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fUnctionaliZation  
of QUasi-tWo-DiMensional  
Materials: cheMical  
anD strain-inDUceD MoDifications

Among the family of currently known promising quasi-two-dimensional (2D) mate-
rials, the authors of this survey concentrate on the problem of functionalization of 
the graphene- and phosphorene-based structures. In most cases, the modification of 
their properties occurs through the covalent or noncovalent surface functionaliza-
tion and mechanical affects. The atomic structures and some physicochemical fea-
tures of 2D materials possessing novel properties as compared to their bulk counter-
parts are analysed. Their main advantages are the thickness of one or more atoms, 
the absence of surface-broken bonds, high mobility of charge carriers, the flexibil-
ity, the ability to be combined artificially into coplanar (lateral) or lamellar heter-
ostructures, as well as the possibility to manipulate widely the band-gap changing 
from the semi-conducting state even into the semi-metallic one (or vice versa) when 
needed. In order to reveal new factors affecting the electronic properties of 2D ma-
terials by means of the computational experiment using the author’s (self-construct-
ed) software code, a series of studies are carried out. They are the calculations of 
the spatial distribution of valence electrons’ density, the electron densities of states, 
the band-gap widths, Coulomb potentials along selected directions, the charge values 
in regions of different-size material, the dielectric matrices, the macroscopic rela-
tive permittivities, and absorption spectra. A series of recent studies, which the 
authors carried out modelling the electronic and transport properties of single- or 
multilayer graphene films subjected to deformation or/and magnetic fields and con-
taining different-type (point- or/and linear-acting) defects is reviewed. Analysing 
the obtained results and revealed effects, it is claimed that the uniaxial tensile defor-
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1. introduction

As known [1, 2], one of the classifications of (nano)materials relates to 
the number of dimensions of a material, which are outside the nanoscale 
(≲100 nm) range. 

For zero-dimensional (0D) nanomaterials, all the dimensions are 
measured within the nanoscale, i.e., no dimension is larger than 100 nm. 
Most commonly, this class consists of nanoparticles, quantum dots, 
poly mer dots, and fullerenes [3]. 

For one-dimensional (1D) nanomaterials, one dimension is outside 
the nanoscale range. This class includes nanotubes, nanorods, and quan-
tum and nanowires [3]. 

For two-dimensional (2D) nanomaterials, two dimensions are out-
side the nanoscale range, and along one dimension, there are stacked 
only a single-atom-thick or a few-atoms-thick layers. This class exhibits 
quantum wells, graphenelike and other monolayer materials such as 
MXenes, phosphorene, silicene, germanene, arsenene, hexagonal boron 
nitride and others [3]. Besides, there are quasi-two-dimensional nano-
materials such as graphene films, nanosheets and other related sys-
tems.

Finally, three-dimensional (3D) (nano)materials (as well as (nano)
systems or (nano)structures) as a whole are not confined to the nano-
scale range in any dimension. Nevertheless, this class can contain: na-
nocrystalline materials; bulk nanopowders; nanoporous materials; dis-
persions (colloids) of nanoparticles; intercalation compounds; bundles of 
nanowires and nanotubes as well as multinanolayers; nanoscale con-
tacts; (nano)composites (nanosystems embedded in a larger structure), 

mations or shear deformations along with their combinations as well as the struc-
tural imperfections (mainly, the mutually configured defects) can be useful for 
achieving the new level of functionalization of graphene. So, for modification of its 
electrotransport properties through tuning the band-gap value as much as it is 
enough to achieve the graphene transformation from the zero-band-gap semi-metal-
lic state into the semi-conducting state and even reach the gap values, which are 
substantially higher than that for some materials (including silicon) currently used 
widely in the nanoelectronic devices. The strain- and defect-induced electron–hole 
asymmetry and anisotropy of conductivity and its nonmonotony as a function of 
deformation suggest a confidence in mani pulating the electrotransport properties of 
graphene-like and beyond quasi-2D materials through a variety of both strains and 
defects. The use of reviewed and analysed results serves as a significant step in 
improving the properties of the considered mate rials in order to implement the mul-
tifunctional applications of them in the immediate prospect.

Keywords: two-dimensional materials, point and linear defects, graphene, phos-
phorene, electronic structure, electronic transport, density functional theory, pseu-
do-potential from the first principles, straintronics, band gap.
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e.g., diamond/nanocarbon composites; complex nanostructures, includ-
ing patterned or assembled structures, nanoaggregates, nanodroplets, 
nanomicelles [3]. 

The object of research in this article are (quasi-)2D materials, which 
in turn can be classified according to their composition or/and structure 
as homo- and heteroelemental, single- and a-few-layers systems with 
overall layer(s) thickness of just a few nanometres [4, 5]. The subject of 
research focuses on the analysis of several factors appropriate for af-
fecting the electronic and electrotransport properties of some repre-
sentatives of family of the (quasi-)2D materials. Such materials have 
been a central topic of research since graphene discovery at the begin-
ning of this century [6] due to their ultrathin thickness and tuneable 
physicochemical properties; so, they are well suited to applications, 
where the bulk materials would be unsuitable. As distinct from their 
bulk counterparts, they have a specifically organized surface that allows 
the structure of their energy bands to respond effectively and imme-
diately to external perturbations and alloying substances. Such a special 
surface nature makes these materials competitive in application for de-
vices. It is currently known about emerging application of elemental 2D 
materials in many fields such as (opto)electronics, sensing, spintronics, 
plasmonics, photodetectors, ultrafast lasers, batteries, supercapacitors, 
thermoelectrics, and biomedicine [7]. 

In the present article, we review relevant data available in the lite-
rature and compare them with our recent results [8–16] based on the 
computational (numerical) experiments along with the own-constructed 
software (program) codes. The paper is organized as follows. After the 
Introduction (current section 1), section 2 reviews the formalism of 
electron density functional and pseudo-potential from the first princip-
les, algorithm for calculation of the effective electrical charges, elec-
tronic spectrum, total energy, mechanical forces, and valuation reliabi-
lity verification of electronic characteristics. Section 3 includes results 
and discussions on the modifying electronic characteristics by the local 
chemical functionalization, particularly, the chemical adsorption on 
graphene, doping of black phosphorene, effects of the bending strain, 
static pressure and fluorination. Section 4 deals with the straintro - 
nics and defect engineering for graphene and related systems. This  
sec tion contains methodological grounds for consideration of electro- 
nic diffusivity and conductivity, modelling approach for consideration 
of deformations and structural defects, and effects of some types of 
strains and point defects on the electron states and electronic transport. 
The case of graphene with point and linear defects inside the external 
magnetic field is considered in section 5. Finally, section 6 summa-  
rizes the conclusions, which follow from the findings in the previous  
sections.
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2. Properties of the Ground State from the electron density

2.1. Formalism of Electron Density Functional  
and Pseudo-Potential from the First Principles

The density functional theory (DFT) is part of a group of methods from 
the first principles, otherwise ab initio, which allow, based on the char-
acteristics of the crystal structure, to calculate the physical and chemi-
cal properties of objects without the use of empirical data.

At the initial stage of the analysis of the crystal structure, the 
Born–Oppenheimer approximation is used. Based on the ratio of the 
masses of nuclei and electrons, it is believed that nuclei remain station-
ary and electrons move in some stationary effective potential created by 
stationary nuclei and other electrons.

Next, the interactions, which will be accountable in the calcula-
tions, are selected as follow. In most cases, the consideration is within 
the nonrelativistic quantum mechanics, and relativistic effects related 
to the motion of the electron, such as the dependence of the mass of the 
electron on its velocity, spin–orbit and spin–spin interactions, are taken 
into account as corrections. The type of Hamiltonian and the number of 
electrons contain all the necessary information about the system.

The initial problem is to solve the Schrödinger equation for a many-
electron system, but the exact solution of this equation is possible only 
for some model many-electron systems, such as Fermi particles with 
short-range interaction and interacting spin chains. Therefore, a number 
of additional approximating methods are used.

Thus, according to the Hartree–Fock theory, the Schrödinger equa-
tion for the system is as follows [17]:

 Ĥψ′ = Eψ′, (1)

where E is the total energy of the system; H is the complete Hamilto-
nian containing the kinetic energy of electrons and nuclei of the system, 
electron–electron, nuclear–nuclear and electron–nuclear interactions; 
ψ′ is the wave function of the system, which depends on the spin and 
spatial coordinates of all nuclei and electrons. For the possibility of fur-
ther calculations, it is necessary to use the Born–Oppenheimer approxi-
mation. Since the mass of the nucleus is much larger than the mass of 
the electrons, the motion of the electrons is considered independent, and 
the full wave function of the system is

 ψ′(q, Q) ≈ χ(Q) ψ (q, Q), (2)

where χ(Q) is the wave function of the nuclei subsystem, ψ (q, Q) is the 
wave function of the electrons’ subsystem, which is the solution of the 
Schrödinger equation for electrons at the fixed positions of the nuclei:

 Ĥeψ (q, Q) = E(Q) ψ (q, Q). (3)
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The Hamiltonian of the electrons’ subsystem is derived from the 
complete Hamiltonian, from which the term associated with the kinetic 
energy of nuclei is subtracted. The energy of the electrons’ subsystem 
will depend on the selected configuration of the cores.

The next step is to specify the form of the wave function of the 
electrons’ subsystem in the one-electron Hartree approximation, where 
each electron moves independently of the other electrons in some effec-
tive potential field generated by nuclei and other electrons. Thus, the 
wave function of the electrons’ subsystem can be represented as the 
product of one-electron functions (orbitals):

 
1

n

i

i

С
=

ψ = ψ∏ . (4)

However, there are a number of shortcomings in the Hartree appro-
ximation. Thus, the many-electron wave function does not satisfy Pauli’s 
principle: electrons move as uncorrelated completely, i.e., are inde pen-
dent. These shortcomings are partially eliminated within the Hartree–
Fock approximation. In particular, the many-electron wave function is 
presented as a Slater determinant, i.e., it becomes antisymmetric with 
respect to the exchange of any pair of the electrons, which satisfies the 
Pauli principle,
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Here, N is the number of electrons, and n = N/2 is the number of orbit-
als. For orthonormal one-electron wave functions, the normalizing fac-
tor 1 !C N= . In the general case, the wave function contains a linear 
combination of Slater determinants corresponding to different variants 
of orbital filling, i.e., electrons’ configurations. For closed shells, the 
orbitals ψi(r) are the solution of the Hartree–Fock equation:

 f̂iψi (r) = εi ψi (r). (6)

This equation is nonlinear with respect to the one-electron wave 
function that significantly complicates the solution. An alternative ap-
proach is needed. This approach is the electron DFT. The main advan-
tage of this method is that the correlation effects can be taken into ac-
count immediately; it can significantly reduce the calculation time. The 
DFT is based on the two Hohenberg–Kohn theorems.

According to the 1st theorem, in the ground state, the density of the 
subsystem of interacting electrons, which are in some external poten-
tial, determines this potential to the nearest some additive constant. 
Meaning of this theorem is that all the properties of the subsystem of 
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electrons are uniquely determined by their density: 

 
2

(r) i

i

ρ = ψ∑ , (7)

where the summation occurs according to the occupied states. Only the 
existence of such a reciprocal correspondence is noted, but there are no 
indications as to its form.

The second theorem states that all observed physical quantities 
could be represented in the form of an electron density functional, in-
cluding the energy of the system, which has a minimum in the ground 
state of the system. In essence, this statement is a variational principle 
formulated in quantum mechanical terms [18].

We give the total energy of the system in the form of an electron 
density functional. The Hamiltonian of a system consisting of N electrons 
and n ions within the Born–Oppenheimer approximation has the form

 Ĥ
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Z
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Here, Vext(ri) is an external potential characterizing the interaction of 
electrons and nuclei; rij = | ri – rj |, where ri is a radius-vector of the i-th 
electron; and ∆j is the Laplace operator, which differentiates by the co-
ordinates of the i-th electron.

Expression (8) is written in the atomic system of units, in which 
ħ =  1, e =  1, me =  1, 1/(4πε0) =  1, where ħ is the reduced Planck cons-
tant (i.e., Dirac constant); e is an electron charge; me is an electron mass; 
ε0 is a dielectric constant of the vacuum.

By acting H on ρ (r) and choosing as a complete set of observed ope-
rators, the Hamiltonian and the momentum operator, we have

 ext[ (r)] [ (r)] [ (r)] (r) (r) reeE T U V dρ = ρ + ρ + ρ∫ , (10)

where T[ρ (r)] is kinetic energy functional of electrons,  Uee[ρ (r)] is elect-
ron interaction energy functional, ext ext(r) (r) r [ (r)]V d V∫ ρ = ρ  is functio-
nal energy of interaction of electrons and nuclei.

In this form, it is easy to see that all the properties of the system 
are determined solely by the electron density.

The electron interaction energy functional Uee[ρ (r)] is divided into 
the Hartree energy functional EH [ρ (r)] and the exchange–correlation 
functional EXC [ρ (r)], which takes into account multiparticle effects:

  Uee[ρ (r)] = EH [ρ (r)] + EXC [ρ (r)], (11)
where 

 

1 (r) (r )
[ (r)] r r

2 |r r |HE d d
′ρ ρ ′ρ =
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Thus, expression (10) has the form

 
ext

1 (r) (r )
[ (r)] [ (r)] r r (r) (r) r [ (r)]

2 |r r | XCE T d d V d E
′ρ ρ ′ρ = ρ + + ρ + ρ
′−∫∫ ∫ . (12)

By varying this functional taking into account the normalization condi-
tion (r) rd N∫ ρ = , we obtain the Kohn–Sham equation [19, 20]:

 eff (r) (r) (r)
2

i

i i iV
∆ − + ψ = ε ψ 

 
, (13)

where

 eff ext

(r )
r [ (r)] (r)

|r r | XCV d V V
′ρ ′= + ρ +
′−∫

is some self-consistent effective potential,  ψi (r) is a single-particle wave 
functions, which describe the motion of electrons in the potential Veff.

One of the main problems of the theory of electron density func-
tional is the lack of an analytical expression of general form for the 
exchange–correlation functional (except for systems without interac-
tion). There are various approximations in this regard [21].

Within the approximation of the local density, the exchange–corre-
lation functional is given by the expression

 [ (r)] [ (r)] (r) rXCE dρ = ε ρ ρ∫ , (14)

where ε (ρ) is the exchange–correlation energy of a homogeneous elect-
ron gas with density ρ. Thus, the value of the exchange–correlation 
energy at a given point is determined exclusively by the value of the 
electron density at the same point.

After determining the explicit type of exchange–correlation func-
tional, it is necessary to choose the basis set in the space of electron 
states by presenting the required electron wave functions in the form of 
a linear combination of basis functions with some functional coeffi-
cients. As basis, you can choose, e.g., plane waves, linearized plane 
waves, attached plane waves, orthogonalized plane waves and others. It 
is known that the number of basis functions of the Hamiltonian affects 
directly the time of calculation of eigenvalues; namely, this time is pro-
portional to the cube of the number of basis functions. This can be 
achieved by choosing the basis functions as close as possible to the  
eigenwave functions of the electrons in the structure under study. The 
basis for decomposition can be selected as a set of plane waves. Howev-
er, the use of such a basis without any modifications is not effective, 
because it is necessary to use the number of plane waves of the order  
of 105−106.

The idea of the pseudo-potential construction is to ‘smooth’ the 
wave functions of electrons near the atomic nucleus. In this case, only 
valence electrons are considered, because the vast majority of physical 
properties of systems are determined by the behaviour of valence elec-
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trons. Since the wave functions of the core electrons do not change with 
the change of the atom environment, i.e., remain the same as in the free 
atom, these electrons can be ignored, and it is considered that their in-
fluence is limited by changing the effective ion charge. Therefore, the 
interaction potential of electrons and ions is replaced by a weaker poten-
tial, which is the primary ion potential at distances greater than some 
rc, and at smaller distances, it is replaced by a smoother one [22]. This 
causes a significant reduction in the number of basis functions that 
simplifies greatly the solution at distances less than rc. Let V(r) is some 
self-consistent effective potential. The Schrödinger equation, which 
must be satisfied with the wave functions of valence electrons, has the 
form
 (r) (r)

2
Vυ υ υ

υ

∆
− ψ + ψ = ε ψ . (15)

A similar equation must be satisfied with the wave functions of the 
core electrons:
 (r) (r)

2
с c c

cV
∆

− φ + φ = ε φ . (16)

As basis functions, it is proposed to use the orthogonalized plane 
waves as the waves, which are previously orthogonal to the core wave 
functions. The equation for the orthogonalized plane waves has the form

 χOPW(k − K) = (1 −  P̂)|ei(k−K)⋅r 〉, (17)

where P̂ R R,R
| |c c

c
= φ 〉 〈φ∑  is a projection operator that projects any func-

tions on core states, φc
R = φc(r − R) is a core wave function with centre at 

the point R, and K is a reciprocal lattice vector.
Then, the set for orthogonalized plane waves of type (17) has the form

 k
K

(r)ψ = ∑aK(k)(1 −  P̂)|ei(k−K)⋅r 〉; (18)

moreover, ΣKaK| exp (i (k − K) ⋅ r)〉 = ϕPS(r). The pseudo-wave function ϕPS is 
smooth both in the vicinity of the core and outside (where P̂ = 0); more-
over, outside this vicinity, it is exactly equal to the true wave function 
ψk(r) that is the main advantage of the pseudo-potential construction.

Using formula (18), the Schrödinger equation for valence electrons 
is as follows:

 (r) (r)
2 2

PS PSV V
∆ ∆ − ϕ + ϕ − − + 

 
 P̂ ϕPS + ευ P̂ ϕPS = ευ ϕPS. (19)

Let us write Eq. (19) in a form

 (r)
2

PS PS PSW υ∆
− ϕ + ϕ = ε ϕ , (20)

where

 (r) (r) (r)
2

W V V
∆ = − − + 

 
 P̂ + ευ P̂

is the pseudo-potential proper.
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Note, since the wave functions of both valence electrons and core 
ones satisfy the Schrödinger equations of type (15) and (16), respec-
tively, then, acting on the design operator  P̂ at Eq. (15), we obtain:

 (r)
2

V
∆ − + 

 
 P̂ = εc|ϕc

R〉〈ϕc
R|. (21)

Therefore, pseudo-potential can be written in another form:

 R R
,R

(r) (r) ( )| |c c c

c

W V υ= + ε − ε ϕ 〉〈ϕ∑ . (22)

It should be noted that no new approximations were used in deriv-
ing Eq. (22). Therefore, the eigenvalues of energy for Eqs. (15) and (20) 
coincide. In addition, the pseudo-potential is nonlocal, as it depends not 
only on coordinates but also on energy, while the potential V(r) is local. 
Of course, this causes a significant complication of calculations, but the 
advantages of using pseudo-potential easily outweigh the estimated 
costs associated with nonlocality. Also, note that the pseudo-potential 
W(r) is relatively weak in comparison with V(r), as V(r) is responsible 
for self-consistent effective-‘attraction’ of electrons in the system and 
is negative, while the second term of equation (22) is extremely posi- 
tive. Thus, Bachelet, Hamann, and Schlüter proposed an analytical pseudo- 
potential suitable for the above conditions from the first principles used 
by us [23, 24].

