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FUNCTIONALIZATION

OF QUASI-TWO-DIMENSIONAL
MATERIALS: CHEMICAL

AND STRAIN-INDUCED MODIFICATIONS

Among the family of currently known promising quasi-two-dimensional (2D) mate-
rials, the authors of this survey concentrate on the problem of functionalization of
the graphene- and phosphorene-based structures. In most cases, the modification of
their properties occurs through the covalent or noncovalent surface functionaliza-
tion and mechanical affects. The atomic structures and some physicochemical fea-
tures of 2D materials possessing novel properties as compared to their bulk counter-
parts are analysed. Their main advantages are the thickness of one or more atoms,
the absence of surface-broken bonds, high mobility of charge carriers, the flexibil-
ity, the ability to be combined artificially into coplanar (lateral) or lamellar heter-
ostructures, as well as the possibility to manipulate widely the band-gap changing
from the semi-conducting state even into the semi-metallic one (or vice versa) when
needed. In order to reveal new factors affecting the electronic properties of 2D ma-
terials by means of the computational experiment using the author’s (self-construct-
ed) software code, a series of studies are carried out. They are the calculations of
the spatial distribution of valence electrons’ density, the electron densities of states,
the band-gap widths, Coulomb potentials along selected directions, the charge values
in regions of different-size material, the dielectric matrices, the macroscopic rela-
tive permittivities, and absorption spectra. A series of recent studies, which the
authors carried out modelling the electronic and transport properties of single- or
multilayer graphene films subjected to deformation or/and magnetic fields and con-
taining different-type (point- or/and linear-acting) defects is reviewed. Analysing
the obtained results and revealed effects, it is claimed that the uniaxial tensile defor-
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mations or shear deformations along with their combinations as well as the struc-
tural imperfections (mainly, the mutually configured defects) can be useful for
achieving the new level of functionalization of graphene. So, for modification of its
electrotransport properties through tuning the band-gap value as much as it is
enough to achieve the graphene transformation from the zero-band-gap semi-metal-
lic state into the semi-conducting state and even reach the gap values, which are
substantially higher than that for some materials (including silicon) currently used
widely in the nanoelectronic devices. The strain- and defect-induced electron—hole
asymmetry and anisotropy of conductivity and its nonmonotony as a function of
deformation suggest a confidence in manipulating the electrotransport properties of
graphene-like and beyond quasi-2D materials through a variety of both strains and
defects. The use of reviewed and analysed results serves as a significant step in
improving the properties of the considered materials in order to implement the mul-
tifunctional applications of them in the immediate prospect.

Keywords: two-dimensional materials, point and linear defects, graphene, phos-
phorene, electronic structure, electronic transport, density functional theory, pseu-
do-potential from the first principles, straintronics, band gap.

1. Infroduction

As known [1, 2], one of the classifications of (nano)materials relates to
the number of dimensions of a material, which are outside the nanoscale
(<100 nm) range.

For zero-dimensional (0D) nanomaterials, all the dimensions are
measured within the nanoscale, i.e., no dimension is larger than 100 nm.
Most commonly, this class consists of nanoparticles, quantum dots,
polymer dots, and fullerenes [3].

For one-dimensional (1D) nanomaterials, one dimension is outside
the nanoscale range. This class includes nanotubes, nanorods, and quan-
tum and nanowires [3].

For two-dimensional (2D) nanomaterials, two dimensions are out-
side the nanoscale range, and along one dimension, there are stacked
only a single-atom-thick or a few-atoms-thick layers. This class exhibits
quantum wells, graphenelike and other monolayer materials such as
MXenes, phosphorene, silicene, germanene, arsenene, hexagonal boron
nitride and others [3]. Besides, there are quasi-two-dimensional nano-
materials such as graphene films, nanosheets and other related sys-
tems.

Finally, three-dimensional (3D) (nano)materials (as well as (nano)
systems or (nano)structures) as a whole are not confined to the nano-
scale range in any dimension. Nevertheless, this class can contain: na-
nocrystalline materials; bulk nanopowders; nanoporous materials; dis-
persions (colloids) of nanoparticles; intercalation compounds; bundles of
nanowires and nanotubes as well as multinanolayers; nanoscale con-
tacts; (nano)composites (nanosystems embedded in a larger structure),
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e.g., diamond/nanocarbon composites; complex nanostructures, includ-
ing patterned or assembled structures, nanoaggregates, nanodroplets,
nanomicelles [3].

The object of research in this article are (quasi-)2D materials, which
in turn can be classified according to their composition or/and structure
as homo- and heteroelemental, single- and a-few-layers systems with
overall layer(s) thickness of just a few nanometres [4, 5]. The subject of
research focuses on the analysis of several factors appropriate for af-
fecting the electronic and electrotransport properties of some repre-
sentatives of family of the (quasi-)2D materials. Such materials have
been a central topic of research since graphene discovery at the begin-
ning of this century [6] due to their ultrathin thickness and tuneable
physicochemical properties; so, they are well suited to applications,
where the bulk materials would be unsuitable. As distinct from their
bulk counterparts, they have a specifically organized surface that allows
the structure of their energy bands to respond effectively and imme-
diately to external perturbations and alloying substances. Such a special
surface nature makes these materials competitive in application for de-
vices. It is currently known about emerging application of elemental 2D
materials in many fields such as (opto)electronics, sensing, spintronics,
plasmonics, photodetectors, ultrafast lasers, batteries, supercapacitors,
thermoelectrics, and biomedicine [7].

In the present article, we review relevant data available in the lite-
rature and compare them with our recent results [8—16] based on the
computational (numerical) experiments along with the own-constructed
software (program) codes. The paper is organized as follows. After the
Introduction (current section 1), section 2 reviews the formalism of
electron density functional and pseudo-potential from the first princip-
les, algorithm for calculation of the effective electrical charges, elec-
tronic spectrum, total energy, mechanical forces, and valuation reliabi-
lity verification of electronic characteristics. Section 3 includes results
and discussions on the modifying electronic characteristics by the local
chemical functionalization, particularly, the chemical adsorption on
graphene, doping of black phosphorene, effects of the bending strain,
static pressure and fluorination. Section 4 deals with the straintro-
nics and defect engineering for graphene and related systems. This
section contains methodological grounds for consideration of electro-
nic diffusivity and conductivity, modelling approach for consideration
of deformations and structural defects, and effects of some types of
strains and point defects on the electron states and electronic transport.
The case of graphene with point and linear defects inside the external
magnetic field is considered in section 5. Finally, section 6 summa-
rizes the conclusions, which follow from the findings in the previous
sections.
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2. Properties of the Ground State from the Electron Density

2.1. Formalism of Electron Density Functional
and Pseudo-Potential from the First Principles

The density functional theory (DFT) is part of a group of methods from
the first principles, otherwise ab initio, which allow, based on the char-
acteristics of the crystal structure, to calculate the physical and chemi-
cal properties of objects without the use of empirical data.

At the initial stage of the analysis of the crystal structure, the
Born—Oppenheimer approximation is used. Based on the ratio of the
masses of nuclei and electrons, it is believed that nuclei remain station-
ary and electrons move in some stationary effective potential created by
stationary nuclei and other electrons.

Next, the interactions, which will be accountable in the calcula-
tions, are selected as follow. In most cases, the consideration is within
the nonrelativistic quantum mechanics, and relativistic effects related
to the motion of the electron, such as the dependence of the mass of the
electron on its velocity, spin—orbit and spin—spin interactions, are taken
into account as corrections. The type of Hamiltonian and the number of
electrons contain all the necessary information about the system.

The initial problem is to solve the Schrodinger equation for a many-
electron system, but the exact solution of this equation is possible only
for some model many-electron systems, such as Fermi particles with
short-range interaction and interacting spin chains. Therefore, a number
of additional approximating methods are used.

Thus, according to the Hartree—Fock theory, the Schrodinger equa-
tion for the system is as follows [17]:

Ay’ = By, (1)

where E is the total energy of the system; H is the complete Hamilto-
nian containing the kinetic energy of electrons and nuclei of the system,
electron—electron, nuclear—nuclear and electron—nuclear interactions;
y' is the wave function of the system, which depends on the spin and
spatial coordinates of all nuclei and electrons. For the possibility of fur-
ther calculations, it is necessary to use the Born—Oppenheimer approxi-
mation. Since the mass of the nucleus is much larger than the mass of
the electrons, the motion of the electrons is considered independent, and
the full wave function of the system is

v'(g,Q) = (@) v (g, Q), (2)

where %(Q) is the wave function of the nuclei subsystem, y(g, @) is the
wave function of the electrons’ subsystem, which is the solution of the
Schrodinger equation for electrons at the fixed positions of the nuclei:

Hy(¢,Q) = E@) v (g, Q). (3)
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The Hamiltonian of the electrons’ subsystem is derived from the
complete Hamiltonian, from which the term associated with the kinetic
energy of nuclei is subtracted. The energy of the electrons’ subsystem
will depend on the selected configuration of the cores.

The next step is to specify the form of the wave function of the
electrons’ subsystem in the one-electron Hartree approximation, where
each electron moves independently of the other electrons in some effec-
tive potential field generated by nuclei and other electrons. Thus, the
wave function of the electrons’ subsystem can be represented as the
product of one-electron functions (orbitals):

v=C[ v, @

However, there are a number of shortcomings in the Hartree appro-
ximation. Thus, the many-electron wave function does not satisfy Pauli’s
principle: electrons move as uncorrelated completely, i.e., are indepen-
dent. These shortcomings are partially eliminated within the Hartree—
Fock approximation. In particular, the many-electron wave function is
presented as a Slater determinant, i.e., it becomes antisymmetric with
respect to the exchange of any pair of the electrons, which satisfies the
Pauli principle,

vi@e@®)  vi@BE®) o v, W) v, (OBQ)
v=c \|11(2?OL(2) W, (2?[3(2) W (2?0((2) v, (2)[3(2) (5)

W)V WBE) v, (V) v, (BE

Here, N is the number of electrons, and n = N/2 is the number of orbit-
als. For orthonormal one-electron wave functions, the normalizing fac-
tor C = 1/ JN1. In the general case, the wave function contains a linear
combination of Slater determinants corresponding to different variants
of orbital filling, i.e., electrons’ configurations. For closed shells, the
orbitals y(r) are the solution of the Hartree—Fock equation:

Swi(r) = & y(r). (6)

This equation is nonlinear with respect to the one-electron wave
function that significantly complicates the solution. An alternative ap-
proach is needed. This approach is the electron DFT. The main advan-
tage of this method is that the correlation effects can be taken into ac-
count immediately; it can significantly reduce the calculation time. The
DFT is based on the two Hohenberg—Kohn theorems.

According to the 1%t theorem, in the ground state, the density of the
subsystem of interacting electrons, which are in some external poten-
tial, determines this potential to the nearest some additive constant.
Meaning of this theorem is that all the properties of the subsystem of
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electrons are uniquely determined by their density:
2
p) =D v, ()

where the summation occurs according to the occupied states. Only the
existence of such a reciprocal correspondence is noted, but there are no
indications as to its form.

The second theorem states that all observed physical quantities
could be represented in the form of an electron density functional, in-
cluding the energy of the system, which has a minimum in the ground
state of the system. In essence, this statement is a variational principle
formulated in quantum mechanical terms [18].

We give the total energy of the system in the form of an electron
density functional. The Hamiltonian of a system consisting of N electrons

and n ions within the Born Oppenheimer approximation has the form
N

) ®

i1 T 11k17},

Shov.m. 9)
ko Tik
Here, V_(r) is an external potential characterizing the interaction of
electrons and nuclei; r; = [r, — r;|, where r, is a radius-vector of the i-th
electron; and A, is the Laplace operator, which differentiates by the co-
ordinates of the i-th electron.

Expression (8) is written in the atomic system of units, in which
h=1,e= 1, m,= 1, 1/(4ne,) = 1, where 7/ is the reduced Planck cons-
tant (i.e., Dirac constant); e is an electron charge; m, is an electron mass;
g, is a dielectric constant of the vacuum.

By acting H on p(r) and choosing as a complete set of observed ope-
rators, the Hamiltonian and the momentum operator, we have

El[p(r)] = TIp(®)]1+ U, [p(0)] + [ p(x)V, (r)dr , (10)

where T[p(r)] is kinetic energy functional of electrons, U, [p(r)]is elect-
ron interaction energy functional, [ p(r)V,_ (r)dr =V__.[p(r)] is functio-
nal energy of interaction of electrons and nuclei.

In this form, it is easy to see that all the properties of the system
are determined solely by the electron density.

The electron interaction energy functional U, [p(r)] is divided into
the Hartree energy functional E,[p(r)] and the exchange—correlation
functional E, [p(r)], which takes into account multiparticle effects:

Uldp (@)1= Eylp(r)] + Exc[p(r)], (11)

C1p@pl) o
Eylp()] = j j o drdr'.
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Thus, expression (10) has the form
Elpm] = Tlp)] + 5 [[ X2 drar + [p(u)V,, (r)dr + By [o)] . (12)
r — 1’|

By varying this functional taking into account the normalization condi-
tion [ p(r)dr = N, we obtain the Kohn—Sham equation [19, 20]:

(—% + I/;ff(r)] vi(r) = &y, (r), (13)

where

p(r)
Ve = [ o
is some self-consistent effective potential, w,(r) is a single-particle wave
functions, which describe the motion of electrons in the potential V.
One of the main problems of the theory of electron density func-
tional is the lack of an analytical expression of general form for the
exchange—correlation functional (except for systems without interac-
tion). There are various approximations in this regard [21].
Within the approximation of the local density, the exchange—corre-
lation functional is given by the expression

Eyclp()] = [elp(r)]p(r) dr (14)

where ¢(p) is the exchange—correlation energy of a homogeneous elect-
ron gas with density p. Thus, the value of the exchange—correlation
energy at a given point is determined exclusively by the value of the
electron density at the same point.

After determining the explicit type of exchange—correlation func-
tional, it is necessary to choose the basis set in the space of electron
states by presenting the required electron wave functions in the form of
a linear combination of basis functions with some functional coeffi-
cients. As basis, you can choose, e.g., plane waves, linearized plane
waves, attached plane waves, orthogonalized plane waves and others. It
is known that the number of basis functions of the Hamiltonian affects
directly the time of calculation of eigenvalues; namely, this time is pro-
portional to the cube of the number of basis functions. This can be
achieved by choosing the basis functions as close as possible to the
eigenwave functions of the electrons in the structure under study. The
basis for decomposition can be selected as a set of plane waves. Howev-
er, the use of such a basis without any modifications is not effective,
because it is necessary to use the number of plane waves of the order
of 10°-1068.

The idea of the pseudo-potential construction is to ‘smooth’ the
wave functions of electrons near the atomic nucleus. In this case, only
valence electrons are considered, because the vast majority of physical
properties of systems are determined by the behaviour of valence elec-

dr' + V. [p(0)] + Vi (r)
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trons. Since the wave functions of the core electrons do not change with
the change of the atom environment, i.e., remain the same as in the free
atom, these electrons can be ignored, and it is considered that their in-
fluence is limited by changing the effective ion charge. Therefore, the
interaction potential of electrons and ions is replaced by a weaker poten-
tial, which is the primary ion potential at distances greater than some
r,, and at smaller distances, it is replaced by a smoother one [22]. This
causes a significant reduction in the number of basis functions that
simplifies greatly the solution at distances less than r,. Let V(r) is some
self-consistent effective potential. The Schriédinger equation, which
must be satisfied with the wave functions of valence electrons, has the

form A
—E\v” + V() =g y'(r). (15)

A similar equation must be satisfied with the wave functions of the
core electrons:

—%df PV = 605 () . (16)

As basis functions, it is proposed to use the orthogonalized plane
waves as the waves, which are previously orthogonal to the core wave
functions. The equation for the orthogonalized plane waves has the form

177V (k — K) = (1 - P)le=r), 17
where P = ch|¢;>(¢;| is a projection operator that projects any func-

tions on core states, ¢ = ¢°(r — R) is a core wave function with centre at
the point R, and K is a reciprocal lattice vector.
Then, the set for orthogonalized plane waves of type (17) has the form

W, (1) = D ag(R)(1 — P)leit<®r); (18)

moreover, 2.a|exp(i(k — K)-r)) = ¢5(r). The pseudo-wave function ¢”S is
smooth both in the vicinity of the core and outside (whereP = 0); more-
over, outside this vicinity, it is exactly equal to the true wave function
y,(r) that is the main advantage of the pseudo-potential construction.

Using formula (18), the Schrodinger equation for valence electrons
is as follows:

—%(pps +V(r)e™ - (—% + V(r)] PoPS + P PS = v pPS. (19)
Let us write Eq. (19) in a form
A
—5 07+ W™ =™, (20)
where A
W(r)=V(r)- (—E + V(r)j P teP
is the pseudo-potential proper.
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Note, since the wave functions of both valence electrons and core
ones satisfy the Schrodinger equations of type (15) and (16), respec-
tively, then, acting on the design operator P at Eq. (15), we obtain:

A R
(—E + V(r)j P = efpi)ogl- (21)
Therefore, pseudo-potential can be written in another form:
W(r) = V(r) + D (e - €)pp )0l (22)
c,R

It should be noted that no new approximations were used in deriv-
ing Eq. (22). Therefore, the eigenvalues of energy for Eqgs. (15) and (20)
coincide. In addition, the pseudo-potential is nonlocal, as it depends not
only on coordinates but also on energy, while the potential V(r) is local.
Of course, this causes a significant complication of calculations, but the
advantages of using pseudo-potential easily outweigh the estimated
costs associated with nonlocality. Also, note that the pseudo-potential
W(r) is relatively weak in comparison with V(r), as V(r) is responsible
for self-consistent effective-‘attraction’ of electrons in the system and
is negative, while the second term of equation (22) is extremely posi-
tive. Thus, Bachelet, Hamann, and Schliter proposed an analytical pseudo-
potential suitable for the above conditions from the first principles used
by us [23, 24].

