DOI https://doi.org/10.15407/usim.2019.05.062
YK 004.9

0.S. BULGAKOVA, PhD (Ehg.) Sciences, associate professor,

V.0. Sukhomlynsky Mykolaiv National University,
Nikolska str., 24, Mykolaiv, 54000, UKraine,
sashabulgakova2@gmail.com

V.V. ZOSIMOV, PhD (Ehg.) Sciences, Head of the Department ,

V.O. Sukhomlynsky Mykolaiv National University,
Nikolska str., 24, Mykolaiv, 54000, Ukraine,,
zosimovvv@gmail.com

REACTIVE PROGRAMMING PARADIGM
FOR DEVELOPMENT USER INTERFACES

The article discusses the relevance of using the paradigm for user interfaces development. The essence of the reactive program-
ming paradigm, its features and disadvantages are described. The technology of reactive programming ReactiveX is considered.
Features of the reactive systems implementation are described as a result of an in-depth study of the main development tools and
language structures. The reactive paradigm possibilities of reducing labor costs for building valid models, minimizing errors, and
efficient and quick solution of the tasks are shown on the example of the application implementation.

Keywords: reactive programming, GUI development, NoSQL database, MongoDB, ReactiveX technology, MVC model.

Introduction

In last years, reactive programming in general, and
technology in particular, is becoming increasingly
popular in developer’s area. Some developers are
already using all benefits of this approach, while
others are only beginning to learn this technology.
In the world of programming there are two funda-
mentally different ways of organizing large systems:
according to objects and states that exist in the
system, and according to streams of data that pass
through it.

The reactive programming paradigm assumes
the easing expression of data streams, and expan-
sion of changes through these streams. In impera-
tive programming, the assignment operation de-
notes the end of the result, whereas in the reactive
paradigm a value will be recalculated when new
inputs are received. Stream concept is the basis of
the program. The stream of values passes a series

of transformations that are necessary for solving
a certain task. Operations with streams are ma-
king system expandable and asynchronous, and the
correct response to emerging exception provide a
fault-tolerant ability [1—2].

One of the main differences between reactive
programming and the functional is that it operates
not continuously changing values, but discrete va-
lues that are “released” over a long period of time.
This paradigm allows to create asynchronous and
event-oriented programs that use observable se-
quences [1-3].

Reactive paradigm and its features

Reactive programming is a programming paradigm
that focuses on data streams and the expansion of
changes. This means that there should be an op-
portunity to easily express static and dynamic data
streams, as well as the fact that underlying proces-

62 ISSN 2706-8145, Control systems and computers, 2019, N¢ 3

Reactive Programming Paradigm for Development User Interfaces

sing model should automatically distribute changes
due to a data stream.

Modern table processors are an example of reac-
tive programming. The table columns may contain the
string values or a formula such as “= B, + C,”, the value
of which will be calculated based on values in corres-
ponding cells. When the value of one of dependent cells
is changed, the cell value will be automatically updated.

Another example is Hardware Description
Language (HDL), such as Verilog [4]. Reactive
programming allows to simulate changes in the
form of its distribution inside the model.

Reactive programming was offered as a way for
easy creation of user interfaces, animations, or
modeling of systems that change in time.

For example, in MVC architecture using reac-
tive programming, it can be implemented an auto-
matic display of changes from Model to View and
conversely from View to Model.

Object-oriented reative programming (OORP) —
is a combination of object-oriented approach with
the reactive paradigm [2]. Probably the most natu-
ral way to do this is that instead of methods and
fields in objects there are reactions that automati-
cally changed the values, and other reactions de-
pend on changes in these values.

Functional programming is the most natural ba-
sis for an implementation of reactive architecture,
which well combined with parallelism.

Main advantages of this paradigm are [5]:

1. Responsiveness. The application should give
the result in a minimum amount of time. This
also applies to principle of fast fail — that is, when
something goes wrong, it need to return the user an
error message, then to keep wait.