2.2. Algorithm for the Calculation  
of the Effective Electric Charges in the Polyatomic System 

The calculation of the integral characteristics of the electron density 
distribution in polyatomic systems, namely, the effective charges on 
atoms, is widely used in many fields of physics and chemistry. However, 
the exact definition of this quantity encounters a problem: how to di-
vide the electron density in the space between nuclei between atoms. For 
methods, which use the muffin-tin (MT) approximation, this distribu-
tion occurs in the usual way, but the result depends on the choice of MT 
spheres and is not an objective characteristic of the object. An alterna-
tive procedure is the well-known Mulliken population analysis [25].

The probability of electron-density distribution in a molecule is de-
termined by the function ρ(r); in addition, the normalization requires 
that ( ) rd n∫ ρ =r ; here, n is the total number of electrons [26]. For the 
one-determinant wave function, in which molecular orbitals are repre-
sented as a linear combination of N basis functions {ϕµ}, the probability 
function is
 (r)

N N

Pµν µ ν
µ ν

ρ = ϕ ϕ∑∑  (23)

with the density matrix elements Pµν. According to Mulliken, population 
analysis can be performed by integrating Eq. (23); then,
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 (r) r
N N

d P S nµν µν
µ ν

ρ = =∑∑∫ , (24)

where Sµν is a matrix of the overlapping integrals on the basis functions, 
which are normalizing, i.e., Sµµ = 1. Diagonal terms Pµµ characterize the 
full population of the orbital ϕµ. The sum Qµν of non-diagonal compo-
nents in expression (24), PµνSµν and PνµSνµ, equal in magnitude, is called 
the overlap population density,

 Qµν = 2PµνSµν (µ ≠ ν). (25)

Note that the overlap population is associated with two basic func-
tions ϕµ and ϕν, which can be on the same atom and on the two different 
atoms. Then, the full electronic charge can be given as the sum of two 
parts, one of which is related to disparate basis functions and the other 
is related to a pair of basis functions: 

 
N N N

P Q nµµ µµ
µ µ ν

+ =∑ ∑∑ . (26)

Such a presentation of the electron distribution is not always con-
venient. Sometimes, it is desirable to divide the full electronic charge 
into contributions, which relate to individual basis functions. In this 
case, the overlap population Qµν is divided equally between the functions 
ϕµ and ϕν (this division scheme is arbitrary and not unique) and is added 
to each PµµPνν. Then, we can consider the population of the atomic or-
bital ϕµ:
 q P P Sµ µµ µν µν

ν≠µ

= +∑ . (27)

Therefore, the total electron density on the A atom has the form

 
A

Aq P P Sµµ µν µν
µ ν≠µ

 
= + 

 
∑ ∑  (28)

with summation for all functions ϕµ on the atom A [27].
Consequently, the total electronic charge on atom A is determined 

by the difference ZA − qA, namely,
 (r) r

A

A A

V

q Z d= − ρ∫ , (29)

where ZA is the number of the element A in the periodic table, VA is the 
spherical volume of the A atom.

2.3. Momentum Space Formalism for the Calculation  
of the Electronic Spectrum, Total Energy, and Mechanical Forces 

For non-periodic systems, such as an imperfect crystal, thin film or 
cluster, the problem of lack of periodicity is bypassed by the superlat-
tice method [28−30], which creates a supercell that is transmitted in 
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space. In the modelling of non-periodic systems, such as thin film or 
clusters, the isolation of the transmitted objects from each other is pro-
vided by a vacuum gap between them [29].

The general periodicity of the crystal (or artificial) lattice creates a 
periodic potential and, thus, imposes the same periodicity on the elec-
tron density (Bloch’s theorem). The Kohn–Sham potential of the perio-
dic system manifests the same periodicity as the lattice, and the Kohn–
Sham orbitals can be written based on Bloch’s theorem:

 ψ(r) = ψi (r, k) = exp(ik ⋅ r) ui(r, k), (30)

where k is the vector within the first Brillouin zone (BZ). The index i 
runs through all the possible electron states. The function ui(r, k) has 
the periodicity of the spatial lattice and can be expanded in a series by 
plane waves. This justifies the use of plane waves as the general basis 
we have chosen to decompose the periodic part of the orbitals. Since 
plane waves form a complete and orthonormal set of functions, their use 
for the expansion of single-particle orbitals has the form

 ( )
G0

1
( , ) ( G) exp ( G)j jb i

N
ψ = + + ⋅

Ω
∑k r k k r , (31)

where G is a reciprocal lattice vector, Ω is the volume of unit cell that 
fill a crystal (or artificial superlattice in the case of non-periodic objects).

After the Fourier transform, Eq. (13) is in the reciprocal space as
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Here, the Fourier representation of the Kohn–Sham potential is

 VKS (k + G, k + G′) = VPS (k + G, k + G′) + VH (G′ − G) + VXC (G′ − G), (33)

moreover, the exchange–correlation potential is [24]
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where εXC = εX + εC. As known, for unpolarised electron gas [24],
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here, rs (in a.u.) is the radius of the Wigner–Seitz sphere per electron 
determined by formula ρ–1 = 4πr 3

s/3.
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Using the Poisson’s equation, the Fourier transform of Hartree po-
tential can be obtained:

 
2

2

4 ( )
( )H

e
V

π ρ
=

G
G

G
. (37)

In the general case, the expressions describing the potentials of 
inter actions are complex. The use of atomic bases, which contain the 
inversion operation in their group of point symmetry, leads to the  
fact that the Fourier components in the expansions of all expressions 
are real.

The main value in the DFT formalism is the density of the elec-
tronic charge. It is estimated on the basis of a self-consistent solution 
of Eq. (32), which must be performed at the all points of the irreducible 
part of the first BZ:

 *

G

2
(G) (k G G) (k G )j j

k j TT

b b
N ′α∈

′ ′ρ = + + α +∑∑∑∑ , (38)

where index j runs through all occupied states, k belongs to the first 
BZ, NT is a number of operations α in the point group T of the atomic 
basis, and factor ‘2’ takes into account the spin degeneracy.

The calculated efforts can be reduced by using the special mean-
value point method. There are different approaches to choosing these 
points. Thus, it is possible to use uniform or nonuniform grids of points, 
it is possible to replace the summation by a finite number of special 
points up to one point in the BZ with acceptable accuracy [31−323334]. 
It is possible to be limited only to the Γ-point within the first BZ, espe-
cially, for artificial periodic systems with a large supercell. The latter 
can be illustrated by the following. It is known that the volume of a 
Wigner–Seitz cell in reciprocal space (the volume of the first BZ) and 
the volume of a Wigner–Seitz cell in the crystal-lattice space are related 
by the formula
 3

cell(2 )BZΩ = π Ω . (39)

If the volume of the Wigner–Seitz cell for the crystal is large, that 
often occurs when using the superlattice method, the volume of the BZ 
is small, that is, it is contracted to a point [29, 30].

The distribution of electrons by energy is obtained by numerical 
calculation of the derivative 0lim /E N E∆ → ∆ ∆ , where ∆N is the number of 

allowed states per energy interval ∆E from the one-particle energy spec-
trum obtained during diagonalization of the Kohn–Sham matrix for 
Eqs. (32). According to the DFT methodology, the number of occupied 
states (at T = 0 K) was determined by half the number of electrons in 
the atomic basis (due to the disregard of electron-spin polarization).

The total energy per unit cell is [28]
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(40)

where k ∈ 1st BZ, G is the reciprocal lattice vector, ψi(k + G) is the wave 
function, i denotes the occupied states for a given k, ρ(G) is the coeffi-
cient of the valence electron density in Fourier expansion, s numbers 
the atoms in the unit cell, Ss(G) is a structural factor, Vs

L is local (l-in-
dependent) spherically-symmetric pseudo-potential, l denotes a quantum 
orbital number, ,

NL

l s
V∆  is nonlocal (l-dependent) addition to Vs

L, Zs is the 
ion charge, γEwald is the Madelung energy of point ions in a homogeneous 
negative background.

The force acting on the atom s is a negative derivative of Etot with 
respect to the atomic basis vector τs. Expressions containing an implicit 
derivative of the wave function are zero by the Hellman–Feynman theo-
rem. Therefore, the calculation of forces is performed by the formula [28]

 Fs = Fs
e + Fs

c, (41)

where the first and second terms at the right correspond to electron and 
ion interactions’ components, respectively,
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Here, x = l + τs − τs′, Ωc is the volume of the cell per atom, τs is the basis 
vector of the atom s in the cell, Zs′ is the charge of the core, l is the lat-
tice vector; the Ewald summation over l excludes the term, in which, for 
s = s′, the vector l = 0; η is the parameter of convergence of the sum, 
e.g., in the complementary error function (erfc). 
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2.4. Valuation Reliability Verification of Electronic Characteristics:  
Calculation of Electric Charges within the Atom Vicinity

The accuracy of computer calculations is determined by the chosen 
methods and approximations used in the computational techniques. In 
the software package used by authors, formalisms from the first princip-
les (DFT, Hellman–Feynman theorem, pseudo-potential construction from 
the first principles, Fourier transform for the periodical systems, BZ 
sampling with integration, exchange–correlation potential, etc.) are used, 
which do not leave error in estimates provided, i.e., they are used correctly.

Algorithmic calculation errors inevitably arise and are associated 
with numerical integration, differentiation, limitation of infinite sums 
in calculations of exchange–correlation potentials, integration by a fi-
nite number of points in the Brillouin zone, limitation of self-satisfied 
iterations, Fourier-transform calculations, etc. For example, the inte-
gration within the Brillouin zone was replaced by the calculation at one 
mean-value point of the Brillouin zone, namely, the Γ-point, which is 
described in paragraph 2.3. Iterations of self-matching are terminated, 
if the results of the current and previous iterations calculated coincide 
with the pre-selected accuracy; their number is varied depending on the 
calculated object, but usually our results coincide after 4−5 iterations. 
The number of plane waves in the wave function packet is truncated by 
trial calculations and evaluation of the physicality of the results ob-
tained from general ideas about the modelled nanostructure or in com-
parison with the results obtained by other authors; the number of plane 
waves is chosen to be about 20–25 waves per atom in the basis. Incre-
asing the number of terms in the Fourier expansion of the wave func-
tion, electron density, etc., self-matching iterations, and the number  
of special mean-value points in the Brillouin zone rapidly increases  
the computer time. Therefore, the calculation parameters are chosen 
optimal.

The results of control calculations of effective electric charges in 
the vicinity of H, C, P, O, F, and Cl atoms used in the investigation are 
shown in Fig. 1 and Table 1. The calculations are performed according 

Table 1. Atomic radii values used in the reviewed and analysed study

Atom
Number  

of valence electrons
Calculated  
radius R, Å

Van der Waals  
radius RVdW, Å

H 1 1.29 1.2
C 4 1.75 1.7
P 5 1.85 1.9
O 6 1.85 1.4
F 7 1.96 1.4
Cl 7 1.96 1.8
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to the algorithms described above in 
the previous two subsections.

Since the calculation algorithm 
assumes the presence of translational 
symmetry in the studied atomic sys-
tem, although it represents an isola-
ted atom, an artificial rhombic superlattice is created, the primitive cell 
of which is a rectangular parallelepiped based on the primitive transla-
tion vectors a, b, c. In this regard, for the convenience of calculations, 
the crystallographic axes are conjugated with the axes of the Cartesian 
co-ordinate system Oxyz. The object of study is to determine the parame-
ters of the superlattice and atomic basis. The size of the primitive unit cell 
is chosen so that the translationally repeating individual atoms do not 
affect each other. The number of plane waves in the packet of the total 
wave function is 389; the integration by volume of the Brillouin artificial 
superlattice is replaced by the calculation at the Γ-point, and the number 
of iterations of self-matching is 3 for all atoms. There are calculated spa-
tial distributions of valence electron density, their cross sections, electron 
density of states and charges in the spheri cal neighbourhood of atoms with 
different radius, which is varied from the value of the core radius deter-
mined by the selected pseudo-potential [23, 24] to the value, at which the 
valence electron density disappeared (with a step of 0.05 Å). As a crite-
rion of limiting the area of space occupied by the atom, we consider the 
distance where the total value of the positively charged ionic core density 
and negatively charged valence electron density becomes less 0.2e per 
volume. Analysing and comparing the calculated cross sections of the 
spatial distributions of the valence electron density, shown in Fig. 1, the 
values of effective electric charges in the spherical neighbourhood of 
atoms with different radius, as shown in Table 1, with known from the 
literature [35] demonstrate their good coincidence. This allows us to as-
sume that the results of all calculations have a high degree of reliability.

3. modifying electronic characteristics  
through the local chemical Functionalization

3.1. Chemical Adsorption of Graphene 

Changing the electronic properties of two-dimensional semi-metal graph-
ene layer is achievable through the functionalization, which can be reali-
zed in various ways, one of which is the chemisorption or physisorption 
of atoms or molecules (adsorbates) on its surface.

Fig. 1. Cross-section of valence electron den-
sity for H, C, P, O, F, and Cl atoms in the 
[110] and [100] planes (from left to right)
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Functionalized graphenelike structures include graphane [36−39], 
fluorographene [39−42], and chlorographene [39, 43, 44], which have a 
similar structure. Graphane is a class of hydrogenated graphene struc-
tures, in which each carbon atom of the graphene layer is covalently 
bonded to the hydrogen atom by a sp3-bond. Fluorographene and chlo-
rographene have a similar structure and type of hybridization with F 
and Cl atoms, respectively. The atomic structures of graphane, fluorog-
raphene, and chlorographene are shown in Fig. 2. 

We propose a new way of local chemical adsorption of graphenelike 
structures by combining non-functionalized and functionalized areas of 
graphene, formed according to a pre-planned pattern into a single whole 
system, i.e., with creating by certain technological methods the separate 
areas of local adsorption of various chemical elements (e.g., hydrogen, fluo-
rine, chlorine) on the graphene sheet, we can organize the structure on a 
common carbon base. Similar experimental combinations of non-functio-
na lized and functionalized graphene are discussed in Refs. [45−47]. 

To detect changes in the electronic properties of graphene-based 
structures due to local chemical adsorption of graphene, atomic model 

Fig. 2. Atomic structure of (a) graphane, (b) fluorographene, and (c) chlorographene 
(views from different angles) [9]
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objects are developed for a computational experiment using the above-
described algorithm. An artificial rhombic superlattice is created, the 
primitive cell of which is a rectangular parallelepiped built on the vec-
tors of primitive translations a, b, c. In this regard, for the convenience 
of calculations, the crystallographic axes are conjugated with the axes 
of the Cartesian co-ordinate system Oxyz. The subject of study is to 
determine the parameters of the superlattice and atomic basis. Along 
the z direction, perpendicular to the surface of the graphene sheet, the 
size of the primitive cell is chosen so that translationally repeating 
sheets do not affect each other, while, in the xy plane, graphene sheets 
are either infinite or with finite sizes:

• object 1: infinite graphene sheet, symbol (C), primitive cell sizes: 
a = 2.46 Å, b = 4.26 Å, c = 2.65 Å; the atomic basis consists of 4 C atoms 
(Fig. 3);

• object 2: infinite graphane sheet, symbol (CH), primitive cell siz-
es: a = 2.52 Å, b = 4.56 Å, c = 3.18 Å; the atomic basis consists of 4 C 
atoms and 4 H atoms (see Fig. 3);

• object 3: infinite fluorographene sheet, symbol (CF), primitive 
cell sizes: a = 2.55 Å, b = 4.65 Å, c = 3.70 Å; the basis consists of 4 C 
atoms and 4 F atoms (see Fig. 3);

• object 4: infinite chlorographene sheet, symbol (СCl), primitive 
cell sizes: a = 2.85 Å, b = 5.16 Å, c = 4.76 Å; the basis consists of 4 C 
atoms and 4 Cl atoms (see Fig. 3);

• object 5: two-dimensional finite graphene/graphane structure; 
symbol (C/CH); cell sizes: a = 13.23 Å, b = 10.58 Å, c = 5.29 Å; the basis 
consists of 48 atoms, of which 32 C atoms and 16 H atoms;

• object 6: two-dimensio nal finite graphene/fluoro gra phene struc-
ture; symbol (C/CF); cell sizes: a = 13.76 Å, b = 11.11 Å, c = 6.88 Å; the 

Fig. 3. Primitive cells with atomic basis for objects 1−4 from left to right: graphene, 
graphane, fluorographene, and chlorographene. Spheres (of r radius) mark areas of 
the calculated electric charge [9]
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basis consists of 48 atoms, of 
which 32 C atoms and 16 F 
atoms;
object 7: two-dimensional fi-
nite graphene/chlorographe-
ne structure; symbol (C/CCl); 
cell sizes: a = 15.35 Å, b = 

= 12.70 Å, c = 7.41 Å; the basis consists of 48 atoms, of which 32 C  
atoms and 16 Cl atoms. 

The calculation is performed only for Γ-point of the BZ.
Structures of objects 5−8 with local chemical adsorption of graph-

ene are modelled as finite atomic structures with the chess alternation 
of graphene and graphane/fluorographene/chlorographene regions [9]. 
When modelling finite-size systems, the isolation of the transmitted 
objects from each other is provided by a vacuum gap between them. The 
parameters of primitive cells are chosen to be larger in order to prevent 
interaction between atoms of atomic bases during translation. Primitive 
cells of superlattices with the inclusion of the atomic basis for objects 
5−8, which are similar, are shown in Fig. 4.

Using the author’s code [48], the spatial distributions of valence 
electron densities, electron densities of states, band gap widths, and 
charges on atoms and at regions of atomic model objects were calculated 
by methods of electron DFT and pseudo-potential from the first prin-
ciples.

Analysing the calculated spatial distributions of valence electron 
densities, shown in Fig. 5, the change of hybridization from sp2 to sp3 is 
confirmed during the functionalization of graphene by atoms of hydro-
gen, fluorine, chlorine. Thus, in Fig. 5, a, the density distribution is 

Fig. 4. Primitive cells with atomic 
basis of the finite-sized structu-
res: graphene/graphane, graphe-
ne/fluo ro graphene, graphene/chlo-
rographene. Roman numerals I–IV 
denote coordinate quarters; x, y  
coordinate axes [9]

Table 2. Values of electric charges on the carbon cores for objects 1−4 [9]

Number of C atom  
in the atomic base

Object 1
(С)

Object 2
(СН)

Object 3
(СF)

Object 4
(СCl)

1 3.373 3.853 3.742 3.162
2 3.373 3.853 3.742 3.162
3 3.373 3.853 3.742 3.162
4 3.373 3.853 3.742 3.162
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flat, and, in Fig. 5, b−d, the distribution acquires three-dimensional 
forms of tetrahedral symmetry.

Table 2 shows the values of electric charges on carbon atoms of ob-
jects 1−4, which are estimated by formula (29) in a spherical volume 
centred in the carbon cores of the corresponding structures with radius 
r, which is half the distance between carbon atoms (see Fig. 3). Electric 
charges are calculated in the atomic system of units, in which the charge 
of the electron is equal to 1.

