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A NEW METHOD FOR SYMMETRY RECOGNITION
IN BOOLEAN FUNCTIONS BASED ON THE SET-THEORETICAL

LOGIC DIFFERENTIATION. I

The paper presents a new method for the recognition of the different types of total and partial symmetry in boolean functions based
on the numeric set-theoretical differentiation. The proposed algorithm is based on the theorem on the recognition of different
types of partial symmetry. This algorithm, compared to the known, has a relatively less computational complexity of realization
due to a comparatively smaller number of operations and procedures necessary for the accomplishment of the given task. This is
proved by the presented examples for the recognition of the proposed method of the different types of symmetry in complete and
incomplete of Boolean functions, including given in the SOP format, taken for comparison reasons from publications of the well-

known authors.
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Introduction

It is known [1—3] that an arbitrary boolean func-
tion is called symmetric if it does not change its
value with any permutations of variables. Such
property of symmetric functions, in comparison to
others, gives a logical synthesis of digital functions
that reveal various optimization problems in the
process of designing digital devices. On the basis of
symmetric functions it is much easier and cheaper
(with a lower total number of components) to im-
plement such devices as adders, code-converters,
comparators, error-detecting devices, noise-resis-
tant decoders etc. [3,4]. Symmetric functions are
also effective in cryptography due to relatively less
demanding storage requirements for large data sets
[5—7]. Therefore, the searching for simple relative-
ly realistic methods for recognizing of the different
types of symmetry, as well as of functions of a par-
tial symmertry, still remains actual.

The common feature of known methods and
algorithms for identifying of the types of symmet-

ric functions in boolean functions is the comple-
xity of implementation. It is due to the fact that
the basis of the known methods for recognizing of
the types of symmetry is the analytical approach
based on the Shannon expansion theorem [2,3,8]
or a visual method based on the K-map [9,10].
Other known methods, such as the method of de-
composition cloning on the basis of the g-partition
conjuncterms procedure, in particular the BRASh
algorithm [11], or a method based on the analyti-
cal calculation of logical derivatives, in particular
the BOOLE algorithm (available over the Internet)
[12,13]. These methods are somewhat simpler than
mentioned, but require a preconversion of a given
function. However, this problem is much more
complicated in the case of large-size functions and,
especially, when such functions are not completely
determined, but only partially [9,14].

In this paper we consider a new method for
the recognition of symmetry in complete and in-
complete functions on the basis of the author's
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proposed numerical set-theoretical definition of
logical derivatives [15]. Compared with known
methods, the proposed method algorithm differs
by simpler practical implementation of the number
of steps and the speed of detection and recognition
of types of total and partial symmetries in complete
and incomplete boolean functions and, as well as
in the functions specified in SOP format, which is
confirmed by numerous examples, borrowed from
the publications of well-known authors.

The basic theoretical part

Types of symmetries in boolean functions are di-
vided into two groups [1,2]: totally symmetric
functions, if their values do not depend on any
permutations of all »n variables, and partially sym-
metric functions, if their values do not change due
to permutations of some (but not all) variables.
For example, f(x,,x,,x;)=XXX, vxx,x, is a to-
tally symmetric function, since any permutations
(or re-indexing) of all its variables do not change
its values. Instead, f'(x,,x,,x;) = x,x, Vv X, it is a par-
tially symmetric function relative to the variables
x; and x, because the reindexing of these variables
does not change the value of this function.

Among the totally symmetric functions dis-
tinguish the functions with a simple symmetry
of n variables that are conventionally denoted as
X, ~Xx,~--~Xx, and X, ~X, ~---~X, (where the til-
de sign ~ is a symbol of symmetry), and functions
with polysymmetry of n variables that are conven-
tionally designatedasx, ~X, ~---~ X ,X € {x,x}. For
example, the above total symmetric function has a
simple symmetry x, ~ x, ~ x, /X, ~ X, ~ X;, since in-
verting its variables does not affect the value of the
function. In the case of polysymmetric functions,
symmetry may be between inverse and non-inverse
values of variables. These include linear functions:
EXCLUSIVE OR x,®@x, ®@...®x,, where @ is the
symbol of the module 2 sum operation, and also EX-
CLUSIVENORYX, = x, =--- =~ x,, where isthesym-
bol of the inversion module 2 sum operation. In par-
ticular, x, ® x, @ x; = X,X,X; VX, X,X; V X, X,X; V XX, X,
and x, = x, = x, = X,X,X; V x1x2x3 \Y x1x2x3 V XX, X, are
polysymmetric functions X, ~ X, ~ X,.