2. Scalability — a way to provide responsiveness
under load.

3. Fault-tolerance. In a case that something goes
wrong in the system, it is necessary to foresee the
processing of errors and methods of working ca-
pacity restoration.

4. Architecture based on reactive streams.

The reactive paradigm exploits an idea of ap-
plication’s streams. Stream is a sequence, what
consist of continuous events sorted by time. It can
contain three types of messages: values (some type
data), errors and shutdown signals.

Programmers are given the opportunity to create
streams of something, not just events or movement
of the cursor. Streams are light and used everywhere:
variables, custom input, properties, cache, data
structures, etc. For example, a news feed on a so-
cial network can be present as a stream of data along
with a number of user interface events. That is, you
can view a stream and react to each event in it.

Moreover, the paradigm implies a creation and
filtration of each of these streams. Streams can
be used as input parameters of each other stream.
Even a multiple stream can be used as an input ar-
gument for another stream. It is possible to com-
bine multiple streams, filter one stream, then get
another that contains only an actual data, combine
data from one stream with data of another to get
another one.

Reactive paradigm tools

The reactive paradigm is not a basis of any pro-
gramming language, in contrast to the object-
oriented paradigm, so special tools are needed to
work with it.

In most cases, program calls a method and re-
ceives a result on an output. But some processes are
built in a different way. For example, a method can
be process over a long period of time. Or, worse, the
method not only makes calculation for a long time,
but also irregularly returns some results during
execution. Current technologies are needed exact-
ly for this case.

Further, the basic tools and language constructs
designed for the implementation of reactive sys-
tems will be considered [5].

Green streams

Green streams are simulation of threads. Virtual
machine takes care of switching between diffe-
rent green streams, and the machine itself works as
one operating system’s stream. It gives some bene-
fits. Operating system streams are a bit expensive.
In addition, switching between system streams is
much slower than between green streams. All this
means that in some situations, green streams are
much more profitable than common ones. The
system can support a much larger number of green
streams than operating system threads.

ISSN 2706-8145, Control systems and computers, 2019, N2 5 63

0.S. Bulgakova, V.V. Zosimov

Green streams are asynchronous and nonbloc-
king, but they do not support message transfer.
They do not support horizontal scaling on differ-
ent network nodes. Also, they do not provide any
mechanisms to ensure fault tolerance, so develop-
ers are forced to independently handle the process-
ing of potential failures.

Communicating Sequential Processes

Communicating Sequential Processes (CSP) is a
mathematical encapsulation several processes or
threads in a single process that interact with the
transmission of a message. The uniqueness of CSP
lies in the fact that two processes or threads should
not know about each other, they are perfectly sepa-
rated in sending and receiving messages, but still
related with a transmitted value. Instead of collec-
ting messages in a queue, the rendezvous principle
applies: for exchanging messages, one side must
be ready to send it, and the other one — receiving.
Therefore, messaging is always synchronized.

The CSP model is asynchronous and nonblo-
cking. It supports messaging in the Rendezvous
style and is can be enlarge for multi-core systems,
but it does not support horizontal scaling. Also, it
does not provide mechanisms for fault-tolerance.

Future and Promise descriptors
Future — a reference to a value or error code that may
become readable (read-only) at some point in time.

Promise — a corresponding descriptor with pos-
sibility of a single record that provides access to a
value. Future and Promise object analogues are
implemented in most popular languages: Java,
C #, Ruby, Python, etc.

The function that returns a result asynchronously
creates a Promise object, initializes asynchronous
processing, sets a final callback function, which at
one time fills a Promise data, and returns a compo-
nent that called a Future object associated with the
Promise. Then a calling component can attach to
the Future some code that will be executed when
values in this object appear.

In all Future implementations, there is a mecha-
nism for converting a code block into a new Future
object so that it executes the code passed to it in
another thread and puts a final result inside the
Promise object associated with it. Thus, Future

provides an easy way to make the code asynchro-
nous. Future objects return either the result of suc-
cessful calculations or an error.

