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ON THE JUMPS OF VOLUME, ENTHALPY

AND ENTROPY AT THE MELTING POINT,

THE THERMAL CONDUCTIVITY AND THERMAL
DIFFUSIVITY FOR F.C.C. Au: THE TEMPERATURE-
AND PRESSURE-DEPENDENCES

The melting temperature, the jumps of volume, enthalpy and entropy at the melt-
ing point, the isothermal compressibility, the thermal expansion coefficient, the
heat capacity at constant volume, the Griineisen parameter, the Debye temperature,
the electrical resistivity, the thermal conductivity, and the thermal diffusivity for
defective and perfect f.c.c. metals are studied by combining the statistical moment
method (SMM), the limiting condition of the absolute stability of the crystalline
state, the Clapeyron—Clausius equation, the Debye model, the Griineisen equation,
the Wiedemann—Franz law and the Mott equation. Numerical calculations are car-
ried out for Au under high temperature and pressure. Calculated melting curve of
Au is in a good agreement with experiments and other calculations. Obtained results
are predictive and orient towards new experiments.

Keywords: jumps of volume, enthalpy and entropy at the melting point, thermal
conductivity, thermal diffusivity, statistical moment method.

1. Introduction

Gold is a metal with high ductility, and structural stability under ex-
treme pressure and temperature conditions [1, 2]. Au has a face-centred
cubic structure (f.c.c.), which is stable at pressure P = 600 GPa and
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ambient temperature [3]. Au is widely used in industries such as photo-
catalysis for drugs [4]. Currently, there are many methods to study Au
materials including experimental methods [5, 6], theoretical methods
[7T—11], ab initio calculations [12—14], energy approach quantification
[15], the Z method [16], the Lindemann method [17-19], the molecu-
lar dynamics (MD) simulation [20] and the embedded atomic method
(EAM) [21]. Several thermodynamic models have been used to describe
the melting temperature as the Pawlow model, the Rie model [22] and
the model of Reiss and Wilson [23]. The studies on the melting of Au
are not complete. Experiments of laser heated diamond anvil cell (LH
DAC) [24] and shock wave (SW) [25] provide the high-pressure melting
curve of Au. The various possible experimental methods have been com-
pared and measurements of the melting points of small gold particles
have been made using a scanning electron-diffraction technique. This
method was applied to particles having diameters down to 20 E. Con-
sideration of the size distribution over an entire sample makes it neces-
sary to carry out a careful analysis of the experimental results in order
to deduce the melting temperature of particles having a well-defined
diameter. The experimental results are quantitatively in good agree-
ment with two phenomenological models. The first model describes the
equilibrium condition for a system formed by a solid particle, a liquid
particle having the same mass, and their saturating vapour phase. The
second model assumes the pre-existence of a liquid layer surrounding
the solid particle and describes the equilibrium of such a system in the
presence of the vapour phase [26]. The relationship between the melting
temperature and the particle size using a micro-electromechanical sys-
tem (MEMS) was determined in [27]. At pressure P = 0.1 MPa, Au has
a face-centred cubic (f.c.c.) structure with lattice constant a = 4.0785 A
at room temperature and melting point at 7, = 1337 K. The melting
temperature of Au is also determined by theoretical calculations [28-
30]. The phase transition temperature curves were determined up to T =
=1673 K and P = 6.5 GPa with the slope dT'/dP = 60 K/GPa [31, 32] and
up to T = 1923 K at P = 12 GPa [33]. According to [8], shock-induced
melting begins to occur at pressure P = 120 GPa. Based on experimental
and theoretical results, the melting temperature always depends linearly
on the size of the material [34, 35]. Finally, according to [36—38] it is
not possible to determine the melting temperature of materials with
sizes d < 5 nm. Besides, because the complexity of experimental meth-
ods, the melting temperatures have limited value and do not guaran-
tee high accuracy [39, 40]. There are many theoretical models such as
the ab initio method and MD simulation based on Lindemann’s law to
predict high-pressure melting temperatures of metals. However, such
approaches do not guarantee the evaluation of melting at extremely
high temperatures and pressures [41-43]. Thermodynamic models based
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on equations of state can predict the properties of solids [44—46] such
as f.c.c.—h.c.p. structure transition at P = 240 GPa, T = 1000 K [47].
Determining the melting curve by experimental methods still has many
limitations. The measuring devices are limited to pressure P = 35 GPa
and experimental results above P = 15 GPa are scattered [48, 49, 50].
In addition, the influence of material size, energy and atomic number
on structural characteristics, electronic structure and phase transition
of metals and alloys is studied in [51-61]. The melting temperature has
great influence on physical quantities such as the volume, the enthalpy,
the entropy, the electrical resistivity, the Debye temperature, the ther-
mal conductivity and the thermal diffusivity of materials [62—-67]. In
this paper, analytical expressions of the Helmholtz free energy, the co-
hesive energy, the crystal parameters, the nearest neighbour distance,
the equilibrium vacancy concentration drum, the limit temperature of
absolute stability for crystalline state, the melting temperature, the
jumps of volume, enthalpy and entropy, the isothermal compressibility,
the thermal expansion coefficient, the heat capacity at constant volume,
the Griineisen parameter, the Debye temperature, the thermal conduc-
tivity and the thermal diffusivity for f.c.c. perfect and defect metals
are derived by combining the statistical moment method, the absolute
stability conditions of crystalline state, the Clapeyron—Clausius equa-
tion, the Debye model, the Griineisen equation, the Wiedemann—Franz
law and the Mott equation. Our numerical calculations of the obtained
theoretical results are performed for Au.