2.2, Algorithm for the Calculation
of the Effective Electric Charges in the Polyatomic System

The calculation of the integral characteristics of the electron density
distribution in polyatomic systems, namely, the effective charges on
atoms, is widely used in many fields of physics and chemistry. However,
the exact definition of this quantity encounters a problem: how to di-
vide the electron density in the space between nuclei between atoms. For
methods, which use the muffin-tin (MT) approximation, this distribu-
tion occurs in the usual way, but the result depends on the choice of MT
spheres and is not an objective characteristic of the object. An alterna-
tive procedure is the well-known Mulliken population analysis [25].
The probability of electron-density distribution in a molecule is de-
termined by the function p(r); in addition, the normalization requires
that [p(r)dr = n; here, n is the total number of electrons [26]. For the
one-determinant wave function, in which molecular orbitals are repre-
sented as a linear combination of N basis functions {¢,}, the probability
function is

pr) =D > P.9,0, (23)

with the density matrix elements P, . According to Mulliken, population
analysis can be performed by integrating Eq. (23); then,
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j p(r)dr = iipwsw =n, (24)

where S is a matrix of the overlapping integrals on the basis functions,
which are normalizing, i.e., S, = 1. Diagonal terms P, characterize the
full population of the orbital ¢ . The sum @, of non-diagonal compo-
nents in expression (24), P, S, and P S, , equal in magnitude, is called

nv py VI v
the overlap population density,
Q, =2P,S, (u#V). (25)

Note that the overlap population is associated with two basic func-
tions ¢, and ¢, which can be on the same atom and on the two different
atoms. Then, the full electronic charge can be given as the sum of two
parts, one of which is related to disparate basis functions and the other
is related to a pair of basis functions:

N N N
Z});lu+ZZQuu:n‘ (26)

Such a presentation of the electron distribution is not always con-
venient. Sometimes, it is desirable to divide the full electronic charge
into contributions, which relate to individual basis functions. In this
case, the overlap population @, is divided equally between the functions
¢, and ¢, (this division scheme is arbitrary and not unique) and is added
to each P P . Then, we can consider the population of the atomic or-
bital ¢, :
gy = B+ 2 RS

v py

(27)
V#L
Therefore, the total electron density on the A atom has the form
A
= Z[PW + ZPWSW] 29)
0 VEL
with summation for all functions ¢, on the atom A [27].
Consequently, the total electronic charge on atom A is determined
by the difference Z, — ¢,, namely,
9, =Z, - [ p(r)dr, (29)
Va
where Z, is the number of the element A in the periodic table, V, is the
spherical volume of the A atom.

2.3. Momentum Space Formalism for the Calculation
of the Electronic Spectrum, Total Energy, and Mechanical Forces

For non-periodic systems, such as an imperfect crystal, thin film or
cluster, the problem of lack of periodicity is bypassed by the superlat-
tice method [28-30], which creates a supercell that is transmitted in
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space. In the modelling of non-periodic systems, such as thin film or
clusters, the isolation of the transmitted objects from each other is pro-
vided by a vacuum gap between them [29].

The general periodicity of the crystal (or artificial) lattice creates a
periodic potential and, thus, imposes the same periodicity on the elec-
tron density (Bloch’s theorem). The Kohn—Sham potential of the perio-
dic system manifests the same periodicity as the lattice, and the Kohn—
Sham orbitals can be written based on Bloch’s theorem:

y(r) = \Vi(r’ k) = exp(ik-r) ui(r’ k), (30)

where k is the vector within the first Brillouin zone (BZ). The index i
runs through all the possible electron states. The function u/(r,k) has
the periodicity of the spatial lattice and can be expanded in a series by
plane waves. This justifies the use of plane waves as the general basis
we have chosen to decompose the periodic part of the orbitals. Since
plane waves form a complete and orthonormal set of functions, their use
for the expansion of single-particle orbitals has the form

\yj(k,r):;ij(k+G)exp(i(k+G)-r), (31)

N

where G is a reciprocal lattice vector, Q is the volume of unit cell that
fill a crystal (or artificial superlattice in the case of non-periodic objects).
After the Fourier transform, Eq. (13) is in the reciprocal space as

2
szh_(k +G)* - sj}am, +Ves(k+ G,k + G')}bj(k +G)=0. (32)
S m
Here, the Fourier representation of the Kohn—Sham potential is
Vis(B+ G,k +G)=V,k + Gk + G)+V, (G - G) + V(G - G), (33)
moreover, the exchange—correlation potential is [24]

T dee

V =& — N 34
o = e =g g (34)

where &y, = &4 + .. As known, for unpolarised electron gas [24],

.4582
ey = - 0.458 ’ (35)
T
B 0.1432 . > 1),

g =1 1+1.0529\/r, +0.3334r, (36)

~0.0480 + 0.03111Inr, — 0.0116r, +0.00207, Inr, (r, < 1);

here, r, (in a.u.) is the radius of the Wigner—Seitz sphere per electron
determined by formula p* = 4nr?3/3.
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Using the Poisson’s equation, the Fourier transform of Hartree po-
tential can be obtained:

4ne’p(G)

Vi (G) = |G|2

(37)

In the general case, the expressions describing the potentials of
interactions are complex. The use of atomic bases, which contain the
inversion operation in their group of point symmetry, leads to the
fact that the Fourier components in the expansions of all expressions
are real.

The main value in the DFT formalism is the density of the elec-
tronic charge. It is estimated on the basis of a self-consistent solution
of Eq. (32), which must be performed at the all points of the irreducible
part of the first BZ:

p(G) = iZZZij(kJrG'Jr aG)b, (k + G), (38)
N T k j ael G

where index j runs through all occupied states, k belongs to the first

BZ, N, is a number of operations a in the point group T of the atomic

basis, and factor ‘2’ takes into account the spin degeneracy.

The calculated efforts can be reduced by using the special mean-
value point method. There are different approaches to choosing these
points. Thus, it is possible to use uniform or nonuniform grids of points,
it is possible to replace the summation by a finite number of special
points up to one point in the BZ with acceptable accuracy [31-323334].
It is possible to be limited only to the I'-point within the first BZ, espe-
cially, for artificial periodic systems with a large supercell. The latter
can be illustrated by the following. It is known that the volume of a
Wigner—Seitz cell in reciprocal space (the volume of the first BZ) and
the volume of a Wigner—Seitz cell in the crystal-lattice space are related
by the formula

Q,, = @n)°/Q,, . (39)

If the volume of the Wigner—Seitz cell for the crystal is large, that
often occurs when using the superlattice method, the volume of the BZ
is small, that is, it is contracted to a point [29, 30].

The distribution of electrons by energy is obtained by numerical
calculation of the derivative lim,, ., AN/AE, where AN is the number of

allowed states per energy interval AE from the one-particle energy spec-

trum obtained during diagonalization of the Kohn—Sham matrix for

Egs. (32). According to the DFT methodology, the number of occupied

states (at T = 0 K) was determined by half the number of electrons in

the atomic basis (due to the disregard of electron-spin polarization).
The total energy per unit cell is [28]
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G=0,s

where k € 1 BZ, G is the reciprocal lattice vector, y,(k + G) is the wave
function, i denotes the occupied states for a given k, p(G) is the coeffi-
cient of the valence electron density in Fourier expansion, s numbers
the atoms in the unit cell, S(G) is a structural factor, V'’ is local (I-in-
dependent) spherically-symmetric pseudo-potential, / denotes a quantum
orbital number, AVLJZL is nonlocal (I-dependent) addition to V%, Z_is the
ion charge, vy, .4 is the Madelung energy of point ions in a homogeneous
negative background.

The force acting on the atom s is a negative derivative of E, , with
respect to the atomic basis vector t,. Expressions containing an implicit
derivative of the wave function are zero by the Hellman—Feynman theo-
rem. Therefore, the calculation of forces is performed by the formula [28]

F'=F,+ F;, (41)

where the first and second terms at the right correspond to electron and
ion interactions’ components, respectively,

F' =iQ. > p(G)Ge ““V(G) -
G

. e (42)
- Y n(k, + Gy, (k, + GG - Ge "V (K, + Gk, + G,
i,G,G',l
4r G . |G
F'=2Z > Z,— —sin(G-(t, -t ))e - +
‘ SZ; T Q, G¢O[|G|2 CHURAR) xp[ 4n’
(43)

xerfc (nlx])  2nx ,
2 . - .
+2Z,) 7, z‘{ 7 + N exp( x| )

Here, x =1+ 1,— 1, Q, is the volume of the cell per atom, 1, is the basis
vector of the atom s in the cell, Z, is the charge of the core, 1 is the lat-
tice vector; the Ewald summation over 1 excludes the term, in which, for
s = §', the vector 1 = 0; n is the parameter of convergence of the sum,
e.g., in the complementary error function (erfc).
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2.4. Valuation Reliability Verification of Electronic Characteristics:
Calculation of Electric Charges within the Atom Vicinity

The accuracy of computer calculations is determined by the chosen
methods and approximations used in the computational techniques. In
the software package used by authors, formalisms from the first princip-
les (DFT, Hellman—Feynman theorem, pseudo-potential construction from
the first principles, Fourier transform for the periodical systems, BZ
sampling with integration, exchange—correlation potential, etc.) are used,
which do not leave error in estimates provided, i.e., they are used correctly.

Algorithmic calculation errors inevitably arise and are associated
with numerical integration, differentiation, limitation of infinite sums
in calculations of exchange—correlation potentials, integration by a fi-
nite number of points in the Brillouin zone, limitation of self-satisfied
iterations, Fourier-transform calculations, etc. For example, the inte-
gration within the Brillouin zone was replaced by the calculation at one
mean-value point of the Brillouin zone, namely, the I'-point, which is
described in paragraph 2.3. Iterations of self-matching are terminated,
if the results of the current and previous iterations calculated coincide
with the pre-selected accuracy; their number is varied depending on the
calculated object, but usually our results coincide after 4-5 iterations.
The number of plane waves in the wave function packet is truncated by
trial calculations and evaluation of the physicality of the results ob-
tained from general ideas about the modelled nanostructure or in com-
parison with the results obtained by other authors; the number of plane
waves is chosen to be about 20—25 waves per atom in the basis. Incre-
asing the number of terms in the Fourier expansion of the wave func-
tion, electron density, etc., self-matching iterations, and the number
of special mean-value points in the Brillouin zone rapidly increases
the computer time. Therefore, the calculation parameters are chosen
optimal.

The results of control calculations of effective electric charges in
the vicinity of H, C, P, O, F, and Cl atoms used in the investigation are
shown in Fig. 1 and Table 1. The calculations are performed according

Table 1. Atomic radii values used in the reviewed and analysed study

Atom Number Calculated Van der Waals

of valence electrons radius R, A radius Ry, A
H 1 1.29 1.2
C 4 1.75 1.7
P 5 1.85 1.9
(0] 6 1.85 1.4
F 7 1.96 1.4
Cl 7 1.96 1.8
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Fig. 1. Cross-section of valence electron den-

H C
sity for H, C, P, O, F, and Cl atoms in the
[110] and [100] planes (from left to right)
P (¢
to the algorithms described above in . . ‘ .
the previous two subsections.

Since the calculation algorithm al

assumes the presence of translational . . ‘ .
symmetry in the studied atomic sys-

tem, although it represents an isola-

ted atom, an artificial rhombic superlattice is created, the primitive cell
of which is a rectangular parallelepiped based on the primitive transla-
tion vectors a, b, c¢. In this regard, for the convenience of calculations,
the crystallographic axes are conjugated with the axes of the Cartesian
co-ordinate system Oxyz. The object of study is to determine the parame-
ters of the superlattice and atomic basis. The size of the primitive unit cell
is chosen so that the translationally repeating individual atoms do not
affect each other. The number of plane waves in the packet of the total
wave function is 389; the integration by volume of the Brillouin artificial
superlattice is replaced by the calculation at the I'-point, and the number
of iterations of self-matching is 3 for all atoms. There are calculated spa-
tial distributions of valence electron density, their cross sections, electron
density of states and charges in the spherical neighbourhood of atoms with
different radius, which is varied from the value of the core radius deter-
mined by the selected pseudo-potential [23, 24] to the value, at which the
valence electron density disappeared (with a step of 0.05 A). As a crite-
rion of limiting the area of space occupied by the atom, we consider the
distance where the total value of the positively charged ionic core density
and negatively charged valence electron density becomes less 0.2¢ per
volume. Analysing and comparing the calculated cross sections of the
spatial distributions of the valence electron density, shown in Fig. 1, the
values of effective electric charges in the spherical neighbourhood of
atoms with different radius, as shown in Table 1, with known from the
literature [35] demonstrate their good coincidence. This allows us to as-
sume that the results of all calculations have a high degree of reliability.

3. Modifying Electronic Characteristics
through the Local Chemical Functionalization

3.1. Chemical Adsorption of Graphene

Changing the electronic properties of two-dimensional semi-metal graph-
ene layer is achievable through the functionalization, which can be reali-
zed in various ways, one of which is the chemisorption or physisorption
of atoms or molecules (adsorbates) on its surface.
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Y A

Fig. 2. Atomic structure of (a) graphane, (b) fluorographene, and (c) chlorographene
(views from different angles) [9]

Functionalized graphenelike structures include graphane [36—39],
fluorographene [39-42], and chlorographene [39, 43, 44], which have a
similar structure. Graphane is a class of hydrogenated graphene struc-
tures, in which each carbon atom of the graphene layer is covalently
bonded to the hydrogen atom by a sp3-bond. Fluorographene and chlo-
rographene have a similar structure and type of hybridization with F
and Cl atoms, respectively. The atomic structures of graphane, fluorog-
raphene, and chlorographene are shown in Fig. 2.

We propose a new way of local chemical adsorption of graphenelike
structures by combining non-functionalized and functionalized areas of
graphene, formed according to a pre-planned pattern into a single whole
system, i.e., with creating by certain technological methods the separate
areas of local adsorption of various chemical elements (e.g., hydrogen, fluo-
rine, chlorine) on the graphene sheet, we can organize the structure on a
common carbon base. Similar experimental combinations of non-functio-
nalized and functionalized graphene are discussed in Refs. [45-4T].

To detect changes in the electronic properties of graphene-based
structures due to local chemical adsorption of graphene, atomic model
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Fig. 3. Primitive cells with atomic basis for objects 1-4 from left to right: graphene,
graphane, fluorographene, and chlorographene. Spheres (of r radius) mark areas of
the calculated electric charge [9]

objects are developed for a computational experiment using the above-
described algorithm. An artificial rhombic superlattice is created, the
primitive cell of which is a rectangular parallelepiped built on the vec-
tors of primitive translations a, b, c¢. In this regard, for the convenience
of calculations, the crystallographic axes are conjugated with the axes
of the Cartesian co-ordinate system Oxyz. The subject of study is to
determine the parameters of the superlattice and atomic basis. Along
the z direction, perpendicular to the surface of the graphene sheet, the
size of the primitive cell is chosen so that translationally repeating
sheets do not affect each other, while, in the xy plane, graphene sheets
are either infinite or with finite sizes:

e object 1: infinite graphene sheet, symbol (C), primitive cell sizes:
a=2.46 A, b=4.26 A, ¢ = 2.65 A; the atomic basis consists of 4 C atoms
(Fig. 3);

e object 2: infinite graphane sheet, symbol (CH), primitive cell siz-
es:a=252A,b=4.56 A, c =3.18 A; the atomic basis consists of 4 C
atoms and 4 H atoms (see Fig. 3);

e object 3: infinite fluorographene sheet, symbol (CF), primitive
cell sizes: a = 2.55 A, b = 4.65 A, ¢ = 3.70 A; the basis consists of 4 C
atoms and 4 F atoms (see Fig. 3);

o object 4: infinite chlorographene sheet, symbol (CCl), primitive
cell sizes: a = 2.85 A, b =5.16 A, ¢ = 4.76 A; the basis consists of 4 C
atoms and 4 Cl atoms (see Fig. 3);

e object 5: two-dimensional finite graphene/graphane structure;
symbol (C/CH); cell sizes: a = 13.23 A, b = 10.58 A, ¢ = 5.29 A; the basis
consists of 48 atoms, of which 32 C atoms and 16 H atoms;

o object 6: two-dimensional finite graphene/fluorographene struc-
ture; symbol (C/CF); cell sizes: a = 13.76 A, b=11.11 A, ¢ = 6.88 A; the
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Yy Fig. 4. Primitive cells with atomic
4 basis of the finite-sized structu-
res: graphene/graphane, graphe-
C PS P ) ® gFI‘{ ne/fluorographene, graphene/chlo-
Q C ccl rographene. Roman numerals I-1V
v I denote coordinate quarters; x, y —
© le] ® ® coordinate axes [9]
O ® |5 O C
> X

o Y ® ® basis consists of 48 atoms, of
5] o - N L which 32 C atoms and 16 F

CH ° P P atoms;
CF ~» i~ @ ® object 7: two-dimensional fi-
CCl C nite graphene/chlorographe-
ne structure; symbol (C/CCl);

cell sizes: a = 15.35 A, b =
=12.70 A, ¢ = 7.41 A; the basis consists of 48 atoms, of which 32 C
atoms and 16 Cl atoms.

The calculation is performed only for I'-point of the BZ.

Structures of objects 5—8 with local chemical adsorption of graph-
ene are modelled as finite atomic structures with the chess alternation
of graphene and graphane/fluorographene/chlorographene regions [9].
When modelling finite-size systems, the isolation of the transmitted
objects from each other is provided by a vacuum gap between them. The
parameters of primitive cells are chosen to be larger in order to prevent
interaction between atoms of atomic bases during translation. Primitive
cells of superlattices with the inclusion of the atomic basis for objects
5-8, which are similar, are shown in Fig. 4.

Using the author’s code [48], the spatial distributions of valence
electron densities, electron densities of states, band gap widths, and
charges on atoms and at regions of atomic model objects were calculated
by methods of electron DFT and pseudo-potential from the first prin-
ciples.

Analysing the calculated spatial distributions of valence electron
densities, shown in Fig. 5, the change of hybridization from sp? to sp? is
confirmed during the functionalization of graphene by atoms of hydro-
gen, fluorine, chlorine. Thus, in Fig. 5, a, the density distribution is

Table 2. Values of electric charges on the carbon cores for objects 1-4 [9]

Number of C atom Object 1 Object 2 Object 3 Object 4

in the atomic base ©) (CH) (CF) (CCl
1 3.373 3.853 3.742 3.162
2 3.373 3.853 3.742 3.162
3 3.373 3.853 3.742 3.162
4 3.373 3.853 3.742 3.162
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Fig. 5. Spatial distri-
bution of the valence
electrons’ density (for
0.5-0.6 definition of
the maximum) in (a)
graphene with sp2-hyb-
ridization of carbon at-
oms, (b) graphane, (c)
fluorographene, and (d)
chlorographene with sp?-
hybridization of C at-
oms [9]

flat, and, in Fig. 5, b—d, the distribution acquires three-dimensional
forms of tetrahedral symmetry.

Table 2 shows the values of electric charges on carbon atoms of ob-
jects 1-4, which are estimated by formula (29) in a spherical volume
centred in the carbon cores of the corresponding structures with radius
r, which is half the distance between carbon atoms (see Fig. 3). Electric
charges are calculated in the atomic system of units, in which the charge
of the electron is equal to 1.

From Fig. 5 and Table 2, it is seen that the numerical values of the
electric charges of objects 1-4 are the same on the all carbon atomic
cores in the infinite sheets of graphene, graphane, fluorographene, and
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Fig. 6. Spatial dist-
ribution of the valen-
ce electrons’ density
(from left to right
for 0.9-1.0; 0.5-0.6;
0.1-0.2 definition of
the maximum) of (a)
graphene with sp?-
hybridization of car-
bon atoms, (b) grap-
hane, (c¢) fluorogra-
phene, and (d) chlo-
rographene with sp3-
hybridization of C
atoms [9]

chlorographene. The spatial distributions of the valence electron density
for these atomic objects are shown in Fig. 6, confirming this homoge-
neity [9].

Another situation is with charge distributions in finite-size struc-
tures with local chemical adsorption of graphene. There is a redistribu-
tion of electric charges; moreover, a change in the electric charges is
observed at atomic cores located at the joints, i.e., at the interface be-
tween the regions of graphene and graphane, graphene and fluorogra-
phene, graphene and chlorographene. Numerical values of electric
charges on the atomic cores of objects 5-7 are given in Table 3.