The Future and Promise objects are asynchro-
nous and nonblocking, but they do not support
messaging. However, they are capable of scaling
vertically, but they can not be scaled horizontally.
They also provide fault-tolerance mechanisms at
the level of individual Future objects.

Reactive extension

Ifthere is a process that runs for a long time and oc-
casionally returns results, then Reactive Extensions
will handle following results every time they arrive.
Code becomes easier when reactive extensions
used, and also gets more rich functionality.

Reactive Extensions (Rx) — is a library, more
precisely, a set of libraries that allow to work with
events and asynchronous calls in compositional
style. The library came from the .NET world. Then
it was moved to popular platforms: Java, Ruby, JS,
Python, etc. This library combines two stream con-
trol templates: an observer and an iterator. Both are
related to the processing of potentially unknown
elements or events.

The essence of the Rx library is to write a cyclic
design that responds to events occurring. In its se-
mantics, it is similar to stream processing, when in-
coming data is continuously processed by iterations.

The Rx library represents tools for processing data
streams asynchronously. Its current implementation
is scaled vertically, but not horizontally. It does not
provide mechanisms for delegating fault handling,
but it can break a failed streaming container.

ReactiveX technology

ReactiveX framework is a reactive programming
tool that works with all popular object-oriented
programming languages. Authors call it a multi-
platform API for asynchronous development [6].

One of the main differences between the Reac-
tiveX library and functional reactive programming
is that it operates not continuously changing, but
discrete values that are «released» over a long peri-
od of time.

The technology is based on the “Observer” pat-
tern. The “Observer” pattern exists the same time

64 ISSN 2706-8145, CHCcTeMH KepyBaHHA Ta KoMN'toTepH, 2019, N° 5

Reactive Programming Paradigm for Development User Interfaces

as the object-oriented programming languages. An
object whose state may change is called the pub-
lisher. All other members interested in these chan-
ges are subscribers.

Subscribers are registered with the publisher to
receive messages, clearly indicating their ID. The
publisher occasionally generates messages that are
sent to them by the list of registered subscribers.

Technology operates with such concepts as:
Observer, Observable, Subject, Fig. 1. The Obser-
vable model is a data source and allows processing
of asynchronous events streams in a similar way
to what is used for arrays. And all this is instead
of callback, which means the code becomes more
readable and less inclined to errors.

The publisher generating the message is set here
using the Observable class. A publisher can have
multiple subscribers, and they need to use the
Subscriber class to implement them. Standard be-
havior for Observable is to release one or more mes-
sages to subscribers, and then complete their work.
Messages can be both variables and objects, Fig. 2.

push
Subscriber
Data push
St Observable Observer
ush
Subscriber

Fig. 1. ReactiveX simple data processing scheme

There are tasks for which need to connect
Observer and Observable to receive event reports
and report them to subscribers. There is a Subject
that has, besides the standard one, several more
implementations [6]:

° ReplaySubject has the ability to cache sent
to him data, and when a new subscriber arrives,
firstly give all this sequence, and then work in the
normal mode.

° BehaviorSubject saves the last value, by
analogy with ReplaySubject, giving it an emerging
subscriber. When it is created, it gets the default

RxJS operators

. - + debounce
+ bindCallback Bk Lo .
+ bindNodeCallback = BRERpomg s debouneaT g
Pt = bufforTime + distinct
+ defer * bufferToggle + distinctKey
- e PugfReiiban + distinctUntilc
P * RonTR AR » distinctUntilk
i * concatMapTo A
+ fromEvent » exhaustMap 5
+» fromEventPattern « expand « filter
+ fromPromise - groupBy * first
+ generate - map * ignoreElements
+ interval « mapTo » audit
* never * mergedap + auditTime
- ot * mergeMapTo + last
s« repeat = mn?gc?can - pample
« repeatWhen ::::::f;h + sampleTime
- i
« range = Slnen * single
eteooe « scan » skip
+ timer + switchMap » skipUntil
* switchMapTo * skipWhile
* window * take
tch -
t e = windowCount o ERlcaEaa®
" EEY " Jelnio + takeUntil
+ retryWhen - wa_mdovrogqle v EaleHBLta
+ windowWhen SRSt
. rottle
+ count
+ throttleTime
* max