2. Model and Results
2.1. Theoretical Calculations

The Helmholtz free energy of the f.c.c. metals is equal to [68]

2 2
Y= Uo +W0 + 3N{%{Y2Y2 —L(lﬁ-%j}ﬁ-

3
3
+i éYiY 1+ 2 -2(v} +21,7,) 1+z)(1+Y) ,Y = xcoth x,
E* |3 2 2
i k
=3NO|x +In(l—e™ ,x:—,w:\/:, 1
v, [ ( )] 2 - (1)

N
where U, = Euo u, is the cohesive energy of an atom, N is the number of
atoms in the metal, 0 = £,T, k; is the Boltzmann constant, T is the absolute tem-

h
perature, /i = 2— , h is the Planck constant, o is the vibration frequency of
T
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atom at lattice point node, k is the harmonic parameter of the metal, m
is the atom mass, y,, v, are anharmonic parameters of the metal [68].

The equations of state for f.c.c. metals at pressure P and tempera-
ture T and at P and T = 0 K respectively are determined by [69]

Pv=-r, 10uy gy 1 ok , (2)
6 or, 2k o,
Pv=-a 10y, +h_c06_k , (3)
6 0a 2k Ca

3
where r, is the nearest neighbour distance and v = % = x/§2r1
ume of cubic unit cell per atom for f.c.c. lattice. If knowing the form of
interaction potential between two atoms, from Eq. (3) we can find the
nearest neighbour distance ry,(P,0) and the metal parameters k(P,0),
1,(P,0), 7,(P,0), v(P,0), at temperature T = 0 K and pressure P. From
that, we can determine the displacement y(P,T) of an atom from the
equilibrium position at temperature T and pressure P [68].

The nearest neighbour distance between two atoms r,(P,T) at tem-
perature T and pressure P is given by [68]

(P, T) = ro;(P,0) + y (P,T). (4)

Absolute stability limit temperature for the crystalline state of the
metal has the form [68—73]

T - hs % +(6_TJ P, (5)
y lésiaB’Y(;(l)’ 71;) Ea’i T=T éal) v

ia—kY is the Griineisen parameter of
6k O,

is the vol-

where r;; = r/(P,Tg) and vy, = -

the metal.
The melting temperature T, of perfect metal is derived from the
temperature T by the following expression [68—73]

B 2
T, ~ T+t —fis (POBT) 1 (%J +ris {a_u;j , (6)
kgyo (P, T) s 18|\ on T-T, or; T=T,

where r,,, = r,(P,T,), a,, =a(P,T,). Eq. (6) is used to determine the met-
ing temperature of perfect metal at P = 0.