Spatial distribution of valence electron density for finite-size struc-
tures with local chemical adsorption of graphene, as shown in Fig. 7,
demonstrates the charge regions of higher density localized in functiona-
lized areas, namely, graphane, fluorographene, chlorographene.
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Table 4 shows the widths of the electronic band gaps of objects 1-7,
which are presented in a.u. and eV. It is seen that the infinite sheet of
graphene has a zero band gap. After its functionalization by hydrogen,
fluorine, and chlorine atoms, the band gap increases. Analysing objects
1-4 (endless sheets), we see that the width of the band gap of graphane
is the maximum and is equal to 3.81 eV; for a sheet of chlorographene,
it is of 1.36 eV; for a sheet of fluorographene, it is of 0.27 eV. Among
objects 5—7 (the finite structures with chemical adsorption of graph-
ene), the structure of graphene/chlorographene has the largest width of

Table 3. Values of electric charges on the carbon cores
with local chemical adsorption of graphene for objects 5—7 [9]

Number of C atom Object 5 Object 6 Object 7
in the atomic base C/CH C/CF C/CCl
1 3.912 3.842 3.952
2 3.747 3.489 3.598
3 3.309 3.284 3.519
4 3.953 3.914 3.977
5 3.995 3.880 3.572
6 3.998 3.996 3.893
7 3.991 3.757 3.411
8 3.999 3.997 3.991
9 3.460 3.394 3.599
10 3.097 3.142 3.376
11 3.429 3.277 3.428
12 3.077 3.167 3.404
13 3.706 3.258 3.372
14 3.968 3.812 3.535
15 3.444 3.201 3.374
16 3.996 3.979 3.519
17 3.968 3.812 3.535
18 3.706 3.258 3.372
19 3.996 3.979 3.519
20 3.444 3.201 3.374
21 3.097 3.142 3.376
22 3.460 3.394 3.599
23 3.077 3.167 3.404
24 3.429 3.277 3.428
25 3.998 3.996 3.893
26 3.995 3.880 3.572
27 3.999 3.997 3.991
28 3.991 3.757 3.411
29 3.747 3.489 3.598
30 3.912 3.842 3.952
31 3.953 3.914 3.977
32 3.309 3.284 3.519
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Fig. 7. Spatial distribution of valence electrons’ density (from left
to right for 0.9-1.0, 0.5-0.6, 0.1-0.2 definition of the maximum)
in the structures with local chemical adsorption of graphene: (a)
graphene/graphane, (b) graphene/fluorographene, (¢) graphene/
chlorographene [9]

Table 4. Band gap values for objects 1-7

Infinite objects Finite objects
Objects

E, a.u. E, eV E, a.u. E, eV
Object 1 (C) 0.00 0.00 0.07 1.90
Object 2 (CH) 0.14 3.81 0.11 2.99
Object 3 (CF) 0.01 0.27 0.03 0.82
Object 4 (CCl) 0.05 1.36 0.01 0.27
Object 5 (C/CH) — — 0.37 10.07
Object 6 (C/CF) — — 0.09 2.45
Object 7 (C/CCl) — — 0.38 10.34

the band gap of 10.34 eV; the structure of graphene/graphane has
slightly smaller width of 10.07 eV; the structure of graphene/fluoro-
graphene has the smallest band gap of 2.45 eV.

The proposed combination of non-functionalized and functionalized
areas of graphene in single structure leads to an increase in the band-
gap width compared to the individual source objects.
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3.2. Bending Strain Effect

Changes in the electronic properties of two-dimensional semi-metal
graphene can also be achieved by bending deformation. In general, flexi-
ble electronics is burgeoning industry with a lot of promise. The facts
that most of the 2D materials are mechanically stable make them as the
natural choice for flexible electronics. It was experimentally demon-
strated the thinnest, high performance, flexible, and transparent thin-
film transistor fabricated using only two-dimensional layered materials
for the first time [49]. Another flexible and transparent transistor based
on two-dimensional materials was demonstrated by combining MoS, and
graphene. The device exhibited extreme mechanical stability in terms of
relatively small change in effective carrier mobility and threshold voltage
as a function of the bending radius and number of bending cycles [50].

Graphene plays an important role for flexible electronics. This ma-
terial affords the highest field-effect transistor mobilities, owing to its
small effective mass. However, the lack of a band gap and the associ-
ated inability to switch off electrically precludes its use for digital tran-
sistors. Nevertheless, its high charge mobility and saturation velocity
coupled with its intrinsic ambipolar character make it an attractive ma-
terial for flexible RF analogue TFTs [51].

For extension of information about electronic properties of two-di-
mensional structures based on a local chemically functionalized graphene
under bending strain effect, such objects are developed:

e object 1: 2D finite graphene/graphane structure with symbolic
notation (C/CH); the primitive cell of the superlattice with parameters
a=13.23 A, b =10.58 A, ¢ = 9.53 A; the basis consists of 48 atoms,
among them 32 C atoms and 16 H atoms;

y Y Yy
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& o L L CF
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L v I I CCl ? 9 2 % i
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@ () C x L. C 5 o] o ]
> ‘e’ i P RN
CH m | 1
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ca?® 9O 5 °

a b

Fig. 8. (a) Primitive cells with atomic basis of graphene/graphane, graphene/fluor-
ographene, graphene/chlorographene (view of the cell from the z axis); (b) view of
the cell from the x axis (left a = 0°, right o = 3°) [12]
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Fig. 9. Electric charge distribution for graphene/graphane (left), graphene/fluorog-
raphene (in the middle), and graphene/chlorographene (right) with chemical adsorp-
tion at a = 0°

Fig. 10. Valence electron density spatial distribution in graphene/
graphane depending on the bending strain (from left to right for
0.9-1.0, 0.5-0.6, and 0.1-0.2 definition of the maximum) for (a)
o =0°and (b) a = 3°[12]

« object 2: 2D finite graphene/fluorographene structure with sym-
bolic notation (C/CF); the primitive cell of the superlattice with param-
eters a = 13.23 A, b = 10.58 A, ¢ = 10.58 A; the basis consists of 48 at-
oms, among them 32 C atoms and 16 F atoms;

« object 3: 2D finite graphene/chlorographene structure with sym-
bolic notation (C/CCl); the primitive cell of the superlattice with para-
meters a = 13.76 A, b = 11.64 A, ¢ = 10.58 A; the basis consists of
48 atoms, among them 32 C atoms and 16 Cl atoms.

A primitive cell of a superlattice with an atomic basis of two-dimen-
sional graphene/graphane, graphene/fluorographene, and graphene/chlo-
rographene structures is demonstrated in Fig. 8, a. The bending strain
effect that used in the research is consisted in bending the two-dimen-
sional structure to the angle a (a0 = 0°, 1-5°). The atomic basis of the
two-dimensional graphene/graphane structure for angles o = 0° and o =
=3° is shown in Fig. 8, b [12].
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In the finite graphene/graphane, graphene/fluorographene, and gra-
phene/chlorographene structures with local chemical functionalization,
the charge distribution of valence electrons between non-functionalized
and functionalized parts of structures and the bending strain effect is
estimated. The point, around which the charge is calculated, is chosen
in the centre of each section. The radius of the spherical volume is cho-
sen to be the maximum according to the size of the section. Figure 9

Table 5. Charge values in the regions of 2D
structures depending on the bending strain [12]

Quarters
Structure Angle a° Charge difference
I, III II, IV
Graphene/ 0 -27.86 10.73 38.59
graphane 1 -27.49 10.62 38.11
2 -30.05 10.58 40.63
3 -31.97 10.48 42.45
4 -29.85 2.27 32.12
5 -27.81 2.11 29.92
Graphene/ 0 -33.29 0.43 33.72
fluorographene 1 -39.52 0.33 39.85
2 -37.50 0.50 38.00
3 -41.44 -3.71 37.73
4 -39.60 -3.56 36.04
5 -36.43 -7.62 28.81
Graphene/ 0 -31.71 -16.26 15.45
chlorographene 1 -31.77 -16.26 15.51
2 -38.29 -20.53 17.76
3 -41.38 -20.73 20.65
4 -32.75 -20.59 12.16
5 -30.43 -23.85 6.58

Table 6. Band-gap width values for 2D structures depending
on the bending strain (in different units)

Structure
Angle a° Graphene/graphane Graphene/fluorographene | Graphene/chlorographene

E,, a.u. E, eV E, a.u. E, eV E, a.u. E, eV
0 1.33 36.18 0.91 24.75 0.48 13.06
1 1.55 42.16 0.57 15.50 0.61 16.59
2 0.85 23.12 0.73 19.86 0.05 1.36
3 0.59 16.05 0.46 12.51 0.14 3.81
4 0.24 6.53 0.18 4.90 0.12 3.26
5 1.16 31.55 0.41 11.15 0.15 4.08
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. Fig. 11. Band gap width vs. the
40 .4 C/CH bending strain for C/CH, C/CF,
—# C/CF and C/CCl structures [12]
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are given in Table 5.

Redistribution of electric charge is observed with the formation of
regions of different signs in the structures of graphene/graphane and
graphene/fluorographene. The largest value of the charge difference is
recorded in the graphene/graphane structure at the bending angle o= 3°.
In the structure of graphene/fluorographene, this difference is less no-
ticeable; the largest value of the charge difference is achieved at the
angle o = 1°. In the structure of graphene/chlorographene, charge re-
distribution takes place, but without the formation of charge regions of
different signs. Charge redistributions are illustrated by maps of the
spatial distribution of valence electron densities for two-dimensional
structures C/CH, C/CF, C/CCl (Fig. 10).

The values of the electronic band-gap width for two-dimensional
structures, depending on the bending strain from o = 0° to o = 5°, are
given in Table 6 and in Fig. 11. For the graphene/graphane structure,
the maximum value of the band gap is reached with bending at an angle
o = 1°. For the graphene/fluorographene structure, the bend provokes a
decrease in the band gap compared to the flat structure. The largest
value of the band gap for the graphene/chlorographene structure is re-
corded at a bending angle o = 1°.

3.3. Effect of Static Pressure

Static pressure is another way to change the electronic properties of
two-dimensional semi-metal graphene. For extension of information
about electronic properties of two-dimensional structures based on local
chemical functionalized graphene under effect of static pressure, a super-
lattice model is developed. It is an infinite periodic alternation of areas
of graphene (graphane) non-functionalized and functionalized by hydrogen
atoms. The primitive cell of the rhombic superlattice has the following
parameters: a = 9.96 A, b =8.82 A, ¢ = 5.29 A (Fig. 12). The atomic basis
consists of 48 atoms, among them 32 C atoms and 16 H atoms. Details of the
calculation are similar to those used in the previous two subsections [10].

Modelling of the reaction of atoms in two-dimensional graphene/
graphane structure to the action of static pressure is carried out by
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Fig. 12. Primitive cell of a superlattice with an atomic base of infinite graphene/
graphane structure (top and side view) [11]

Table 7. Values of forces (in [a.u.]) acting
on the hydrogen atom at different pressure magnitudes [10]

Pressure values
No. of H atom
0% 2.5% 5% 7.5% 10%
1 1.672 1.741 1.815 1.894 1.979
2 1.647 1.719 1.794 1.876 1.963
3 1.622 1.695 1.773 1.856 1.945
4 1.673 1.743 1.816 1.895 1.980
5 1.647 1.718 1.794 1.875 1.963
6 1.673 1.742 1.816 1.895 1.980
7 1.674 1.743 1.817 1.896 1.981
8 1.622 1.695 1.773 1.856 1.945
Average value 1.65 1.72 1.80 1.88 1.96

Table 8. Static pressure values (in different units) [10]

o Pressure, Pressure, o Pressure, Pressure,
No. |Pressure, % A «10° H No. |Pressure, % A ©10° H
1 0 0 0 4 7.5 0.23 18.4
2 2.5 0.07 5.6 5 10 0.31 24.8
3 5 0.15 12.0

changing the co-ordinates of the atomic basis that reflects the uniform
compression from both surfaces of the structure. It is believed that the
action of static pressure affects only the positions of the hydrogen atoms,
which are part of graphane (CH), i.e., their distance to the graphene
framework. Five compression ratios are selected for comparison: (i)
without compression (0%), the C—H distance is ay = 1.12 A (CH);
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Fig. 13. Spatial distribution of valence electrons density (for 0.5-0.6 definition of
the maximum) of graphene/graphane structure under static pressure effect [10]

Fig. 14. Band gap width vs. the static pres-
- sure for graphene/graphane structure [10]

(ii) compression by 2.5%, the C—H
distance is reduced by 2.5% from
- aqy of graphane; (iii) compression by
. . . . 5% ; (iv) compression by 7.5%; (v)
2.5 5 7.5 10 compression by 10%.

Pressure, % The magnitude of the pressure
is estimated from the forces according to the formulas (40)—(42), which
act on the hydrogen atoms from the rest of the cores and electrons’ sub-
system. Based on Newton’s third law, it is obvious that these forces are
the reactions equal in modulus but opposite in direction to the external
influence of static pressure. As a result, the values of forces acting on
each hydrogen atom are obtained when the corresponding pressure is
applied (Table 7); they were then averaged over the atoms of the entire
basis.

To estimate the pressure, the values of forces acting in the elec-
tron—core system in the absence of compression are subtracted from the
obtained values of forces (Table 8). Recalculation of the pressure units
with a.u. of forces (a.u.f.) into newtons (N) is carried out taking into

E, eV
(e = D W ot
.

Table 9. Band gap values of graphene/graphane structure
under the static pressure effect (in different units) [10]

No. | Pressure, % E,, a.u. E, eV No. | Pressure, % E,, a.u. E, eV
1 0 0.14 3.81 4 7.5 0.12 3.27
2 2.5 0.16 4.35 5 10 0.06 1.63
3 5 0.17 4.63
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account that 1 N =1 a.u.f. x 0.08-107%, which is obtained from the ratios
of measurement units of the corresponding physical quantities.

Figure 13 shows maps of the spatial distribution of valence electron
density under static pressure effect. Apparently, the change in pressure
leads to the rearrangement of the electron ‘clouds’ of C-H covalent
bonds, namely, to an increase in the valence electrons’ density along
these bonds.

The change in the band-gap width for the graphene/graphane struc-
ture at different pressure values is shown in the graph (Fig. 14). The
numerical values of the band-gap width are given in Table 9. When the
structure is compressed by 2.5% and 5%, an increase in the width of
the band gap is recorded. With further compression of the structure by
more than 5%, there is a significant reduction in the width of the band
gap that indicates an increase in the conductive properties of such a
structure [10].

3.4. Fluorination Effect

Recently, a new 2D counterpart of graphane, namely, hydrogenated
fluorographene (CFH), was obtained by benign wet chemical synthesis.
The authors emphasized its significant nonlinear optical properties;
they revealed the importance of the nature of functional group and the
degree of functionalization on the nonlinear optical properties of graph-
ene sheets [52]. In turn, we decided to investigate the fluorination ef-
fect on electronic properties of two-dimensional local chemical adsorp-
tion structures, namely, graphene/graphane. The primitive cell of
superlattice and atomic basis are chosen the same ones as in the previ-
ous subsection (see Fig. 12).

The modelling process of fluorination is carried out in pairs by re-
placing the atoms of hydrogen with fluorine atoms. The following struc-
tural configurations are numerically investigated: (i) C/CH without
fluorine atoms (0% fluorination); (ii) C/CFH (32 C + 14 H + 2 F) with

Table 10. Values of charges in the areas of C/CH
and C/CFH structures under the fluorination effect [11]

2D Degree of Structural Charge values Charge

structure | fluorination configuration difference
I, III 11, IV

C/CH 0 32C + 16H -35.20 13.40 48.60

C/CFH 12.5 32C + 14H + 2F -39.80 11.65 51.45

25 32C + 12H + 4F -39.38 10.76 50.14

37.5 32C + 10H + 6F -42.37 8.76 51.13

50 32C + 8H + 8F -48.26 6.06 54.32
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Fig. 15. Modelling the fluorination process of graphene/graphane structures [11]

P

Fig. 16. Spatial distribution of valence electrons’ density (for 0.5-0.6 definition of
the maximum) of graphene/graphane structures under the fluorination effect [11]

2 F atoms (12.5% fluorination); (iii) C/CFH (32 C + 12 H + 4 F) with
4 F atoms (25% fluorination); (iv) C/CFH (32 C + 10 H +6 F) with 6 F
atoms (37.5% fluorination); (v) C/CFH (32 C + 8 H + 8 F) with 8 F at-
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Table 11. Band gap values of C/CH and C/CFH structures
under the fluorination effect [11]

Degree of Structural
2D structure fluorination configurations E, a.u. Ey eV
C/CH 0 32C + 16H 0.14 3.81
C/CFH 12.5 32C + 14H + 2F 0.06 1.63
25 32C + 12H + 4F 0.15 4.08
37.5 32C + 10H + 6F 0.02 0.54
50 32C + 8H + 8F 0.11 2.99

Fig. 17. Fluorination effect on the band gap
width of graphene/graphane structure [11]

oms (50% fluorination) (Fig. 15).
The percentage of fluorination is
calculated by finding the proportion
of fluorine atoms from the total
number of hydrogen atoms [11]. . . ) .

In this case, the changes in the 12.5 5 37.5 50.0
electronic properties of the two-di- Fluorination, %
mensional C/CH and C/CFH struc-
tures are recorded. The charge values in the areas of these structures
are calculated and are shown in Table 10. There is clear charge distribu-
tion with different signs on parts of C/CH structure. After the fluorina-
tion, there is a redistribution of charge with increasing charge differ-
ence. The highest value of charge redistribution is achieved with
50% -fluorination (32 C + 8 H + 8 F).

Numerical values of charges depending on the degree of fluorina-
tion are illustrated by maps of the spatial distribution of valence elec-
tron density for 2D structures C/CH and C/CFH, which are shown in
Fig. 16. The fluorination effect enhances the covalent C—H bonds of
functionalized graphene that is manifested in an increase in the inten-
sity of the valence electron density along the bond directions (see the
region bounded by the circle in Fig. 16).

The change of the band gap of two-dimensional structures C/CH and
C/CFH under the fluorination effect is shown in the graph of Fig. 17.
Numerical values of the band-gap width are given in Table 11.

Non-monotony in the change of the band-gap width values of two-
dimensional C/CH and C/CFH structures under the fluorination effect
is recorded. Non-monotony is oscillating that accordingly causes fluc-
tuations in the electrical conductivity of the structure. Thus, the maxi-
mum value of the band gap is recorded at 25% fluorination; at 37.5%
fluorination, the band-gap width reaches a minimum value. Therefore,

Eg,eV
© = N W B Ot
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Fig. 18. Primitive cell of a superlattice with an atomic base of an
infinite black phosphorene monolayer (side and top view) [13]

Fig. 19. Primitive cell of a superlattice with an atomic base of the in-
finite black phosphorene monolayer with adsorbed carbamide molecu-
les for two types of localization: (left) ‘one against each other’ and
(right) ‘one offset each other’ (displaced with respect to each other) [13]

by changing the degree of fluorination in the areas of two-dimensional
C/CFH structures, it is possible to control their electrical-resistance
properties [11].