* min

» reduce

Fig. 2. Currently available operators

ISSN 2706-8145, Control systems and

+ cache + de
« multicast * delay
« publish + delayWhen
PR - publishBehavier dfelmﬂtlelfialize
eyChanged * publishLast Hnally
« publishReplay EARY e
* Bhars * materialize
* observeOn
+ subscribeOn
+ combineRll + timeInterval
+ combineLatest + timestamp
* concat + timeout
+ concathAll * timeoutWith
« exhaust = toArray
+ forkJoin + toPromise
* merge
¢ mergenll
* rzcetw'th + defaultIfEmpty
* Star 1
s o
+ withLatestFrom + findIndex
* Bip + isEmpty
« zipall

computers, 2019, N° 5

65

0.S. Bulgakova, V.V. Zosimov

IWebAccountsManager

]
]
]
] | <<uses>
]
]
]

]
' . <<component=> H]| _!
s Q Bl LogicitemsManager | e
T

IL ager

1
1
1
1
1
1
1
1
1
1
1
1

) 1

<<component=> 3] <<component>>] | P
ItemsManager ltemDescriptionManager [~ O

T litemDescriptionManager

[
i
: | =suse»>
i
[

D
______ <<component=> El o
O >l AccountsManager O =
|AccountsManager T litemsManager

'
<qusess
]

1
<dhsenn <dusee
U 1

-

<<component>>
ItemsDescription
T

"4
$]| <<component>> Bl __ O

ItemDescriptionRepository
T

litemsDescription

Fig. 3. Application server part components diagram

Bind Update
- _ - e
View ViewModel
D — —
Notify

Fig. 4. The MVVM pattern Scheme

value that each new subscriber will receive if the
last value has not yet been received.

° AsyncSubjectalsostoresthe last value, but does
not give data until the entire sequence is complete.

Observable and Observer are just the beginning
of ReactiveX technology. They do not carry all the
power, which are operators that allow to transform,
combine, manipulate sequences of elements that
give Observable.

Using reactive
technologies for GUI creation

As an example, a software application (GUI —
graphic user interface) was developed, on the basis
of which could be visually explored the principles
of reactive programming technology.

<zcomponents> a
DataBase

T ' litemDescriptionRepository
<quses>

Server solution

The server part of the solution was built using ASP.
NET Core. Query processing now uses the new
HTTP conveyor, which is based on Katana compo-
nents and the OWIN specification. And its modu-
larity makes it easy to add own components, Fig. 3.

As a database, was used the NoSQL database,
namely MongoDB. MongoDB implements a new
databases building approach without tables, sche-
mas, SQL queries, external keys, and many other
things that are inherent in object-relational data-
bases [7]. Unlike relational databases, MongoDB
offers a document-oriented data model, which
makes MongoDB work faster, has better scala-
bility, makes it easier to use. The functionality of
MongoDB allows to place multiple databases on
multiple physical servers, and these databases will
be able to easily exchange data and maintain in-
tegrity. For the creation of the automatic docu-
mentation of API used a tool called Swagger — is
a framework for the RESTful API specification. It
gives an opportunity not only to interactively view
the specification, but also to send queries to the
Swagger UI.

66 ISSN 2706-8145, CucreMHn KepyBaHHA Ta KOMI'toTepH, 2019, N° 5

Reactive Programming Paradigm for Development User Interfaces

Color palette

Comman stabe.

N ...

ot coke

Comman stati

Fig. 5. The light style design example

Client solution

A server project is a significant part of the work, but
for interacting with it the client it is needed an ap-
plication with a graphical interface, so it was built
using reactive technologies. Modern user does not
want to work with a slow or unstable application,
so the use of this technology is a priority on the
client side.