The symmetric functions of » variables with a
simple symmetry denote as S, . (X,%,,...,%,)

,,,,,,

or S ..., (X) either 57, where K =ik, ky,....k,},

k; €10,1,...,n} 1< p<n+1 is the set of so-called
k-numbers, which are equal to the weights (by the
number 1) of sets of variables, on which S; =1. In
the set-theoretical form (STF) [16,17] the sym-
metric function Sy is sufficient to represent by the
set of numerical (binary or decimal) conjuncterms.
In the perfect STF Y' it is a set of minterms, on
which S; =1. For example, the perfect SOP of
the above symmetric function ng with simple
symmetry f =XX,X,V xx,x, has a perfect STF
Y' ={(000),(111)}', and the function given in SOP
with partial symmetry has STF Y' = {(11-),(——1)}".
The polysymmetric function S}, = x, ® x, ® x, has
a perfect STF Y' ={(001), (010) (100),(111)}', and
a polysymmetric function S;, =¥, ® x, ® x, (here
the inverse sign can be over any variable) has a per-
fect STF Y' = {(000),(011),(101),(110)}'. Among all
2" symmetric functions Sy k..., Clementary sym-
metric functions are simplest, since they have only
one k-number and denote them as S}/, 0 <k<n.

Partially symmetric functions f =(x,...,x,,...
s Xjsens X)) relative to two variables (x;,x;) retain
their values after permutation x, and x, i.e.(x,,...

s Xy X ey X,) = (X Xy Xy X, ).

Among functions with partial symmetry — simple
X~ X, /% ~X, orpolysymmetry %, ~X; theremaybe
other functlons with antisymmetry x ~X, /%
[17]. For example, the function f = x1x2x3 vx1x2x3
has a partial polysymmetry %, ~ X,, and the function
[ =xX,X, v Xx,x,, for example, in addition to par-
tial simple symmetry x, ~ x, /X, ~ X;, it has also an-
tisymmetry x, ~X, /X, ~ x, and x, ~ X, / X, ~ x;, that
it has a mixed symmetry x, ~x, ~ X, /X, ~ X, ~ X,.

An example of partial mixed symmetry may be
the function f =X, x, v (x, ® x, ® x,) that has a par-
tial polysymmetry %, ~ %, ~ %, and partial antisym-
metry x, ~ X, /X, ~ x,. Identification and recogni-
tion of mixed partial symmetries is quite difficult,
if to use any analytical methods.

The described above types of symmetries are
classified by cloning method based on the g-parti-
tion procedure of the binary minterms of function
J using the so-called maximal clones (n—2) — or
2-class [16,17]. It is shown that the type of sym-
metry in an arbitrary function f can be determined
by using only numeric (binary or decimal) values of
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fixed subminterms of maximum clones, which are
indicators of one or another type of symmetry in
relation to the variables ( X, X)) of a given function.
In this paper we compared the calculation results
of the proposed method with the decomposition
cloning method and a BRASh program [16]. Here
we demonstrate that the above-mentioned types of
symmetries in boolean functions are easier to de-
tect with the aid of a vectorial ST derivative of the
2nd order [15].

The main part

It is known [15] that the vectorial ST-derivative
of the 2-nd order with respect to arbitrary vari-
ables x; and x; of a function f(x,x,,...,x,), that
is 0°Y @/a(x,.,x_/.), is determined by overlaying on
the given binary minterms m,,m,,...,m_ of the per-
fect STF Y' the function f of two masks of literals

AR A
11"'I_,~"'l_,-"'ln ’

y { }laZ/a(x,,xj){ll...]i...[j...ln}
={m,m,,....m, = _ 2 =

1€{0,1}:

ARy A
@
m] mz mZ K ¥ T
ML) = ot o
m m, m,
where /F(:) is the operator of the vectorial

ST-differentiation with respect to the variables
x; and x, as a result for each g-th (given) min-
term  m, =(G, - ;- G0 o) formed by a min-
term m, —(cs1 “G,»+ G+ ), oe{0,1}. Their
pairs form in the polynomial STF (PSTF Y®) a set

®
m‘ , m2 s mi that can be simplified by
m, ) \m, m,

removing the same pairs of elements from it, and
then, can be minimized in the polynomial format
by the proposed method [18]. As a result, a set of
conjuncterms of ranks #,7,,...,7, € {1,2,...,n} is ob-
tained, that is {0,",0,,....0 '}, p <2z, which rep-
resents the desired vectorial ST-derivative with
respect to the variables (x;,x;). For example, the
vectorial ST-derivative 8°Y® /d(x,,x,) of the 2nd
order of the function f =xX,X; v X,x,X;, having a

perfect STF Y' ={(100),(011)}', is obtained as fol-

lows:
. 152/3(3(1»)‘2) 111213
Y ={(100),(01)} = <__";=
LLL

_J[roe) for1” 100),(010),(011),(101)}' =
=Woto 1o |1 = 1(100),(010),(011D), (10D} =

={(10-),(01-)}
which corresponds to the analytical expression
O’ f10(x,x,) = X%, VXX,
In the analytical version the vectorial derivative

o*f _S eI o’ f

- - —,
of the 2-nd order 3(x,,x,) 6x ax/. ox,0x,
where '

i:f(xlﬁ tl’ll’x1+l’ xn)C_B

Ox,

IC_B.f'('xl" b 11’0 le’ ’x)
and

0

6)]: = f (X X, 515X e, ) @

J
C—Bf(xl’ / 1’O x1+1’ 7‘x )

there are simple derivatives of the 1-nd order and
of oo | (o) . . .
o [ax/ ] oy, (ax,. it is the multiple

ox,0x,
derivative of the 2-nd order. For our function we

have:
62
o(x,,x,)

(x1x2x3 V XX, X, )= X @x,x, ®xx, @
D x,X, @l=xX, vXx,

that correspondstothe previously obtained vectorial
ST-derivarive of the 2-nd order Y' = {(10-),(01-)}".