3.5. Impurity Doping of Black Phosphorene

Molecule doping is a flexible and effective method towards modulating
the electronic properties of two-dimensional materials [53]. Molecules
adsorbed on the surface can influence electrotransport in the two-dimen-
sional material, for example, by introducing doping effects, and a p—n
junction can, thus, be fabricated by locally doping the material [54]. Au-
thors of work [53] used benzyl viologen as an effective electron dopant to
part of the area of a few-layer black phosphorus flake and achieved an
ambient stable in-plane p—n junction. Such chemical doping with benzyl
viologen molecules modulates the electron density and allows acquiring a
large built-in potential in this in-plane black phosphorus p—n junction.
Black phosphorus constitutes a new class of 2D materials. It is in-
tensively studied as a 2D semi-conductor [55-56575859]. Phosphorene,
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Fig. 20. Valence electron
density spatial distribu-
tion (for 0.5-0.6 defini-
tion of the maximum) of
the carbamide molecule
(a) and its cross-section

(b) [13] a b

Fig. 21. Spatial distribution of valence electrons’ density (within the
ranges 0.1-0.2 (a) and 0.2-0.3 (b) definition of the maximum) of the
infinite black phosphorene monolayer [13]

as a phosphorus analogue of graphene, refers to the monolayer black
phosphorus crystal [60]. The presence of an appreciable direct band gap
and high carrier mobility makes phosphorene a promising candidate for
novel semi-conductor applications [61]. The authors of [62] reported
that the band gap of phosphorene is dependent on the number of layers
and the in-layer strain, and is significantly larger than the bulk value.
For the study of electronic properties of the black phosphorene sheet
with the impurity doping, the model of the superlattice is developed
(Fig. 18). The rhombic primitive cell of the superlattice has the follow-
ing parameters: a = 17.72 A, b = 18.08 A, ¢ = 14.82 A [13]. The geomet-
ric properties of primitive cell are such that it is convenient to use the
Cartesian coordinate system. The dimensions of the primitive cell in the
directions x and y are chosen so that the translation of cell organizes an
infinite black phosphorene sheet. The size of the primitive cell in the
direction z is chosen to avoid the interaction of atomic planes transmit-
ted in this direction. The atomic basis contains 64 phosphorene atoms.
The calculation is performed only for I'-point of the BZ of superlattice.
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Fig. 22. Cross-sections of the infinite black phosphorene monolayer in
the [110] and [100] planes within (a) one primitive cell and (b) several
primitive cells [13]

Fig. 23. Electric charge values on the cores of P atoms of the infinite
black phosphorene monolayer within the spherical volume with radius
r=1.32A

Carbamide (urea) molecule (NH,),CO is selected for impurity doping
of the black phosphorene sheet. It forms a colourless crystalline sub-
stance having a melting point of 132.7 °C. A primitive cell of a superlat-
tice with an atomic basis for simulation of an infinite monolayer (which
consists of two atomic layers) black phosphorene sheet with adsorbed
carbamide molecules, placed on both black phosphorene sides either one
against each other or one offset (displaced with respect to) each other,
is represented in Fig. 19.

For comparison, several distances between the carbamide molecules
and the black phosphorene sheet are chosen. These distances are changed
from 1.87 A (the smallest distance between atoms that equals the sum
of covalent radius of phosphorene atom and molecule atoms) with sub-
sequent increase up to 2.0 A, 2.5 A, and 3.0 A.
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Fig. 24. Spatial distribution of va-
lence electrons’ density (in the
0.1-0.2 definition of the maxi-
mum) of an infinite black phos-
phorene monolayer with adsorbed
carbamide molecules for the ‘one
against each other’ (left) and ‘one
offset each other’ (right) types of
localization at different adsorp-
tion distances: (a) 1.87 A, (b) 2.0
A, (c) 2.5 A, (d) 3.0 A [13]

Figure 20 presents the
spatial distribution of valence
electrons’ density of the car-
bamide molecule and its cross-
sections. By means of concen-
tration of valence electrons’
density in the molecule plane,
one can determine the inten-
sity of the covalent bonds be-
tween the atoms within the
molecule.

The spatial distribution of
valence electrons’ density of the

black phosphorene sheet and its cross-sections are shown in Figs. 21 and 22.

In the sheet of black phosphorene, there is a homogeneous distribu-
tion of the valence electrons’ density with charge of 2.15¢ on the phos-
phorene atoms’ cores (Fig. 23). The electric charge is evaluated in a

spherical volume with the radius r = 1.32 A.

Table 12. Values of charges on the black phosphorene atoms
for the ‘one against each other’ type of localization [13] (see also Fig. 19)

plggép(ﬁloi‘}:l;)izl;n 1.87 A 2.0 A 2.5 A 3.0 A
22 -17.77 -17.63 -16.88 -15.47
23 -14.37 -14.10 -12.54 -10.09
26 -17.96 -17.86 -17.22 -15.84
28 -16.71 -16.49 -15.20 -13.34
37 -17.96 -17.86 -17.22 -15.84
39 -16.71 -16.49 -15.20 -13.34
41 -17.77 -17.63 -16.88 -15.47
44 -14.37 -14.10 -12.54 -10.09
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Fig. 25. Electric charges on the
cores of P atoms of an infinite
black phosphorene monolayer
with carbamide admolecules for
the (a) ‘one against each other’
and (b) ‘one offset each other’
types of localization [13]

Figure 24 depicts the
maps of the spatial distribu-
tion of wvalence electrons’
density of black phosphorene
sheet with adsorbed carba-
mide molecules of ‘one against

b each other’ and ‘one offset

each other’ localizations de-

pending on the distance to the black phosphorene sheet. It is found that
the adsorption of urea molecules by the monolayer of black phosphorene
leads to a redistribution of the valence electrons’ density in it. It is re-
corded that, in the black phosphorene sheet with adsorbed carbamide
molecules of both types of localization, the charge regions of the highest
density are located below the atoms of the carbamide molecules, crea-
ting a region of electron density of high concentration. The removal of
the molecules leads to a decrease in their effect on the redistribution of
the valence electrons’ density in a black phosphorene sheet that is
confirmed by the calculated electric charges on the black phosphorene
atoms located directly under the molecules (Fig. 25). The values of the

Table 13. The same as in the previous table, but for ‘one offset
each other’ (i.e., with a displacement) type of localization [13] (see also Fig. 19)

No. of the black 1.87 A 2.0 A 2.5 A 3.0 A
phosphorene atom
3 -9.47 -9.13 -7.69 -5.82
7 -5.68 -5.22 -3.51 -1.94
17 -10.83 -10.52 -8.81 -7.34
19 -14.99 -14.60 -12.98 -11.34
21 -17.30 -17.09 -16.29 -15.25
23 -8.17 -7.83 -6.41 -4.98
42 -17.30 -17.09 -16.29 -15.25
44 -8.17 -7.83 -6.41 -4.98
46 -10.83 -10.52 -8.81 -7.34
48 -14.99 -14.60 -12.98 -11.34
60 -5.68 -5.22 -3.51 -1.94
64 -9.47 -9.13 -7.69 -5.82
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electric charge on the above-mentioned cores of the black phospho-
rene atoms at various adsorption distances for ‘one against each other’
and ‘one offset each other’ types of localization are given in Tables 12
and 13.

The accumulation of the electric charge of the black phosphorene
sheet in the region under the carbamide molecules leads to redistribu-
tion of the electric charge in the monolayer and, sometimes, changes in
the sign of the charges on the core of black phosphorene atoms to the
opposite one. That is, the homogeneity of the distribution of electron
density in the black phosphorene sheet (see Figs. 21-23) disappears and
forms areas of electric charge of different signs (see Fig. 25). In this
case, the negative sign of the electric charge in the vicinities of the
cores of black phosphorene atoms located directly below the molecules is
maintained with a significant increase in the modulus of charge. Where-
as, the sign of the electric charges in the vicinity of the cores of black
phosphorene atoms away from the adsorbed molecules changes to the
opposite one. Such charge redistributions indicate the possibility of
creating a built-in two-dimensional p—n junction in the sheets of black
phosphorene with impurity doping with carbamide molecules.

Table 14. Values of the band gap width of an infinite black phosphorene
monolayer with adsorbed carbamide molecules for the ‘one against
each other’ and ‘one offset each other’ types of localization [13]

Type of localization

di(iz%iitil?r}\ ‘one against each other’ ‘one offset each other’
E, a.u. E, eV E,, a.u. E, eV
1.87 0.24 6.53 0.49 13.33
2.0 0.40 10.88 0.004 0.10
2.5 0.14 3.81 0.03 0.82
3.0 0.26 7.07 0.04 1.09
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Table 14 and graphs in Fig. 26 show the obtained values of the band
gap for the infinite black phosphorene monolayer with adsorbed car-
bamide molecules for the ‘one against each other’ and ‘one offset each
other’ types of localization. There is a non-monotony nature of the
change in the band gap with a change in the adsorption distance that is
more pronounced for adsorption of the ‘one against each other’ type.
The displacement of the boundaries of the conduction bands and the
valence band relative to the corresponding values for pure black phos-
phorene is significant for adsorption on the type ‘one against each other’.
The band-gap values are significantly reduced for ‘one offset each other’
adsorption type for all calculated distances. Thus, for the ‘one against
each other’ type of localization with an adsorption distance of 2.0 A, an
increase in the band gap of the infinite black phosphorene monolayer to
almost 11 eV is observed, compared to 6.8 eV for the pure monolayer.
Whereas for the type of localization ‘one offset each other’ at the same
adsorption distance, there is a noticeable reduction in the band gap to
0.1 eV. Therefore, the adsorption of carbamide molecules on the black
phosphorene monolayer changes its conductivity, which can be control-
led by controlling the localization of the adsorbed molecules [13].

4. Straintronics and Defect Engineering in Graphene

The pristine (i.e., defect-free) and structurally perfect graphene exhibits
outstanding electronic properties such as ballistic electron propagation
with extremely high charge carrier mobility [6] or quantum Hall effect
at a room temperature [63]. However, one of the challenges for graphe-
ne to be extensively used in the mass production of electronic devices
[64] and in the bioengineering [65] is either an absence of the sufficient
band gap in its electronic spectrum or problem with the gap modulation.
Current—voltage behaviour of graphene is symmetrical with respect to
the zero-voltage point and thereby does not allow switching of graphe-
ne-based transistors with a high on—off ratio. There are several ways for
engineering a band gap in graphene. They are cutting graphene into
nanoribbons [66] or nanomeshes [67], applying perpendicular magnetic
field to bilayer graphene [68], surface adsorption or/and introducing
specific defects [69, 70], using substrate [71, 72], configuring (ordering
[73—T78]) of impurity (adsorbed either substitutional or interstitial)
atoms [79-83], applying different strains such as uniaxial tensile [84—
88] and shear [89, 90] deformations or their combination [91].

Among many remarkable features of graphene, its mechanical prop-
erties are miraculous. Graphene is the strongest material ever tested
with an intrinsic tensile strength of 130 GPa, Young’s modulus (stiff-
ness) of ~1 TPa [92] and even increases with the density of defects [93].
Graphene sheet can sustain reversible (elastic) deformations up to about
~25-27% [92, 94, 95]. Deformations (stresses) can arise naturally in
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graphene or/and be intentionally induced and controlled via different
techniques [96, 97]. Above-mentioned mechanical characteristics indi-
cate that the strain yields an interesting possibility for tuning graphe-
ne’s properties and that is why even opens a new research field, which
some authors already called as ‘straintronics’, i.e., strain (mechanical,
deformation) electronics or strain engineering [96—98].

The disagreements in the literature [84—-91, 99-103] regarding the
fingerprints of different types of deformation (e.g., uniaxial, (non)iso-
tropic biaxial, shear, local strains, etc.) in graphene’s electronic struc-
ture, particularly in the possible band-gap opening, are reviewed in
[104-106], while the discrepancies [107—111] concerning the stability of
differently (randomly, correlatively, or orderly) distributed adsorbed
atoms on graphene surface are reviewed in [105—113]. The presence of
both types of contradictions is not surprising inasmuch as two reasons.
First, the ‘straintronics’ (strain electronics) only opens its evolution
[97]. Second, in overwhelming majority of theoretical and computa-
tional studies of the strained graphene, the size of graphene computa-
tional domains are mostly limited to periodic supercells and localized
fragments containing a relatively small number (usually some hundreds)
of atoms (sites). These restrictions are caused by the commonly used
first-principles density-functional calculations requiring high computa-
tional capabilities. The summarized discrepancies dealing with deforma-
tion effect (see Ref. [104]) concern results for even perfect graphene
without any structural defects and external magnetic fields. However,
fabricated graphene samples actually contain different point and/or ex-
tended defects [114] that can strongly affect electronic and even me-
chanical properties of graphene [115-117].

As known, the strains modify distances between ions in graphene-
lattice sites and can be described by a vector potential, which is analo-
gous to that of the external magnetic field [96, 118]. Therefore, an
impact of different nonuniform strains on electronic properties of
graphene is frequently associated in the literature (see, e.g., [119, 120])
with an influence of the effective pseudo-magnetic field. Nevertheless,
such a field differs from the real magnetic field by the opposite direc-
tions in the two inequivalent (Dirac) high-symmetry points K and K’
within the 15* BZ of the reciprocal space.

Among various types of structural (point [121-126] or extended
[127-130]) defects [131] in the physics of graphene, adsorbed atoms or
molecules are probably the most important examples [132]. Acting as
lattice imperfections, such defects govern many characteristics, such as
electron states, electrical conductivity, degree of localization of elec-
trons (and their spins) [114], and therefore strongly affect electronic,
transport, optical, thermal, mechanical, and electrochemical [112, 133—
135] properties of graphene. Distributions of impurity (adsorbed) atoms
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over the graphene-lattice (adsorption) sites or interstices are not always
random, as it usually takes place for three-dimensional metals and al-
loys, where adatoms are introduced via the alloying, which is generi-
cally a random process [136]. Diluted atoms may have a tendency to-
wards the spatial correlation [137] or even ordering [138-142]. Moreover,
graphene is an open surface, therefore (ad)atoms can be positioned onto
it with the use of scanning tunnelling [143] or transmission electron
[144] microscopes allowing to design (ad)atomic configurations as well
as ordered (super)structures with atomic precision. Several ordered con-
figurations of hydrogen adatoms on graphene have been directly ob-
served [145] using the scanning tunnelling microscope.

Above-mentioned inconsistencies (regarding the stability of ran-
domly-, correlatively-, or orderly-distributed adatoms on graphene sur-
face [107-111] and the impact of strain on electronic properties of even
defect-free graphene [84—-91, 99-103]) contributed to the motivation of
this study. Note that realistic graphene samples contain different struc-
tural defects, particularly, due to the peculiarities of the fabrication
technology.

4.1. Theoretical Grounds for Electron Diffusivity and Conductivity

Within the framework of Kubo—Greenwood formalism (see, e.g., [146]),
the energy (E) and time (¢) dependent diffusivity (commonly known in
the literature as an electron diffusion coefficient) is defined as [147, 148]

D(E,t) = t' AX*(E,t)), (44)

where the wave-packet mean-quadratic spreading (propagation) along
the spatial x-direction is [147, 148]

Tr[(X(2) - X(0))*3(E - H)]

(AXP(E, 1)) = Te[o(E — FD)]

(45)

with X (t) = Uf(t))? U (t) being the position operator in the Heisenberg
representation, U(t) = exp(—i ﬁt/h) is a time-evolution operator, and
tight-binding Hamiltonian # with hopping integrals up to the first three
coordination shells (spheres) defines the Bernal-stacked few-layer hon-
eycomb lattice [149, 150],

A Nlayer Nlayer*I Nlayer A Nlayer’1 A
H=)Y H+ > H, H=)> H+ Y H, (46)

=1 =1 =1 =1

where N,, ., is a number of layers, I-fll is a Hamiltonian contribution of
I-th layer, and H, describes hopping parameters between neighbour lay-
ers (vanishes in case of one layer), i.e.,

T_ _ A ¥ 2 ¥ 3 T .
H——YOZcicj—VOch.cj—yo Z cicj+ZVicici, 47)
o) ) o i
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Fig. 27. Intralayer (v, v3, v3) and interlayer (y,, y,) hopping parameters for two lay-
ers (AB) of Bernal-stacked multilayer graphene (a). Two types of uniaxial tensile
strain (by ~80%) along armchair- (b) or zigzag-type (¢) edges for single graphene
layer [104]

here, the creation (annihilation) operator ci(c,) acts on a quasi-particle
located at a site i = (m, n), where m and n are numbers of each i-th site
along zigzag edge (x-direction) and armchair edge (y-direction), respec-
tively, as shown in Fig. 27. The summation over i runs the entire hon-
eycomb lattice, while j is restricted to the nearest-neighbours (in the
first term), next nearest-neighbours (second term), and next-to-next
nearest-neighbours (third term) of i-th site. The parameter yj = 2.78 eV
[64] is an inlayer hopping for the nearest-neighbouring carbon atoms
occupying i-th and j-th sites at a lattice-parameter distance ¢, = 0.142 nm
between them [149, 150] (a, is an unstrained graphene lattice parame-
ter). Parameters y2 = 0.085y} and y3 = 0.034v{ are intralayer hoppings
for next (second) and next-to-next (third) nearest-neighbour sites at the
second and third coordination shells, respectively [87] (see Fig. 27, a).
The on-site potential V, defines the defect strength at a given graphene-
lattice site i due to the presence of different defects (often identifying
in graphene literature with the sources of disorder) [149, 150].

The interlayer interactions can be described using the standard
Slonczewski—Weiss—McClure (SWM) model of electronic states in graph-
ite [1561-153]:

H' =-y,>.(@a} b, +Hc)—v,> & a,,, +Hc) (48)
J I’

with y, = 0.12v{, v, = 0.1y} [150] defining the interlayer-hopping ampli-
tudes, i.e., the strength of the interlayer coupling (Fig. 27, a). To sim-
plify calculation procedure and enhance the computation speed, other
SWM tight-binding parameters are omitted.

The dc conductivity o can be extracted from the electron diffusivity
D(E,t), when it saturates reaching the maximum in a diffusive electron
transport regime,
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lim D(E,t) = D, _(E),
t—o0

and the semi-classical dc conductivity at a zero temperature is defined
as [154, 155]
c=c, =ep,(E)D,, (E), (49)

max

—e < 0 denotes the electron charge, and py(E) = p/S = Tr[o(E —I-})]/S is
the density of electronic sates (DOS) per unit area S (and per spin). We
can use the DOS to calculate the electron density:

ions ?

n,(E) = j po(E)dE —n

where n,, = 3.9:10" cm™ is density of positive ions compensating the ne-
gative charge of p-electrons in graphene. For the defect-free graphene,
at a neutrality (Dirac) point, n,(E) = 0. Combining calculated n(E) with
o(E), we can compute the density-dependent conductivity ¢ =c(n,).

The computational methodology utilized for numerical calculation
of the density of states (DOS), electron diffusivity (D(E,t)), and conduc-
tivity (o) is described in Ref. [156] (particularly, see appendix therein
for details). This methodology includes the Chebyshov method for solu-
tion of the time-dependent Schrodinger equation, calculation of the first
diagonal element of the Green’s function using continued fraction tech-
nique and tridiagonalization procedure of the Hamiltonian matrix, av-
eraging over realizations of impurity (ad)atoms, sizes of initial wave
packet and computational domain, boundary conditions, etc.