The dependence of the melting temperature T, on pressure P can be
considered by a dislocation-mediated theory [74], which is written as

-1/b
T (P)=T,(0) % EL(Q} , (7)

where G and B, is the shearing modulus and the isothermal bulk modu-
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lus, b = [dBTj . G and B, are determined by the SMM as follows
P=0

- il ®)
S 2nn(L+ VR + y2R(Y + 1)(Y +2)]
3
B, - ﬂ(@) {ﬂ} , ®)
3 on ), | n(P,T)

where v is the Poisson ratio.
Thze equilibrium vacancy concentration of the metal is determined
by the following expression [71, 73, 75]

n, = exp(zgj (10)

Then, the melting temperature of defective metal can be written as
[78, 76, TT7]

oT T?
T,,’f=Tm— — n(T)=T, ——7+7—F5—"2—. (11)
(anv]P,V &_@uo _ U
4 00 4k,

Eq. (11) only gives SMM predictions in the range of pressure from
zero to 100 GPa [71, 73, 75].
Eq. (7) for the melting temperature of defective metals can be writ-

ten as BF
R R
TH(P) = TR(O)GR(P ) BR(P) , (12)
G"(0) | B;(0)
R
where b* = (dB J and
2
G =G auo u°j+ p Ot 10U (1+”j (13)
2v(1 V)| 4 46 or? 2 or, 46

BF =B, +n,nAB, +n, 4“—°BT, (14)

0

where n,, AB,, y, are first coordination number in perfect lattice, va-
cancy-induced and the Helmholtz free energy per atom change in the
isothermal bulk modulus [78].

The jump of volume at melting point for metal can be found from
the following expression

3 2n2
Av, =001, 870 (15)

where ¢ is a constant depending on the nature of metal and normally
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takes the value 0.01 [76], <u> = y is the displacement of atom from the
equilibrium position. In order to determine the jump of volume Av, at
pressure P and temperature T, it is necessary to determine r1,<u> at
pressure P and temperature T. The metal parameters &,y are determined
with respect to r, at pressure P and temperature T.

After finding the melting curve T, (P), we can calculate the slope

m m

oT,
P of this curve. Knowing T, P and Av,,, we can be derive the jump

of enthalpy at melting point from the Clapeyron—Clausius equation

T Av
=_m_m 16
oP
and the jump of entropy at melting point
AS, = A, an)
T

m

The isothermal compressibility of the metal is determined by [68]
3
5 [ n(P, T)}
1,,(P,0)
(P, T) [asz ’
3V o ),

1 [52 ] —1%+@0T[1@—i{6q (Y+Z2)} 7 =

XT(Pv T) =
2P +

(18)

3N\or? ) 6 or 2k or? 4K\ 0 sinh x

The thermal expansion coefficient of the metal can be determined by

the following expression [68]

V21,(P,T) 1 o
3r(P,T) 3N oTor,’

(XT(P, T) = -
2 2

1 Oy _Z° 8k+2szT[Y1 Ok Ok @1vz?) -
3Nk, OTor, 2k or, K | 3kon

(19)

n

_1%(4_,_1(_,_22)_ %%_% YZ2?|.
60 k

The heat capacity at constant volume has the form [68]
C,(P,T) = 8Nk, {22 + 224[(2 tg j YZ® +
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+ %(1 +Z%) -y, (Z" + 2Y222)]} (20)

The Griineisen parameter of the metal is calculated by [68]

30, (P, T)V(P,T)