Recognition of partial symmetries
types in complete functions

Based on the above, we formulate a theorem on the
recognition of different types of partial symmetries
in complete boolean functions.
Theorem. The boolean function f = (x,,...,x;,...
X, .,X,) given in the perfect STF Y'= {m,,m,,...
..m_}', 2 < z<2", where the g-th binary minterm
ism,=(0,0,"- q,), 6 €{0,1}, has a partial sym-
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metry with respect to any pair of variables (x;,x;)
of type

* polysymmetry, that is X, ~ X, if it satisfies the
condition

2v®
Y _4 )
o(x;,x;)

where 0°Y® / 0(x;,x,) is the vectorial ST-derivative
of the 2-nd order with respect to (x;,x;) of the func-
tion f; moreover the condition (2) is fulfilled only
for a pair of minterms of the complete function f;
* simple symmetry, that is x; ~x; orX, ~ X, if it
satisfies the condition
52Y®

a(x;,x;) a {(_, B L R X
(_] el _f+1"'_j—10 j_j+1m_")}: 9, Q)
where (_1 _,'7101' il T T 1 joje _n) and
(_1 ! A = 0 i ..._n) are ternary

conjuncterms of the 2-nd rank;
* antisymmetry, that is x, ~ X, or X, ~ x, , if'it sa-
tisfies the condition

8(x,.,x/) M {(_1 "'_i—loi T T A 0 o+ “._n)’
(_1 i—lli il T 1 J T+ "'_n)}:® (4)
where (_, =0 =i T Oj e =) and

(= =l — 1, = --—,) are ternary con-
juncterms of the 2-nd rank.

Proof. The theorem is based on the numerical
set-theoretical interpretation of the orthogona-
lity condition Y® ~Y® =, corresponding to the
analytic expression (x, ® x,) & (x, ® x;) =0, where
the logic operation of the conjunction (&) is re-
flected by the set-theoretical intersection operation
(M), the expression (x, ® x;) — by PSTF Y, the
expression (x, ®x;) — by PSTF Y ¢, and zero (0) is
empty set (). In the analytic format for function

S =X X500, X500, X,) the conditions (2), (3), (4)
look like this: & f
— =0, ®)]
o(x;,x;)
2 —
of &(x, ®x.)=0, (6)
o(x;,x;) /
o f
&(x, ®x,)=0, 7
a(xiv-xj) (XI xj) ( )

82

where ﬁ is the vectorial derivative of the

X, X,
2-nd order with respect to variables (x;,x,) of the
function f. ‘

Let it /' =x @x,. Then, the vectorial derivative
of the 2-nd order 0°f /a(x,.,xj) will be defined as
follows:

o*(x, ®x;) _ o(x, @ x;) ® o(x, ®x;) o
a(xiaxj) axi axj
® 0 (x, ®x )
ox,0x,
and, the vectorial ST-derivative 0°Y ®/6(xi,xj) of
the PSTF Y® ={(-1),(1-)}* = {(01),(10)}*® will be
defined as:

| e (L) ((op) (10)]°
Y ={0D,10)} = T —{w( 1} =

The same result is obtained for / =x, ®x; ha-
ving perfect PSTF Y® ={(00),(11)}®. The partial
polysymmetry X, ~ X, is illustrated by the example
of the function f(x,,x,,x;) =xX,X, v X,X,x, having
perfect STF Y' = {(100),(001)}". Let us define vec-
torial ST-derivatives of the 2-order with respect
to (x,,x,), (x,,x;) and (x,,x,) of this function and,
then we verify the conditions (2), (3) and (4) of the

theorem: l az/g(xl,xz) 111213 100 001 ?
O ’ A
1L Loto) i

(01-),(10-) = {(100),(010)} # &
™ 00-), (11=) = {(001), (11 1)} = &’

o (LLL) (108 (0]
Y = {7 t= , =0,
N 01 )’ 00
o (L) ((100Y (001)]°
Y = = ) M
1L~ LS Loto

m{(—01),(—10) ={(001),(010)} =&
(=00),(-11) ={100),(111)} S
Since only the vectorial ST-derivative 6°Y® /
’ / 0(x,,x;) =, then according to the condition (2),
the given function f has the partial polysymmetry
X,~ X,. This is confirmed by the analytical method:
0’ (X%, V X%, X,)

(5, %)

=1©1©0=0,

= (5%, O Xx,) D (XX, ®Xx;) D
DX, ®Px;)=xDx, Dx,,
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2 —_— —_—
0™ (x,%,X; V X, X,X;)

o(x,,x;)

— (R,X, ®%,x,)® (XX, ®xX,)®
(X, ®%,) =0,

0’ (4T, X, V X T,X,)
0%y, ;)

=(x%®xx)® (XX, dxX,)®
DX, Dx)=xDx, Dx,.

For example, we us verify the condition (6) for

the obtained derivative 8* f /0(x,,x,) = x, ® x, ® x;:
o f

o(x,,x,)

VX,X,%)(X,X, VXX, ) = XXX, VXXX, # 0.