4.2. Modelling Approach
or Structural Deformations and Defects

Let us consider two orthogonally related directions for uniaxial tensile
strain in graphene lattice: along so-called armchair (Fig. 27, b) and zig-
zag (Fig. 27, c¢) directions (edges). For these mutually transverse direc-
tions (as well as for any other one), the uniaxial strain induces lattice
deformation: changes bond lengths and, therefore, hopping parameters
between different sites. Generally, hopping parameters can be different
among different neighbouring sites. However, in case of a homogeneous
elastic tensile deformation, though hoppings from a given site to its
neighbours can be all different, they should be the same for every such
site. Therefore, model Hamiltonian contains only three distinct hop-
pings, and our goal turns to investigation of the changes that strain
induces in these hoppings and impacts electronic structure. Following
[86—-88, 157, 158], where random strain is modelled by the Gaussian
function, we can obtain dependence of the bond lengths on the deforma-
tion tensor components and then relate hopping parameters of the
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© Carbon atom

O Adatom
© Adsorption site

<= Projection of adatom

= Projection of adsorption site

Fig. 28. Typical configurations of adatom—graphene system [112]: top (left) and
perspective (right) views of graphene lattice with hollow centre (H), bridge centre
(B), and (a)top (T') adsorption sites

strained, vy, and unstrained, y}, graphene via exponential decay

Y1) = 1) exp [—B [ai - 1]} (50)

with the strained bond length [, the decay rate p ~ 3.37 [86, 87] ex-
tracted from experimental data [159], and the Poisson’s ratio v = 0.15
selected between that measured for graphite [160] and calculated for
graphene [161].

The disorder in graphenelike lattice can be represented by different
types of (zero-dimensional and one-dimensional) defects. They can be
modelled via the above-mentioned (in Eq. (47)) on-site potential V, mod-
ifying the Hamiltonian matrix central diagonal. Below, we present mod-
els can be used to describe different types of defects.

Manifestly short-range (weak or strong) impurities, represented as neut-
ral adatoms, occupying different types of adsorption sites over the honey-
comb lattice as shown in Fig. 28, or chemisorbed molecules (e.g., hydroxyl,
methyl, nitrophenyl functional groups [162]) covalently bound to carbon
atoms, can be modelled by the delta-function potential [149, 156, 163]

Nowp

Vi = Vi'S = le: V;’Sij (51)
for each i-th site of the honeycomb lattice where N}, 5-like impurities
occupy j-th sites. This potential acts as a weak or strong depending on
weak, V=V, <|y}|, or strong, V2=V, > |y}|, scattering of charge car-
riers (electrons). The ab initio and T-matrix approach based calculations
for strong impurity adatoms provide typical estimated values for the

ISSN 1608-1021. Usp. Fiz. Met., 2022, Vol. 23, No. 2 189



A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko

on-site potential V=V, < 80|y}| [164-167], e.g., for so-called resonant
impurities [149] (CH,, C,H,OH, CH,0H as well as hydroxyl groups),
V,~ 60|y} |. In case of a strong scattering regime, occurring for resonant
impurities (RI), studied in Ref. [156], the on-site potential was assumed
to be V, = V¥ = 37|y} | ~ 100 eV.

There is another way for modelling N, resonant impurities through
the Hamiltonian part [149]

A

Nimp Nimp
Hyp =€, did, + VY (dfe, + He.) (52)

with parameters V ~ 2y} and ¢, ~ —y;/16 obtained from density-function-
al theory calculations [165]. Resonant impurities behave themselves
similarly to the vacancies because of completely electron localization at
an impurity site. The distinction of influence of vacancies on electronic
structure from the effect of the resonant impurities is strong zero
energy modes [149, 150, 168]. A vacancy can be regarded as a site with
hopping parameters to other sites being zero, though another way to
model vacancy at the site i is V, - o [149, 150]. In our simulations, we
implement a vacancy removing the atom at a vacancy site.

Screened charged impurity ions, adatoms (Fig. 28) or admolecules,
on graphene or its dielectric substrate are commonly described in the
literature via Gaussian-type on-site scattering potential [149, 150]

|ri - rj|2 (53)
2t J

NSau
imp
_ Gauss __ Gauss
[/i = ‘/i = E 1/] exp(—

j=1

where ij‘;‘“ Gaussian impurities reside j sites with radius-vectors r;, §

is interpreted as an effective potential radius, and the potential height
UjGauss is uniformly distributed within the range [-AZ"* AS"*] with

imp ? “imp
Afaes
tial radius &, potential (53) can manifest both short-range (where the
range is smaller than the lattice constant) and long-range (where the
range is comparable or slightly larger than the lattice constant but still
much smaller than the typical electron wavelength) features. Varying
these parameters allows consideration of two types of such impurities:
with short-range (e.g., for § = 0.65a and A = 3y;) and (rather) long-range
(e.g., for & = 5a, and A = v{) action.

Another way to introduce scattering on the charged impurities is
use of the Coulomb-type potential. For instance, in case of adatoms,
randomly distributed above the honeycomb-lattice centres j (Fig. 28) or
located at the substrate, the Coulomb on-site (i) potential reads as
[163]

= |y},| as a maximal potential height. Depending on effective poten-

Npoulnmb 2

V = IfiCoulomb — Z + e (54)

' T Aneelr —rf
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with r; (r;) radius-vector for i-th site (j-th hexagon), vacuum permittiv-
ity €,, and substrate dielectric constant €. In case of adatomic location,
e.g., at SiO, substrate on the distance of ~(2—3)a, [169] from graphene
layer, dielectric constant ¢ = 3.9 that enables to take into account the
screening effect. In case of other substrates (e.g., hexagonal boron ni-
tride [163]), another value of dielectric constant slightly changes results
quantitatively, but not qualitatively. Depending on the sign (%), there
are three types of Ni(fr‘l’g]"mb Coulomb impurities [163]: (i) randomly dis-
tributed positive and negative charges () with electric neutrality of the
whole sample, (ii) only positive (+) and (iii) only negative (-) impurities.
However, we consider positive—negative impurities (cases (i)) and posi-
tive only impurities (case (ii)). Case (iii) results to DOS curves analogous
to case (ii) but with opposite asymmetry with respect to the Dirac point.
Varying parameters entered into the scattering potentials (563) and (54),
they may be also adopted for modelling so-called mixed (hetero) doping,
e.g. observed co-doping with boron and silicon atoms [170].

One more type of defects is so-called Gaussian hopping [150, 163].
Usually, they originate from the substitutional impurities causing the
atomic-size misfit effect as local in-plane or out-of-plane displacements
of atoms, and short- or long-range distortions in graphene lattice due to
the curved ripples or wrinkles. The modified distribution of the hopping
integrals between different (i, j) sites reads as [150, 163]

Niop —|r —r —2rF
V., =Y+ Y, Ul exp b L i (55)
8¢’
with N/

nop (Gaussian) straining centres at r, positions, & is an effective
potential length, and hopping amplitude U, e [-A,A]. The distortion
centres can be considered with shortly (§, = 0.65a,, Ay = 1.5y¢) or more
distantly acting (§, = 5a,, Ay = 0.5v;) hoppings. The summation in ex-
pressions for Gaussian impurities and hoppings is commonly restricted
to the sites belonging to the same layer, i.e., possibility for the overlap-
ping of Gaussian distributions in different layers is usually omitted
[104, 150, 163].

Finally, extended (line-acting) defects are present in epitaxial graphe-
ne, where they comprise atomic terraces and steps [171, 172], and poly-
crystalline chemically-vapour-deposited (CVD) graphene as the grain
boundaries [173—-174175] or quasi-periodic nanoripples (wrinkles) [176,
177]. The effective potential for N, . charged lines could be derived
within the Thomas—Fermi approximation [178] and can be very well fit-
ted by the Lorentzian-shaped function [179, 180]:

L ¢ Niines L ¢ A

— orentz __ orentz

ViV QU s o
j=1 + L7

where r; is a distance between the i-th site and j-th line. Fitting para-

(56)
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Fig. 29. Scattering potential for potassium (K) adatoms on the fixed adsorption
height & = 2.4 A (a) and for K adatoms with varying & (b). Ab initio calculations (e)
[184] are fitted via the Gaussian potential V = Ue™ /** (fitting parameters U =
=-0.37y; and & = 2.21a define the potential height and effective potential radius,
respectively), the Coulomb potential V = Q/r (@ = -0.36 y{a), and two-exponential
function V =U,e”’% +U,e™’™ (U, = -0.457), &, = 1.47a, U, = -0.207}, &, = 2.73a),
where r is a distance from the projection of adsorbed atom to the lattice site [112]

%

meters A, B, and C depend weakly on electron density; they are calcu-
lated in Refs. [179, 180]: A = 1.544, B = 0.78, and C = 0.046. The po-
tential height U}“‘)re"” is commonly chosen randomly in the range
[—Alorentz  ALerentz] gp [(Q, Alerentz] with potential strength (maximum poten-
tial height) Atz = 0.25]y}| = 0.675 eV close to the values of the contact
potential variation at the substrate atomic steps observed in epitaxially-
grown graphene via the Kelvin probe force microscopy [181-182183].

Depending on the range [-AMre", Aterens] 5 Ul or the range
[0, Alerent=] 5 Ulere=, we consider (alternating) symmetric (sign-changing,
V20, i.e. attractive—repulsive) or asymmetric (constant-sign, V>0, i.e.
repulsive for electrons) scattering potential. In contrast to the Gaussian
potential (53), which is not strongly long-range even for a large effec-
tive potential radius (£), the Lorentzian one (56), as well as Coulomb
potential (54), is definitely a long-range potential.

However, sometimes Gaussian (and even Coulomb) scattering po-
tentials are not the most appropriate to describe scattering by various
(specific) point defects as Fig. 29, a demonstrates [112]. Therefore,
sometimes it is more adequately to use scattering potential adapted
from the independent self-consistent ab initio calculations [184], as it
has been realized for potassium adatoms on the height 2 =2.4 A over
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the graphene surface: Fig. 29, a. Transforming the scattering potential
V =V(r) into its dependence on a distance from the lattice site directly
to adatom, V = V(l), where [ = r? + h? as demonstrably from Fig. 29, one
can obtain its dependence on both r and &, V = V(r, h), which is plotted
in Fig. 29, b.

At a correlation (short-range order), impurities are no longer con-
sidered to be randomly located. To describe their spatial correlation, it
is conveniently to introduce a pair distribution function p(R, - R)) = p(r)
[185, 186]: p(r) = 0 for r < ry, p(r) = 1 for r > r,, where r = [R, - R| is a
distance between the two adatoms, and a correlation length r, defines
minimal distance that can separate any two of them. If adatoms are
randomly distributed, then, r, = 0. The maximal correlation length r, .
depends on both relative concentration of impurities as well as their (ad-
sorption) positions (as substitutional or interstitial) [112]. For a pro-
nounced correlation effect, it is better to choose maximal possible cor-
relation length, as for n, = 3.125% of correlated potassium adatoms in
[112], where correlation length was selected as r, = r,,,,. = 7a, for hollow-
(H) and bridge-type (B) sites, and r, = ., = 5a, for top-type (T) sites
(see Fig. 28). Analogously, in the case of adatomic ordering (long-range
order), for a pronounced ordered effect, it is reasonably to consider su-
perlattice structures with the same relative content of ordered impurity
(ad)atoms as for random and correlation cases [112].

4.3. The Strain and Defect Responses
in the Electronic States and Transport

Within the scope of the theoretical methodology and modelling approach
presented in the previous two subsections, this subsection (including
several sub-subsections) mainly exhibits the calculated electronic densi-
ties of states, diffusivities, and conductivities in the imperfect (impure)
(un)strained graphene sheets. In most of the reported below results of
the numerical calculations, the size of computational domain was 1.7
million of atoms, which corresponds to graphene lattice of ~x210x210 nm?
size. There are also comparisons of numerical and relevant experimental
findings.

4.3.1. Sensitivity to Direction of the Uniaxial Tensile Strain

Before considering the graphene with defects of various types, it is rea-
sonably to examine firstly the defect-free graphene subjected to differ-
ent values of relative uniaxial tension ¢ € [0%, 30% ] along above-men-
tioned two directions. Numerically calculated DOS curves in Fig. 30
agree with analytically obtained results [87]. A spectral gap appearance
requires deformations at least of ~20% along zigzag direction (Fig. 30,
a), while there is no any gap opening for (even large) deformations
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Fig. 30. Density of states (DOS), in units of 1/|y})|, as a function of the relative
longitudinal strain (¢) for pristine graphene monolayer stretched along directions
parallel to the armchair (a) and zigzag (b) edges [104]
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Fig. 31. DOS for zigzag strained (0% < ¢ < 27.5%) single- (main panels) and bilayer
(insets) graphene containing 0.1% of randomly-distributed point defects, namely:
(a) resonant impurities (52), (b) short- and (c) long-range Gaussian impurities (53),
(d) vacancies, (e) short- and (f) long-range Gaussian hoppings (55) [104]

along armchair direction (Fig. 30, b). Some authors [87, 91, 97, 100]
explain the band-gap opening in the terms of the location of the Dirac
points in the Brillouin zone (Dirac point is a point of vanishing DOS
where the valence and conduction bands touch each other conically).
They [87, 91, 97, 100] write that spectral gap appears because of ‘moving’
the two non-equivalent Dirac points within the first Brillouin zone of
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Fig. 32. The same as in the previous figure, but for a fixed zigzag strain (¢ =
= 27.5%), different (0—3%) concentrations of defects (main panels) and various
numbers (1-5) of layers (insets) [104]. Main panels: graphene is single-layer. Insets:
defect content is 0.1%

the reciprocal space; they shift at a zigzag deformation, come nearer
towards each other, and eventually merge. However, we stress that the
modification of the Brillouin zone is only a simple effect of lattice trans-
formation from honeycomb into orthorhombic one due to the applied
tensile strain. In fact, the band gap opening originates from an additio-
nal displacement of both graphene sublattices with respect to each other
that occurs most pronouncedly at a deformation along zigzag direction.
Indeed, an armchair deformation identically influences on all bond
lengths, — increases them (Fig. 27), — and remains both sublattices un-
displaced (besides their equilibrium shift by the vector h=a,/3 + 2a,/3).
Whereas zigzag deformation affects bond lengths differently, — in-
creases bonds in the zigzag direction, while decreases those in the arm-
chair one (Fig. 27), — and (besides the shift onto the h vector) additio-
nally displaces the sublattices.

Since the armchair deformation does not result to the band gap
opening even for pristine graphene, results in Figs. 31 and 32 deal with
case of uniaxial tensile strain along zigzag direction only. High energy
values (far from the Dirac point, conventionally at E = 0) are less prac-
tically (experimentally) realizable, therefore they are not depicted in
Fig. 31, where DOS is calculated for single- (main panels) and two-layer
(insets) strained graphene with a fixed (0.1%) content of random de-
fects. The DOS curves for mono- and bilayer graphene (Fig. 31) as well
as for three-layer, four-layer, and five-ply one (Fig. 32) are similar ex-

ISSN 1608-1021. Usp. Fiz. Met., 2022, Vol. 23, No. 2 195



A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko

8 Armchair deformation 14 Zigzagideformation 1.2 0= Analytical (pure, zigzag stretch)]
——1e=0% | 1.0 [~ Numerical (pure, zigzag) o
41 g 2?0 10p % —'=— Numerical (doped, zigzag)
n c=15 e | < [~ Numerical (doped, armchair, .."
Q £=20 | e - M
R 0.4 c=25 i : e M
=i ab N
0.2 €=20 I Y g i
| | 2 v 4
0 s X e . - / ! i
-0.2 0 0.2 -0.2 0 0.2 1 10 20 30
Reduced energy E/ ‘ y2,| Reduced energy E/ ‘yl,| Strain €, %
a b c

Fig. 33. (a, b) DOS for graphene monolayer with 3.125% of ordered resonant impu-
rities (oxygen- or hydrogen-containing molecules) at different (up to 30% ) values of
the stretching along armchair (a) and zigzag (b) directions [104]. (¢) Comparison of
analytically [87] and numerically calculated band gap energies vs. the uniaxial de-
formation along zigzag direction for monolayer graphene without defects (squares
and circles) and with 3.125% of ordered hydroxyl groups (triangles) [104]

cept near the edge of spectrum for large energies E (see insets in Fig. 32),
which is an indication of the band-structure similarity, independently
on the number of layers. As for unstrained graphene [150], the cause of
such similarity lies in the energy band parameters defining intra- and
inter-layer hopping integrals designated in Fig. 27: intra-layer nearest-
neighbour hoping integral is circa ten times larger than the both inter-
layer parameters, i.e., inter-layer interaction is much weaker than the
intra-layer one.

As Figures 31, a, d and 32, a, d show, resonant impurities (oxygen-
or hydrogen-containing molecules) and vacancies similarly alter the DOS
of the strained graphene; they bring an increase in spectral weight (cen-
tral peak) near the Dirac point. The central peak (being attributed to the
impurity (or vacancy) band) increases and broadens with increasing the
resonant impurity (or vacancy) concentration (see Fig. 32, a, d). The
principle distinction between O- or H-containing molecules and vacan-
cies concerning their effects on the spectrum consists in position of the
central peak (impurity/vacancy band) in the DOS curves: it is centred at
a neutrality point in case of vacancies, whereas it is shifted from it for
the hydroxyl groups due to the nonzero (positive) on-site potential mod-
elling them. In contrast to the resonant impurities and vacancies, the
Gaussian potentials and hoppings do not induce low-energy impurity
(vacancy) band around the neutrality point as shown in Fig. 31, b, c, e, f.
However, the van Hove singularities also undergo suppressing, espe-
cially at a long-ranged potential (hopping) action (Fig. 32, b, ¢, e, f).

Like for the perfect graphene (Fig. 30, b), the spectrum is also
strongly gapless for small and even moderate strains of impure graph-
ene (Fig. 31). The gap overcoming requires the threshold (zigzag) defor-
mations over ¢ = 20% for non-long-range acting impurities or vacancies
(Fig. 31, a, b, d, e), whereas the ‘long-range’ potentials (hoppings) smear
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Fig. 34. (a, b) Conductivity c (49) and (¢, d) mobility u = o/(en,) vs. the electron (or
hole) density n, (-n,) for graphene containing 0.1% of random weak impurities (51)
strained uniaxially along (a, ¢) zigzag or (b, d) armchair edge [188]. Both conductiv-
ity (6 = 0,, = G,,,,,) and mobility (u = p,, = ) are calculated along zigzag edge
(see Fig. 27, b, ¢)

uzigzag

gap region and transform it into quasi- or pseudo-gap — plateau-shaped
deep minimum in DOS near the Dirac point (Fig. 31, ¢, f). Increase in
defect concentration does not change the plateau width, however en-
hances its spectral weight to the complete smearing even at the short-
range potentials (hoppings) as shown in Fig. 32, b, ¢, e, f).