From Fig. 5 and Table 2, it is seen that the numerical values of the 
electric charges of objects 1−4 are the same on the all carbon atomic 
cores in the infinite sheets of graphene, graphane, fluorographene, and 

Fig. 5. Spatial distri-
bution of the valence 
electrons’ density (for 
0.5−0.6 definition of 
the maximum) in (a) 
graphene with sp2-hyb-
ridization of carbon at-
oms, (b) graphane, (c) 
fluorographene, and (d) 
chlo rographene with sp3-
 hybridization of C at-
oms [9]
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chloro graphene. The spatial distributions of the valence electron density 
for these atomic objects are shown in Fig. 6, confirming this homoge-
neity [9].

Another situation is with charge distributions in finite-size struc-
tures with local chemical adsorption of graphene. There is a redistribu-
tion of electric charges; moreover, a change in the electric charges is 
observed at atomic cores located at the joints, i.e., at the interface be-
tween the regions of graphene and graphane, graphene and fluorogra-
phene, graphene and chlorographene. Numerical values of electric 
charges on the atomic cores of objects 5−7 are given in Table 3.

Spatial distribution of valence electron density for finite-size struc-
tures with local chemical adsorption of graphene, as shown in Fig. 7, 
demonstrates the charge regions of higher density localized in functiona-
lized areas, namely, graphane, fluorographene, chlorographene.

Fig. 6. Spatial dist-
ribution of the valen-
ce electrons’ density 
(from left to right 
for 0.9–1.0; 0.5–0.6; 
0.1–0.2 de finition of 
the maximum) of (a) 
graphene with sp2-
hybridization of car-
bon atoms, (b) grap-
hane, (c) fluorogra-
phene, and (d) chlo- 
rographe ne with sp3- 
hybridization of C 
atoms [9]
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Table 4 shows the widths of the electronic band gaps of objects 1−7, 
which are presented in a.u. and eV. It is seen that the infinite sheet of 
graphene has a zero band gap. After its functionalization by hydrogen, 
fluorine, and chlorine atoms, the band gap increases. Analysing objects 
1−4 (endless sheets), we see that the width of the band gap of graphane 
is the maximum and is equal to 3.81 eV; for a sheet of chlorographene, 
it is of 1.36 eV; for a sheet of fluorographene, it is of 0.27 eV. Among 
objects 5−7 (the finite structures with chemical adsorption of graph-
ene), the structure of graphene/chlorographene has the largest width of 

Table 3. Values of electric charges on the carbon cores  
with local chemical adsorption of graphene for objects 5–7 [9]

Number of C atom  
in the atomic base

Object 5
С/СН

Object 6
С/СF

Object 7
С/СCl

1 3.912 3.842 3.952
2 3.747 3.489 3.598
3 3.309 3.284 3.519
4 3.953 3.914 3.977
5 3.995 3.880 3.572
6 3.998 3.996 3.893
7 3.991 3.757 3.411
8 3.999 3.997 3.991
9 3.460 3.394 3.599

10 3.097 3.142 3.376
11 3.429 3.277 3.428
12 3.077 3.167 3.404
13 3.706 3.258 3.372
14 3.968 3.812 3.535
15 3.444 3.201 3.374
16 3.996 3.979 3.519
17 3.968 3.812 3.535
18 3.706 3.258 3.372
19 3.996 3.979 3.519
20 3.444 3.201 3.374
21 3.097 3.142 3.376
22 3.460 3.394 3.599
23 3.077 3.167 3.404
24 3.429 3.277 3.428
25 3.998 3.996 3.893
26 3.995 3.880 3.572
27 3.999 3.997 3.991
28 3.991 3.757 3.411
29 3.747 3.489 3.598
30 3.912 3.842 3.952
31 3.953 3.914 3.977
32 3.309 3.284 3.519
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the band gap of 10.34 eV; the structure of graphene/graphane has 
slightly smaller width of 10.07 eV; the structure of graphene/fluoro-
graphene has the smallest band gap of 2.45 eV. 

The proposed combination of non-functionalized and functionalized 
areas of graphene in single structure leads to an increase in the band-
gap width compared to the individual source objects.

Table 4. Band gap values for objects 1−7

Objects
Infinite objects Finite objects

Eg, a.u. Eg, еV Eg, a.u. Eg, еV

Object 1 (С) 0.00 0.00 0.07 1.90
Object 2 (СH) 0.14 3.81 0.11 2.99
Object 3 (СF) 0.01 0.27 0.03 0.82
Object 4 (СCl) 0.05 1.36 0.01 0.27
Object 5 (С/СН) — — 0.37 10.07
Object 6 (С/СF) — — 0.09 2.45
Object 7 (С/СCl) — — 0.38 10.34

Fig. 7. Spatial distribution of valence electrons’ density (from left 
to right for 0.9–1.0, 0.5–0.6, 0.1–0.2 definition of the maximum) 
in the structures with local chemical adsorption of graphene: (a) 
graphene/graphane, (b) graphene/fluorographene, (c) graphene/
chlorographene [9]
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3.2. Bending Strain Effect

Changes in the electronic properties of two-dimensional semi-metal 
graphene can also be achieved by bending deformation. In general, flexi-
ble electronics is burgeoning industry with a lot of promise. The facts 
that most of the 2D materials are mechanically stable make them as the 
natural choice for flexible electronics. It was experimentally demon-
strated the thinnest, high performance, flexible, and transparent thin-
film transistor fabricated using only two-dimensional layered materials 
for the first time [49]. Another flexible and transparent transistor based 
on two-dimensional materials was demonstrated by combining MoS2 and 
graphene. The device exhibited extreme mechanical stability in terms of 
relatively small change in effective carrier mobility and threshold voltage 
as a function of the bending radius and number of bending cycles [50].

Graphene plays an important role for flexible electronics. This ma-
terial affords the highest field-effect transistor mobilities, owing to its 
small effective mass. However, the lack of a band gap and the associ-
ated inability to switch off electrically precludes its use for digital tran-
sistors. Nevertheless, its high charge mobility and saturation velocity 
coupled with its intrinsic ambipolar character make it an attractive ma-
terial for flexible RF analogue TFTs [51].

For extension of information about electronic properties of two-di-
mensional structures based on a local chemically functionalized gra phene 
under bending strain effect, such objects are developed:

• object 1: 2D finite graphene/graphane structure with symbolic 
notation (С/СН); the primitive cell of the superlattice with parameters 
а = 13.23 Å, b = 10.58 Å, с = 9.53 Å; the basis consists of 48 atoms, 
among them 32 C atoms and 16 H atoms;

Fig. 8. (a) Primitive cells with atomic basis of graphene/graphane, graphene/fluor-
ographene, graphene/chlorographene (view of the cell from the z axis); (b) view of 
the cell from the x axis (left α = 0°, right α = 3°) [12]
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• object 2: 2D finite graphene/fluorographene structure with sym-
bolic notation (С/СF); the primitive cell of the superlattice with param-
eters а = 13.23 Å, b = 10.58 Å, с = 10.58 Å; the basis consists of 48 at-
oms, among them 32 C atoms and 16 F atoms;

• object 3: 2D finite graphene/chlorographene structure with sym-
bolic notation (С/СCl); the primitive cell of the superlattice with para-
meters а = 13.76 Å, b = 11.64 Å, с = 10.58 Å; the basis consists of  
48 atoms, among them 32 C atoms and 16 Cl atoms.

A primitive cell of a superlattice with an atomic basis of two-dimen-
sional graphene/graphane, graphene/fluorographene, and graphene/chlo-
rographene structures is demonstrated in Fig. 8, a. The bending strain 
effect that used in the research is consisted in bending the two-dimen-
sional structure to the angle α (α = 0°, 1−5°). The atomic basis of the 
two-dimensional graphene/graphane structure for angles α = 0° and α = 
= 3° is shown in Fig. 8, b [12].

Fig. 9. Electric charge distribution for graphene/graphane (left), graphene/fluorog-
raphene (in the middle), and graphene/chlorographene (right) with chemical adsorp-
tion at α = 0°

Fig. 10. Valence electron density spatial distribution in graphene/
graphane depending on the bending strain (from left to right for 
0.9–1.0, 0.5–0.6, and 0.1–0.2 definition of the maximum) for (a) 
α = 0° and (b) α = 3° [12]
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Table 5. Charge values in the regions of 2D  
structures depending on the bending strain [12]

Structure Angle α°
Quarters

Charge difference
I, III II, IV

Graphene/ 
graphane

0 −27.86 10.73 38.59
1 −27.49 10.62 38.11
2 −30.05 10.58 40.63
3 −31.97 10.48 42.45
4 −29.85 2.27 32.12
5 −27.81 2.11 29.92

Graphene/ 
fluorographene

0 −33.29 0.43 33.72
1 −39.52 0.33 39.85
2 −37.50 0.50 38.00
3 −41.44 −3.71 37.73
4 −39.60 −3.56 36.04
5 −36.43 −7.62 28.81

Graphene/ 
chlorographene

0 −31.71 −16.26 15.45
1 −31.77 −16.26 15.51
2 −38.29 −20.53 17.76
3 −41.38 −20.73 20.65
4 −32.75 −20.59 12.16
5 −30.43 −23.85 6.58

Table 6. Band-gap width values for 2D structures depending  
on the bending strain (in different units)

Angle α°

Structure

Graphene/graphane Graphene/fluorographene Graphene/chlorographene

Eg, a.u. Eg, eV Eg, a.u. Eg, eV Eg, a.u. Eg, eV

0 1.33 36.18 0.91 24.75 0.48 13.06
1 1.55 42.16 0.57 15.50 0.61 16.59
2 0.85 23.12 0.73 19.86 0.05 1.36
3 0.59 16.05 0.46 12.51 0.14 3.81
4 0.24 6.53 0.18 4.90 0.12 3.26
5 1.16 31.55 0.41 11.15 0.15 4.08

In the finite graphene/graphane, graphene/fluorographene, and gra- 
 phene/chlorographene structures with local chemical functionali zation, 
the charge distribution of valence electrons between non-functionalized 
and functionalized parts of structures and the bending strain effect is 
estimated. The point, around which the charge is calculated, is chosen 
in the centre of each section. The radius of the spherical volume is cho-
sen to be the maximum accor ding to the size of the section. Figu re 9 
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shows the distribution of elec-
tric charge in two-dimensio-
nal structures at α = 0°; the 
calculated valu es of charges 
for α from α = 0º to α = 5º 
are given in Table 5. 

Redistribution of electric charge is observed with the formation of 
regions of different signs in the structures of graphene/graphane and 
graphene/fluorographene. The largest value of the charge difference is 
recorded in the graphene/graphane structure at the bending angle α = 3°. 
In the structure of graphene/fluorographene, this difference is less no-
ticeable; the largest value of the charge difference is achieved at the 
angle α = 1°. In the structure of graphene/chlorographene, charge re-
distribution takes place, but without the formation of char ge regions of 
different signs. Charge redistributions are illustrated by maps of the 
spatial distribution of valence elec tron densities for two-dimensional 
structures C/CH, C/CF, C/CCl (Fig. 10).

The values of the electronic band-gap width for two-dimensional 
structures, depending on the bending strain from α = 0° to α = 5°, are 
given in Table 6 and in Fig. 11. For the graphene/graphane structure, 
the maximum value of the band gap is reached with bending at an angle 
α = 1°. For the graphene/fluorographene structure, the bend provokes a 
decrease in the band gap compared to the flat structure. The largest 
value of the band gap for the graphene/chlorographene structure is re-
corded at a bending angle α = 1°.

3.3. Effect of Static Pressure 

Static pressure is another way to change the electronic properties of 
two-dimensional semi-metal graphene. For extension of information 
about electronic properties of two-dimensional structures based on local 
chemical functionalized graphene under effect of static pressure, a super-
lattice model is developed. It is an infinite periodic alternation of areas 
of graphene (graphane) non-functionalized and functionalized by hydrogen 
atoms. The primitive cell of the rhombic superlattice has the following 
parameters: a = 9.96 Å, b = 8.82 Å, c = 5.29 Å (Fig. 12). The atomic basis 
consists of 48 atoms, among them 32 C atoms and 16 H atoms. Details of the 
calculation are similar to those used in the previous two subsections [10].

Modelling of the reaction of atoms in two-dimensional graphene/
graphane structure to the action of static pressure is carried out by 

Fig. 11. Band gap width vs. the 
bending strain for C/CH, C/CF, 
and C/CCl structures [12]
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changing the co-ordinates of the atomic basis that reflects the uniform 
compression from both surfaces of the structure. It is believed that the 
action of static pressure affects only the positions of the hydrogen atoms, 
which are part of graphane (CH), i.e., their distance to the graphene 
framework. Five compression ratios are selected for comparison: (i) 
without compression (0%), the C–H distance is aCH = 1.12 Å (CH); 

Fig. 12. Primitive cell of a superlattice with an atomic base of infinite graphene/
graphane structure (top and side view) [11]

Table 7. Values of forces (in [a.u.]) acting  
on the hydrogen atom at different pressure magnitudes [10]

No. of H atom
Pressure values

0% 2.5% 5% 7.5% 10%

1 1.672 1.741 1.815 1.894 1.979
2 1.647 1.719 1.794 1.876 1.963
3 1.622 1.695 1.773 1.856 1.945
4 1.673 1.743 1.816 1.895 1.980
5 1.647 1.718 1.794 1.875 1.963
6 1.673 1.742 1.816 1.895 1.980
7 1.674 1.743 1.817 1.896 1.981
8 1.622 1.695 1.773 1.856 1.945

Average value 1.65 1.72 1.80 1.88 1.96

Table 8. Static pressure values (in different units) [10]

No. Pressure, %
Pressure, 

a.u.
Pressure, 
× 10−9 H

No. Pressure, %
Pressure, 

a.u.
Pressure, 
× 10−9 H

1 0 0 0 4 7.5 0.23 18.4
2 2.5 0.07 5.6 5 10 0.31 24.8
3 5 0.15 12.0
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Fig. 14. Band gap width vs. the static pres-
sure for graphene/graphane structure [10]

Fig. 13. Spatial distribution of valence electrons density (for 0.5−0.6 definition of 
the maximum) of graphene/graphane structure under static pressure effect [10]

Table 9. Band gap values of graphene/graphane structure  
under the static pressure effect (in different units) [10]

No. Pressure, % Eg, a.u. Eg, eV No. Pressure, % Eg, a.u. Eg, eV

1 0 0.14 3.81 4 7.5 0.12 3.27
2 2.5 0.16 4.35 5 10 0.06 1.63
3 5 0.17 4.63

(ii) compression by 2.5%, the C–H 
distance is reduced by 2.5% from 
aCH of graphane; (iii) compression by 
5%; (iv) compression by 7.5%; (v) 
com pression by 10%.

The magnitude of the pressure 
is estimated from the forces according to the formulas (40)−(42), which 
act on the hydrogen atoms from the rest of the cores and electrons’ sub-
system. Based on Newton’s third law, it is obvious that these forces are 
the reactions equal in modulus but opposite in direction to the external 
influence of static pressure. As a result, the values of forces acting on 
each hydrogen atom are obtained when the corresponding pressure is 
applied (Table 7); they were then averaged over the atoms of the entire 
basis.

To estimate the pressure, the values of forces acting in the elec-
tron–core system in the absence of compression are subtracted from the 
obtained values of forces (Table 8). Recalculation of the pressure units 
with a.u. of forces (a.u.f.) into newtons (N) is carried out taking into 
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account that 1 N = 1 a.u.f. × 0.08 · 10−6, which is obtained from the ratios 
of measurement units of the corresponding physical quantities.

Figure 13 shows maps of the spatial distribution of valence electron 
density under static pressure effect. Apparently, the change in pressure 
leads to the rearrangement of the electron ‘clouds’ of C–H covalent 
bonds, namely, to an increase in the valence electrons’ density along 
these bonds.

The change in the band-gap width for the graphene/graphane struc-
ture at different pressure values is shown in the graph (Fig. 14). The 
numerical values of the band-gap width are given in Table 9. When the 
structure is compressed by 2.5% and 5%, an increase in the width of 
the band gap is recorded. With further compression of the structure by 
more than 5%, there is a significant reduction in the width of the band 
gap that indicates an increase in the conductive properties of such a 
structure [10].

3.4. Fluorination Effect 

Recently, a new 2D counterpart of graphane, namely, hydrogenated 
fluorographene (CFH), was obtained by benign wet chemical synthesis. 
The authors emphasized its significant nonlinear optical properties; 
they revealed the importance of the nature of functional group and the 
degree of functionalization on the nonlinear optical properties of graph-
ene sheets [52]. In turn, we decided to investigate the fluorination ef-
fect on electronic properties of two-dimensional local chemical adsorp-
tion structures, namely, graphene/graphane. The primitive cell of 
superlattice and atomic basis are chosen the same ones as in the previ-
ous subsection (see Fig. 12).

The modelling process of fluorination is carried out in pairs by re-
placing the atoms of hydrogen with fluorine atoms. The following struc-
tural configurations are numerically investigated: (i) С/СН without 
fluorine atoms (0% fluorination); (ii) С/CFH (32 C + 14 H + 2 F) with 

Table 10. Values of charges in the areas of C/CH  
and C/CFH structures under the fluorination effect [11]

2D  
structure

Degree of 
fluorination

Structural  
configuration

Charge values
Charge  

difference
I, III II, IV

C/CH 0 32C + 16H −35.20 13.40 48.60

C/CFH 12.5 32C + 14H + 2F −39.80 11.65 51.45
25 32C + 12H + 4F −39.38 10.76 50.14
37.5 32C + 10H + 6F −42.37 8.76 51.13
50 32C + 8H + 8F −48.26 6.06 54.32
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2 F atoms (12.5% fluorination); (iii) С/CFH (32 C + 12 H + 4 F) with 
4 F atoms (25% fluorination); (iv) С/CFH (32 C + 10 H +6 F) with 6 F 
atoms (37.5% fluorination); (v) С/CFH (32 C + 8 H + 8 F) with 8 F at-

Fig. 16. Spatial distribution of valence electrons’ density (for 0.5−0.6 definition of 
the maximum) of graphene/graphane structures under the fluorination effect [11]

Fig. 15. Modelling the fluorination process of graphene/graphane structures [11]
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oms (50% fluorination) (Fig. 15). 
The percentage of fluorination is 
calculated by finding the proportion 
of fluorine atoms from the total 
num ber of hydrogen atoms [11]. 

In this case, the changes in the 
electronic properties of the two-di-
mensional C/CH and C/CFH struc-
tures are recorded. The charge values in the areas of these structures 
are calculated and are shown in Tab le 10. There is clear charge distribu-
tion with different signs on parts of C/CH structure. After the fluorina-
tion, there is a redistribution of charge with increasing charge differ-
ence. The highest value of charge redistribution is achieved with 
50%-fluorination (32 C + 8 H + 8 F).

Numerical values of charges depending on the degree of fluorina-
tion are illustrated by maps of the spatial distribution of valence elec-
tron density for 2D structures C/CH and C/CFH, which are shown in 
Fig. 16. The fluorination effect enhances the covalent C–H bonds of 
functionalized graphene that is manifested in an increase in the inten-
sity of the valence electron density along the bond directions (see the 
region bounded by the circle in Fig. 16).

The change of the band gap of two-dimensional structures C/CH and 
C/CFH under the fluorination effect is shown in the graph of Fig. 17. 
Numerical values of the band-gap width are given in Table 11.