& (X, ®x,) = (X%,X;, VXXX, VXXX, V

Similarly, the condition (7) will not be satisfied,
that indicates the absence of partial symmetry with
respect to (x;,x,). This function does not have par-
tial symmetry with respect to variables (x,,x;) be-
cause conditions (6) and (7) in this case are satis-
fied as well.

Note, that if condition (2) is satisfied with re-

!
spect to all C? = " 3 possible pairs of its vari-

ables, then the function fis totally polysymmetric,
thatis X, ~ X, ~--- ~ X, then it makes no sense to fur-
ther consider conditions (4) and (5). Accordingly,
a totally symmetric function with simple symmetry,
ie. X, ~x,~-~x, 0r X, ~X, ~--~X, either anti-
symmetry, i.€. x, ~X, ~--~X, OF X, ~X, ~+~X,
will occur when the condition (3) or (4) holds for
all possible pairs C? of its variables. If none of the
conditions of rhe theorem is satisfied, then the
given function fis not characterized by mentioned
types of symmetries with respect to variables (x;, x,).

The validity of the proved theorem is illustrated,
by the following examples.

Based on an example of a previously conside-
red function f = xX,x, v X,x,x, with a perfect STF
Y'={(100),(011)}" we consider the fulfillment of
the conditions (2), (3) and (4) of the theorem:

s [l 100 (011)]°  [(01-),(10-) = &
77| ~Lot0 ) L1o1 )] " 00).a10)=2

o [ 100 011 _[o-n.0-0=2
LT 001 110 M0-0),0-1)=

1 e (1, 100 011 _Jcon.10=2
15, 111 ooo ™ (00),(-11) =@

As one can see, the condition (2) of the theorem
is not satisfied here (although we have even num-
ber of minterms), which indicates the absence of
polysymmetry in this function. However, the con-
ditions (3) and (4) of the theorem are satisfied with
respect to certain pairs of variables. Based on that
we can argue that the given function f is symmetric
X~ X /X~ Xy Xy~ X /X~ X and X, ~ X3 /%) ~ X,
that corresponds to a mixed symmetry of type
X~ Xy ~ X /X~ Xy ~ X

An example of a totally polysymmetric function
is f=x®x,®x, ie. X ~%, ~X, having perfect
STF Y' = {(001),(010),(100),(111)}". Thus, for that
the condition (2) holds for all three pairs of vari-
ables (x,,x,), (x,,x;) and (x,, x;):

G -
RN -
RG] -

Example 112, p. 92, exercise 4.21]. Check whe-
there there are pairs of variables, for which the func-
tion f(x,,x,,%;,x,) =(x, ®x, XX, DX, X,X,) V XX,
is symmetric.

Solution. In the set-theoretical format the func-
tion £ consists of PSTF Y® and STF Y': {Y®,Y'} =
= {{(1==).(-1=2).(==00), (-110)}°, {1 1-—" }.
After transforming the PSTF Y into STF Y' [19],
we obtain the perfect STF y' of the function f:

{{(8.9.10,11,12,13,14.15), (4,8,6,1.12,13,14,15),
(0.4.58,12),(6.14)}°.{(12,13,14,15)} }=
= {{9.10,11,5,7,0,12,14}° {(12,13,14,15)}' }=
=1{0,5,7,9,10,11,12,13,14,15}!

Note, that the condition (2) for all possible pairs
C; = 6 of variables of the function fis not satisfied.
Instead, the condition (3) will only be executed for the
pair (x,, x,). Itiseasierto perform it for perfect STF
Y’ ={(0001),(0010),(0011),(0100),(0110),(1000)}°
having lower power than perfect STF Y":

yo a/<:>> 0001 (0010 (00
00)’\o111)’\910)
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0100 (0110 (1000)]° 0010 (10003
- )
01 )\ o011 )1 1101 0111)’\ 1101

N{(-0-1),(-1-0)} =4.

Therefore, the given function f has a partial
simple symmetry x, ~x,/X,~X, corresponding
to [12].

Verification. In [12] the function is obtained
J(x,x,,%5,x,) = 2,0, V (X, Dx,)x, X, v (X, VX)X, Vv
Vv X,x;, on the basis of which the symmetry is
defined with respect to (x,,x,). After trans-
formation of this expression we obtain STF
Y' = {(~1-1),(1100),(1001),(0000), (1-1-)}' = {0,5,
7,9,10,11,12,13,14,15}', corresponding to perfect
STF Y' of the given function f.

Example 2. Determine which symmetric func-
tion is reflected in the test file xor5.pla.txt [20].

Solution. The given function f(x,,x,,x;,X,,X;)
has perfect STF Y= {1 2,4,7,8,11,13,14,16,19,21,
22,25,26,28 31} We verify the condition (2) for a
pair of variables (x,, x, ):

ol

(01300]’(01811] (0110 j ( j (10(())00)’

ot i oto oty
A

The condition (2) will also be satisfied for all the
remaining nine (of C52 =10 possible) pairs of vari-
ables of function f. Therefore, it is a polysymmetric
function /' =x, ®x, ®x, ®x, ® x;, and thisis 57, .