Figure 33, a and b shows DOS around the Fermi level as a function
of tensile strain ¢ € [0%, 30% ] for single-layer graphene with a fixed
concentration of the ordered hydrogen or oxygen adsorbed atoms. The
band gap decreases slowly (however permanently), if armchair deforma-
tion increases. However, in case of the zigzag strain, the band gap ini-
tially (for 0% <& <10% ) becomes narrower and narrower up to the total
disappearance, but then, at a certain threshold strain value (¢, 12.5%),
the gap reappears, grows up, and can be even wider than it was before
the stretching (Fig. 33, ¢). Importantly, this threshold value ¢, , when
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the band gap opens, is lower in comparison with those that have been
estimated earlier for perfect defect-free graphene layers subjected to
the uniaxial zigzag strain (g, = 23% [87]), shear deformation (¢, *16%
[91]), and almost coincides with the value expected combining shear
with armchair uniaxial deformations (e, = 12% [91]).

Comparing the band-gap energies calculated analytically in [87] and
numerically computed for pristine as well as for doped graphene subjec-
ted to uniaxial tensile deformation along zigzag-edge direction (Fig. 33,
¢), one can see a pronounced non-monotony of the curve for strained
graphene with ordered pattern of defects. Such abnormal nonmonotonic
behaviour of the strain-dependent band gap mainly originates from the
simultaneous contribution of two factors: impurity ordering and applied
strain. Note that numerically obtained curve for defect graphene in
Fig. 33, ¢) also becomes linear for strains beyond the #20% and crosses
other two curves for pristine graphene close to its predicted failure
limit point (=27.5% [94]).

In Figure 33, ¢, for predicted graphene failure strain of ~27.5%,
the maximal band gap reaches ~0.74 eV. If the strain reaches value of
30%, the band gap energy is expected of ~0.8 eV (Fig. 33, c). These
calculated band gap values are strongly particular, since the DOS curves
in Fig. 33, a, b are calculated for a fixed (3.125% ) content of ordered
dopants described by the model on-site potentials with model band pa-
rameters adopted from independent approximations. Other impurity
concentrations and model potentials give different results. For example,
in Fig. 31, b, e as well as in Fig. 32, b, e, for 0.1% of random short-
range Gaussian impurities (hoppings), the band gap amounts to ~0.75 eV
around the Dirac point, without breaking by the impurity band (central
peak) as it is for the resonant impurities. All these estimated band gap
energies are comparable with those (up to ~0.9-1.0 eV) reported in
Refs. [91, 100, 101, 187] for ideal (i.e., clean, undoped, without any
defects) graphene sheets in the fields of periodic inhomogeneous [100],
local [187], anisotropic biaxial [101], or combined [91] strains.

The field-effect charge carrier conductivity ¢ and mobility u = c/(en,),
calculated along fixed, viz. zigzag-edge, direction, are shown in Fig. 34
[188]. This figure clearly demonstrates that conductivity and mobility
are sensitive to the direction of uniaxial strain. The stretching up to
27.5% along the zigzag edge substantially reduces both conductivity
and mobility, while the same stretching along armchair edge slightly
enhances the conductivity and mobility. The revealed charge carrier
(electron) transport anisotropy is attributed to difference of deforma-
tions of bonds, and therefore hopping parameters, in cases when honey-
comb lattice is stretched uniaxially along zigzag- and armchair-edge
directions (see Fig. 27, b, c).
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4.3.2. An Ability to Affect the Conductivity
through the Dopant Configuration

Since here and further we consider a graphene monolayer only, (for sim-
plicity) let us denote the in-layer nearest-neighbour hopping parameter
74 (see designations in the previous subsection and Fig. 27 particularly)
as u, i.e., v, = u, = 2.78 eV — the hopping integral for neighbouring at-
oms at the equilibrium distance a, = 0.142 nm.

Due to the honeycomb structure of unstrained graphene lattice, pos-
sible adsorption sites can be reduced into three types with high-symme-
try favourable (stable) positions; so-called hollow centre (H-type), bridge
centre (B-type), and (a)top (T-type) adsorption sites are illustrated in
Fig. 28. Taking into account discrepancies in the literature [107-111]
on the energy stability (favourableness) of adsorption sites, it is inter-
esting to study how electrotransport properties of unstrained graphene
depend on types of adsorption sites (H, B, T') which dopants occupy.

In the case of random configuration of adatoms, the steady diffu-
sive regime is reached for a relatively short time, when electron diffu-
sivity D, 4(t) saturates (Fig. 35, a). If adatoms are correlated (short-
range ordered), diffusivity D, (t) exhibits an unsaturated behaviour for
a longer time, which means that diffusive regime is not yet reached
(Fig. 35, b). Such a quasi-ballistic behaviour of diffusivity indicates a
low-scattered electronic transport, when the scattering process is rather
inefficient and gives rise to the quasi-ballistic transport more than to
the quasi-diffusive one. However, since there is no the total long-range
order, the quasi-diffusive regime occurs when the diffusivity D, (%)
reaches the maximal value. In the case of adatomic ordering with ideal
long-range order, when there are no any disorders, we observe a ballistic
linear behaviour of D_,(¢) for much more longer times (Fig. 35, c) as
compared with D_(t) and D_(t). This situation resembles case [189]
when electrons propagate mainly out-of-the-sublattice containing (or-
dered) substitutionally-dopant atoms. We would expect such a ballistic
regime for very large times (and even at ¢ — «) for infinite graphene

600 o E = ~0.5u, —e— E — 0.0u, 600 et
500 | —s— E = ~0.4u, - == - £ = 0.1u, 500 - - - =
£ 400 |~ E =034 - ==~ £ =0.2u, £ 400 .
s —+—E=-02uy-~=-E=03u [ V§ W
3 300 I s 0.1uy -~ - E — 0.4u, % 300
‘-2 L - - E=05u °2 L :
N 200 Random °o| S 200 ,'."-'-'." R i
100 100 A~ Correlated Ordered
0 A . . . 0 . . | | . . . \
40 80 120 160 40 80 120 160 40 80 120 160 ¢, fs
a b c

Fig. 35. Electron diffusivity vs. time within the energy range E < [-0.5u,, 0.5u]
for random (a), correlated (b), and ordered (c¢) potassium adatoms located on hollow
(H) adsorption sites (see Fig. 28) [112]
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Fig. 36. Conductivity vs. the electron density for 3.125% of random, correlated, and
ordered potassium adatoms occupying hollow (H), bridge (B), or top (T) adsorption
sites (see Fig. 28) [112]

sheet. However, although our graphene computational domain contains
several millions of atoms as indicated above, it is finite at all. When the
electron wave packet reaches the reflecting edges of graphene domain,
the quasi-localization effects can contribute to D (%), especially, due to
those long-range ordering adatoms, which are close to the boundary of
the sample and, therefore, differ in their local coordination environ-
ment from those reside in the sample interior. Another contribution to
immobilization disorder comes from the tails of scattering potential due
to its long-range features. That is why D_,(¢) decreases after reaching
the maximum in the shown time interval. Nevertheless, the maximal
value of D (t) is substantially higher than the maximum of both D_ ()
and D, (t): DL(t) < D (t) < Di*(t) (Fig. 35). Note that, if the dif-
fusive regime is not reached completely, the semi-classical conductivity
o cannot be defined in principle. However, o is extracted for the case of
ordered adatoms using the highest D (t), when its quasi-ballistic be-
haviour turns to quasi-diffusive one.

Figure 36 represents the calculated conductivity (o) as a function of
electron (n, > 0) or hole (n, < 0) concentration, ¢ = o(n,), for different
positions (H, B, T) and distributions (random, correlated, and ordered)
of adatoms in graphene. For a visual convenience, the same (nine) curves
in Fig. 36, a—f are positioned in two panels (upper and lower). In the
upper panel, figures a—c demonstrate how correlation and ordering af-
fect the conductivity for each of H, B, and T adsorption types. In the
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Fig. 37. The same as in the previous figure, but when adatoms occupy hollow (H)
adsorption sites (see Fig. 28) at different adsorption heights i [112]

lower panel, figures d—f exhibit how these three types of sites influence
on the conductivity for each of random, correlated (with maximal cor-
relation lengths), and ordered adatomic distributions. The conductivity,
o, exhibits linear or nonlinear (sublinear) electron-density dependen-
cies. The linearity of ¢ = o(n,) takes place at the randomly distributed
potassium adatoms and indicates dominance of the long-range contribu-
tion to the scattering potential, while sublinearity occurs at non-random
(correlated and ordered) positions of potassium adatoms and is indica-
tive of the dominance of short-range component of the scattering poten-
tial. This is in accordance with other studies (see, e.g., [156] and refer-
ences therein), where the pronounced linearity and sublinearity of
¢ = o(n,) are observed for long-range scattering potential (appropriate
for screened charged impurities with ionic bond in graphene) and short-
range potential (appropriate for neutral covalently bond adatoms), re-
spectively. These results illustrate manifestation of contrasting scatter-
ing mechanisms for different spatial distributions of metallic (and even
non-metallic as recently revealed in Ref. [190]) impurity atoms.

Since maximal value in a temporal evolution of diffusivity for or-
dered impurities substantially exceeds its value for correlated defects
and much more for randomly distributed ones (Fig. 35), a considerable
increase in conductivity due to the correlation and, much more, to the
ordering of adatoms as compared with their random distribution is seen
from graphs in Fig. 36, a—c. Graphs in Fig. 36, d—f allow seeing how
different types of adsorption sites affect the conductivity for each type
of distribution. If adatoms are randomly distributed, conductivity
depends on types of adsites: H-, B-, or T-type ones (Fig. 36, d: ¢, >
> o8, > of .. For a correlated distribution, conductivity depends on how
adatoms manifest themselves: as substitutional (being on T-sites) or
interstitial (being on H- or B-sites) atoms (Fig. 36, e): 6 =~ o > o7 .
If adatoms form the ordered superstructures, with equal periods, the
conductivity is practically independent on the adsorption type, espe-
cially at the low electron densities (Fig. 36, f): o, = o%, = o7 ..

ord
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Fig. 38. (a) Calculated conductivity [112] as a function of charge carrier density at
various concentrations of potassium adatoms, 0.1% < n, < 8%, which are randomly
distributed over the random adsorption sites of graphene lattice. (b) Experimental
[137, 191] and calculated [112] conductivities vs. the realistic electron density for
different contents of potassium impurities in graphene typically observed in expe-
riments. Experimental data A [191], A [137], v [137], V [191] correspond to ny =
=0.047%, 0.055%, 0.086% , 0.094% , respectively. Calculated dashed and solid cur-
ves (b) relate to ny = 0.047% and 0.094%, respectively

In our model, the higher (lower) adatomic elevation over the graph-
ene surface corresponds to the weaker (stronger) scattering-potential
amplitude. It means physically that more weak (or strong) regime of
electron scattering on the charged impurity adatoms. Though the values
of adsorption height, &, reported in the literature for potassium, do not
disagree as much as for the adsorption energy (see Table 1 in [112]), for
the model and calculation completeness, # varies in a wide range (up to
h = 3.6 A), including exotic case of A = 0, when impurity atoms act as
strictly interstitial ones. The calculated curves representing the charge-
carrier-density-dependent conductivity for (random, correlated, and or-
dered) adatoms resided on (the most favourable for potassium) hollow
sites and elevated on different & are depicted in Fig. 37. Here, we do not
consider the cases of bridge and top sites — less favourable for potas-
sium atoms occupation — since it leads to qualitatively the same results.
As follows from Fig. 37, a and b, at least for hole densities (-n, > 0),
two (three) time increase or decrease in adsorption height ~ for randomly-
or correlatively-distributed potassium adatoms results to approximately
two (three) time enhancement or reduction in o (respectively). Thus the
conductivity approximately linearly scales with adsorption height of
random or correlated adatoms, o (k) o« k, or, more precisely, c(k) = c(0) +
+ O(h), where O(h) is a big O notation. However, for ordered potassium
adatoms, the o remains practically unchanged with varying of 4 in the
realistic range of adsorption heights (see Table 1 in Ref. [112]) and even
in all range at issue (0 < & < 8.6 A) for hole densities (Fig. 37, c). We
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attribute this to the dominance of short-range scatterers in case of their
ordered state (as it was mentioned above). Indeed, the Gaussian fitting
for the scattering potential in Fig. 29, a yields the effective potential
radius & = 2.21a, which is commensurable with quantities of adsorption
heights h at issue (and even less than 4 = 3.6 A).

Let us compare obtained numerical results with available other (ex-
perimental and theoretical) findings. Results in Figs. 36 and 37 agree
with experimentally observed features of o = o(n,) for potassium-doped
graphene [191, 137]:

e on K-doping, conductivity decreases and its dependence on charge
carrier density (controlled by gate voltage V, « n, [192]) is linear (sub-
linear) at higher (lower) K-concentration;

e conductivity curve is an asymmetric one for electrons versus
holes for the asymmetric (i.e., sign-constant) scattering potential; how-
ever, the electron-hole asymmetry is absent for symmetric (i.e., alterna-
ting in sign) potential [156];

e the minimal conductivity o, =~ 4€?/h (h is the Planck constant)
shifts from a charge neutrality point to the side of positive energies E
corresponding in our notations to the n-type charge carries, i.e., nega-
tive gate voltage (see Fig. 38, a);

e celectron-density-dependent conductivity becomes more sublinear
and enhances as the correlation degree for adatoms increases.

The above mentioned four features do not depend on types (H, B, or
T) of adsorption sites and therefore become apparent also for a random
arrangement of adatoms at a random type of adsorption sites as it is
shown in Fig. 38, a.

Note that this subsection deals with numerical calculations, in
which the relative electron densities within the range of n, < 6-102
atom™ (i.e., n, < 2.3-10"* cm?) are used. Such n, values are larger in
comparison with those commonly used in the relevant experiments,
n®* < 1.8-10% atom™ n= < 7-102 cm™) [137, 191]. The larger electron
density interval is used in order to model electron transport for im-
purity densities n, < 3.125% (n, < 1.19-10'* ¢m™2), which are larger

than densities in t;pical experime;tal samples, n;> < 0.14% (ng> <
< 5.4-10'2 em™2) [137, 191]. To achieve the stable diffusive transport
regime for experimentally typical impurity concentrations, it is neces-
sary to perform calculations on graphene sheets with much more num-
ber of atoms, which requires much more computation time and capa-
bilities. Therefore, to compare calculable conductivity with experi-
mental one for potassium-doped graphene, the size of computational
domain was increased up to ten millions of atoms, which corresponds
to #500 x 500 nm?2, although even this size is not quite enough to reach
the long-time stability of diffusive regime at very small impurity
content. Experimental and calculated conductivities for typical densities
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of electrons and impurity potassium adatoms in graphene are presen-
ted in Fig. 38, b. Both experimental and calculated conductivities (in
Fig. 38, b) exhibit a linear (or a quasi-linear) behaviour. However, quan-
titative agreement is less good. This can be attributed to the contribu-
tion of quasi-localization effects due to the insufficiently large graphe-
ne sheet for the stable long-term diffusive regime to be reached at the
wave packet propagation.

A significant sublinear behaviour of electron-density-dependent
conductivity and its saturation for very high electron densities at the
spatial correlations among the charged impurities in contrast to the
strictly linear-in-density graphene conductivity for uncorrelated ran-
dom charged impurities (Figs. 36, a—e, and 37, a—b) is also in agreement
with theoretical findings in [185, 186]. Increase in conductivity as the
increasing adatomic correlation is also sustained theoretically [185, 186]
within the standard semi-classical Boltzmann approach in the Born ap-
proximation.

At first sight, it may seem that the last statement in the last para-
graph contradict to the results and conclusions in Ref. [156], where the
authors reported that correlation in the spatial distribution for the
strong short-range scatterers and for the long-range Gaussian potential
does not lead to any enhancement of the conductivity in comparison to
the uncorrelated case. However, there is no any disagreement. Results
in Ref. [156] are obtained for alternation (positive—negative) Gaussian
scattering potential (563) with potential height U uniformly distributed
within the symmetric range [-A,A] (A is a maximal potential height).
Such a potential is commonly used in the literature as a model potential
without specification type (kind) of impurity (ad)atoms. While here,
and in Ref. [112], the potential is a constant-sign (negative) being
adopted from independent ab initio calculations [184] strictly for potas-
sium adatoms in graphene (see Fig. 29, a). Really, ‘symmetric’ Gaussian
potential (with U € [-A, A]) does not give rise in conductivity (as shown
in Ref. [156]), while the ‘asymmetric’ Gaussian potential (with U < A or
U > A) or any other (Gaussian or non-Gaussian) only positive or only
negative potential (like that in Fig. 29) enhances the conductivity.

4.3.3. The Strain-Dependent Band-Gap Patterns

To construct the strain-dependent band-gap diagrams (maps) for monol-
ayer graphene subjected to different types of deformations, — stretch-
ing (Fig. 27, b and c), shearing (Fig. 39, a and b), or their combination
(Fig. 39, ¢), — we calculated a large number of corresponding DOS
curves and determine the corresponding band gaps (if any is opened at
all by the applied strains). The 14x14 = 196 DOS curves (like those in
Fig. 30), calculated for different relative values of uniaxial zigzag and
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Fig. 39. Graphene lattice subjected to shearing along zigzag (a), armchair (b), or
both (¢) directions (the balls denoting atoms remain nonstretched in experiment)
[15, 16]. See also stretched lattice in Fig. 27, b and ¢

armchair deformations ¢ € [0, 26% ] (with a strain step Ae ~ 2%) result
in the band gap diagrams [15] shown Fig. 40. As Figure 40, b demon-
strates, the shear strain also induces, similar to the uniaxial tensile
deformation, a band gap opening only above a certain threshold defor-
mation value. However, in contrast to the tensile strain, although the band
gap emergence is strongly sensitive to direction of the stretching, reaching
a critical threshold shearing along both (armchair and zigzag) edges
(directions) is needed for the gap opening: e = ¢~ 17%, see Fig. 40, b.
The shearing along both edges (so-called mixed shear strain as shown in
Fig. 39, ¢) can be associated with the diagonal values on the band-gap
pattern in Fig. 40, b, where shears along both armchair and zigzag di-
rections are equal. Figure 40, b shows that the band gap reaches values
~4 eV at large strains up to 26%, close to the graphene failure limit.

As it becomes apparent from Fig. 40, ¢c—h, the combination of diffe-
rent uniaxial tensile and shear stresses affect differently the band gap.
Armchair stretching enlarges the gap induced by shear strain (Fig. 40, c—e)
up to =6 eV (Fig. 40, e) for extremely high values of the stretching com-
bined with mixed shear. On the contrary, zigzag stretching causes degrada-
tion of the band gap induced by any of the three types of shear strains (Fig.
40, f—h). Uniaxial armchair strain combined with mixed shearing deceases
the minimally required threshold strain €™* necessary for band-gap open-
ing. In particular, ™" drops to e};* = g/2"~ 12% when mixed shearing is
accompanied with g"~ 12% of armchair stretching (Fig. 40, e).