Non-monotony in the change of the band-gap width values of two-
dimensional C/CH and C/CFH structures under the fluorination effect 
is recorded. Non-monotony is oscillating that accordingly causes fluc-
tuations in the electrical conductivity of the structure. Thus, the maxi-
mum value of the band gap is recorded at 25% fluorination; at 37.5% 
fluorination, the band-gap width reaches a minimum value. Therefore, 

Fig. 17. Fluorination effect on the band gap 
width of graphene/graphane structure [11]

Table 11. Band gap values of C/CH and C/CFH structures  
under the fluorination effect [11]

2D structure
Degree of 

fluorination
Structural  

configurations
Eg, a.u. Eg, eV

C/CH 0 32C + 16H 0.14 3.81

C/CFH 12.5 32C + 14H + 2F 0.06 1.63
25 32C + 12H + 4F 0.15 4.08
37.5 32C + 10H + 6F 0.02 0.54
50 32C + 8H + 8F 0.11 2.99
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by changing the degree of fluorination in the areas of two-dimensional 
C/CFH structures, it is possible to control their electrical-resistance 
properties [11].

3.5. Impurity Doping of Black Phosphorene 

Molecule doping is a flexible and effective method towards modulating 
the electronic properties of two-dimensional materials [53]. Molecules 
adsorbed on the surface can influence electrotransport in the two-dimen-
sional material, for example, by introducing doping effects, and a p–n 
junction can, thus, be fabricated by locally doping the material [54]. Au-
thors of work [53] used benzyl viologen as an effective electron dopant to 
part of the area of a few-layer black phosphorus flake and achieved an 
ambient stable in-plane p–n junction. Such chemical doping with benzyl 
viologen molecules modulates the electron density and allows acquiring a 
large built-in potential in this in-plane black phosphorus p–n junction.

Black phosphorus constitutes a new class of 2D materials. It is in-
tensively studied as a 2D semi-conductor [55−56575859]. Phosphorene, 

Fig. 19. Primitive cell of a superlattice with an atomic base of the in-
fi nite black phosphorene monolayer with adsorbed carbamide molecu-
les for two types of localization: (left) ‘one against each other’ and 
(right) ‘one offset each other’ (displaced with respect to each other) [13]

Fig. 18. Primitive cell of a superlattice with an atomic base of an 
infinite black phosphorene monolayer (side and top view) [13]
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as a phosphorus analogue of graphene, refers to the monolayer black 
phosphorus crystal [60]. The presence of an appreciable direct band gap 
and high carrier mobility makes phosphorene a promising candidate for 
novel semi-conductor applications [61]. The authors of [62] reported 
that the band gap of phosphorene is dependent on the number of layers 
and the in-layer strain, and is significantly larger than the bulk value.

For the study of electronic properties of the black phosphorene sheet 
with the impurity doping, the model of the superlattice is developed 
(Fig. 18). The rhombic primitive cell of the superlattice has the follow-
ing parameters: a = 17.72 Å, b = 13.08 Å, с = 14.82 Å [13]. The geomet-
ric properties of primitive cell are such that it is convenient to use the 
Cartesian coordinate system. The dimensions of the primitive cell in the 
directions x and y are chosen so that the translation of cell organizes an 
infinite black phosphorene sheet. The size of the primitive cell in the 
direction z is chosen to avoid the interaction of atomic planes transmit-
ted in this direction. The atomic basis contains 64 phosphorene atoms. 
The calculation is performed only for Γ-point of the BZ of superlattice. 

Fig. 21. Spatial distribution of valence electrons’ density (within the 
ranges 0.1–0.2 (a) and 0.2−0.3 (b) definition of the maximum) of the 
infinite black phosphorene monolayer [13]

Fig. 20. Valence electron 
density spatial distribu-
tion (for 0.5−0.6 defini-
tion of the maximum) of 
the carbamide molecule 
(a) and its cross-section 
(b) [13]
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Carbamide (urea) molecule (NH2)2CO is selected for impurity doping 
of the black phosphorene sheet. It forms a colourless crystalline sub-
stance having a melting point of 132.7 °C. A primitive cell of a superlat-
tice with an atomic basis for simulation of an infinite monolayer (which 
consists of two atomic layers) black phosphorene sheet with adsorbed 
carbamide molecules, placed on both black phosphorene sides either one 
against each other or one offset (displaced with respect to) each other, 
is represented in Fig. 19.

For comparison, several distances between the carbamide molecules 
and the black phosphorene sheet are chosen. These distances are changed 
from 1.87 Å (the smallest distance between atoms that equals the sum 
of covalent radius of phosphorene atom and molecule atoms) with sub-
sequent increase up to 2.0 Å, 2.5 Å, and 3.0 Å.

Fig. 23. Electric charge values on the cores of P atoms of the infinite 
black phosphorene monolayer within the spherical volume with radius 
r = 1.32 Å

Fig. 22. Cross-sections of the infinite black phosphorene monolayer in 
the [110] and [100] planes within (a) one primitive cell and (b) several 
primitive cells [13]
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Figure 20 presents the 
spatial distribution of valence 
electrons’ density of the car-
bamide molecule and its cross-
sections. By means of concen-
tration of valence electrons’ 
density in the molecule plane, 
one can determine the inten-
sity of the covalent bonds be-
tween the atoms within the 
molecule. 

The spatial distribution of 
valence electrons’ density of the 
black phosphorene sheet and its cross-sections are shown in Figs. 21 and 22.

In the sheet of black phosphorene, there is a homo ge neous distribu-
tion of the valence electrons’ density with charge of 2.15e on the phos-
phorene atoms’ cores (Fig. 23). The electric charge is evalua ted in a 
spherical volume with the radius r = 1.32 Å.

Fig. 24. Spatial distribution of va-
lence electrons’ density (in the 
0.1−0.2 definition of the maxi-
mum) of an infinite black phos-
phorene monolayer with adsorbed 
carbamide molecules for the ‘one 
against each other’ (left) and ‘one 
offset each other’ (right) types of 
localization at different adsorp-
tion distances: (a) 1.87 Å, (b) 2.0 
Å, (c) 2.5 Å, (d) 3.0 Å [13]

Table 12. Values of charges on the black phosphorene atoms  
for the ‘one against each other’ type of localization [13] (see also Fig. 19)

No. of the black  
phosphorene atom

1.87 Å 2.0 Å 2.5 Å 3.0 Å

22 −17.77 −17.63 −16.88 −15.47
23 −14.37 −14.10 −12.54 −10.09
26 −17.96 −17.86 −17.22 −15.84
28 −16.71 −16.49 −15.20 −13.34
37 −17.96 −17.86 −17.22 −15.84
39 −16.71 −16.49 −15.20 −13.34
41 −17.77 −17.63 −16.88 −15.47
44 −14.37 −14.10 −12.54 −10.09
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Figure 24 depicts the 
maps of the spatial distribu-
tion of valence electrons’ 
density of black phosphorene 
sheet with adsorbed carba-
mide molecules of ‘one against 
each other’ and ‘one offset 
each other’ localizations de-

pending on the dis tance to the black phospho rene sheet. It is found that 
the adsorption of urea molecules by the monolayer of black phosphorene 
leads to a redistribution of the valence electrons’ density in it. It is re-
corded that, in the black phosphorene sheet with adsorbed carbamide 
molecules of both types of localization, the charge regions of the highest 
density are located below the atoms of the carbamide molecules, crea-
ting a region of electron density of high concentration. The remo val of 
the molecules leads to a decrease in their effect on the redistribution of 
the valence electrons’ density in a black phosphorene sheet that is  
confirmed by the calculated electric charges on the black phosphorene 
atoms located directly under the molecules (Fig. 25). The values of the 

Fig. 25. Electric charges on the 
cores of P atoms of an infinite 
black phosphorene monolayer 
with carbamide admolecules for 
the (a) ‘one against each other’ 
and (b) ‘one offset each other’ 
types of localization [13]

Table 13. The same as in the previous table, but for ‘one offset  
each other’ (i.e., with a displacement) type of localization [13] (see also Fig. 19)

No. of the black 
phosphorene atom

1.87 Å 2.0 Å 2.5 Å 3.0 Å

3 −9.47 −9.13 −7.69 −5.82
7 −5.68 −5.22 −3.51 −1.94

17 −10.83 −10.52 −8.81 −7.34
19 −14.99 −14.60 −12.98 −11.34
21 −17.30 −17.09 −16.29 −15.25
23 −8.17 −7.83 −6.41 −4.98
42 −17.30 −17.09 −16.29 −15.25
44 −8.17 −7.83 −6.41 −4.98
46 −10.83 −10.52 −8.81 −7.34
48 −14.99 −14.60 −12.98 −11.34
60 −5.68 −5.22 −3.51 −1.94
64 −9.47 −9.13 −7.69 −5.82
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electric charge on the above-mentioned cores of the black phospho - 
rene atoms at various adsorption distances for ‘one against each other’ 
and ‘one offset each other’ types of localization are given in Tables 12 
and 13.

The accumulation of the electric charge of the black phosphorene 
sheet in the region under the carbamide molecules leads to redistribu-
tion of the electric charge in the monolayer and, sometimes, changes in 
the sign of the charges on the core of black phosphorene atoms to the 
opposite one. That is, the homogeneity of the distribution of electron 
density in the black phosphorene sheet (see Figs. 21–23) disappears and 
forms areas of electric charge of different signs (see Fig. 25). In this 
case, the negative sign of the electric charge in the vicinities of the 
cores of black phosphorene atoms located directly below the molecules is 
maintained with a significant increase in the modulus of charge. Where-
as, the sign of the electric charges in the vicinity of the cores of black 
phosphorene atoms away from the adsorbed molecules changes to the 
opposite one. Such charge redistributions indicate the possibility of 
crea ting a built-in two-dimensional p–n junction in the sheets of black 
phosphorene with impurity doping with carbamide molecules.

Fig. 26. Band gap widths of an 
infinite black phos-phorene mon-
olayer with carbamide admole-
cules for the ‘one against each 
other’ (dash line) and ‘one offset 
each other’ (dash-dot line) types 
of localiza-tion at different ad-
sorp-tion distances [13]

Table 14. Values of the band gap width of an infinite black phosphorene  
monolayer with adsorbed carbamide molecules for the ‘one against  
each other’ and ‘one offset each other’ types of localization [13]

Adsorption  
distance l, Å

Type of localization

‘one against each other’ ‘one offset each other’

Eg, a.u. Eg, eV Eg, a.u. Eg, eV

1.87 0.24 6.53 0.49 13.33
2.0 0.40 10.88 0.004 0.10
2.5 0.14 3.81 0.03 0.82
3.0 0.26 7.07 0.04 1.09
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Table 14 and graphs in Fig. 26 show the obtained values of the band 
gap for the infinite black phosphorene monolayer with adsorbed car-
bamide molecules for the ‘one against each other’ and ‘one offset each 
other’ types of localization. There is a non-monotony nature of the 
change in the band gap with a change in the adsorption distance that is 
more pronounced for adsorption of the ‘one against each other’ type. 
The displacement of the boundaries of the conduction bands and the 
valence band relative to the corresponding values for pure black phos-
phorene is significant for adsorption on the type ‘one against each other’. 
The band-gap values are significantly reduced for ‘one offset each other’ 
adsorption type for all calculated distances. Thus, for the ‘one against 
each other’ type of localization with an adsorption distance of 2.0 Å, an 
increase in the band gap of the infinite black phosphorene monolayer to 
almost 11 eV is observed, compared to 6.8 eV for the pure monolayer. 
Whereas for the type of localization ‘one offset each other’ at the same 
adsorption distance, there is a noticeable reduction in the band gap to 
0.1 eV. Therefore, the adsorption of carbamide molecules on the black 
phosphorene monolayer changes its conductivity, which can be control-
led by controlling the localization of the adsorbed molecules [13].

4. Straintronics and Defect Engineering in Graphene 

The pristine (i.e., defect-free) and structurally perfect graphene exhibits 
outstanding electronic properties such as ballistic electron propagation 
with extremely high charge carrier mobility [6] or quantum Hall effect 
at a room temperature [63]. However, one of the challenges for graphe-
ne to be extensively used in the mass production of electronic devices 
[64] and in the bioengineering [65] is either an absence of the sufficient 
band gap in its electronic spectrum or problem with the gap modulation. 
Current–voltage behaviour of graphene is symmetrical with respect to 
the zero-voltage point and thereby does not allow switching of graphe-
ne-based transistors with a high on–off ratio. There are several ways for 
engineering a band gap in graphene. They are cutting graphene into 
nanoribbons [66] or nanomeshes [67], applying perpendicular magnetic 
field to bilayer graphene [68], surface adsorption or/and introducing 
specific defects [69, 70], using substrate [71, 72], configuring (ordering 
[73–78]) of impurity (adsorbed either substitutional or interstitial)  
atoms [79–83], applying different strains such as uniaxial tensile [84–
88] and shear [89, 90] deformations or their combination [91].

Among many remarkable features of graphene, its mechanical prop-
erties are miraculous. Graphene is the strongest material ever tested 
with an intrinsic tensile strength of ≈130 GPa, Young’s modulus (stiff-
ness) of ≈1 TPa [92] and even increases with the density of defects [93]. 
Graphene sheet can sustain reversible (elastic) deformations up to about 
≈25–27% [92, 94, 95]. Deformations (stresses) can arise naturally in 
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graphene or/and be intentionally induced and controlled via different 
techniques [96, 97]. Above-mentioned mechanical characteristics indi-
cate that the strain yields an interesting possibility for tuning graphe-
ne’s properties and that is why even opens a new research field, which 
some authors already called as ‘straintronics’, i.e., strain (mechanical, 
deformation) electronics or strain engineering [96–98]. 

The disagreements in the literature [84–91, 99–103] regarding the 
fingerprints of different types of deformation (e.g., uniaxial, (non)iso-
tropic biaxial, shear, local strains, etc.) in graphene’s electronic struc-
ture, particularly in the possible band-gap opening, are reviewed in 
[104–106], while the discrepancies [107–111] concerning the stability of 
differently (randomly, correlatively, or orderly) distributed adsorbed 
atoms on graphene surface are reviewed in [105–113]. The presence of 
both types of contradictions is not surprising inasmuch as two reasons. 
First, the ‘straintronics’ (strain electronics) only opens its evolution 
[97]. Second, in overwhelming majority of theoretical and computa-
tional studies of the strained graphene, the size of graphene computa-
tional domains are mostly limited to periodic supercells and localized 
fragments containing a relatively small number (usually some hundreds) 
of atoms (sites). These restrictions are caused by the commonly used 
first-principles density-functional calculations requiring high computa-
tional capabilities. The summarized discrepancies dealing with deforma-
tion effect (see Ref. [104]) concern results for even perfect graphene 
without any structural defects and external magnetic fields. However, 
fabricated graphene samples actually contain different point and/or ex-
tended defects [114] that can strongly affect electronic and even me-
chanical properties of graphene [115–117]. 

As known, the strains modify distances between ions in graphene-
lattice sites and can be described by a vector potential, which is analo-
gous to that of the external magnetic field [96, 118]. Therefore, an 
impact of different nonuniform strains on electronic properties of 
graphene is frequently associated in the literature (see, e.g., [119, 120]) 
with an influence of the effective pseudo-magnetic field. Nevertheless, 
such a field differs from the real magnetic field by the opposite direc-
tions in the two inequivalent (Dirac) high-symmetry points K and K′ 
within the 1st BZ of the reciprocal space.

Among various types of structural (point [121–126] or extended 
[127–130]) defects [131] in the physics of graphene, adsorbed atoms or 
molecules are probably the most important examples [132]. Acting as 
lattice imperfections, such defects govern many characteristics, such as 
electron states, electrical conductivity, degree of localization of elec-
trons (and their spins) [114], and therefore strongly affect electronic, 
transport, optical, thermal, mechanical, and electrochemical [112, 133–
135] properties of graphene. Distributions of impurity (adsorbed) atoms 
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over the graphene-lattice (adsorption) sites or interstices are not always 
random, as it usually takes place for three-dimensional metals and al-
loys, where adatoms are introduced via the alloying, which is generi-
cally a random process [136]. Diluted atoms may have a tendency to-
wards the spatial correlation [137] or even ordering [138–142]. Moreover, 
graphene is an open surface, therefore (ad)atoms can be positioned onto 
it with the use of scanning tunnelling [143] or transmission electron 
[144] microscopes allowing to design (ad)atomic configurations as well 
as ordered (super)structures with atomic precision. Several ordered con-
figurations of hydrogen adatoms on graphene have been directly ob-
served [145] using the scanning tunnelling microscope.

Above-mentioned inconsistencies (regarding the stability of ran-
domly-, correlatively-, or orderly-distributed adatoms on graphene sur-
face [107–111] and the impact of strain on electronic properties of even 
defect-free graphene [84–91, 99–103]) contributed to the motivation of 
this study. Note that realistic graphene samples contain different struc-
tural defects, particularly, due to the peculiarities of the fabrication 
technology.

4.1. Theoretical Grounds for Electron Diffusivity and Conductivity

Within the framework of Kubo–Greenwood formalism (see, e.g., [146]), 
the energy (E) and time (t) dependent diffusivity (commonly known in 
the literature as an electron diffusion coefficient) is defined as [147, 148]

 D(E,t) = t–1 ∆〈 X̂ 2(E,t)〉, (44)

where the wave-packet mean-quadratic spreading (propagation) along 
the spatial x-direction is [147, 148]

  (45)

with  X̂ (t) =  Û † (t) X̂  Û (t) being the position operator in the Heisenberg 
representation, Û (t) =  exp(−i  Ĥt/ћ) is a time-evolution operator, and 
tight-binding Hamiltonian  ̂H with hopping integrals up to the first three 
coordination shells (spheres) defines the Bernal-stacked few-layer hon-
eycomb lattice [149, 150], 

                                                                     , (46)

where Nlayer is a number of layers,  Ĥl is a Hamiltonian contribution of 
l-th layer, and  Ĥl′ describes hopping parameters between neighbour lay-
ers (vanishes in case of one layer), i.e.,
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here, the creation (annihilation) operator c†
i (ci) acts on a quasi-particle 

located at a site i = (m, n), where m and n are numbers of each i-th site 
along zigzag edge (x-direction) and armchair edge (y-direction), respec-
tively, as shown in Fig. 27. The summation over i runs the entire hon-
eycomb lattice, while j is restricted to the nearest-neighbours (in the 
first term), next nearest-neighbours (second term), and next-to-next 
nearest-neighbours (third term) of i-th site. The parameter γ1

0 = 2.78 eV 
[64] is an inlayer hopping for the nearest-neighbouring carbon atoms 
occupying i-th and j-th sites at a lattice-parameter distance a0 = 0.142 nm 
between them [149, 150] (a0 is an unstrained graphene lattice parame-
ter). Parameters γ2

0 = 0.085 γ1
0 and γ3

0 = 0.034 γ1
0  are intralayer hoppings 

for next (second) and next-to-next (third) nearest-neighbour sites at the 
second and third coordination shells, respectively [87] (see Fig. 27, a). 
The on-site potential Vi defines the defect strength at a given graphene-
lattice site i due to the presence of different defects (often identifying 
in graphene literature with the sources of disorder) [149, 150].