Example 3. [5] Determine the type of symmet-
ry in the function f(x,,x,,x;,x,) given by perfect
STE  Y'={(0001),(0010),(0100),(0111),(1000),
(1011),(1101),(1110),(1111)}".

Solution. The given function does not have
polysymmetry, since the number of its minterms
is odd. Instead, for all possible C; = 6 pairs of vari-
ables, the condition (3) will be fulfilled. Let illus-
trate it on an example of a pair of variables (x,,x,):

=) G ) i )
(/1 o) o )} =(one)

_Jo-.a1-9 =2
M 01-2),10-5) =3

Since the simple symmetry holds for all pos-
sible pairs of variables, this indicates that the
given function is a totally of the symmetric type
X, ~ X, ~ X, ~ X,/ X, ~ X, ~X; ~X,, and this is a sym-
metric function Sff3’4 =X, ®x,®x; ®x,® x,x,x,x,
corresponding to [5].

The partial mixed symmetry recognition is
demonstrated on the above example of the func-
tion (see Section 2) f =Xx; v (x, ®x, ®x,). In the
set-theoretical format this function has this form
LYo ={(--0-D} {1-——-).(-1-—).(-—-1-)}"}
and, after its transformation — as perfect STF
Y'=1{1,2,6,7,8,11,12,13,16,19,20,21,25,26,30,31}" .
This function has a pair of minterms (17), so first-
ly we will verify the condition (2) of the theorem.
Since the function is cumbersome, then, for the
sake of simplicity, we will apply a special table. In
the first line, we place the given minterms (high-
lighted by a bold font), and below, we place only
the minterms of vectorial ST-derivatives obtained
as a result of the fulfillment of the conditions of
the theorem. For example, in the 2-nd row of the
table there are placed the minterms of vectorial ST-
derivative with respect to the variables (x,,x,) that
are created by the mask of the literals 7 1,/,/,L., etc.
In the below table we outline the minterms of the
derivatives equal to the given minterms.

As one can see Table, three lines in the table are
crossed out for all the minterms created by masks
LLLLL, 11,170  and [ 7,111 . This indicates that the
condition (2) is satisfied for three pairs of variables
(x,,x,), (x,,x,) and (x,,x,) and therefore, the given
function has a partial polysymmetry X, ~ %, ~ X,. In
addition, the given function is inherent partial anti-
symmetry x, ~ X, / X; ~ X, since the condition (4)
for the vectorial ST-derivative 8°Y® /a(x;, x,) is ful-
filled, namely:

{(00100),(00011),(01110),(01001),(10110), (10001).
(11011)} N {(-—0—0),(——1-1)} = .

8 ISSN 2706-8145, CHCcTeMH KepyBaHHA Ta KoMM'toTepH, 2019, N° 4
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Tabauya 1. Theminterms created by masks

L5145\ 00001 | 00010 | 00110 | 00111 | 01000 | 01011 | 01100

01101

10000 | 10011 | 10100 | 10101 | 11001 | 11010 | 11110 11111

HO6+ | HO1H0 | HHO | HHH | 16666

166+ | 166660 | 16160

0161 | 61660 | 61160

00100 | 66+ | 00011 0111001001

10001 11011

The group partial symmetry will be illustrated
by next example.

Example 4 [21]. Determine the types of par-
tial symmetries in the function f(a,b,c,d,x,y)=
=abxy v cdxy.

Solution. The given function f has STF
Y'={(11--11),(-—1111)}' and its perfect STF

Y'={(110011),(110111),(111011),(111111),(001111),
(011111),(101111)}'. This function does not have
polysymmetry, because the number of minterms is
odd and, consequently, the condition (2) will not
be executed. Let us verify the conditions (3) and (4)
only for those pairs of variables, where one of the

110011 ) (110111 ) (111011

conditions is satisfied:
gt T {111213141516 } {( ] ( j ( j
LLLLIL, 000011\ 000111\ 001011
111111 001111 0111 1011 ¢
, , N
1111 1111
O0l-===),(10---—-)=T

001111}’(111111
00———-),(11-————) =
Yl 02/0(&’-"4){
j—

ﬁ{
1100 1101 1110
T111) Uforr )\ 0111 )

LLLLL,
lllzmlsls

(111 }(001111){011111}(101111J}®m
0011 L 000011 )" 010011)" 100011
{(——01——),(——10——)=@.
M =00-),(--11-) 2@

v & /otsx) LLLLL
= -_— 5
11,11,11. 110000 )" 110100 )"{ 111000

e o) G}
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110011 110111 111011

i

011111
011100

)

101111
101100

|

001111
001100

111111
111100

10110
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As we can see, only the condition (3) is satis-
fied for three pairs of variables (x,,x,), (x,,x,) and
(x5,x,) . This indicates a group of partial symme-
tries in a given function:

O~ x,) (g ~ X))+ (X~ X))/
/(X1 ~ X2) + (Xz ~ X4) + (XS ~ XG).
The obtained result corresponds to [21].