P, T)= 21
D= e,y =D
The Debye temperature of the metal at pressure P is derived from
[77]
V q
T,(P) = T,, exp | — 16 [—) ~1L, (22)
q |\,
kO, T) .
where T, = % is the Debye temperature of the metal at zero
) m

pressure, V=V (P,T), V,=V0,T),y, =Yo(PsT)s Vg0 = ¥¢(0,T), ¢ > 0 and
q is a material constant.
The electrical resistivity of phonons is given by the Bloch—Griinei-

sen law [79] ;
Tp/T 2d
P p0+_[_J j . 1)(1_@2 (23)

D D

where p,,B and T, respectively are the residual resistivity, the material
constant and the Debye temperature. The constants p,,B are determined
from the experimental data. According to the Mott equation [80],

80L,
T b

m

(24)

Prr = Pgs eXp[

where L, is the latent heat of fusion; p,, and p,g are the electrical resis-
tivities of liquid and solid phases. According to the Wiedemann—Franz

law, the thermal conductivity of the metal is calculated by
K = E, (25)

Pe

n(k
where L = —(—B
3 e
The thermal diffusivity A is defined by

2
j is the Lorentz number.

K
A=—o, (26)
pCp

9TVl

where p is the density and C, =C, + is the heat capacity at con-

stant pressure. Xr
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2.2. Numerical Results and Discussions for Au

In order to study Au, we applied the Mie—Lennard-Jones (MLJ) pair
interaction potential as follows [81, 82, 84]

o(r) = L{m (r—‘)j -n [5) } (27)
n-m r r
where parameters D and r,are determined from the experimental data
and parameters m and n are by the empirical way. The MLJ potential
parameters for the interaction Au—Au are given in Table 1.
The obtained numerical results of the melting temperature, the slope

of the melting curve, the jumps of volume, enthalpy and entropy at the
melting point, the thermal conductivity and the thermal diffusivity for

Table 1. The MLJ potential parameters for Au

Interaction D/ky, (K) r, (1071 m) m n

Au—Au [81] 7411.5 2.8751 5.5 10.5

Table 2. The melting temperature, the slope of the melting curve, the jumps of
volume, enthalpy and entropy at the melting point for Au at P = 0 calculated
by the SMM according to the perfect metal model in Figure 1

T (K) aT, /0P (K/ GPa) Av, (E?) AH,, (meV) AS, (k)

1341 57.77 4.78 163.6 0.1219

Table 3. The temperature dependence of the jumps of volume,
enthalpy and entropy for Auat P =0

T (K) Av,, (E?) AH,, (meV) AS,, (ky,)
100 8.78 297.32 0.222
200 4.56 154.47 0.116
300 3.16 106.95 0.079
500 2.07 70.03 0.052
700 1.66 56.14 0.042
800 1.56 52.78 0.039
900 1.5 50.92 0.038

1000 1.48 50.28 0.037

1100 1.5 50.67 0.037

1200 1.54 52.06 0.039
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Fig. 1. The melting curve of Au calculated by the SMM according
to the perfect metal model [83], the SMM according to the defec-
tive metal model [83], the SMM calculation from Eq. (11) [83],
other calculations [86, 87] and experiments [32, 88]

Au in the temperature range of 0—1350 K and in the pressure range of
0-250 GPa are summarized in tables from Table 2 to Table 5 and are
illustrated in figures from Figure 1 to Figure 6.

Figure 1 shows the correlations between pressure and the melting
temperature of Au up to 250 GPa [83]. It is possible to reproduce ac-
curately experimental results [32, 88] for Au in the range of pressure
from zero to 100 GPa by using Eq. (11). However, this equation is
invalidated when P > 150 GPa while the f.c.c.—b.c.c. phase transition

Table 4. The temperature dependence of the heat capacity
at constant pressure for Auat P =0

T(K) 100 300 500 700 800 1000 1200

C, (cal/mol-K) 5.12 6.00 6.20 6.40 6.48 6.70 6.96
C, (cal/mol-K) [89] 5.12 6.07 6.28 6.52 6.65 6.90 7.15

Table 5. The pressure dependence of the thermal conductivity k
and the thermal diffusivity A for Au at T = 300K