The interlayer interactions can be described using the standard 
Slonczewski–Weiss–McClure (SWM) model of electronic states in graph-
ite [151–153]: 

 Ĥl′ 
† †

1 , 1, 3 , 1,
,

( H.c.) ( H.c.)l j l j l j l j

j j j

a b b a ′+ +
′

= −γ + − γ +∑ ∑  (48)

with γ1 = 0.12 γ1
0, γ3 = 0.1 γ1

0  [150] defining the interlayer-hopping ampli-
tudes, i.e., the strength of the interlayer coupling (Fig. 27, a). To sim-
plify calculation procedure and enhance the computation speed, other 
SWM tight-binding parameters are omitted. 

The dc conductivity σ can be extracted from the electron diffusivity 
D (E,t), when it saturates reaching the maximum in a diffusive electron 
transport regime, 

Fig. 27. Intralayer (γ1
0, γ2

0, γ3
0) and interlayer (γ1, γ3) hopping parameters for two lay-

ers (AB) of Bernal-stacked multilayer graphene (a). Two types of uniaxial tensile 
strain (by ≈30%) along armchair- (b) or zigzag-type (c) edges for single graphene 
layer [104]
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maxlim ( , ) ( )
t

D E t D E
→∞

= ,

and the semi-classical dc conductivity at a zero temperature is defined 
as [154, 155]
 2

0 max( ) ( )xx e E D Eσ ≡ σ = ρ , (49)

−e < 0 denotes the electron charge, and  ρ0(E) = ρ/S = Tr [δ (E − Ĥ)]/S is 
the density of electronic sates (DOS) per unit area S (and per spin). We 
can use the DOS to calculate the electron density:

0 ions( ) ( )
E

en E E dE n
−∞

= ρ −∫ ,

where nions = 3.9 · 1015 cm−2 is density of positive ions compensating the ne-
ga tive charge of p-electrons in graphene. For the defect-free gra phene, 
at a neutrality (Dirac) point, ne(E) = 0. Combining calculated ne(E) with 
σ(E), we can compute the density-dependent conductivity σ = σ (ne).

The computational methodology utilized for numerical calculation 
of the density of states (DOS), electron diffusivity (D(E,t)), and conduc-
tivity (σ) is described in Ref. [156] (particularly, see appendix therein 
for details). This methodology includes the Chebyshov method for solu-
tion of the time-dependent Schrödinger equation, calculation of the first 
diagonal element of the Green’s function using continued fraction tech-
nique and tridiagonalization procedure of the Hamiltonian matrix, av-
eraging over realizations of impurity (ad)atoms, sizes of initial wave 
packet and computational domain, boundary conditions, etc.

4.2. Modelling Approach  
or Structural Deformations and Defects 

Let us consider two orthogonally related directions for uniaxial tensile 
strain in graphene lattice: along so-called armchair (Fig. 27, b) and zig-
zag (Fig. 27, c) directions (edges). For these mutually transverse direc-
tions (as well as for any other one), the uniaxial strain induces lattice 
deformation: changes bond lengths and, therefore, hopping parameters 
between different sites. Generally, hopping parameters can be different 
among different neighbouring sites. However, in case of a homogeneous 
elastic tensile deformation, though hoppings from a given site to its 
neigh bours can be all different, they should be the same for every such 
site. Therefore, model Hamiltonian contains only three distinct hop-
pings, and our goal turns to investigation of the changes that strain 
induces in these hoppings and impacts electronic structure. Following 
[86–88, 157, 158], where random strain is modelled by the Gaussian 
function, we can obtain dependence of the bond lengths on the deforma-
tion tensor components and then relate hopping parameters of the 
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strained, γ, and unstrained, γ1
0, graphene via exponential decay 

 1
0

0

exp 1
l

l
a

  
γ( ) = γ −β −     

 (50)

with the strained bond length l, the decay rate β ≈ 3.37 [86, 87] ex-
tracted from experimental data [159], and the Poisson’s ratio ν = 0.15 
selected between that measured for graphite [160] and calculated for 
graphene [161].

The disorder in graphenelike lattice can be represented by different 
types of (zero-dimensional and one-dimensional) defects. They can be 
modelled via the above-mentioned (in Eq. (47)) on-site potential Vi mod-
ifying the Hamiltonian matrix central diagonal. Below, we present mod-
els can be used to describe different types of defects.

Manifestly short-range (weak or strong) impurities, represented as neut-
ral adatoms, occupying different types of adsorption sites over the honey-
comb lattice as shown in Fig. 28, or chemisorbed molecules (e.g., hydroxyl, 
methyl, nitrophenyl functional groups [162]) covalently bound to carbon 
atoms, can be modelled by the delta-function potential [149, 156, 163] 

 
imp

1

N

i i j ij

j

V V V

δ

δ δ

=

≡ = δ∑  (51)

for each i-th site of the honeycomb lattice where Nδ
imp δ-like impurities 

occupy j-th sites. This potential acts as a weak or strong depending on 
weak, V δj = V0 ≤ | γ1

0 |, or strong, V δj = V0 >> | γ1
0 |, scattering of charge car-

riers (electrons). The ab initio and T-matrix approach based calculations 
for strong impurity adatoms provide typical estimated values for the 

Fig. 28. Typical configurations of adatom–graphene system [112]: top (left) and 
perspective (right) views of graphene lattice with hollow centre (H), bridge centre 
(B), and (a)top (T) adsorption sites
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on-site potential V δj = V0 ≤ 80 | γ1
0 | [164–167], e.g., for so-called resonant 

impurities [149] (CH3, C2H5OH, CH2OH as well as hydroxyl groups),  
V0 ≈ 60 | γ1

0 |. In case of a strong scattering regime, occurring for resonant 
impurities (RI), studied in Ref. [156], the on-site potential was assumed 
to be V0 ≡ V RI = 37 | γ1

0 | ≈ 100 eV. 
There is another way for modelling Nimp resonant impurities through 

the Hamiltonian part [149]

 Ĥimp  ( )
imp imp

† † H.c.
N N

d i i i i

i i

d d V d c= + +∑ ∑  (52)

with parameters V ≈ 2 γ1
0 and ϵd ≈ − γ1

0/16 obtained from density-function-
al theory calculations [165]. Resonant impurities behave themselves 
similarly to the vacancies because of completely electron localization at 
an impurity site. The distinction of influence of vacancies on electronic 
structure from the effect of the resonant impurities is strong zero  
energy modes [149, 150, 168]. A vacancy can be regarded as a site with 
hopping parameters to other sites being zero, though another way to 
model vacancy at the site i is Vi → ∞ [149, 150]. In our simulations, we 
implement a vacancy removing the atom at a vacancy site.

Screened charged impurity ions, adatoms (Fig. 28) or admolecules, 
on graphene or its dielectric substrate are commonly described in the 
literature via Gaussian-type on-site scattering potential [149, 150]
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imp 2
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V V U
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 (53)

where Gauss
impN  Gaussian impurities reside j sites with radius-vectors rj, ξ 

is interpreted as an effective potential radius, and the potential height 
Gauss
jU  is uniformly distributed within the range Gauss Gauss

imp imp[ , ]∆ ∆−  with 
Gauss 1
imp 0| |∆ = γ  as a maximal potential height. Depending on effective poten-

tial radius ξ, potential (53) can manifest both short-range (where the 
range is smaller than the lattice constant) and long-range (where the 
range is comparable or slightly larger than the lattice constant but still 
much smaller than the typical electron wavelength) features. Varying 
these parameters allows consideration of two types of such impurities: 
with short-range (e.g., for ξ = 0.65a and ∆ = 3 γ1

0 ) and (rather) long-range 
(e.g., for ξ = 5a0 and ∆ = γ1

0 ) action.
Another way to introduce scattering on the charged impurities is 

use of the Coulomb-type potential. For instance, in case of adatoms, 
randomly distributed above the honeycomb-lattice centres j (Fig. 28) or 
located at the substrate, the Coulomb on-site (i) potential reads as 
[163] 

 

Coulomb
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with ri (rj) radius-vector for i-th site (j-th hexagon), vacuum permittiv-
ity ϵ0, and substrate dielectric constant ϵ. In case of adatomic location, 
e.g., at SiO2 substrate on the distance of ≈ (2–3)a0 [169] from graphene 
layer, dielectric constant ϵ = 3.9 that enables to take into account the 
screening effect. In case of other substrates (e.g., hexagonal boron ni-
tride [163]), another value of dielectric constant slightly changes results 
quantitatively, but not qualitatively. Depending on the sign (±), there 
are three types of Coulomb

impN  Coulomb impurities [163]: (i) randomly dis-
tributed positive and negative charges (±) with electric neutrality of the 
whole sample, (ii) only positive (+) and (iii) only negative (−) impurities. 
However, we consider positive–negative impurities (cases (i)) and posi-
tive only impurities (case (ii)). Case (iii) results to DOS curves analogous 
to case (ii) but with opposite asymmetry with respect to the Dirac point. 
Varying parameters entered into the scattering potentials (53) and (54), 
they may be also adopted for modelling so-called mixed (hetero) doping, 
e.g. observed co-doping with boron and silicon atoms [170].

One more type of defects is so-called Gaussian hopping [150, 163]. 
Usually, they originate from the substitutional impurities causing the 
atomic-size misfit effect as local in-plane or out-of-plane displacements 
of atoms, and short- or long-range distortions in graphene lattice due to 
the curved ripples or wrinkles. The modified distribution of the hopping 
integrals between different (i, j) sites reads as [150, 163]
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γ
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= γ

 
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 (55)

with N γ
hop (Gaussian) straining centres at rk positions, ξγ is an effective 

potential length, and hopping amplitude U γ
k ∈ [–∆γ, ∆γ]. The distortion 

centres can be considered with shortly (ξγ = 0.65a0, ∆γ = 1.5 γ1
0 ) or more 

distantly acting (ξγ = 5a0, ∆γ = 0.5 γ1
0 ) hoppings. The summation in ex-

pressions for Gaussian impurities and hoppings is commonly restricted 
to the sites belonging to the same layer, i.e., possibility for the overlap-
ping of Gaussian distributions in different layers is usually omitted 
[104, 150, 163].

Finally, extended (line-acting) defects are present in epitaxial graphe-
ne, where they comprise atomic terraces and steps [171, 172], and poly-
crystalline chemically-vapour-deposited (CVD) graphene as the grain 
boundaries [173–174175] or quasi-periodic nanoripples (wrinkles) [176, 
177]. The effective potential for Nlines charged lines could be derived 
within the Thomas–Fermi approximation [178] and can be very well fit-
ted by the Lorentzian-shaped function [179, 180]:
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B Cr=
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where rij is a distance between the i-th site and j-th line. Fitting para-
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meters A, B, and C depend weakly on electron density; they are calcu-
lated in Refs. [179, 180]: A = 1.544, B = 0.78, and C = 0.046. The po-
tential height Uj

Lorentz is commonly chosen randomly in the range 
[−∆Lorentz, ∆Lorentz] or [0, ∆Lorentz] with potential strength (maximum poten-
tial height) ∆Lorentz = 0.25 | γ1

0 | = 0.675 eV close to the values of the contact 
potential variation at the substrate atomic steps observed in epitaxially-
grown graphene via the Kelvin probe force microscopy [181–182183].

Depending on the range [−∆Lorentz, ∆Lorentz] ∋ Uj
Lorentz or the range 

[0, ∆Lorentz] ∋ Uj
Lorentz, we consider (alternating) symmetric (sign-changing, 

V ≷ 0, i.e. attractive–repulsive) or asymmetric (constant-sign, V > 0, i.e. 
repulsive for electrons) scattering potential. In contrast to the Gaussian 
potential (53), which is not strongly long-range even for a large effec-
tive potential radius (ξ), the Lorentzian one (56), as well as Coulomb 
potential (54), is definitely a long-range potential.

However, sometimes Gaussian (and even Coulomb) scattering po-
tentials are not the most appropriate to describe scattering by various 
(specific) point defects as Fig. 29, a demonstrates [112]. Therefore, 
sometimes it is more adequately to use scattering potential adapted 
from the independent self-consistent ab initio calculations [184], as it 
has been realized for potassium adatoms on the height h ≅

 
2.4 Å over  

Fig. 29. Scattering potential for potassium (K) adatoms on the fixed adsorption 
height h = 2.4 Å (a) and for K adatoms with varying h (b). Ab initio calculations (•) 
[184] are fitted via the Gaussian potential 

2 2/2rV Ue− ξ=  (fitting parameters U = 
= −0.37γ1

0  and ξ = 2.21a define the potential height and effective potential radius, 
respectively), the Coulomb potential V = Q/r (Q = −0.36 γ1

0 a), and two-exponential 

function 1 2/ /
1 2

r r
V U e U e

− ξ − ξ= +  (U1 = −0.45 γ1
0, ξ1 = 1.47a, U2 = −0.20 γ1

0, ξ2 = 2.73a), 
where r is a distance from the projection of adsorbed atom to the lattice site [112]
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the graphene surface: Fig. 29, a. Transforming the scattering potential 
V = V(r) into its dependence on a distance from the lattice site directly 
to adatom, V = V(l), where l = r2 + h2 as demonstrably from Fig. 29, one 
can obtain its dependence on both r and h, V = V(r, h), which is plotted 
in Fig. 29, b.

At a correlation (short-range order), impurities are no longer con-
sidered to be randomly located. To describe their spatial correlation, it 
is conveniently to introduce a pair distribution function p(Ri − Rj) ≡ p (r) 
[185, 186]: p (r) = 0 for r < r0, p (r) = 1 for r ≥ r0, where r = |Ri − Rj| is a 
distance between the two adatoms, and a correlation length r0 defines 
minimal distance that can separate any two of them. If adatoms are 
randomly distributed, then, r0 = 0. The maximal correlation length r0max 
depends on both relative concentration of impurities as well as their (ad-
sorption) positions (as substitutional or interstitial) [112]. For a pro-
nounced correlation effect, it is better to choose maximal possible cor-
relation length, as for nK = 3.125% of correlated potassium adatoms in 
[112], where correlation length was selected as r0 = r0max = 7a0 for hollow- 
(H) and bridge-type (B) sites, and r0 = r0max = 5a0 for top-type (T) sites 
(see Fig. 28). Analogously, in the case of adatomic ordering (long-range 
order), for a pronounced ordered effect, it is reasonably to consider su-
perlattice structures with the same relative content of ordered impurity 
(ad)atoms as for random and correlation cases [112].

4.3. The Strain and Defect Responses  
in the Electronic States and Transport

Within the scope of the theoretical methodology and modelling approach 
presented in the previous two subsections, this subsection (including 
several sub-subsections) mainly exhibits the calculated electronic densi-
ties of states, diffusivities, and conductivities in the imperfect (impure) 
(un)strained graphene sheets. In most of the reported below results of 
the numerical calculations, the size of computational domain was 1.7 
million of atoms, which corresponds to graphene lattice of ≈ 210 × 210 nm2 
size. There are also comparisons of numerical and relevant experimental 
findings.

4.3.1. Sensitivity to Direction of the Uniaxial Tensile Strain 

Before considering the graphene with defects of various types, it is rea-
sonably to examine firstly the defect-free graphene subjected to differ-
ent values of relative uniaxial tension ε ∈ [0%, 30%] along above-men-
tioned two directions. Numerically calculated DOS curves in Fig. 30 
agree with analytically obtained results [87]. A spectral gap appearance 
requires deformations at least of ≈ 20% along zigzag direction (Fig. 30, 
a), while there is no any gap opening for (even large) deformations 
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along armchair direction (Fig. 30, b). Some authors [87, 91, 97, 100] 
explain the band-gap opening in the terms of the location of the Dirac 
points in the Brillouin zone (Dirac point is a point of vanishing DOS 
where the valence and conduction bands touch each other conically). 
They [87, 91, 97, 100] write that spectral gap appears because of ‘moving’ 
the two non-equivalent Dirac points within the first Brillouin zone of 

Fig. 31. DOS for zigzag strained (0% ≤ ε ≤ 27.5%) single- (main panels) and bilayer 
(insets) graphene containing 0.1% of randomly-distributed point defects, namely: 
(a) resonant impurities (52), (b) short- and (c) long-range Gaussian impurities (53), 
(d) vacancies, (e) short- and (f) long-range Gaussian hoppings (55) [104]

Fig. 30. Density of states (DOS), in units of 1/| γ1
0 |, as a function of the relative 

longitudinal strain (ε) for pristine graphene monolayer stretched along directions 
parallel to the armchair (a) and zigzag (b) edges [104]



ISSN 1608-1021. Usp. Fiz. Met., 2022, Vol. 23, No. 2 195

Functionalization of Quasi-2D-Materials: Chemical and Strain-Induced Modifications

the reciprocal space; they shift at a zigzag deformation, come nearer 
towards each other, and eventually merge. However, we stress that the 
modification of the Brillouin zone is only a simple effect of lattice trans-
formation from honeycomb into orthorhombic one due to the applied 
tensile strain. In fact, the band gap opening originates from an additio-
nal displacement of both graphene sublattices with respect to each other 
that occurs most pronouncedly at a deformation along zigzag direction. 
Indeed, an armchair deformation identically influences on all bond 
lengths, — increases them (Fig. 27), — and remains both sublattices un-
dis placed (besides their equilibrium shift by the vector h = a1/3 + 2a2/3). 
Whereas zigzag deformation affects bond lengths differently, — in-
creases bonds in the zigzag direction, while decreases those in the arm-
chair one (Fig. 27), — and (besides the shift onto the h vector) additio-
nally displaces the sublattices.

Since the armchair deformation does not result to the band gap 
opening even for pristine graphene, results in Figs. 31 and 32 deal with 
case of uniaxial tensile strain along zigzag direction only. High energy 
values (far from the Dirac point, conventionally at E = 0) are less prac-
tically (experimentally) realizable, therefore they are not depicted in 
Fig. 31, where DOS is calculated for single- (main panels) and two-layer 
(insets) strained graphene with a fixed (0.1%) content of random de-
fects. The DOS curves for mono- and bilayer graphene (Fig. 31) as well 
as for three-layer, four-layer, and five-ply one (Fig. 32) are similar ex-

Fig. 32. The same as in the previous figure, but for a fixed zigzag strain (ε =  
= 27.5%), different (0–3%) concentrations of defects (main panels) and various 
numbers (1–5) of layers (insets) [104]. Main panels: graphene is single-layer. Insets: 
defect content is 0.1%
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cept near the edge of spectrum for large energies E (see insets in Fig. 32), 
which is an indication of the band-structure similarity, independently 
on the number of layers. As for unstrained graphene [150], the cause of 
such similarity lies in the energy band parameters defining intra- and 
inter-layer hopping integrals designated in Fig. 27: intra-layer nearest-
neighbour hoping integral is circa ten times larger than the both inter-
layer parameters, i.e., inter-layer interaction is much weaker than the 
intra-layer one.

As Figures 31, a, d and 32, a, d show, resonant impurities (oxygen- 
or hydrogen-containing molecules) and vacancies similarly alter the DOS 
of the strained graphene; they bring an increase in spectral weight (cen-
tral peak) near the Dirac point. The central peak (being attributed to the 
impurity (or vacancy) band) increases and broadens with increasing the 
resonant impurity (or vacancy) concentration (see Fig. 32, a, d). The 
principle distinction between O- or H-containing molecules and vacan-
cies concerning their effects on the spectrum consists in position of the 
central peak (impurity/vacancy band) in the DOS curves: it is centred at 
a neutrality point in case of vacancies, whereas it is shifted from it for 
the hydroxyl groups due to the nonzero (positive) on-site potential mod-
elling them. In contrast to the resonant impurities and vacancies, the 
Gaussian potentials and hoppings do not induce low-energy impurity 
(vacancy) band around the neutrality point as shown in Fig. 31, b, c, e, f. 
However, the van Hove singularities also undergo suppressing, espe-
cially at a long-ranged potential (hopping) action (Fig. 32, b, c, e, f).