If the function f given in SOP (or STF) contains
nonorthogonal conjuncterms, it must be orthogo-
nalized [16] or transformed into perfect STF Y'. As
an example of such a functionit maybe f = xx, v x,
having STF Y' = {(11-),(-—-1)}'. After its orthogo-
nalization we obtain:

Y= (1), (- S

{(111),(1 1-)N(=-0),
(——l)m[

J} = {(111),(110),(0-1),(101)}'.

10—

We define now a vectorial ST-derivative of the
2-nd order, for example, with respect to a pair of
variable (x,,x,):

= {(110),(000)}.

52/6(x] »X2)

Y'={(111),(110),(0-1),(10D)}'

(oo 0} o)}

000 011

The identical result will be obtained for perfect
STF Y' = {(001),(011),(101),(110),(111)}".

Example 5. Determine the types of partial sym-
metries in the SOP function f = x, v X,x;.

Solution. The given function f has STF
Y'={(-1-),(0-1)}' and, after the orthogonaliza-
tion procedure, it has STF Y' = {(011),(010),(11-),
(001)}'. This function does not have polysymme-

9
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try because its number of minterms is odd. Let us
verify the conditions (3) and (4):

. aZ/ag,xZ> {111213}: {@o{mJ [010] (on}
[FAA 11)°{100 )°{ 101 )’
)=
00— ’
y 61/@<:x>1,xn{lllzl3}:{(001) 01 j [011} [ll—]}@) _
L 100 )"\ ¥11 )°(110 )\ 01—

(0 j 11 J} {(001),(100)} N
5 =
10 )°1011

m{{(0—1),0—0» D .
(0-0),(1-1)} =2~

| ot (L 001 (01
Y :> - = b 2
L1 010 01
o1y (11-)°
‘ , =,
00)\ 10—
Since the condition (4) is fulfilled only for a pair
(x,,x;), we have antisymmetry x, ~ X, /X, ~ x;.
The identical result is obtained using the ana-
Iytical method:
o’ (x, V¥,

x;) B o
a(x,,x,) _(xz@(Xzvx3))€r)(x2®(x2\,xl))@x2_

=(x5, V) ®(x, vX)OX, =(x, vX;)xX, ®
DX,X(x, VX)X, =X,(x, Dx,).

Since we have the condition (7) X,(x, @x;)
I(x, ®x;) =0, this is confirmed by the presence of
type antisymmetry x, ~ X, / X, ~ x, in the given func-
tion f.

Example 6 [22]. Determine the type of symmetry
in a monotone increasing function ¢ =xy v xz v yz.

Solution. The given function f has STF Y'=
={(11-),(1-1),(=11)}'and, after the orthogonaliza-
tion procedure, it has STF Y' = {(110),(101),(=11)}".
Let us verify the conditions (2), (3) and (4):

Pl (110 (104 (-11)]°
Y = , ) =
000 1 -01
110 (111 (00-),(11-) =
= , N ;
000 )°{ 001 01-),10-) =
e (1107 (101 (-11Y)°
Yy = , , =
1 000 )°{ -10
101 (111 0-0),1-1)=Q
= , N :
000 )( 010 0-1),1-0)=2"
o) (1] 10 —11))”
Yy = , , =
0 1 -00
-11 (-00),(-1) =
= e .
-00 (-01),(-10) =
Since the condition (3) holds for all pos-
sible pairs of variables, we have a total symmet-
ric function with simple symmetry of the type
X, ~ X, ~ X,/ X, ~ X, ~ X;, namely S, ,. The algorithm
of the proposed method for the recognition of sym-

metry types in boolean functions is considered in
Part II of the article.

Conclusion

Part II of the article describes the main theoretical
statements of the new method for the recognition
of symmetry in complete and incomplete boolean
functions of » variables, based on numerical set-
theoretical logical differentiation. The basis of the
proposed method €is the theorem for the recogni-
tion of different types of partial symmetry (poly-
symmetry, simple symmetry and antisymmetry).

The presented above examples confirm the va-
lidity of the proved theorem, and also illustrate
the advantages of this method, compared with the
known ones, in terms of the simplicity of its practi-
cal implementation.
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HOBUW METOJI PO3TTI3HABAHHSA CUMETPII Y BYJIOBUX
OYHKUIAX HA OCHOBI TEOPETUKO-MHOXHWHHOI'O

