solder, gamma-phase and beta-
phase. In simplified case, when the grain size is proportional to the 
layer thickness, one gets:

	
1/3Sn infinity min

max min 1/3zn zn
zn znmax min

zn zn

(12.6 ( ))GB GB

C C
X D C C t

C C

− −γ
γ γ γ − γ−

−γ −γ

 −
∆ = ⋅ δ − − 

.	 (58)

In more general case,

   

1/2 1inf min
max minzn zn 2

zn znmax min
zn zn

8.4
( )

1

mSn inity
GB GBD C C

X C C t
m A C C

−− −
− −

− −

 −
∆ = − − − 

g g
g g

g g

d
.	 (59)

5. Main Conclusions

I. Recent stochastic modification of Kinetic Mean-Field, as well as Ki-
netic Monte Carlo, enables to model nucleation, simultaneous ordering 
and growth, and competition of the intermediate phases in solid-solid 
interactions, if one uses one of two tricks:

(a) Constant interaction energies within two coordination shells with 
opposite signs of mixing energies.

(b) Exponential dependence of interaction energy between two atoms 
on the local composition of the surrounding cluster.

II. Superposition law for Wagner diffusivity in multiphase reactive 
diffusion is found and proved: Interpenetration of components in para-
bolic regime of diffusion is proportional to the sum of Wagner diffu-
sivities of all intermediate phases:

( )( )

1
2

tan
10

( ) 2 ( ) ( ) ( )
C n

Ma o k
k CC k

X X D C dC D C dC D C dC t
α

β
= ∆

 
 < − >= + +
 
 

∑∫ ∫ ∫   .

III. At low temperatures, when the interdiffusion proceeds mainly 
via grain-boundaries, the rate of lateral grain growth may be driven by 
interdiffusion flux, leading to time exponents 2/5 for phase thickness 
and 1/5 for lateral grain size.

IV. At the last stages of reaction in sandwich-like samples Cu–sol-
der–Cu, the grains of Cu6Sn5 grow extremely fast, because they are 
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separated by liquid channels instead of usual grain boundaries, due to 
high diffusivity within liquid channels, and nanometric thickness of 
these channels.

V. Small addition of Zn to Sn may drastically change the phase spec-
trum of soldering as well as to slow down the reaction rate.
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МОДЕЛЮВАННЯ ФАЗОУТВОРЕННЯ У ПРОЦЕСАХ  
ТВЕРДО-ТВЕРДОФАЗНОЇ ТА ТВЕРДО-РІДКОФАЗНОЇ ВЗАЄМОДІЇ:  
НОВІ РЕЗУЛЬТАТИ

Розглядаються нові результати, одержані після 2016 року в галузі моделювання 
фазоутворення за твердо-твердофазних і твердо-рідкофазних реакцій методами 
СКСП (стохастичний кінетичний середньо-польовий), Монте-Карло та феномено
логічним. Правдоподібні результати моделювання реакційної багатофазної ди-
фузії, зокрема утворення чітких концентраційних плато для кожної впорядкова-
ної проміжної фази та чітких концентраційних перепадів між ними одержуються 
методами СКСП та Монте-Карло, якщо в моделі врахувати міжатомні взаємодії в 
другій координаційній сфері так, що енергія змішання в першій сфері — від’єм
на, а в другій — додатна. Іншою можливістю одержати правдоподібні результати 
моделювання реакційної дифузії є використання міжатомних взаємодій, залеж-
них від локального хімічного складу, із максимумами для стехіометричних кон-
центрацій. У феноменологічному моделюванні вводяться узагальнення концеп-
ції коефіцієнта взаємної дифузії за Ваґнером і відповідне правило суперпозиції. 
Запропоновано новий механізм латерального росту зерен у зростаючих прошар-
ках проміжних фаз під час реакційної дифузії. Повідомляється про відкриття 
аномально швидкого росту зерен на фінальній стадії паяння контактів «сандві-
чевого» типу мідь–цина–мідь і про теорію цього явища. Також описано просту 
модель врахування впливу добавок Цинку на реакцію мідь–цина.

Ключові слова: взаємна дифузія, проміжні фази, впорядкування, моделювання, 
середньо-польове наближення, шум, метод Монте-Карло, паяння