P(GPa) 1 3 5 7 8 9

k(107 W/mK) 117.67 | 313.81 330.38 | 332.22 | 332.47 332.59
A(107 m?/s) 57.670 | 42.182 | 24.068 16.119 13.721 11.897
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pressure is reported to be approximately 240 GPa [85]. To understand a
monotonous variation of the melting temperature with compression, we
can employ the perfect model. Nevertheless, this if not an exact approx-
imation. For example, the perfect model gives T, (0) = 1612 K, which
is 21% larger than the corresponding experimental value of 1335 K
[32.88]. In co%trast, combining Eqs. (11) and (12) provides relative er-
ror § = T —Tn = 9.74% . This reduction brings a good agreement be-
tween the SMM calculation and comparable data [32, 85, 88]. We use
the melting curve of Au calculated by the SMM according to the per-
fect metal model on Figure 1 in order to find the melting temperature
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oT
T, =1341 K and the slope a—}’)" =57.77 K/GPa of the melting curve
of Au at P = 0. By using Eq. (15), we can find the jump of volume

Av, = 4.78 A? at the melting point 1341 K. From the obtained values

oT
of T’”’a_;’Av and Eq. (16), we derive the jump of enthalpy AH, =

m

=163.6 meV. From the obtained values of T,, AH, and Eq. (17), we
determine the jump of entropy AS, = 0.1219k;, . These results are sum-
marized in Table 2.

The temperature dependences (the melting temperature dependenc-
es) of the jumps of volume, enthalpy and entropy for Au at P = 0 and in
the range of temperature from 100 to 1200 K are summarized in Table
3 and illustrated on figures from Figure 2 to Figure 4. Graphs Av, (T),
AH (T) and AS,(T) have analogical forms. When temperature increases
from 100 to 300 K, Av,,AH, and AS, strongly decrease. Still when
temperature increases from 300 to 1200 K, Av,,AH, and AS, gradually
decrease and then insignificantly change.

The temperature dependence of the heat capacity at constant pres-

2
9TV o for Au at P = 0 calculated by the SMM is in good

sure C, =C, +
T
agreement with experiments as shown in Table 4.

Table 5 is the pressure dependence of the thermal conductivity x and
the thermal diffusivity A for Au at T =300 K and in the range of pressure
from zero to 9 GPa. When pressure increases from 1 to 9 GPa, the ther-
mal conductivity increases from 11.67-10% to 332.59-10° W/mK and
the thermal diffusivity deceases from 57.67-107% to 11.897-10'° m?/s.
The temperature and pressure dependences of the thermal conductivity
k and the thermal diffusivity A for Au at temperatures T = 300, 500 and
700 K and in the range of pressure from 0 to 12 GPa are illustrated on
Figure 5 and Figure 6. According to these figures, for Au at the same
pressure when temperature increases, the thermal conductivity k and
the thermal diffusivity A increase too. For Au at the same temperature
when pressure increases, the thermal conductivity k increases and the
thermal diffusivity A decreases.

In this paper, we applied the following formula for the electrical
resistivity of Au [77]

Py =0.022 +

5T,/T 5
1150(7’} 2°dz ©2)

T, \T,) 3 (¢ -Dd-e7)

These SMM calculated results of Hoc et al. [77] are completely con-
sistent with the experimental results of Berrada [88] and Matula [80]
at P =0, T = 0—1350 K. In the range of high temperature (T >> T,),
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the electrical resistivity increases linearly in respect to temperature.
In the range of low temperature (T' << T,), the electrical resistivity is
proportional to T¢. This can be seen through Eq. (22). In the range of
temperature from zero to 1350 K and in the range of pressure from 0
to 5 GPa, the SMM calculations are in good agreement with other theo-
retical calculations and the experimental data. The SMM calculations
of electrical resistivity for Au at high pressures up to 100 GPa in [77]
orient and predict experimental data in the future. Because our SMM
calculations of electrical resistivity for in [77] are reliable and the SMM
calculations of the heat capacity at constant pressure for Au calculated
by the SMM is in good agreement with experiments, our SMM calcula-
tions of thermal conductivity and thermal diffusivity also are reliable.
Our SMM calculations of the jumps of volume, enthalpy and entropy,
the thermal conductivity and the thermal diffusivity for Au can be ex-
tended for the range of temperature from zero to 1350 K and the range
of pressure from zero to 100 GPa as in our previous paper [77].