JIOTIKOBOI'O IMDEPEHLIIOBAHHA. 1

Beryn. CuMerpuuHi 0ys10Bi (yHKIIIT 3aBASKM CBOIM CIeLIM(DIYHUM BJIACTUBOCTSIM MAlOTh LIMPOKE 3ACTOCYBAHHS Y MPO-
eKTyBaHHI IU(PPOBUX IIPUCTPOIB, TEJIEKOMYHiKaIlisix, Kpurrorpadii Tomro. OcKinbku 6y10Bi GYyHKIIIT MOXYTb MaTH pi3Hi
TUITA CUMETPIi 3 BTACTUBMMM iM OCOOJIMBOCTSIMM, BasKJIMBO BMITH iX pO3ITi3HABATH SIKOMOTA MPOCTilmmu 3acodamu. [1po-
Te MpobJieMa YCKIaIHIOEThCS TUM, 1110, 3 OMHOTO OOKY, (DYHKILii MOXYTb OyTH SIK OHOTO THITY, TaK i 3MillIaHOTO, a TAKOX
SIK TIOBHICTIO CUMETPUYHUMU, TaK i YACTKOBO CUMETPUYHUMU, a 3 APYroro 00Ky, cama (pyHKIlist Moxe OyTH He TTOBHICTIO
BU3Ha4YeHa, TOOTO 3amaHa YacTKoBO, abo 3amaHa JJH®. CyvyacHi MeToau poami3HaBaHHS TUITiIB CUMETPii TPYHTYIOThCS
nepeBaKHO Ha aHaJiTUIHOMY miaxoi (po3kiani llleHHoHA), Bi3yalbHOMY METO/Ii, aHATITUMHOMY OOUMCIIEHHI JIOTIKOBUX
MOXiIHUX 1 T.iH., HATO CKJIAAHI 11100 peaiisallii Ta Mano ePeKTUBHI 111 (PYHKIIN BEIUKUX pO3MIpiB i 0COOIUBO, KON
BOHMU 33/1aHi YaCTKOBO.

Merta cTaTTi — pO3pOOUTHU MPOCTU IS peaisallii MeTo po3Mi3HaBaHHS Pi3HUX TUITiB TOBHUX i YaCTUHHUX CUMETPIli
SIK Y TIOBHUX, TaK i YaCTKOBO 3aJaHUX OyJTOBUX (DYHKIIIsIX.

MeTtoau. ¥ cTatTTi 3apoNnoOHOBaHO HOBUIA METO/1 PO3Mi3HABAHHS Pi3HUX TUITIB MOBHUX i YACTUHHUX CUMETPIld, TAKUX
SIK TOJIICUMETPisl, MPOCTa CUMETPIsl Ta aHTUCUMETPIsl, SIK y TOBHICTIO, TaK i YaCTUHHO 3aJaHUX (PYHKIIiSIX HA OCHOBI YKC-
JIOBOTO T€OPETUKO-MHOXMWHHOTO JIOTIKOBOTO AndepeHIlifoBaHHS. AJTOPUTM METONY TPYHTYETHCS Ha TeOpeMi Mpo po3-
Mi3HaBaHHS Pi3HUX THUITIB YACTUHHMX CUMETpIili, SIKWi1, MOPIiBHSIHO 3 BiIOMMMU, Ma€ BiTHOCHO MEHIIy OOUYMCITIOBATbHY
CKJIAHICTb 3a paxXyHOK MOPiBHSHO MEHIIOI KiJILKOCTI onepaliii i mpoueayp, MOTpiOHMX ISl BAKOHAHHST MOCTaBJICHOT
3aaui.

Pesyasrar. CripaBeiyinBicTb JOBEIEHOI TEOPEMU 3aCBiAUYIOTh MPUKIIAAM PO3Mi3HABAHHS Pi3HUX TUITiB MOBHMX i yac-
TUHHUX CUMETPIil SIK Y TOBHICTIO 3aaHuX (pyHKIisIX (yacTuHa 1), Tak i yacTkoBO 3agaHux pyHKisx (uactuHa 1), y tomy
yuchi 3aganux y JJH®, axi 3 MeToro mopiBHSIHHS e(PeKTUBHOCTI 3aIIpOITOHOBAHOTO aJITOPUTMY 3aIT03UYEHO 3 ITyOTiKalliit
BiZIOMUX aBTOPIB.

BucHoBKH. 3anporoHOBaHUI HOBUIT METOJ pO3Mi3HABaHHS Pi3HMX TUITIB MOBHUX i YACTUHHUX CUMETPiil (Tosicume-
Tpii, MPOCTi CUMETPii Ta AHTUCUMETPIi) SIK Y TIOBHICTIO, TaK i YaCTKOBO 3aJaHUX OYJ10BUX (DYHKIIiSIX HA OCHOBI YMCJIOBOIO
TEOPETUKO-MHOXMHHOTO JIOTiKOBOTO N1(bepeHIIit0BaHHS BiIPi3HIETHCS Bill BiTOMUX Bi/IHOCHO MPOCTIIIOI0 MPAKTUYHOIO
peaiizali€ro.

Karonogi caosa: posniznasanHs NOGHUX | HaCMKOBUX cumempiil, 06y108a QYHKUYis, HUCI08e MEOPEMUKO-MHONCUHHE N02IK08e
dugpepeHUi08aHHS.
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HOBBIM METOJ] PACTIO3HABAHUSA CUMMETPUU B BYJIEBBIX
OYHKIMAX HA OCHOBE TEOPETMKO-MHOXECTBEHHOI'O
JIOTUYECKOI'O ANDDEPEHLIMPOBAHUA. 1