The main features that can be extracted from Fig. 40 are the thresh-
old strain needed for band gap opening (if any) and the maximal band-
gap value, which can be reached by the non-destructive deformations.
These values are summarized in Ref. [15] (see Table 1 therein) for dif-
ferent types of strains. The comparison of the numerical results [15]
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Fig. 40. Strain-dependent band-gap patterns (diagrams) for graphene under tensile
or/and shear deformations (up to 26%): (a) uniaxial tensile strain along zigzag or/
and armchair direction as shown in Fig. 27, b and c; (b) shear strain along armchair
or/and zigzag directions (Fig. 39, a—c); uniaxial tensile strain along (c—e) armchair
or (f—h) zigzag direction combined with shear strain along (c, f) armchair, (d, g)
zigzag, or (e, h) both directions with equal shear-strain tensor parameters ¢, and ¢,
denoted in the previous figure [15]

with other available theoretical data in the literature indicates good
qualitative and quantitative agreement between the critical strain values
for the uniaxial zigzag, shear, and combined deformations obtained ei-
ther analytically or also numerically in Refs. [87, 91, 193].

Figure 40 and summarized data in the table of Ref. [15] clearly
demonstrate that different types of strains and their combination can
sensitively affect the band gap. Despite the fact that pure uniaxial arm-
chair stress is ineffective in the creation of a band gap, this type of
stress strongly enlarge the shear-induced gap, increasing the gap far
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Fig. 41. Modified nearest neighbour bond lengths (§,, J,, ,) and renormalized hop-
ping integrals (u,, u,, u;) in graphene lattice (a) under different types of strain [15].
Here, b — 26% of uniaxial tensile strain along zigzag edge, ¢ — 18% of shear
strain along both armchair and zigzag directions, d — 18% of mixed shearing com-
bined with 18% of uniaxial tensile strain along armchair direction. The balls de-
noting atoms remain nonstretched in the experiments

beyond the silicon’s value, which is enough for creation of a transistor.
Such an enhancement happens with all types of shear strains, hence, the
only thing required to control is the armchair direction of the uniaxial
stretching. Desired values of the band-gap for graphene applications in
nanoelectronic devices such as transistors may be achieved in a wide
range of band-gap values and through different types of deformations
including their combination.

Figure 41 illustrates the modification of the three nearest-neigh-
bour bond lengths (5,, d,, ;) and hence of the hopping parameters (u,,
u,, u;) when applying uniaxial and shear tensions as well as their com-
bination. Whereas the unstrained bonds (in Fig. 41, a) provide a zero
energy gap, according to Fig. 40, a non-zero gap emerges for all other
three cases (see Fig. 41, b—d). The 26% -stretching along zigzag direc-
tion (in Fig. 41, b) results in the ~0.5 eV energy gap (Fig. 40, a). The
8% -shearing along both armchair and zigzag directions (in Fig. 41, ¢)
provides a gap of ~0.66 eV (Fig.40, b). The combination of 18% of
mixed shear with armchair tensions (in Fig. 41, d) results in a gap of
~3.02 eV (Fig.40, e). The hopping integrals (in units of u,) denoted in
Fig. 41, b—d violate the triangular inequalities [87, 194],

Us| || %

+1/, (57

Uy
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which act as a general condition (firstly derived in Ref. [194]) for the
gapless spectrum of tight-binding electrons on the honeycomb lattice
(the inequalities (57) can also be rewritten in a more complicated form
in terms of the bond lengths entering into the expression of the
bond-length-dependent hopping (50)). Such an agreement indicates
compliance between the numerically calculated strain-dependent band-
gap maps in Fig. 14 and the analytically obtained hopping-dependent
condition (57) for the gapless energy spectrum of the honeycomb
lattice.

The stability of the strain-induced band gaps in polycrystalline
graphene produced through chemical vapour deposition on a substrate,
as one of the most prevalent and mature techniques of graphene growth,
is an additional important question, since the majority of graphene
films necessary for industrial applications are typically polycrystalline
[195]. The polycrystalline structure of graphene manifests itself as a
main problem in the band-gap engineering, since it is composed of mono-
crystalline grains that response differently to the strain, due to their
varying spatial orientation. For the most stable and controllable energy
gap, graphene samples should be monocrystalline or consist of single-
crystalline domains with identical lattice orientations. The presence of
a huge amount of grain boundaries, acting as extended line defects in
polycrystalline graphene, induces midgap electron states thereby im-
pedes the emergence of a gap. This could be one of the reasons why the
attempts to observe a tensile- or shear-strain-induced spectral gap in the
polycrystalline graphene samples (CVD-grown on a copper substrate)
[89, 90] were not crowned with success. In addition to that, the gap
might not be observable due to several other reasons. Although tensile
strain of polycrystalline graphene was large, 22.5% [89], it was not suf-
ficient for band (and hence transport) gap opening as long as the zigzag
stretching was not in excess of 23% . Moreover, the directional sensiti-
vity becomes pointless (or even impossible) in case of different grain
orientations. Applied shear strain up to 16.7% [90] is sufficient for gap
opening according to the calculations in Ref. [91], while predictions in
Refs. [15, 193] report on rather higher threshold values of the shear
strain along both armchair and zigzag directions (Fig. 39, c).

4.3.4. Numerically Calculated as Compared
with Experimentally Measured Conductivity

Analysing the transfer characteristics of CVD graphene sample loaded
to the tensile and shear strains [89, 90], authors of Ref. [16] tried to
tailor the electron transport properties of graphene layer involved in
our computational domain. Thereto, they [16] varied the types of de-
fects and their contents such to reach as more as a possible similarity
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Fig. 42. (a) Calculated conductivity ¢ = o(E) for different values of tensile strain
along zigzag direction (Fig. 27, ¢) in graphene containing 0.005% of resonant im-
purities (51) with V, = V®!), 0.25% of long-range acting positive and negative Gaus-
sian impurities (53), 0.15% of positive Coulomb impurities (54), 0.125% of nega-
tive Coulomb impurities (54), and 50 positive—negative line defects (56). (b) Calcu-
lated [16] and experimental [89] o in the Dirac points (c,,) at different strain
values, where experimental points are extracted from experimental graphs in the
inset [89]

between the numerically calculated and experimentally obtained curves
6 = 6(E). As a result, the calculated curves in Fig. 42, a for zigzag ten-
sile strain (Fig. 27, c) exhibit several features observed in experiment
[89] (the inset in Fig. 42, b). They are: the Dirac points ¢, ;, occupy posi-
tion on the side of positive energy (gate voltage), which implies hole
doping; the o undergoes a downshift in the Dirac points; the slopes of
the curves decrease on both sides from the Dirac points, i.e. the c(E,,.,)
decreases as the ¢ increases. The apparent shift of the Dirac points ex-
tracted from Fig. 42, a) is plotted in Fig. 42, b). In contrast to the ex-
periment, there is no a pronounced and relatively slowly decrease of o
min under little tension, but faster decrease at larger strains; we at-
tribute it to the lack of the wrinkle (ripple) releasing (relaxation) effect
in our model. The linear decrease of mobility (u = c/(en,)) of electrons
(holes) with increasing stretching also occurred (see supplementary ma-
terial) in accordance with the experiment [89].

In contrast to the zigzag stretching, the zigzag and armchair shears
(Fig. 39, a, b) enhance the o (E,,.,) (Fig. 43, a, b). However, the conducti-
vity of the Dirac points (c,,,) remains practically unchanged (see also
Fig. 43, d): cases ¢, # 0 and ¢, # 0). Interestingly, for the mixed shear
(Fig. 43, f), the conductivity c(E,,), including o, exhibits nonmo-
notonic behaviour as a function of &: see Fig. 43, ¢, d). The nonmonotony
of the c(E,.,) as a function of shear strain (case ¢,, = ¢, # 0 in Fig. 43,
d) has also been revealed numerically in Ref. [193] and experimentally
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Fig. 43. (a)—(c) The same as in the previous figure, a, but for the shearing (Fig. 13,
a—c) and for 0.005% of resonant impurities (561), 0.25% of long-range positive—
negative Gaussian impurities (563), 0.25% of positive—negative Coulomb impurities
(54), 0.03% of positive Coulomb impurities (54), and 50 positive—negative line de-
fects (56). (d) Calculated [16] and experimental [90] 6, , where experimental points
are extracted from experimental graphs in the inset [90]

in Ref. [90]. However, the behaviour of the nonmonotony curves ¢, =
= o(¢) is different. Numerical findings [193] and our calculated results
in Fig. 43, d) predict an increase of o and followed decrease when the
mixed shear approaches the values close to the threshold one at which
the band gap starts to open. The band gap was not observed in the ex-
periment [90]. This is not only because of the significant effect of grain
boundaries, as authors [90] mentioned. Another reason for the band gap
absent [90] may be attributed to the shearing along either zigzag or
armchair graphene-lattice edge (as Fig. 1, b in Ref. [90] demonstrates).
In contrast, the band gap opens only at the simultaneous shearing along
both (zigzag + armchair) directions (mixed shear in Fig. 39, c¢) as re-
ported in Refs. [15, 193].
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5. Magnetic-Field-Driven Electronic Properties
of Graphene: Effect of Strain and Defects

Among known and currently in use different ways for inducing goal-
directed effects in electronic and transport properties of graphene, the
application of a magnetic field is extremely useful for addressing its
fundamental properties as it provides an external and adjustable param-
eter which drastically modifies graphene’s electronic band structure
[196, 197]. Whereas even large parallel magnetic field does not affect
the transport properties of graphene [198], perpendicular magnetic field
results to formation of non-equidistant Landau levels (LLs) in the en-
ergy spectrum, including zero-energy Landau level (LL) at the Dirac
point, which caused some unique physical properties, for instance the
anomalous integer quantum Hall effect and a finite conductivity at the
Dirac point [199, 200].

This section deals with numerical study of responses of uniaxial
tensile strain and point or line defects in magnetoelectronic properties
of graphene exposed to the perpendicular magnetic field, particularly in
the LLs spectrum observed in the calculated densities of electronic
states. Such a study is also motivated by the restricted information in
the literature about computational details and parameters used in mod-
elling of graphene electronic properties [163, 201]. These computational
parameters can play an important role during the computation proce-
dure, especially if they implicitly defined in commonly used different
computational packages, like Quantum Espresso, as in Ref. [201].

5.1. Analytical vs. Numerical Findings for Perfect Monolayer

In the presence of an external vector potential A applied to the graph-
ene layer, the hopping integrals undergo replacement in accordance with
a standard Peierls substitution method [149, 163, 202, 203]:

.’" 2n %
U . = Uexp {ze'][ Adl] = u,exp {LEO_[AdIJ; (58)

here, i is an imaginary unit, J” Adl is a line integral of the vector po-
]

tential from j to j' nearest-neighbouring sites, and magnetic flux quan-
tum @, = h/e is a combination of the fundamental physical constants. In
the Landau gauge condition for a perpendicular magnetic field B = (0,
0, B) as shown in Fig. 44, a, where x and y Cartesian axes are specified
along the zigzag and armchair edges, respectively (see also Fig. 27, b,
¢), the vector potential reads as A = (-By, 0, 0). Then, applying the fun-
damental theorem of calculus (Newton—Leibniz formula), the hopping
parameters for nearest-neighbouring j and j' sites become
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Fig. 44. Graphene lattice in the perpendicular magnetic field B (a) resulting in
the Landau levels on the DOS (in units of reciprocal hopping integral 1/u)) as a
function of energy E (in units of u,) for different values of the uniform field
B € [0, 200] T (b) [212]

e. e | 3 a’
W, = Uyexp (E l¢j,j'J = UyeXp {;{173(%11 t Zﬂ}’ (59)

where sign ‘+’ or ‘-’ depends on whether m and n, — numbers of j and
j' sites along x and y directions designated in Figs. 44, a and 27, b, ¢, —
are even or odd. It is convenient to express y in Eq. (569) in units of the
lattice parameter a.

It is known from the theoretical quantum-mechanical predictions
that magnetic field, applied perpendicularly to the graphene plane, re-
sults to the quantization of electron energy into LLs with an electron—
hole energy spectrum that reads as [64, 149, 204—-207]

E, = E, + ho,\|n | = E, + sgn(n)/2ehv’B | n | (60)

Table 15. Analytically obtained and numerically calculated electron

energy spectrum, E, (n = 0, £1, +2, +3), at different values of magnetic field,
B < [25, 200] T, perpendicular to graphene plane [212].

Analytical E, are extracted from Eq. (60)

B, T Method E,, E,=+1,eV | E,=+2,eV | E,=%3,eV
25 analytical 0 0.18 0.26 0.31
numerical 0 0.14 0.22 0.26
50 analytical 0 0.26 0.36 0.44
numerical 0 0.23 0.32 0.40
100 analytical 0 0.36 0.51 0.62
numerical 0 0.33 0.46 0.60
200 analytical 0 0.51 0.72 0.88
numerical 0 0.46 0.66 0.81
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with a field-independent energy E, in the Dirac point, cyclotron fre-
quency , = v,+/2eB/h , the Fermi (electron) velocity v, = 10® m/s [64],
and the quantum number n = 0, £ 1, £2, ... represents an integer LL
index being positive (n > 0) for electrons and negative (n < 0) for holes.
The non-equal (« \/E) distances between LLs in graphite were reported
in the middle of the last century [208] (see also Ref. [209]). The non-
equidistant LLs spectrum (60) for zero-mass carriers in graphene grown
on silicon carbide was firstly experimentally observed in Ref. [210] via
the scanning tunnelling spectroscopy. The sublinear (o \/E) dependen-
ce (60) for graphene differs from the typical linear dependence of the
LLs energy on both quantization integer n and magnetic field B for
an ordinary conductors (normal metals and 2D electron gases): E, «
o« (n+1/2)B[211].

Before proceed to graphene with disorders, in order to validate nu-
merical model, it is reasonably initially consider pristine (i.e., defectless
and unstrained) graphene monolayer subjected to the perpendicular
magnetic field [212]. Observed Landau levels on the numerically calcu-
lated DOS curves in Fig. 44, b [212] confirm nonuniform (non-equidis-
tant) distribution of the LLs (the non-equidistance is due to the fact
that charge carriers behave themselves in graphene as massless particles
and their velocity does not depend on their energy). Electron energy
spectrum (E,) values for different magnitudes of perpendicular mag-
netic field (25 T < B < 200 T) are contained in Table 15. Numerically
calculated values of E, adequately agree with those obtained analyti-
cally from Eq. (60).

For clarity’s sake, we pay attention to importance of some computa-
tional parameters, which usually are hidden from readers but strongly
affect DOS curves including positions and width of LLs. Since thickness
of the LLs is extremely small, unusually narrow energy step is needed
for LLs to be observed on the curves. The size of computational domain,
i.e., honeycomb lattice, causes not only significant modification of the
DOS, but also plays a crucial role in the observation of LLs in a compu-
ter experiment at hand. In case of a relatively small size of the lattice,
e.g., smaller than half of million of sites (atoms), the LLs are found to
be not clearly observed even for magnetic fields up to 50 T, which are
close to those maximal attainable in experiment [213]. LLs tend to be
more distinguished and pronounced with the larger lattice size as com-
pared with smaller one. In case of the restricted computational efforts
for providing calculations on the honeycomb samples containing several
millions of atoms, the higher magnetic fields have to be applied for LLs
to be clearly observed on the DOS curves like those in Fig. 44, b. There-
fore, having sufficient (for adequate modelling) computational domain
(1700%x 1000 lattice sites), but not quite enough for LLs be clearly ob-
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Fig. 45. Mutual action of mechanical and magnetic fields on the DOS of graphene,
where a — the fixed magnetic field B = 50 T with different armchair or zigzag ten-
sile strains (0 < ¢ < 27.5%), b — the fixed zigzag strain ¢ = 27.5% with different
values of magnetic field (0 < B < 200 T) [212]

served at the small magnetic fields, we enhanced maximal value for B
up to 200 T, which is nevertheless two times lower as compared with
magnetic fields considered in other numerical simulations [214] for
much smaller samples.

Another important computational parameter is so-called smoothing
coefficient ¢, which enters into the master expression for the total den-
sity of states (in detail, see appendix in Ref. [156]): p(E) = Zf" p,(E) =
= —(1/n) X" Im G, (E + ic) , where p(E) is a local DOS (at the i-th site), G,
denotes diagonal elements of the Green’s function, the summation is
carried over all honeycomb-lattice sites N. Typical value of this coef-
ficient in the calculations without an external magnetic field presen-ce
(see, e.g., Refs. [79, 112, 156, 179, 180]) was selected as ¢ = 0.05. How-
ever, in case of an external magnetic field impact, ¢ should be several
times smaller (¢ < 0.01) so that the LLs be pronouncedly observed on the
DOS curves. Therefore DOS curves in Ref. [212] were calculated for
smoothing coefficient ¢ = 0.01.

5.2, Shifting of Landau Levels due to Tensile Deformation

Densities of electronic states in (defect-free) graphene simultaneously
subjected to the perpendicular magnetic field B and uniaxial tensile
strain ¢ are presented in Fig. 45, where B (¢) is fixed (varied) in the
figure left (a) and varied (fixed) in the figure right (b). To detect the
uniaxial strain effect, Fig. 45, a contains calculated DOS curves in a wide
range of relative uniaxial tension ¢ € [10%,27.5%] along both arm-
chair- and zigzag-edge directions in comparison with DOS for unstrained
graphene (¢ = 0) under the same magnetic field B = 50 T. As seen from
Fig. 45, a, the energy spectrum remains sensitive to the direction of the
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stretching as it was revealed in the absence of an external magnetic
field [86—88, 96, 97, 100, 104]. The strain along armchair direction
causes enhancement in the density of states, while zigzag-type strain
results to decrease in DOS. If zigzag strain reaches threshold values of
e > 20%, the band gap opens and remains more pronounced and even
wider than it was revealed in Ref. [104] in the absence of magnetic field
B. Importantly to stress that this effect (of the band-gap intensifica-
tion) manifests itself as stronger as the value of B is higher: Fig. 45, b.

In Figure 45, a, one can see the displacement of all (except n = 0 LL)
LLs with respect to their positions for the unstrained graphene under
the same magnetic field. Independently on direction of the uniaxial ten-
sion, the LLs get shifting towards the Dirac point and thus the distance
between them decreases. Such a contraction of the LLs was also revealed
(within the framework of a geometrical approach) in [201] for uniaxial
strains in the smaller range of ¢ < 20%, where authors explain the LLs
spacing reduction by the strain-affected Fermi velocity v, = 10% m/s,
which is isotropic for the pristine (unstrained) graphene, while becomes
anisotropic for the strained one. Such a statement agrees with numerical
findings in [188], where the anisotropy of electron mobility and trans-
port was detected in the uniaxially strained doped graphene. Stain-in-
duced contraction of the LLs spectrum indicates decrease of the quan-
tized electron energy E,. This can be understandable from the following
considerations [201]. The uniaxial tension affects a mean radius of the
circular electron motion in magnetic field, making the radius and there-
fore period larger and hence cyclotron frequency o, smaller, which results
to decrease of the cyclotron orbit energies E, « o, according to Eq. 60.
From this point of view, in case of compression of graphene, the displace-
ment of the energy levels (LLs) positions away from the zero (n = 0) LL,
i.e., increase in the distance between them, is expected [201].