3. Conclusion

The melting temperature, the jumps of volume, enthalpy and entropy
at the melting point, the isothermal compressibility, the thermal expan-
sion coefficient, the heat capacity at constant volume, the Griineisen pa-
rameter, the Debye temperature, the electrical resistivity, the thermal
conductivity and the thermal diffusivity for f.c.c. defective and perfect
metals are studied by combining the statistical moment method (SMM),
the limiting condition of the absolute stability of the crystalline state,
the Clapeyron—Clausius equation, the Debye model, the Griineisen equa-
tion, the Wiedemann—Franz law and the Mott equation. Our numerical
calculations of obtained theoretical results are carried out for Au under
high temperature up to 1200 K and pressure up to 12 GPa. The SMM
calculated melting curve of Au is in good agreement with experiments
and other calculations. Our calculations for the jumps of volume, en-
thalpy and entropy, the thermal conductivity and the thermal diffusiv-
ity for Au predict and orient experimental results in the future.
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! HanjonansHuii yHiBepcuTeT ocBitn Xanos, XaHoii, B’eraam
?Buma mkona Mak Miup Yi, nposinmnia 3anaii, B’eTaam

3 Vuisepcurer Yan Kyox Tyan, Xanoii, B’eruam

IIPO CTPUBKU OB’€EMY, EHTAJIBIIII 1 EHTPOIIIT

3A TEMIIEPATYPH TOIIJIEHHS, TEIIJIOIIPOBITHICTH
I TEPMOIU®Y3IIO NJIA TIIK-Au: BAJEHKHOCTI

BII TEMIIEPATYPU TA TUCKY

HocaigKyoTbcs TemMIepaTypa TOILJIEHHS, CTPUOKKU 00’eMy, eHTasbIlil Ta eHTpOoIii B
TOUI[i TOILJIEHHSA, i30T€pMiUHA CTUCIUBICTh, KOe(illi€HT TEIJIOBOTO PO3IINPEHHS, TEll-
JIOeMHICTD IpHu TocTiiHOMY 06’eMmi, I'pronaiisenis mapamerep, JleGaifoBa TemmepaTy-
pa, TUTOMUU eJIEKTPUYHUN OIip, TemJIonpoBigHicTs i Tepmonudysia qua 'IIK-meranis
3 gedeKTaMU Ta ieaIbHUX IMIJIAXOM MHOETHAHHS METONU CTATUCTUYHUX MOMEHTIB,
TPAaHMYHOI YMOBHU a0bCOJIOTHOI CcTabiIbHOCTH KPUCTAIIYHOTO CTaHy, piBHAHHA Kianeii-
pora—Kuaysiyca, Jle6aitoBoro Mogeio, I ploHaii3eHOBOrO piBHAHHHA, 3aKOHY Biremana—
®dpanma, MorroBoro piBHAHHA. [IpoBeeHO YnCeabHI PO3PAXYHKHU A AU 32 BUCOKUX
TeMneparyp i TuckiB. PospaxoBaHa KpuBa TomieHHA Au 100pe Y3TOLKY€ETbCA 3 €KCIIe-
puMeHTaMu ¥ inmumu podpaxyHkamu. OmepskaHi pesyabTaTH € IPOTHO3HUMHU Ta CIIO-
HYKAaIOTh O HOBUX €KCIEPUMEHTiB.

Karouosi ciaoBa: cTpubKy 06’eMy, eHTANbIIIA ¥ €eHTPOIIisa 3a TeMIepaTypyu TOIJIEHHS,
TeIJIONPOBIAHICTD, TEIJIOMPOBiAHICTh, METO/, CTATUCTUYHUX MOMEHTiB.
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