Baenenne. CuMmeTpuyHbie OyieBble QYHKIMY OJ1arogapst CBOMM CieliM(pPUIECKUM CBOMCTBAM ILIMPOKO MCITOJIb3YIOTCS B
MPOEKTUPOBAHUHU LIUDPOBBIX YCTPONCTB, TEIEKOMMYHUKAIIUSX, KpunTorpaduu u T.11. [TockonbKy OyaeBbie GyHKIIMA MO-
I'YT UMEThb Pa3HbIe TUITbl CHMMETPUU C IIPUCYIIIMMU UM OCOOEHHOCTSIMU, BaXKHO YMETh X paclio3HaBaTh KaK MOXHO MPO-
creitimmmu criocobamu. Ho ipo6GiiemMa yemoXHsIeTest TeM, YTO, C OTHOU CTOPOHBI, (DYHKIIMH MOTYT OBITh KaK OTHOTO THUTIA,
TaK ¥ CMEIIIaHHOTO, a TAKXKe KaK MOJHOCTHI0O CUMMETPUYHBIMU, TaK M YACTUIHO CUMMETPUYHBIMHU, a C IPYTOIl CTOPOHHI,
caMa (yHKIIMSI MOXET ObITh He TIOJTHOCTBIO OTIpeie/ieHa, T.e. 3aJaHa YacTU4Ho, uiu 3agaHa JIH®. CoBpeMeHHbBIE METOIBI
pacro3HaBaHUs TUIIOB CUMMETPUM OCHOBaHBI MPEMMYIIIECTBEHHO Ha aHAIMUTUUYECKOM moaxoae (pasnoxeHuu IlleHHo-
Ha), BUyaJIbHOM METOJIe, aHAJIUTUYECKOM BBIYMCICHUM JOTUYECKUX MPOU3BOAHBIX U JIP., CIMIIIKOM CJIOXKHBI B peainza-
MU U Mo 3 GhEKTUBHBI 1151 QYHKUIMI OOJIbIINX Pa3MEPOB M OCOOEHHO, KOT/Ia OHU 3aJJaHbl YACTUYHO.

Ilens cTaTbu — pa3paboTaTh MPOCTOI B peau3allii METOJT PaCTIO3HABAHUSI PA3HBIX TUTIOB TIOJTHBIX M YACTUIHBIX CUM-
METpPHIi, KaK B ITOJHBIX, TAK ¥ YACTUYHO 3aaHHBIX OyJIEBBIX (DYHKITUSX.

Mertoapl. B cTaTbe npeioxkeH HOBBI METO/ paclio3HaBaHUS Pa3HBIX TUIIOB MTOJTHBIX M YACTUYHBIX CUMMETPHIA, TAKUX
KaK MOJIMCUMMETPUSI, TPOCTasi CUMMETPUST 1 aHTUCUMMETPUSI, KaK B TMOJTHOCTBIO, TaK U YACTUYHO 3aaHHbBIX (DYHKIIMSIX
Ha OCHOBE YMCJIEHHOI'O T€OPETUKO-MHOXECTBEHHOTO JIOTMYecKoro nuddepeHUnpoBaHus. AJTOPUTM METOAa OCHOBaH
Ha TeopeMe pacrlo3HaBaHUsI Pa3HbIX TUTIOB YaCTUYHBIX CHMMETPHi, KOTOPBI, B CPABHEHUY C M3BECTHBIMM, UMEET OTHO-
CUTEJIbHO MEHBIIYIO BEIYMCIUTETBHYIO CIIOXKHOCTh OJ1arofapst CPaBHUTEIbHO MEHbIIIEMY KOJTUYECTBY OTepaluii U mpo-
LIeayp, HEOOXOMMMBIX JJIsI BHITIOJTHEHUS TTOCTaBJICHHON 3a1a4M.

Pesyabrar. CipaBeIJTMBOCTD TI0KAa3aHHOI T€OPEMbI MOKA3bIBAIOT ITPUMEPHI paCIIO3HABAHUS Pa3HBIX TUIIOB TOJHBIX K
YaCTUYHBIX CUMMETPUI KaK B MOJHOCTBIO 3aJaHHbIX (YHKIMSIX (4acTh I), TaK M YacTUYHO 3agaHHbBIX PYHKLIMSIX (YacTh 1),

B TOM 4mclie 3amaHHbIX B JIH®D, koTopble ¢ 1ebio cpaBHeHUs (D GEKTUBHOCTH MPEII0KEHHOIO alrOPUTMa B3SIThl U3
ITyGJIMKALIAIA U3BECTHBIX aBTOPOB.

BoiBoapl. [TpeiioxkeHHBIN HOBBI METOJ pacTioO3HABAHUSI Pa3HBIX TUTIOB IMTOJIHBIX U YACTUYHBIX CUMMETPU (ITOJIMCUM-
METPHUU, TIPOCThIC CUMMETPUN U aHTUCUMMETPUH) KaK B TIOJIHOCTBIO, TaK M YACTMYHO 3aJaHHBIX OYJIeBbIX (DYHKIIUIX Ha
OCHOBE YHCJIOBOTO TEOPETUKO-MHOXKECTBEHHOTO JIOTUIECKOT0 Tu(depeHIIMPOBaHUS OTIMYAETCSI OT U3BECTHBIX OTHOCH -
TEJIbHO MPOCTEHIIIel MTpaKTUYeCKOM pealn3aluei.

Karouesnie caosa: pacnosnasanue nOAHbIX U YACMUYHBIX CUMMempuil, 6yae6as QYHKYUs, YUCA080€ MeOPemUKO-MHONCECMEEH
Hoe noeuueckoe oughgeperuuposarue.
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