Like for the perfect graphene (Fig. 30, b), the spectrum is also 
strongly gapless for small and even moderate strains of impure graph-
ene (Fig. 31). The gap overcoming requires the threshold (zigzag) defor-
mations over ε ≈ 20% for non-long-range acting impurities or vacancies 
(Fig. 31, a, b, d, e), whereas the ‘long-range’ potentials (hoppings) smear 

Fig. 33. (a, b) DOS for graphene monolayer with 3.125% of ordered resonant impu-
rities (oxygen- or hydrogen-containing molecules) at different (up to 30%) values of 
the stretching along armchair (a) and zigzag (b) directions [104]. (c) Comparison of 
analytically [87] and numerically calculated band gap energies vs. the uniaxial de-
formation along zigzag direction for monolayer graphene without defects (squares 
and circles) and with 3.125% of ordered hydroxyl groups (triangles) [104]
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gap region and transform it into quasi- or pseudo-gap — plateau-shaped 
deep minimum in DOS near the Dirac point (Fig. 31, c, f). Increase in 
defect concentration does not change the plateau width, however en-
hances its spectral weight to the complete smearing even at the short-
range potentials (hoppings) as shown in Fig. 32, b, c, e, f).

Figure 33, a and b shows DOS around the Fermi level as a function 
of tensile strain ε ∈ [0%, 30%] for single-layer graphene with a fixed 
concentration of the ordered hydrogen or oxygen adsorbed atoms. The 
band gap decreases slowly (however permanently), if armchair deforma-
tion increases. However, in case of the zigzag strain, the band gap ini-
tially (for 0% ≤ ε ≤ 10%) becomes narrower and narrower up to the total 
disappearance, but then, at a certain threshold strain value (εmin ≈ 12.5%), 
the gap reappears, grows up, and can be even wider than it was before 
the stretching (Fig. 33, c). Importantly, this threshold value εmin, when 

Fig. 34. (a, b) Conductivity σ (49) and (c, d) mobility µ = σ/(ene) vs. the electron (or 
hole) density ne (−ne) for graphene containing 0.1% of random weak impurities (51) 
strained uniaxially along (a, c) zigzag or (b, d) armchair edge [188]. Both conductiv-
ity (σ ≡ σxx ≡ σzigzag) and mobility (µ ≡ µxx ≡ µzigzag) are calculated along zigzag edge 
(see Fig. 27, b, c)
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the band gap opens, is lower in comparison with those that have been 
estimated earlier for perfect defect-free graphene layers subjected to 
the uniaxial zigzag strain (εmin ≈ 23% [87]), shear deformation (εmin ≈ 16% 
[91]), and almost coincides with the value expected combining shear 
with armchair uniaxial deformations (εmin ≈ 12% [91]).

Comparing the band-gap energies calculated analytically in [87] and 
numerically computed for pristine as well as for doped graphene subjec-
ted to uniaxial tensile deformation along zigzag-edge direction (Fig. 33, 
c), one can see a pronounced non-monotony of the curve for strained 
gra phene with ordered pattern of defects. Such abnormal nonmonotonic 
behaviour of the strain-dependent band gap mainly originates from the 
simultaneous contribution of two factors: impurity ordering and applied 
strain. Note that numerically obtained curve for defect graphene in 
Fig. 33, c) also becomes linear for strains beyond the ≈20% and crosses 
other two curves for pristine graphene close to its predicted failure 
limit point (≈27.5% [94]).

In Figure 33, c, for predicted graphene failure strain of ≈27.5%, 
the maximal band gap reaches ≈0.74 eV. If the strain reaches value of 
30%, the band gap energy is expected of ≈0.8 eV (Fig. 33, c). These 
calculated band gap values are strongly particular, since the DOS curves 
in Fig. 33, a, b are calculated for a fixed (3.125%) content of ordered 
dopants described by the model on-site potentials with model band pa-
rameters adopted from independent approximations. Other impurity 
concentrations and model potentials give different results. For example, 
in Fig. 31, b, e as well as in Fig. 32, b, e, for 0.1% of random short-
range Gaussian impurities (hoppings), the band gap amounts to ≈0.75 eV 
around the Dirac point, without breaking by the impurity band (central 
peak) as it is for the resonant impurities. All these estimated band gap 
energies are comparable with those (up to ≈0.9–1.0 eV) reported in 
Refs. [91, 100, 101, 187] for ideal (i.e., clean, undoped, without any 
defects) graphene sheets in the fields of periodic inhomogeneous [100], 
local [187], anisotropic biaxial [101], or combined [91] strains.

The field-effect charge carrier conductivity σ and mobility µ = σ/(ene), 
calculated along fixed, viz. zigzag-edge, direction, are shown in Fig. 34 
[188]. This figure clearly demonstrates that conductivity and mobility 
are sensitive to the direction of uniaxial strain. The stretching up to 
27.5% along the zigzag edge substantially reduces both conductivity 
and mobility, while the same stretching along armchair edge slightly 
enhances the conductivity and mobility. The revealed charge carrier 
(electron) transport anisotropy is attributed to difference of deforma-
tions of bonds, and therefore hopping parameters, in cases when honey-
comb lattice is stretched uniaxially along zigzag- and armchair-edge 
directions (see Fig. 27, b, c).
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4.3.2. An Ability to Affect the Conductivity  
through the Dopant Configuration 

Since here and further we consider a graphene monolayer only, (for sim-
plicity) let us denote the in-layer nearest-neighbour hopping parameter 
γ1

0 (see designations in the previous subsection and Fig. 27 particularly) 
as u, i.e., γ1

0 ≡ u0 = 2.78 eV — the hopping integral for neighbouring at-
oms at the equilibrium distance a0 = 0.142 nm.

Due to the honeycomb structure of unstrained graphene lattice, pos-
sible adsorption sites can be reduced into three types with high-symme-
try favourable (stable) positions; so-called hollow centre (H-type), bridge 
centre (B-type), and (a)top (T-type) adsorption sites are illustrated in 
Fig. 28. Taking into account discrepancies in the literature [107–111] 
on the energy stability (favourableness) of adsorption sites, it is inter-
esting to study how electrotransport properties of unstrained graphene 
depend on types of adsorption sites (H, B, T) which dopants occupy. 

In the case of random configuration of adatoms, the steady diffu-
sive regime is reached for a relatively short time, when electron diffu-
sivity Drnd(t) saturates (Fig. 35, a). If adatoms are correlated (short-
range ordered), diffusivity Dcor(t) exhibits an unsaturated behaviour for 
a longer time, which means that diffusive regime is not yet reached 
(Fig. 35, b). Such a quasi-ballistic behaviour of diffusivity indicates a 
low-scattered electronic transport, when the scattering process is rather 
inefficient and gives rise to the quasi-ballistic transport more than to 
the quasi-diffusive one. However, since there is no the total long-range 
order, the quasi-diffusive regime occurs when the diffusivity Dcor(t) 
reaches the maximal value. In the case of adatomic ordering with ideal 
long-range order, when there are no any disorders, we observe a ballistic 
linear behaviour of Dord(t) for much more longer times (Fig. 35, c) as 
compared with Drnd(t) and Dcor(t). This situation resembles case [189] 
when electrons propagate mainly out-of-the-sublattice containing (or-
dered) substitutionally-dopant atoms. We would expect such a ballistic 
regime for very large times (and even at t → ∞) for infinite graphene 

Fig. 35. Electron diffusivity vs. time within the energy range E ∈ [−0.5u0, 0.5u0] 
for random (a), correlated (b), and ordered (c) potassium adatoms located on hollow 
(H) adsorption sites (see Fig. 28) [112]
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sheet. However, although our graphene computational domain contains 
several millions of atoms as indicated above, it is finite at all. When the 
electron wave packet reaches the reflecting edges of graphene domain, 
the quasi-localization effects can contribute to Dord(t), especially, due to 
those long-range ordering adatoms, which are close to the boundary of 
the sample and, therefore, differ in their local coordination environ-
ment from those reside in the sample interior. Another contribution to 
immobilization disorder comes from the tails of scattering potential due 
to its long-range features. That is why Dord(t) decreases after reaching 
the maximum in the shown time interval. Nevertheless, the maximal 
value of Dord(t) is substantially higher than the maximum of both Dcor(t) 
and Drnd(t): 

max max max
rnd cor ord( ) ( ) ( )D t D t D t< <  (Fig. 35). Note that, if the dif-

fusive regime is not reached completely, the semi-classical conductivity 
σ cannot be defined in principle. However, σ is extracted for the case of 
ordered adatoms using the highest Dord(t), when its quasi-ballistic be-
haviour turns to quasi-diffusive one.

Figure 36 represents the calculated conductivity (σ) as a function of 
electron (ne > 0) or hole (ne < 0) concentration, σ = σ(ne), for different 
positions (H, B, T) and distributions (random, correlated, and ordered) 
of adatoms in graphene. For a visual convenience, the same (nine) curves 
in Fig. 36, a–f are positioned in two panels (upper and lower). In the 
upper panel, figures a–c demonstrate how correlation and ordering af-
fect the conductivity for each of H, B, and T adsorption types. In the 

Fig. 36. Conductivity vs. the electron density for 3.125% of random, correlated, and 
ordered potassium adatoms occupying hollow (H), bridge (B), or top (T) adsorption 
sites (see Fig. 28) [112]
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lower panel, figures d–f exhibit how these three types of sites influence 
on the conductivity for each of random, correlated (with maximal cor-
relation lengths), and ordered adatomic distributions. The conductivity, 
σ, exhibits linear or nonlinear (sublinear) electron-density dependen-
cies. The linearity of σ = σ(ne) takes place at the randomly distributed 
potassium adatoms and indicates dominance of the long-range contribu-
tion to the scattering potential, while sublinearity occurs at non-random 
(correlated and ordered) positions of potassium adatoms and is indica-
tive of the dominance of short-range component of the scattering poten-
tial. This is in accordance with other studies (see, e.g., [156] and refer-
ences therein), where the pronounced linearity and sublinearity of 
σ = σ(ne) are observed for long-range scattering potential (appropriate 
for screened charged impurities with ionic bond in graphene) and short-
range potential (appropriate for neutral covalently bond adatoms), re-
spectively. These results illustrate manifestation of contrasting scatter-
ing mechanisms for different spatial distributions of metallic (and even 
non-metallic as recently revealed in Ref. [190]) impurity atoms.

Since maximal value in a temporal evolution of diffusivity for or-
dered impurities substantially exceeds its value for correlated defects 
and much more for randomly distributed ones (Fig. 35), a considerable 
increase in conductivity due to the correlation and, much more, to the 
ordering of adatoms as compared with their random distribution is seen 
from graphs in Fig. 36, a–c. Graphs in Fig. 36, d–f allow seeing how 
different types of adsorption sites affect the conductivity for each type 
of distribution. If adatoms are randomly distributed, conductivity  
depends on types of adsites: H-, B-, or T-type ones (Fig. 36, d: σH

rnd > 
> σB

rnd > σT
rnd. For a correlated distribution, conductivity depends on how 

adatoms manifest themselves: as substitutional (being on T-sites) or 
interstitial (being on H- or B-sites) atoms (Fig. 36, e): σH

cor ≈ σB
cor > σT

cor. 
If adatoms form the ordered superstructures, with equal periods, the 
conductivity is practically independent on the adsorption type, espe-
cially at the low electron densities (Fig. 36, f): σH

ord ≈ σB
ord ≈ σT

ord.

Fig. 37. The same as in the previous figure, but when adatoms occupy hollow (H) 
adsorption sites (see Fig. 28) at different adsorption heights h [112]
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In our model, the higher (lower) adatomic elevation over the graph-
ene surface corresponds to the weaker (stronger) scattering-potential 
amplitude. It means physically that more weak (or strong) regime of 
electron scattering on the charged impurity adatoms. Though the values 
of adsorption height, h, reported in the literature for potassium, do not 
disagree as much as for the adsorption energy (see Table 1 in [112]), for 
the model and calculation completeness, h varies in a wide range (up to 
h = 3.6 Å), including exotic case of h = 0, when impurity atoms act as 
strictly interstitial ones. The calculated curves representing the charge-
carrier-density-dependent conductivity for (random, correlated, and or-
dered) adatoms resided on (the most favourable for potassium) hollow 
sites and elevated on different h are depicted in Fig. 37. Here, we do not 
consider the cases of bridge and top sites — less favourable for potas-
sium atoms occupation — since it leads to qualitatively the same results. 
As follows from Fig. 37, a and b, at least for hole densities (−ne > 0), 
two (three) time increase or decrease in adsorption height h for randomly- 
or correlatively-distributed potassium adatoms results to approximately 
two (three) time enhancement or reduction in σ (respectively). Thus the 
conductivity approximately linearly scales with adsorption height of 
random or correlated adatoms, σ (h) ∝ h, or, more precisely, σ (h) = σ (0) + 
+ O(h), where O(h) is a big O notation. However, for ordered potassium 
adatoms, the σ remains practically unchanged with varying of h in the 
realistic range of adsorption heights (see Table 1 in Ref. [112]) and even 
in all range at issue (0 ≤ h ≤ 3.6 Å) for hole densities (Fig. 37, c). We 

Fig. 38. (a) Calculated conductivity [112] as a function of charge carrier density at 
various concentrations of potassium adatoms, 0.1% ≤ nK ≤ 3%, which are randomly 
distributed over the random adsorption sites of graphene lattice. (b) Experimental 
[137, 191] and calculated [112] conductivities vs. the realistic electron density for 
different contents of potassium impurities in graphene typically observed in expe-
riments. Experimental data ▲ [191], ∆ [137], ▼ [137], ∇ [191] correspond to nK = 
= 0.047%, 0.055%, 0.086%, 0.094%, respectively. Calculated dashed and solid cur-
ves (b) relate to nK = 0.047% and 0.094%, respectively
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attribute this to the dominance of short-range scatterers in case of their 
ordered state (as it was mentioned above). Indeed, the Gaussian fitting 
for the scattering potential in Fig. 29, a yields the effective potential 
radius ξ = 2.21a, which is commensurable with quantities of adsorption 
heights h at issue (and even less than h = 3.6 Å).

Let us compare obtained numerical results with available other (ex-
perimental and theoretical) findings. Results in Figs. 36 and 37 agree 
with experimentally observed features of σ = σ(ne) for potassium-doped 
graphene [191, 137]: 

on K-doping, conductivity decreases and its dependence on charge • 
carrier density (controlled by gate voltage Vg ∝ ne [192]) is linear (sub-
linear) at higher (lower) K-concentration; 

conductivity curve is an asymmetric one for electrons versus • 
holes for the asymmetric (i.e., sign-constant) scattering potential; how-
ever, the electron-hole asymmetry is absent for symmetric (i.e., alterna-
ting in sign) potential [156]; 

the minimal conductivity •  σmin ≈ 4e2/h (h is the Planck constant) 
shifts from a charge neutrality point to the side of positive energies E 
corresponding in our notations to the n-type charge carries, i.e., nega-
tive gate voltage (see Fig. 38, a); 

electron-density-dependent conductivity becomes more sublinear • 
and enhances as the correlation degree for adatoms increases. 

The above mentioned four features do not depend on types (H, B, or 
T) of adsorption sites and therefore become apparent also for a random 
arrangement of adatoms at a random type of adsorption sites as it is 
shown in Fig. 38, a.

Note that this subsection deals with numerical calculations, in  
which the relative electron densities within the range of ne ≤ 6 ⋅10−2 
atom−1 (i.e., ne ≤ 2.3 ⋅1014 cm−2) are used. Such ne values are larger in 
comparison with those commonly used in the relevant experiments,  
ne

exp ≤ 1.8 ⋅10−3  atom−1 ne
exp ≤ 7 ⋅1012 cm−2) [137, 191]. The larger electron 

density interval is used in order to model electron transport for im-
purity densities nimp ≤ 3.125% (nimp ≤ 1.19 ⋅1014 cm−2), which are lar ger 
than densities in typical experimental samples, exp

impn  ≤ 0.14% ( exp
impn  ≤ 

≤ 5.4 ⋅1012 cm−2) [137, 191]. To achieve the stable diffusive transport 
regime for experimentally typical impurity concentrations, it is neces-
sary to perform calculations on graphene sheets with much more num-
ber of atoms, which requires much more computation time and ca pa-
bilities. Therefore, to compare calculable conductivity with experi - 
mental one for potassium-doped graphene, the size of computational 
domain was increased up to ten millions of atoms, which corresponds  
to ≈500 × 500 nm2, although even this size is not quite enough to reach 
the long-time stability of diffusive regime at very small impurity  
content. Experimental and calculated conductivities for typical den sities 
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of electrons and impurity potassium adatoms in graphene are presen - 
ted in Fig. 38, b. Both experimental and calculated conductivities (in 
Fig. 38, b) exhibit a linear (or a quasi-linear) behaviour. However, quan-
titative agreement is less good. This can be attributed to the contribu-
tion of quasi-localization effects due to the insufficiently large graphe-
ne sheet for the stable long-term diffusive regime to be reached at the 
wave packet propagation.

A significant sublinear behaviour of electron-density-dependent 
conductivity and its saturation for very high electron densities at the 
spatial correlations among the charged impurities in contrast to the 
strictly linear-in-density graphene conductivity for uncorrelated ran-
dom charged impurities (Figs. 36, a–e, and 37, a–b) is also in agreement 
with theoretical findings in [185, 186]. Increase in conductivity as the 
increasing adatomic correlation is also sustained theoretically [185, 186] 
within the standard semi-classical Boltzmann approach in the Born ap-
proximation. 

At first sight, it may seem that the last statement in the last para-
graph contradict to the results and conclusions in Ref. [156], where the 
authors reported that correlation in the spatial distribution for the 
strong short-range scatterers and for the long-range Gaussian potential 
does not lead to any enhancement of the conductivity in comparison to 
the uncorrelated case. However, there is no any disagreement. Results 
in Ref. [156] are obtained for alternation (positive–negative) Gaussian 
scattering potential (53) with potential height U uniformly distributed 
within the symmetric range [−∆, ∆] (∆ is a maximal potential height). 
Such a potential is commonly used in the literature as a model potential 
without specification type (kind) of impurity (ad)atoms. While here, 
and in Ref. [112], the potential is a constant-sign (negative) being 
adopted from independent ab initio calculations [184] strictly for potas-
sium adatoms in graphene (see Fig. 29, a). Really, ‘symmetric’ Gaussian 
potential (with U ∈ [−∆, ∆]) does not give rise in conductivity (as shown 
in Ref. [156]), while the ‘asymmetric’ Gaussian potential (with U < ∆ or 
U > ∆) or any other (Gaussian or non-Gaussian) only positive or only 
negative potential (like that in Fig. 29) enhances the conductivity. 