5.3. Smearing and Suppression of Energy Levels
by the Point and Line Defects

In case of the d-like (51) and Gaussian-shaped (53) scattering potentials,
their total distributions in Fig. 46, a, b actually visualize distributions
of randomly positioned impurities (scattering centres), while their posi-
tions are expectedly smeared for both the alternating-sign (V' 2 0) and
the constant-sign (V' > 0) long-range (Coulomb) potentials (54) as
shown in Fig. 47, a, b. Our numerical calculations reproduce the LLs
positions for pure graphene: see solid curves in Figs. 46, ¢ and 47, d.
Such curves can be also obtained from Eq. (60) appropriable for defect-
free graphene.

The presence of different sources (kinds) of disorders affects the
LLs profiles: Figs. 46, ¢, d and 47, c, d indicate that increase in degree
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Fig. 46. (a, b) Scattering potential distributions (for representative impurity con-
tent of 0.1%) and (¢, d) and DOS for different concentrations of the (a, c) strongly
short-range (51) and (b, d) the Gaussian (53) scatterers in graphene under perpen-
dicular magnetic field B = 50 T [212]

of disorder reduces the LLs peak amplitudes, makes peaks broader and
thereby smears them. However, besides the obvious concentration de-
pendence, such an effect depends on the amplitude (maximal potential
height) of the scattering potential and especially on its effective range,
i.e., whether impurities manifest themselves as short- or long-range
scatterers. Effects of the smearing and suppressing are stronger for the
Gaussian scattering potential (with effective potential radius & = 5a,) as
compared with the on-site 6-like potential, and much more stronger for
the Coulomb potential, which is much more long-range (oc 1/r). Since
the Coulomb potential (54) is the most long-range among those (51)—(56)
we consider here, the DOS curves in Fig. 47, d are much more shifted
from the neutrality (Dirac) point to the positive-energy (electron) side
as compared with DOS in Fig. 46, d: cf. curves in these figures for the
same (0.1% ) concentration of positively charged Gaussian and Coulomb
impurities. Such a shifting, however, to the negative-energy (hole) side,
would appear for the negatively charged Coulomb impurities. That is
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Fig. 47. (a, b) Scattering-potential distributions and (¢, d) density of states for (a,
¢) alternating (V 2 0) or (b, d) strictly positive (VV > 0) Coulomb potential (54) simu-
lating point impurities (scatterers) in graphene under perpendicular magnetic field
B =50 T [212]. Scattering potential patterns (a, b) are represented for 0.1% (a) and
0.01% (b) of impurities

why, for better visualization of the curves, the Coulomb-impurity con-
centrations in Fig. 47, ¢, d are chosen to be smaller as compared to those
in Fig. 46, c, d.

Though, in whole, the DOS curves in Fig. 46, ¢ are comparatively
lesser altered by defects, one can see the onset of the zero-energy LL
splitting into two peaks at a certain concentration of the short-range
impurities. Such a splitting was also numerically revealed for resonant
(hydrogen) impurities [149], epoxy (O) defects [206], and some other
model sources of disorder [214, 215]. The peak at the Dirac point is at-
tributed to original n = 0-th LL, whereas another peak indicates forma-
tion of the impurity band: resonant impurities hybridize with C atoms
and form their own midgap states [149]. The latter peak is shifted from
the E = 0 point due to the positive on-site energy in Eq. (51). Similar
peak is also attributable in case of vacancies with the difference that is
not shifted but located at a neutrality point thereby contributes to the
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Fig. 48. The same as in the previous figure, but for the scattering potential (56)
simulating the charged extended (linear-acting) defects (scatterers) [212]. The repre-
sentative number of lines for both scattering potential maps (a, b) is 50

n = 0 LL such that the latter is robust with respect to the increasing of
the vacancy concentration [149].

Among currently known results on the impact of different kinds of
disorder on the LLs in graphene, until recently, there was no one dealing
with the extended defects. Thus, the findings in Fig. 48 [212] could not be
compared with any other ones (neither theoretical nor experimental results)
due to their absence (at least until that time) in the physical literature.

Lorentzian function (56) is a long-range by definition; however, its
effective range (o< 1/r?) is shorter as compared to that (oc 1/r) for the
Coulomb potential (11). Spatial distribution of alternation (positive—
negative, V 2 0) or constant-sign (strictly positive, V' > 0) scattering
potential (566) actually reflects positions of the line defects, which are
charged either positively and negatively (Fig. 48, a) or positively only
(Fig. 48, b). As well as the point-like defects, the line ones do not change
positions of LLs but also smear and suppress them independently on
sign of the scattering potential (56) as Fig. 48, ¢, d clearly indicates.
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The distinction between the point and line defects concerns only the
positively charged Coulomb impurities and line defects: in case of the
one-dimensional scatterers, there no such a shifting of the Fermi level
and reduced zero-energy LL as for the Coulomb impurities; cf. Fig. 47,
d with Fig. 48, d.

In conclusion of this section note that a renewed theory of the elec-
tron gas in a magnetic field was relatively recently suggested in Ref.
[216], where the author insistently believes that the LLs spectrum (as a
result of mathematical mistake) contradicts to the mathematical theo-
rems on the eigenvalues of the Schrodinger equation with a zero bound-
ary condition.

6. Summary and Conclusions

I. As follows from the reviewed literature and the authors’ research
experience, the problem of computational studying the factors affecting
the electronic properties of 2D materials turns into a number of tasks
have to be solved to achieve the assigned goals. Adequate atomic models
are required, within the framework of which the scenarios of a compu-
tational experiment have to be developed for providing the relevant
data array to determine the functional effects. The method of electron
density functional and pseudo-potential from the first principles act as
a powerful tool in this respect, as indicate both the independent litera-
ture data and own findings of the authors. The analysis of the exhibited
(in sections 2 and 3) results made it possible to conclude the following.

e The combination of non-functionalized and functionalized areas
of graphene according to a pre-planned pattern in one structure gives
controlled changes in electronic properties.

e There is a redistribution of electric charge in the plane of the
combined C/CH and C/CF graphene-like structures as well as in the
black phosphorene monolayer functionalized with carbamide molecules
with the formation of regions of different sign.

e The fluorination process as a functionalization effect causes re-
distribution of electric charge between certain sections of the combined
C/CFH structures with different concentrations of fluorine atoms.

e The impact of static pressure on the combined C/CH structure
leads to the rearrangement of the electron density in the direction of the
covalent C—H bonds, which causes a change of the electron band gap
width. The bending deformation as a functionalization effect leads to an
increase of the charge difference in the combined bent C/CH, C/CF, C/
CCl structures and to an increase in the width of the band gap as com-
pared to the undeformed ones.

e The band gap of the black phosphorene monolayer depends non-
monotonically on the adsorption distance of carbamide molecules, which
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affects its conductivity that can be tuned through controlling the lo-
calization of adsorbed molecules.

II. Among a series of numerical methods reported in the literature
on the studying the electronic and transport properties of single- and
multi-layer graphene the time-dependent real-space Kubo—Greenwood
formalism is reasonably efficient whereas effortful for the implementa-
tion. Such a numerical experiment has a linear dependence of computa-
tional capabilities on the size of a system, therefore has an advantage
over some other methods on investigation of realistically large graphene
sheets containing millions of atoms. The uniform elastic tensile and
shear deformations as well as perpendicular magnetic field are intro-
duced by means of the corresponding modifications of hopping terms in
the Hamiltonian matrix due to the strain-induced changes in the bond
lengths and presence of an external vector potential generating the
magnetic field. Different point and line defects are included via various
on-site scattering potentials appropriate for modelling (un)charged im-
purity (ad)atoms and extended defects in epitaxial or polycrystalline
graphene. Summarizing results interpreted (in sections 4 and 5) within
the framework of such a developed methodology, we can conclude as
bellow.

e Density of electronic states in the defect-free graphene is sen-
sitive to the strain axis: the stretching along armchair- or zigzag-ed-
ge directions result to enhancement or reduction of density of states,
respectively, which can be used to affect the competing phenomena
associated with a tensile strain and its direction specifically. The band
gap opening depends on direction of tensile strain. The presence of
randomly distributed point defects does not avoid the minimum thres-
hold zigzag deformations needed for the band-gap formation. Increase
in point-defect concentrations acts against the band-gap opening for
all defects considered herein, but their impact is different. However,
spatially ordered impurities contribute to the band gap manifesta-
tion and can reopen the gap that is normally suppressed by the ran-
domly positioned dopants. Band gap varies non-monotonically with
strain when zigzag deformation and impurity ordering act simulta-
neously.

e For random adatomic distribution on hollow (H), bridge (B), or
top (T) sites, the conductivity ¢ depends on their type; if adatoms are
correlated, o is dependent on whether they act as interstitial or substi-
tutional atoms; and finally if adatoms form ordered superlattices with
equal periods, o is practically independent on the adsorption type:
ol >0l >cl,, of ~o- >o , and o, ~o., ~o.,, respectively.
The conductivity for correlated and ordered adatoms is found to be en-
hanced in dozens of times as compared to the cases of their random
positions. Effect of correlation or ordering becomes more apparent for
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adsorbed atoms, which act as substitutional atoms, and weaker for those
act as interstitial atoms.

e The calculation of a large set of electronic densities of states (con-
sisting of assemblage of hundreds of DOS curves) enabled to extract
information on the bulk spectral gap (if any) and to construct the strain-
dependent band-gap maps in a wide range of the deformation tensor
parameters (up to 26%, i.e. close to the predicted graphene failure limit).
Among the obtained results, there are those agree with other theoretical
ones for the fixed values of the tensor parameters. However, major part
of the calculated results is obtained for the first time, and therefore
even cannot be compared with other ones due to their unavailability in
the literature. Constructed band-gap maps, covering all possible ranges
of the most efficient types of deformations, act as a road map for the
strain-induced band gap in graphene, thereby make this work stand out
and novel.

e The emergence of a band-gap depends not only on the stress type
and rate, but also on the direction of the applied strain. A directional
sensitivity is found to be characteristic for both tensile and shear strains
as well as for their combination. Besides directional sensitivity, another
fingerprint of the strains examined here is its criticality: the gap open-
ing requires a threshold deformation independently of its type (stret-
ching or shearing). Shear deformation along both armchair and zigzag
directions, which we referred as a mixed shear strain, can induce a band
gap of up to ~4 eV. Combinations of the uniaxial strain along a pre-
ferred (armchair) direction with mixed shear deformation is found to be
the most effective for obtaining extra-large gap values: up to ~6 eV.
Both values for strained graphene exceed those of silicon — the most
used semi-conductor for devices and integrated circuits.

e The presence of defects can ‘transform’ the transport (band) gap
into the quasi-gap. Strong sensitivity of the strain effects to the direc-
tion and ratio of the deformation requires both the strict values and
direction of the shear or tensile strain to be kept in an experiment in
order to observe the predicted band gap opening. Revised and analysed
findings suggest a promising strategy of the combined effect of strains
and defects for tailoring electronic and transport properties of graphene
and beyond 2D materials.

e If a perpendicular magnetic field is applied uniformly to graph-
ene layer, the non-equidistant Landau levels are observed in its energy
spectrum. The energy Landau levels are not sensitive to the stretching
direction: they undergo the displacement towards the non-shiftable
zero-energy level. Therefore, the Landau levels get contraction as the
uniaxial strain is applied for any of two considered here orthogonally
related directions: along armchair and zigzag honeycomb-lattice edges.
Concurrent impacts of the perpendicular magnetic field and zigzag
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strain in graphene contribute to the band gap in its energy spectrum:
the gap becomes more pronounced and even wider in comparison to that
appears due to the zigzag deformation only when there is no any exter-
nal magnetic field. Both point and extended defects reduces peaks of the
Landau levels, broadens, smears and can even suppress the levels de-
pending on a degree of disorders, their strength, and especially effec-
tive ranges. The splitting of a zero-energy Landau level for some sourc-
es of disorder in graphene is observable in the numerical findings for
the strongly short-range-acting defects. One peak at a neutrality point
is attributed to the original zero-energy Landau level, whereas another
one indicates formation of the impurity band due to the hybridization
of resonant impurities with carbon atoms.
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DOYHRKIIOHAJIISAIIIA KBASUIBOBUMIPHNX MATEPIAJIIB:
XIMIYHE TA CITPUYMHEHE JE®OPMANIAMN MOOUPIKYBAHHSA

Cepen cimelicTBa Hapasi BimoMuX IepCIEKTHMBHUX KBasuABOBuUMipHux (2D) marepia-
JIiB aBTOPU OIVISY 30CEPem:KyIOThCS Ha MUTaHHI (PYyHKIiOHAIi3allil CTPYKTyp Ha rpa-
denosiit i ¢ochopenoBiii ocHoBax. Y OinbIIOCTi BUHAAKIB MOAU(MIKYBaHHA IXHIX
BJIACTUBOCTEN BifI0OYBAEThCA Uepes KOBaJIEHTHY ab0 HEKOBAaJIEHTHY (DYHKIlioHAaJIi3allito
MOBEPXOHb i MexaHiuHi BIInBU. AHAII3YIOThCSI aTOMapPHI CTPYKTYPH Ta AedAKi (pisuko-
ximiuHi ocobamBocTi 2D-marepianiB, AKi MalOTh HOBiTHI BJIACTHMBOCTI IMOpPiBHAHO 3i
cBoiMu o0’emHuME aHasoramu. Cepen IXHiX mmepeBar OCHOBHUMU €: TOBII[UHA B OJUH
a0 KijTbKa aTOMiB, BiICyTHICTH 06ipBaHUX ITOBEPXHEBUX 3B’A3KiB, BUCOKA PYXJIUBICTH
HOCiiB 3apAay, THYYKiCTh, 3JaTHICTh MITYYHOTO MOEJHAHHSA ¥ KOMILJIaHaPHI (JaTepasib-
Hi) UM TO JIaMeJsAPHiI reTEPOCTPYKTYPH, a TAKOK MOYKJIUBICTH IIUPOKOTO MaHiITyJIio-
BaHHA 3a00POHEHOI0 30HOIO, 3MiHIOIOUM 3a IOTPeOM CTaH BiJ HANiBIPOBiJHUKOBOI'O
a)k 0 HamiBMeTaJiyHOro (UM HaBIaKu). 3aJid BUABJIEHHS HOBUX UMHHUKIB BILIUBY
Ha eJIEKTPOHHI Ta TpaHCHOPTHI BiacTuBOCTiI 2D-MaTepiaiB MIJIAXOM 00YMCIIOBATIBHO-
ro eKCIIEPUMEHTY 3 BUKOPUCTAHHAM aBTOPCHKOI'O (BJIACHOPYY CTBOPEHOTI'0) IIPOrpaM-
HOTO KoAy OyJIO IPOBEeIEHO HUBKY AOCJIiJKeHb — PO3PaXOBAaHO IIPOCTOPOBI POBIOLiIN
I'YCTUHU BaJIECHTHUX €JEeKTPOHIB, I'YCTUHU €JeKTPOHHUX CTaHiB, MIUPUHU 3a00pOHE-
HUX 30H, KyJI0HOBI moTeHIianiu y340oB/K OOpaHUX HANPAMKIB, 3HAUEHHS 3apALiB Yy
obsacTAX pisHOro posMmipy marepiany, mieJeKTpUYHI MATPUIL, MAKPOCKOIiuHI Bif-
HOCHIi IIPOHMKHOCTI Ta CIeKTPU moranHauHsa. OrIsamaeTbesa cepis HellogaBHiX TOCTif-
JKeHb, SIKi aBTOPU IIPOBEJNIU, MOJENIOIYU eJIEKTPOHHI Ta TPaAHCIOPTHiI BJIACTUBOCTL
O HO- Ta 6araTomapoBuX rpad)eHOBUX ILIiBOK, IO MiCTATH pisHOro TUIy (TOYKOBI Ta/
uy TO JiHi#HI) medekTH, mig BuauBoM Aedopmarliiinux abo/i marmiTHux mosis. Ha
OiATPYHTI aHANMi3y ofep:KaHUX Pe3yJabTaTiB i BUABIEHUX e(eKTiB CTBEPAIKYETHCA, 10
onHOBicHI medopmarlrii po3Tary um To 3cyBy Ta ixHi KoMbiHaIlii, a TaK0OK CTPYKTYpHI
HEeIOCKOHAJIOCTi (TOJIOBHUM YWHOM, B3a€EMHO KOHQIrypoBaHi medeKTu) MOXKYTH OyTHU
KOPUCHUMHU IJisl HOCATHEHHS HOBOTO PiBHA (pyHKIioHadisarii rpadeHoBux MmaTepia-
JIiB, a caMe, IJaA MOAU(IKYBaHHA IXHIX eJIEKTPOTPAHCIOPTHUX BJIACTUBOCTEN PEr'yJIo-
BaHHAM ITUPUHU 3a00POHEHOI 30HM B TAKOMY iHTepBaJIi, 100 YMOKJIUBUTHU IEPETBO-
peHHA TpadeHOBOTO HAMIBMETAJiYHOTO CTAHY 3 HYJHOBOI 3a00POHEHOI0 30HOIO Y
rpadeHOBUII HANiBIPOBIAHUKOBUII CTAaH i HABITH CATHYTHU 3HAUEHb €HEPTeTUYHOI IITi-
JIUHU, AKi 0 iCTOTHO mepeBUINyBaJH i1 3HAUEHHSA IJIS AeAKUX MaTepiaiB (BKIOUAIOUN
cuiiniit), mo Hapasdi IIMPOKO BUKOPUCTOBYIOTHCSA Yy HAHOEJEKTPOHHUX IPUCTPOAX.
CopuunHeHi gedopMmarisMu Ta gAedeKTaMu eJIeKTPOHHO-IipKOBa acUMeTpia i aHiso-
TpOWis MPOBiAHOCTI Ta i1 HEMOHOTOHHICTE AK (PYHKIIiI HedopMallii BCelA0Th MEBHICTH
Yy HepCHeKTUBi MaHIIyJIIOBAHHA €JIeKTPOTPAHCIOPTHUMU BJIACTUBOCTAMU IpadeHOoIIo-
nioHuMxX Ta iHmMX KBasu-2D-marepianiB uepes pisHomMaHiTTA AK medopmariii, Tak i
KoH(piryparii pisHoro Tuny aedekTiB. BukopucranHa oTJIAHYTHX 1 TpoaHAIi30BaHUX
pe3yabpTaTiB cayryBaTUMe IOMITHUM KPOKOM Y IIOJIIIIIIIEHHI BJIACTUBOCTEN PO3TJIALY-
BaHUX MaTepiayiB 3aaja peasizarii 6araTopyHKIIiOHAJIBHUX 3aCTOCYBaHBb iX y Haii-
OJIMIKUill TTepPCIIeKTHUBI.

Karouosi cioBa: nBoBuMipHi MaTepianu, ToukoBi Ta JdiHilHI gedexTu, rpaden, docdo-
peH, eJIeKTPOHHA CTPYKTYpa, eJIeKTPOTPAHCIOPTHI BJIACTHUBOCTi, TeOpid (pyHKIioHATY
TYCTUHU, IICEBIOTOTEHITIaN 13 IePIINX IPUHIINIIIB, CTPEHHTPOHIKA, 3a00pOoHEHa 30HA.
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