4.3.3. The Strain-Dependent Band-Gap Patterns

To construct the strain-dependent band-gap diagrams (maps) for monol-
ayer graphene subjected to different types of deformations, — stretch-
ing (Fig. 27, b and c), shearing (Fig. 39, a and b), or their combination 
(Fig. 39, c), — we calculated a large number of corresponding DOS 
curves and determine the corresponding band gaps (if any is opened at 
all by the applied strains). The 14 × 14 = 196 DOS curves (like those in 
Fig. 30), calculated for different relative values of uniaxial zigzag and 
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armchair deformations ε ∈ [0, 26%] (with a strain step ∆ε ≈ 2%) result 
in the band gap diagrams [15] shown Fig. 40. As Figure 40, b demon-
strates, the shear strain also induces, similar to the uniaxial tensile 
deformation, a band gap opening only above a certain threshold defor-
mation value. However, in contrast to the tensile strain, although the band 
gap emergence is strongly sensitive to direction of the stretching, reaching 
a critical threshold shearing along both (armchair and zigzag) edges 
(directions) is needed for the gap opening:  εxy

min = εyx
min ≈ 17%, see Fig. 40, b. 

The shearing along both edges (so-called mixed shear strain as shown in 
Fig. 39, c) can be associated with the diagonal values on the band- gap 
pattern in Fig. 40, b, where shears along both armchair and zigzag di-
rections are equal. Figure 40, b shows that the band gap reaches values 
≈4 eV at large strains up to 26%, close to the graphene failure limit.

As it becomes apparent from Fig. 40, c–h, the combination of diffe-
rent uniaxial tensile and shear stresses affect differently the band gap. 
Armchair stretching enlarges the gap induced by shear strain (Fig. 40, c–e) 
up to ≈6 eV (Fig. 40, e) for extremely high values of the stretching com-
bined with mixed shear. On the contrary, zigzag stretching causes degrada-
tion of the band gap induced by any of the three types of shear strains (Fig. 
40, f–h). Uniaxial armchair strain combined with mixed shearing deceases 
the minimally required threshold strain εmin necessary for band-gap open-
ing. In particular, εmin drops to εxy

min = εyx
min ≈ 12% when mixed shearing is 

accompanied with εyy
min ≈ 12% of armchair stretching (Fig. 40, e).

The main features that can be extracted from Fig. 40 are the thresh-
old strain needed for band gap opening (if any) and the maximal band-
gap value, which can be reached by the non-destructive deformations. 
These values are summarized in Ref. [15] (see Table 1 therein) for dif-
ferent types of strains. The comparison of the numerical results [15] 

Fig. 39. Graphene lattice subjected to shearing along zigzag (a), armchair (b), or 
both (c) directions (the balls denoting atoms remain nonstretched in experiment) 
[15, 16]. See also stretched lattice in Fig. 27, b and c
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with other available theoretical data in the literature indicates good 
qualitative and quantitative agreement between the critical strain values 
for the uniaxial zigzag, shear, and combined deformations obtained ei-
ther analytically or also numerically in Refs. [87, 91, 193].

Figure 40 and summarized data in the table of Ref. [15] clearly 
demonstrate that different types of strains and their combination can 
sensitively affect the band gap. Despite the fact that pure uniaxial arm-
chair stress is ineffective in the creation of a band gap, this type of 
stress strongly enlarge the shear-induced gap, increasing the gap far 

Fig. 40. Strain-dependent band-gap patterns (diagrams) for graphene under tensile 
or/and shear deformations (up to 26%): (a) uniaxial tensile strain along zigzag or/
and armchair direction as shown in Fig. 27, b and c; (b) shear strain along armchair 
or/and zigzag directions (Fig. 39, a–c); uniaxial tensile strain along (c–e) armchair 
or (f–h) zigzag direction combined with shear strain along (c, f) armchair, (d, g) 
zigzag, or (e, h) both directions with equal shear-strain tensor parameters εxy and εyx 
denoted in the previous figure [15]
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beyond the silicon’s value, which is enough for creation of a transistor. 
Such an enhancement happens with all types of shear strains, hence, the 
only thing required to control is the armchair direction of the uniaxial 
stretching. Desired values of the band-gap for graphene applications in 
nanoelectronic devices such as transistors may be achieved in a wide 
range of band-gap values and through different types of deformations 
including their combination.

Figure 41 illustrates the modification of the three nearest-neigh-
bour bond lengths (δ1, δ2, δ3) and hence of the hopping parameters (u1, 
u2, u3) when applying uniaxial and shear tensions as well as their com-
bination. Whereas the unstrained bonds (in Fig. 41, a) provide a zero 
energy gap, according to Fig. 40, a non-zero gap emerges for all other 
three cases (see Fig. 41, b–d). The 26%-stretching along zigzag direc-
tion (in Fig. 41, b) results in the ≈0.5 eV energy gap (Fig. 40, a). The 
8%-shearing along both armchair and zigzag directions (in Fig. 41, c) 
provides a gap of ≈0.66 eV (Fig. 40, b). The combination of 18% of 
mixed shear with armchair tensions (in Fig. 41, d) results in a gap of 
≈3.02 eV (Fig. 40, e). The hopping integrals (in units of u0) denoted in 
Fig. 41, b–d violate the triangular inequalities [87, 194],

 31 1

2 2 2

1 1
uu u

u u u
− ≤ ≤ + ,  (57)

Fig. 41. Modified nearest neighbour bond lengths (δ1, δ2, δ3) and renormalized hop-
ping integrals (u1, u2, u3) in graphene lattice (a) under different types of strain [15]. 
Here, b — 26% of uniaxial tensile strain along zigzag edge, c — 18% of shear 
strain along both armchair and zigzag directions, d — 18% of mixed shearing com-
bined with 18% of uniaxial tensile strain along armchair direction. The balls de-
noting atoms remain nonstretched in the experiments
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which act as a general condition (firstly derived in Ref. [194]) for the 
gapless spectrum of tight-binding electrons on the honeycomb lattice 
(the inequalities (57) can also be rewritten in a more complicated form 
in terms of the bond lengths entering into the expression of the  
bond-length-dependent hopping (50)). Such an agreement indicates  
compliance between the numerically calculated strain-dependent band-
gap maps in Fig. 14 and the analytically obtained hopping-dependent 
condition (57) for the gapless energy spectrum of the honeycomb  
lattice.

The stability of the strain-induced band gaps in polycrystalline 
graphene produced through chemical vapour deposition on a substrate, 
as one of the most prevalent and mature techniques of graphene growth, 
is an additional important question, since the majority of graphene 
films necessary for industrial applications are typically polycrystalline 
[195]. The polycrystalline structure of graphene manifests itself as a 
main problem in the band-gap engineering, since it is composed of mono-
crystalline grains that response differently to the strain, due to their 
varying spatial orientation. For the most stable and controllable energy 
gap, graphene samples should be monocrystalline or consist of single-
crystalline domains with identical lattice orientations. The presence of 
a huge amount of grain boundaries, acting as extended line defects in 
polycrystalline graphene, induces midgap electron states thereby im-
pedes the emergence of a gap. This could be one of the reasons why the 
attempts to observe a tensile- or shear-strain-induced spectral gap in the 
polycrystalline graphene samples (CVD-grown on a copper substrate) 
[89, 90] were not crowned with success. In addition to that, the gap 
might not be observable due to several other reasons. Although tensile 
strain of polycrystalline graphene was large, 22.5% [89], it was not suf-
ficient for band (and hence transport) gap opening as long as the zigzag 
stretching was not in excess of 23%. Moreover, the directional sensiti-
vity becomes pointless (or even impossible) in case of different grain 
orientations. Applied shear strain up to 16.7% [90] is sufficient for gap 
opening according to the calculations in Ref. [91], while predictions in 
Refs. [15, 193] report on rather higher threshold values of the shear 
strain along both armchair and zigzag directions (Fig. 39, c).

4.3.4. Numerically Calculated as Compared  
with Experimentally Measured Conductivity 

Analysing the transfer characteristics of CVD graphene sample loaded 
to the tensile and shear strains [89, 90], authors of Ref. [16] tried to 
tailor the electron transport properties of graphene layer involved in 
our computational domain. Thereto, they [16] varied the types of de-
fects and their contents such to reach as more as a possible similarity 



ISSN 1608-1021. Usp. Fiz. Met., 2022, Vol. 23, No. 2 209

Functionalization of Quasi-2D-Materials: Chemical and Strain-Induced Modifications

between the numerically calculated and experimentally obtained curves 
σ = σ (E). As a result, the calculated curves in Fig. 42, a for zigzag ten-
sile strain (Fig. 27, c) exhibit several features observed in experiment 
[89] (the inset in Fig. 42, b). They are: the Dirac points σmin occupy posi-
tion on the side of positive energy (gate voltage), which implies hole 
doping; the σ undergoes a downshift in the Dirac points; the slopes of 
the curves decrease on both sides from the Dirac points, i.e. the σ (Efixed) 
decreases as the ε increases. The apparent shift of the Dirac points ex-
tracted from Fig. 42, a) is plotted in Fig. 42, b). In contrast to the ex-
periment, there is no a pronounced and relatively slowly decrease of σ 
min under little tension, but faster decrease at larger strains; we at-
tribute it to the lack of the wrinkle (ripple) releasing (relaxation) effect 
in our model. The linear decrease of mobility (µ = σ/(ene)) of electrons 
(holes) with increasing stretching also occurred (see supplementary ma-
terial) in accordance with the experiment [89].

In contrast to the zigzag stretching, the zigzag and armchair shears 
(Fig. 39, a, b) enhance the σ (Efixed) (Fig. 43, a, b). However, the conducti-
vity of the Dirac points (σmin) remains practically unchanged (see also 
Fig. 43, d): cases εxy ≠ 0 and εyx ≠ 0). Interestingly, for the mixed shear 
(Fig. 43, f), the conductivity σ (Efixed), including σmin, exhibits nonmo-
notonic behaviour as a function of ε: see Fig. 43, c, d). The nonmonotony 
of the σ (Efixed) as a function of shear strain (case εxy = εyx ≠ 0 in Fig. 43, 
d) has also been revealed numerically in Ref. [193] and experimentally 

Fig. 42. (a) Calculated conductivity σ = σ(E) for different values of tensile strain 
along zigzag direction (Fig. 27, c) in graphene containing 0.005% of resonant im-
purities (51) with V0 ≡ VRI), 0.25% of long-range acting positive and negative Gaus-
sian impurities (53), 0.15% of positive Coulomb impurities (54), 0.125% of nega-
tive Coulomb impurities (54), and 50 positive–negative line defects (56). (b) Calcu-
lated [16] and experimental [89] σ in the Dirac points (σmin) at different strain 
values, where experimental points are extracted from experimental graphs in the 
inset [89]
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in Ref. [90]. However, the behaviour of the nonmonotony curves σmin = 
= σ (ε) is different. Numerical findings [193] and our calculated results 
in Fig. 43, d) predict an increase of σ and followed decrease when the 
mixed shear approaches the values close to the threshold one at which 
the band gap starts to open. The band gap was not observed in the ex-
periment [90]. This is not only because of the significant effect of grain 
boundaries, as authors [90] mentioned. Another reason for the band gap 
absent [90] may be attributed to the shearing along either zigzag or 
armchair graphene-lattice edge (as Fig. 1, b in Ref. [90] demonstrates). 
In contrast, the band gap opens only at the simultaneous shearing along 
both (zigzag + armchair) directions (mixed shear in Fig. 39, c) as re-
ported in Refs. [15, 193].

Fig. 43. (a)–(c) The same as in the previous figure, a, but for the shearing (Fig. 13, 
a–c) and for 0.005% of resonant impurities (51), 0.25% of long-range positive–
negative Gaussian impurities (53), 0.25% of positive–negative Coulomb impurities 
(54), 0.03% of positive Coulomb impurities (54), and 50 positive–negative line de-
fects (56). (d) Calculated [16] and experimental [90] σmin, where experimental points 
are extracted from experimental graphs in the inset [90]
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5. magnetic-Field-driven electronic Properties  
of Graphene: effect of Strain and defects

Among known and currently in use different ways for inducing goal-
directed effects in electronic and transport properties of graphene, the 
application of a magnetic field is extremely useful for addressing its 
fundamental properties as it provides an external and adjustable param-
eter which drastically modifies graphene’s electronic band structure 
[196, 197]. Whereas even large parallel magnetic field does not affect 
the transport properties of graphene [198], perpendicular magnetic field 
results to formation of non-equidistant Landau levels (LLs) in the en-
ergy spectrum, including zero-energy Landau level (LL) at the Dirac 
point, which caused some unique physical properties, for instance the 
anomalous integer quantum Hall effect and a finite conductivity at the 
Dirac point [199, 200].

This section deals with numerical study of responses of uniaxial 
ten sile strain and point or line defects in magnetoelectronic properties 
of graphene exposed to the perpendicular magnetic field, particularly in 
the LLs spectrum observed in the calculated densities of electronic 
states. Such a study is also motivated by the restricted information in 
the literature about computational details and parameters used in mod-
elling of graphene electronic properties [163, 201]. These computational 
parameters can play an important role during the computation proce-
dure, especially if they implicitly defined in commonly used different 
computational packages, like Quantum Espresso, as in Ref. [201].

5.1. Analytical vs. Numerical Findings for Perfect Monolayer

In the presence of an external vector potential A applied to the graph-
ene layer, the hopping integrals undergo replacement in accordance with 
a standard Peierls substitution method [149, 163, 202, 203]:

 0 0,
0

2
exp exp ;

j j

j j

j j

u u ie d u i d′

′ ′   π
= =      

 Φ  
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here, i is an imaginary unit, 
j

j
d

′

∫ A l  is a line integral of the vector po-

tential from j to j′ nearest-neighbouring sites, and magnetic flux quan-
tum Φ0 = h/e is a combination of the fundamental physical constants. In 
the Landau gauge condition for a perpendicular magnetic field B = (0, 
0, B) as shown in Fig. 44, a, where x and y Cartesian axes are specified 
along the zigzag and armchair edges, respectively (see also Fig. 27, b, 
c), the vector potential reads as A = (−By, 0, 0). Then, applying the fun-
damental theorem of calculus (Newton–Leibniz formula), the hopping 
parameters for nearest-neighbouring j and j′ sites become
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 (59)

where sign ‘+’ or ‘−’ depends on whether m and n, — numbers of j and 
j′ sites along x and y directions designated in Figs. 44, a and 27, b, c, — 
are even or odd. It is convenient to express y in Eq. (59) in units of the 
lattice parameter a.

It is known from the theoretical quantum-mechanical predictions 
that magnetic field, applied perpendicularly to the graphene plane, re-
sults to the quantization of electron energy into LLs with an electron–
hole energy spectrum that reads as [64, 149, 204–207] 

 2
0 0| | sgn( ) 2 | |n c FE E n E n e B n= ± ω ≡ + υ   (60)

Table 15. Analytically obtained and numerically calculated electron  
energy spectrum, E

n
 (n = 0, ±1, ±2, ±3), at different values of magnetic field,  

B ∈ [25, 200] T, perpendicular to graphene plane [212].  
Analytical E

n
 are extracted from Eq. (60)

B, T Method En=0 En = ±1, eV En = ±2, eV En = ±3, eV

25 analytical 0 0.18 0.26 0.31
numerical 0 0.14 0.22 0.26

50 analytical 0 0.26 0.36 0.44
numerical 0 0.23 0.32 0.40

100 analytical 0 0.36 0.51 0.62
numerical 0 0.33 0.46 0.60

200 analytical 0 0.51 0.72 0.88
numerical 0 0.46 0.66 0.81

Fig. 44. Graphene lattice in the perpendicular magnetic field B (a) resulting in  
the Landau levels on the DOS (in units of reciprocal hopping integral 1/u0) as a 
function of energy E (in units of u0) for different values of the uniform field  
B ∈ [0, 200] T (b) [212]
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with a field-independent energy E0 in the Dirac point, cyclotron fre-

quency 2 /c F eBω = υ  , the Fermi (electron) velocity υF ≈ 106 m/s [64], 
and the quantum number n = 0, ± 1, ± 2, ... represents an integer LL 
index being positive (n > 0) for electrons and negative (n < 0) for holes. 
The non-equal ( )B∝  distances between LLs in graphite were reported 
in the middle of the last century [208] (see also Ref. [209]). The non-
equidistant LLs spectrum (60) for zero-mass carriers in graphene grown 
on silicon carbide was firstly experimentally observed in Ref. [210] via 
the scanning tunnelling spectroscopy. The sublinear ( )B∝  dependen -
ce (60) for graphene differs from the typical linear dependence of the 
LLs energy on both quantization integer n and magnetic field B for  
an ordinary conductors (normal metals and 2D electron gases): En ∝  
∝ (n + 1/2)B [211].

Before proceed to graphene with disorders, in order to validate nu-
merical model, it is reasonably initially consider pristine (i.e., defectless 
and unstrained) graphene monolayer subjected to the perpendicular 
magnetic field [212]. Observed Landau levels on the numerically calcu-
lated DOS curves in Fig. 44, b [212] confirm nonuniform (non-equidis-
tant) distribution of the LLs (the non-equidistance is due to the fact 
that charge carriers behave themselves in graphene as massless particles 
and their velocity does not depend on their energy). Electron energy 
spectrum (En) values for different magnitudes of perpendicular mag-
netic field (25 T ≤ B ≤ 200 T) are contained in Table 15. Numerically 
calculated values of En adequately agree with those obtained analyti-
cally from Eq. (60).

For clarity’s sake, we pay attention to importance of some computa-
tional parameters, which usually are hidden from readers but strongly 
affect DOS curves including positions and width of LLs. Since thickness 
of the LLs is extremely small, unusually narrow energy step is needed 
for LLs to be observed on the curves. The size of computational domain, 
i.e., honeycomb lattice, causes not only significant modification of the 
DOS, but also plays a crucial role in the observation of LLs in a compu-
ter experiment at hand. In case of a relatively small size of the lattice, 
e.g., smaller than half of million of sites (atoms), the LLs are found to 
be not clearly observed even for magnetic fields up to 50 T, which are 
close to those maximal attainable in experiment [213]. LLs tend to be 
more distinguished and pronounced with the larger lattice size as com-
pared with smaller one. In case of the restricted computational efforts 
for providing calculations on the honeycomb samples containing several 
millions of atoms, the higher magnetic fields have to be applied for LLs 
to be clearly observed on the DOS curves like those in Fig. 44, b. There-
fore, having sufficient (for adequate modelling) computational domain 
(1700 × 1000 lattice sites), but not quite enough for LLs be clearly ob-
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served at the small magnetic fields, we enhanced maximal value for B 
up to 200 T, which is nevertheless two times lower as compared with 
magnetic fields considered in other numerical simulations [214] for 
much smaller samples.

Another important computational parameter is so-called smoothing 
coefficient ς, which enters into the master expression for the total den-
sity of states (in detail, see appendix in Ref. [156]): ( ) ( )N

i iE Eρ = ∑ ρ = − π ∑ + ς 
(1/ ) Im (( ) )N N

i iiG E iEρ = ∑ ρ = − π ∑ + ς , where ρi(E) is a local DOS (at the i-th site), Gii 
denotes diagonal elements of the Green’s function, the summation is 
carried over all honeycomb-lattice sites N. Typical value of this co ef-
ficient in the calculations without an external magnetic field presen -ce 
(see, e.g., Refs. [79, 112, 156, 179, 180]) was selected as ς = 0.05. How-
ever, in case of an external magnetic field impact, ς should be several 
times smaller (ς ≤ 0.01) so that the LLs be pronouncedly observed on the 
DOS curves. Therefore DOS curves in Ref. [212] were calculated for 
smoothing coefficient ς = 0.01.

5.2. Shifting of Landau Levels due to Tensile Deformation

Densities of electronic states in (defect-free) graphene simultaneously 
subjected to the perpendicular magnetic field B and uniaxial tensile 
strain ε are presented in Fig. 45, where B (ε) is fixed (varied) in the 
figure left (a) and varied (fixed) in the figure right (b). To detect the 
uniaxial strain effect, Fig. 45, a contains calculated DOS curves in a wide 
range of relative uniaxial tension ε ∈ [10%, 27.5%] along both arm-
chair- and zigzag-edge directions in comparison with DOS for unstrained 
graphene (ε = 0) under the same magnetic field B = 50 T. As seen from 
Fig. 45, a, the energy spectrum remains sensitive to the direction of the 

Fig. 45. Mutual action of mechanical and magnetic fields on the DOS of graphene, 
where a — the fixed magnetic field B = 50 T with different armchair or zigzag ten-
sile strains (0 ≤ ε ≤ 27.5%), b — the fixed zigzag strain ε = 27.5% with different 
values of magnetic field (0 ≤ B ≤ 200 T) [212]
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stretching as it was revealed in the absence of an external magnetic 
field [86–88, 96, 97, 100, 104]. The strain along armchair direction 
causes enhancement in the density of states, while zigzag-type strain 
results to decrease in DOS. If zigzag strain reaches threshold values of 
ε > 20%, the band gap opens and remains more pronounced and even 
wider than it was revealed in Ref. [104] in the absence of magnetic field 
B. Importantly to stress that this effect (of the band-gap intensifica-
tion) manifests itself as stronger as the value of B is higher: Fig. 45, b.

In Figure 45, a, one can see the displacement of all (except n = 0 LL) 
LLs with respect to their positions for the unstrained graphene under 
the same magnetic field. Independently on direction of the uniaxial ten-
sion, the LLs get shifting towards the Dirac point and thus the distance 
between them decreases. Such a contraction of the LLs was also revealed 
(within the framework of a geometrical approach) in [201] for uniaxial 
strains in the smaller range of ε ≤ 20%, where authors explain the LLs 
spacing reduction by the strain-affected Fermi velocity υF ≈ 106 m/s, 
which is isotropic for the pristine (unstrained) graphene, while becomes 
anisotropic for the strained one. Such a statement agrees with numerical 
findings in [188], where the anisotropy of electron mobility and trans-
port was detected in the uniaxially strained doped graphene. Stain-in-
duced contraction of the LLs spectrum indicates decrease of the quan-
tized electron energy En. This can be understandable from the following 
considerations [201]. The uniaxial tension affects a mean radius of the 
circular electron motion in magnetic field, making the radius and there-
fore period larger and hence cyclotron frequency ωc smaller, which results 
to decrease of the cyclotron orbit energies En ∝ ωc according to Eq. 60. 
From this point of view, in case of compression of graphene, the displace-
ment of the energy levels (LLs) positions away from the zero (n = 0) LL, 
i.e., increase in the distance between them, is expected [201].

5.3. Smearing and Suppression of Energy Levels  
by the Point and Line Defects

In case of the δ-like (51) and Gaussian-shaped (53) scattering potentials, 
their total distributions in Fig. 46, a, b actually visualize distributions 
of randomly positioned impurities (scattering centres), while their posi-
tions are expectedly smeared for both the alternating-sign (V ≷ 0) and 
the constant-sign (V > 0) long-range (Coulomb) potentials (54) as  
shown in Fig. 47, a, b. Our numerical calculations reproduce the LLs 
positions for pure graphene: see solid curves in Figs. 46, c and 47, d. 
Such curves can be also obtained from Eq. (60) appropriable for defect-
free graphene.

The presence of different sources (kinds) of disorders affects the 
LLs profiles: Figs. 46, c, d and 47, c, d indicate that increase in degree 
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of disorder reduces the LLs peak amplitudes, makes peaks broader and 
thereby smears them. However, besides the obvious concentration de-
pendence, such an effect depends on the amplitude (maximal potential 
height) of the scattering potential and especially on its effective range, 
i.e., whether impurities manifest themselves as short- or long-range 
scatterers. Effects of the smearing and suppressing are stronger for the 
Gaussian scattering potential (with effective potential radius ξ = 5a0) as 
compared with the on-site δ-like potential, and much more stronger for 
the Coulomb potential, which is much more long-range (∝ 1/r). Since 
the Coulomb potential (54) is the most long-range among those (51)–(56) 
we consider here, the DOS curves in Fig. 47, d are much more shifted 
from the neutrality (Dirac) point to the positive-energy (electron) side 
as compared with DOS in Fig. 46, d: cf. curves in these figures for the 
same (0.1%) concentration of positively charged Gaussian and Coulomb 
impurities. Such a shifting, however, to the negative-energy (hole) side, 
would appear for the negatively charged Coulomb impurities. That is 

Fig. 46. (a, b) Scattering potential distributions (for representative impurity con-
tent of 0.1%) and (c, d) and DOS for different concentrations of the (a, c) strongly 
short-range (51) and (b, d) the Gaussian (53) scatterers in graphene under perpen-
dicular magnetic field B = 50 T [212]
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why, for better visualization of the curves, the Coulomb-impurity con-
centrations in Fig. 47, c, d are chosen to be smaller as compared to those 
in Fig. 46, c, d. 

Though, in whole, the DOS curves in Fig. 46, c are comparatively 
lesser altered by defects, one can see the onset of the zero-energy LL 
splitting into two peaks at a certain concentration of the short-range 
impurities. Such a splitting was also numerically revealed for resonant 
(hydrogen) impurities [149], epoxy (O) defects [206], and some other 
model sources of disorder [214, 215]. The peak at the Dirac point is at-
tributed to original n = 0-th LL, whereas another peak indicates forma-
tion of the impurity band: resonant impurities hybridize with C atoms 
and form their own midgap states [149]. The latter peak is shifted from 
the E = 0 point due to the positive on-site energy in Eq. (51). Similar 
peak is also attributable in case of vacancies with the difference that is 
not shifted but located at a neutrality point thereby contributes to the 

Fig. 47. (a, b) Scattering-potential distributions and (c, d) density of states for (a, 
c) alternating (V ≷ 0) or (b, d) strictly positive (V > 0) Coulomb potential (54) simu-
lating point impurities (scatterers) in graphene under perpendicular magnetic field 
B = 50 T [212]. Scattering potential patterns (a, b) are represented for 0.1% (a) and 
0.01% (b) of impurities
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n = 0 LL such that the latter is robust with respect to the increasing of 
the vacancy concentration [149].

Among currently known results on the impact of different kinds of 
disorder on the LLs in graphene, until recently, there was no one dealing 
with the extended defects. Thus, the findings in Fig. 48 [212] could not be 
compared with any other ones (neither theoretical nor experimental results) 
due to their absence (at least until that time) in the physical literature. 

Lorentzian function (56) is a long-range by definition; however, its 
effective range (∝ 1/r2) is shorter as compared to that (∝ 1/r) for the 
Coulomb potential (11). Spatial distribution of alternation (positive–
negative, V ≷ 0) or constant-sign (strictly positive, V > 0) scattering 
potential (56) actually reflects positions of the line defects, which are 
charged either positively and negatively (Fig. 48, a) or positively only 
(Fig. 48, b). As well as the point-like defects, the line ones do not change 
positions of LLs but also smear and suppress them independently on 
sign of the scattering potential (56) as Fig. 48, c, d clearly indicates. 

Fig. 48. The same as in the previous figure, but for the scattering potential (56) 
simulating the charged extended (linear-acting) defects (scatterers) [212]. The repre-
sentative number of lines for both scattering potential maps (a, b) is 50
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The distinction between the point and line defects concerns only the 
positively charged Coulomb impurities and line defects: in case of the 
one-dimensional scatterers, there no such a shifting of the Fermi level 
and reduced zero-energy LL as for the Coulomb impurities; cf. Fig. 47, 
d with Fig. 48, d.

In conclusion of this section note that a renewed theory of the elec-
tron gas in a magnetic field was relatively recently suggested in Ref. 
[216], where the author insistently believes that the LLs spectrum (as a 
result of mathematical mistake) contradicts to the mathematical theo-
rems on the eigenvalues of the Schrödinger equation with a zero bound-
ary condition.

6. Summary and conclusions

I. As follows from the reviewed literature and the authors’ research 
experience, the problem of computational studying the factors affecting 
the electronic properties of 2D materials turns into a number of tasks 
have to be solved to achieve the assigned goals. Adequate atomic models 
are required, within the framework of which the scenarios of a compu-
tational experiment have to be developed for providing the relevant 
data array to determine the functional effects. The method of electron 
density functional and pseudo-potential from the first principles act as 
a powerful tool in this respect, as indicate both the independent litera-
ture data and own findings of the authors. The analysis of the exhibited 
(in sections 2 and 3) results made it possible to conclude the following.

• The combination of non-functionalized and functionalized areas 
of graphene according to a pre-planned pattern in one structure gives 
controlled changes in electronic properties.

• There is a redistribution of electric charge in the plane of the 
combined C/CH and C/CF graphene-like structures as well as in the 
black phosphorene monolayer functionalized with carbamide molecules 
with the formation of regions of different sign. 

• The fluorination process as a functionalization effect causes re-
distribution of electric charge between certain sections of the combined 
C/CFH structures with different concentrations of fluorine atoms. 

• The impact of static pressure on the combined C/CH structure 
leads to the rearrangement of the electron density in the direction of the 
covalent C–H bonds, which causes a change of the electron band gap 
width. The bending deformation as a functionalization effect leads to an 
increase of the charge difference in the combined bent C/CH, C/CF, C/
CCl structures and to an increase in the width of the band gap as com-
pared to the undeformed ones.

• The band gap of the black phosphorene monolayer depends non-
monotonically on the adsorption distance of carbamide molecules, which 
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affects its conductivity that can be tuned through controlling the lo-
calization of adsorbed molecules.

II. Among a series of numerical methods reported in the literature 
on the studying the electronic and transport properties of single- and 
multi-layer graphene the time-dependent real-space Kubo–Greenwood 
formalism is reasonably efficient whereas effortful for the implementa-
tion. Such a numerical experiment has a linear dependence of computa-
tional capabilities on the size of a system, therefore has an advantage 
over some other methods on investigation of realistically large graphene 
sheets containing millions of atoms. The uniform elastic tensile and 
shear deformations as well as perpendicular magnetic field are intro-
duced by means of the corresponding modifications of hopping terms in 
the Hamiltonian matrix due to the strain-induced changes in the bond 
lengths and presence of an external vector potential generating the 
magnetic field. Different point and line defects are included via various 
on-site scattering potentials appropriate for modelling (un)charged im-
purity (ad)atoms and extended defects in epitaxial or polycrystalline 
graphene. Summarizing results interpreted (in sections 4 and 5) within 
the framework of such a developed methodology, we can conclude as 
bellow. 

• Density of electronic states in the defect-free graphene is sen-
sitive to the strain axis: the stretching along armchair- or zigzag-ed - 
ge directions result to enhancement or reduction of density of states, 
respectively, which can be used to affect the competing phenomena  
associated with a tensile strain and its direction specifically. The band 
gap opening depends on direction of tensile strain. The presence of  
randomly distributed point defects does not avoid the minimum thres-
hold zigzag deformations needed for the band-gap formation. Increase 
in point-defect concentrations acts against the band-gap opening for  
all defects considered herein, but their impact is different. However, 
spatially ordered impurities contribute to the band gap manifesta - 
tion and can reopen the gap that is normally suppressed by the ran-
domly positioned dopants. Band gap varies non-monotonically with 
strain when zigzag deformation and impurity ordering act simulta-
neously.

• For random adatomic distribution on hollow (H), bridge (B), or 
top (T) sites, the conductivity σ depends on their type; if adatoms are 
correlated, σ is dependent on whether they act as interstitial or substi-
tutional atoms; and finally if adatoms form ordered superlattices with 
equal periods, σ is practically independent on the adsorption type: 

rnd rnd rnd
H B Tσ > σ > σ , cor cor cor

H B Tσ ≈ σ > σ , and ord ord ord
H B Tσ ≈ σ ≈ σ , respectively. 

The conductivity for correlated and ordered adatoms is found to be en-
hanced in dozens of times as compared to the cases of their random 
positions. Effect of correlation or ordering becomes more apparent for 
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adsorbed atoms, which act as substitutional atoms, and weaker for those 
act as interstitial atoms.

• The calculation of a large set of electronic densities of states (con-
sisting of assemblage of hundreds of DOS curves) enabled to extract 
information on the bulk spectral gap (if any) and to construct the strain-
dependent band-gap maps in a wide range of the deformation tensor 
parameters (up to 26%, i.e. close to the predicted graphene failure limit). 
Among the obtained results, there are those agree with other theoretical 
ones for the fixed values of the tensor parameters. However, major part 
of the calculated results is obtained for the first time, and therefore 
even cannot be compared with other ones due to their unavailability in 
the literature. Constructed band-gap maps, covering all possible ranges 
of the most efficient types of deformations, act as a road map for the 
strain-induced band gap in graphene, thereby make this work stand out 
and novel.

• The emergence of a band-gap depends not only on the stress type 
and rate, but also on the direction of the applied strain. A directional 
sensitivity is found to be characteristic for both tensile and shear strains 
as well as for their combination. Besides directional sensitivity, another 
fingerprint of the strains examined here is its criticality: the gap open-
ing requires a threshold deformation independently of its type (stret-
ching or shearing). Shear deformation along both armchair and zigzag 
directions, which we referred as a mixed shear strain, can induce a band 
gap of up to ≈4 eV. Combinations of the uniaxial strain along a pre-
ferred (armchair) direction with mixed shear deformation is found to be 
the most effective for obtaining extra-large gap values: up to ≈6 eV. 
Both values for strained graphene exceed those of silicon — the most 
used semi-conductor for devices and integrated circuits.

• The presence of defects can ‘transform’ the transport (band) gap 
into the quasi-gap. Strong sensitivity of the strain effects to the direc-
tion and ratio of the deformation requires both the strict values and 
direction of the shear or tensile strain to be kept in an experiment in 
order to observe the predicted band gap opening. Revised and analysed 
findings suggest a promising strategy of the combined effect of strains 
and defects for tailoring electronic and transport properties of graphene 
and beyond 2D materials.

• If a perpendicular magnetic field is applied uniformly to graph-
ene layer, the non-equidistant Landau levels are observed in its energy 
spectrum. The energy Landau levels are not sensitive to the stretching 
direction: they undergo the displacement towards the non-shiftable  
zero-energy level. Therefore, the Landau levels get contraction as the 
uniaxial strain is applied for any of two considered here orthogonally 
related directions: along armchair and zigzag honeycomb-lattice edges. 
Concurrent impacts of the perpendicular magnetic field and zigzag 
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strain in graphene contribute to the band gap in its energy spectrum: 
the gap becomes more pronounced and even wider in comparison to that 
appears due to the zigzag deformation only when there is no any exter-
nal magnetic field. Both point and extended defects reduces peaks of the 
Landau levels, broadens, smears and can even suppress the levels de-
pending on a degree of disorders, their strength, and especially effec-
tive ranges. The splitting of a zero-energy Landau level for some sourc-
es of disorder in graphene is observable in the numerical findings for 
the strongly short-range-acting defects. One peak at a neutrality point 
is attributed to the original zero-energy Landau level, whereas another 
one indicates formation of the impurity band due to the hybridization 
of resonant impurities with carbon atoms.
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ФУНКцІоНАлІзАцІя КВАзидВоВимІРНиХ мАТеРІАлІВ:  
ХІмІчНе ТА СПРичиНеНе деФоРмАцІями модиФІКУВАННя

Серед сімейства наразі відомих перспективних квазидвовимірних (2D) матеріа-
лів автори огляду зосередæуються на питанні функціоналізації структур на гра-
феновій і фосфореновій основах. У більøості випадків модифікування їхніх 
влас тивостей відбувається через ковалентну або нековалентну функціоналізацію 
поверхонь і механічні впливи. Аналізуються атомарні структури та деякі фізико-
хімічні особливості 2D-матеріалів, які мають новітні властивості порівняно зі 
своїми об’ємними аналогами. Серед їхніх переваг основними є: товщина в один 
або кілька атомів, відсутність обірваних поверхневих зв’язків, висока рухливість 
носіїв заряду, гнучкість, здатність øтучного поєднання у компланарні (латераль-
ні) чи то ламелярні гетероструктури, а такоæ моæливість øирокого маніпулю-
вання забороненою зоною, змінюючи за потреби стан від напівпровідникового 
аæ до напівметалічного (чи навпаки). задля виявлення нових чинників впливу 
на електронні та транспортні властивості 2D-матеріалів øляхом обчислювально-
го експерименту з використанням авторського (власноруч створеного) програм-
ного коду було проведено низку дослідæень — розраховано просторові розподіли 
густини валентних електронів, густини електронних станів, øирини забороне-
них зон, Кулонові потенціали уздовæ обраних напрямків, значення зарядів у 
областях різного розміру матеріалу, діелектричні матриці, макроскопічні від-
носні проникності та спектри поглинання. оглядається серія нещодавніх дослід-
æень, які автори провели, моделюючи електронні та транспортні властивості 
одно- та багатоøарових графенових плівок, що містять різного типу (точкові та/
чи то лінійні) дефекти, під впливом деформаційних або/і магнітних полів. На 
підґрунті аналізу одерæаних результатів і виявлених ефектів ствердæується, що 
одновісні деформації розтягу чи то зсуву та їхні комбінації, а такоæ структурні 
недосконалості (головним чином, взаємно конфіґуровані дефекти) моæуть бути 
корисними для досягнення нового рівня функціоналізації графенових матеріа-
лів, а саме, для модифікування їхніх електротранспортних властивостей реґулю-
ванням øирини забороненої зони в такому інтервалі, щоб умоæливити перетво-
рення графенового напівметалічного стану з нульовою забороненою зоною у 
графеновий напівпровідниковий стан і навіть сягнути значень енергетичної щі-
лини, які б істотно перевищували її значення для деяких матеріалів (включаючи 
силіцій), що наразі øироко використовуються у наноелектронних пристроях. 
Спричинені деформаціями та дефектами електронно-діркова асиметрія й анізо-
тропія провідності та її немонотонність як функції деформації вселяють певність 
у перспективі маніпулювання електротранспортними властивостями графенопо-
дібних та інøих квази-2D-матеріалів через різноманіття як деформацій, так і 
конфіґурацій різного типу дефектів. Використання оглянутих і проаналізованих 
результатів слугуватиме помітним кроком у поліпøенні властивостей розгляду-
ваних матеріалів задля реалізації багатофункціональних застосувань їх у най-
блиæчій перспективі.

Ключові слова: двовимірні матеріали, точкові та лінійні дефекти, графен, фосфо-
рен, електронна структура, електротранспортні властивості, теорія функціоналу 
густини, псевдопотенціал із перøих принципів, стрейнтроніка, заборонена зона.