As the basic technology for this work, it was cho-
sen an Angular framework from Google, in this
case, the interaction with the user has improved,
because this framework works directly in a browser,
so it does not need to be downloaded separately, but
the complexity of deployment and increased load
on the physical server prompted to choose another
technology. So the Microsoft’s WPF framework
was chosen for the current works.

Traditional Windows applications has the opera-
ting system definitions, such as User32.dll (standard
graphics library) and GDI + (cross-platform library
of user interface) for drawing controls and graphics,
then WPF applications are based on DirectX tech-

ISSN 2706-8145, Control systems and computers, 2019, N° 5

Common bultons

Buttons with icons

Disahled sinde

Comman state

.....

nology. This is the key feature of playing graphics
in WPF. much of the work on displaying graphics,
from simple buttons to complex 3D models, falls on
a video card graphics processor, which also allows
to use hardware graphics acceleration.

One of the important features is the usage of the
XML declarative XAML markup language: it is
possible to create a rich graphical interface using
interface declaration or a code in a managed lan-
guage, such as C #.

WPF works using MVVM architectural pattern,
Fig. 4, which led to formation of the solution as-
semblies.

The decision is made up of five assemblies,
namely:

= RedSharp.Minecraft. Common — shared re-
sources collection.

= RedSharp.Minecraft.Model — collection that
contains tools for interacting with the server. In
the MVVM pattern, the form of the model is not
strictly defined in the solution, so in this case, the

67

0.S. Bulgakova, V.V. Zosimov

model performs functions of communication with
the server: the build queries, and receive answers.

= RedSharp.Minecraft.ViewModel — collection
designed to hold and prepare data from a model for
use in the user interface.

= RedSharp.Minecraft.View — contains a buil-
tin user interface and ways to interact with the
user.

= RedSharp.Minecraft.Styles — designed to
build user interface styles.

Below is an example of possible blocks for inter-
face design using reactive solutions, Fig. 5. The in-
terface changes immediately after selecting one of
the styles.

The reactive solutions described in this paper
work at the Model level and the ViewModel level as
commands. They are responsible for the asynchro-
nous processing of data that came from the server
request and processing user-generated commands,
as an example of an authorization attempt on the
server. The processing in this way avoids a large
amount of work on the valid models construction
and avoiding errors, efficiently and fast.

Using ReactiveX is not so hard because it looks
very similar to the processing of collections using

REFERENCES

.Net LINQ technology, namely the Flow Ideas
Chains. Asynchronous processing in this style al-
lows to build the user interface directly while re-
sponse processing, which makes the program more
responsive. ReactiveX technology is well integrated
into the MVVM pattern used in the work.

Conclusion

The paper considers the reactive programming
paradigm and its differences from imperative and
functional programming. The basic technology
used to create the reactive programming based ap-
plications is investigated. The example shows the
advantages of using the reactive paradigm, which
allows to reduce work input for building valid mo-
dels, minimizing errors, allowing to solve the prob-
lem efficiently and quickly. This project, developed
using ReactiveX, ASPNET and WPF technolo-
gies, can be used as a visual application of the con-
sidered technology.

Today, reactive programming tools allows to im-
prove the creation and support of existing projects,
especially those focused on the intensive user inter-
action with the system.

1. Demetrescu C., Finocchi I., Ribichini A. “Reactive Imperative Programming with Dataflow Constraints”. Proceedings of

the International Workshop ACM, 2011.

2. Salvaneschi G., Mezini M. “Towards Reactive Programming for Object-oriented Applications”. Transactions on Aspect-

Oriented Software Development XI, 2014, pp. 227-261.

3. Zosimov, V., Khrystodorov, O., Bulgakova, O. “Dynamically changing user interfaces: software solutions based on
automatically collected user information”. Programming and Computer Software, 2018, 44 (6), pp. 492—498.

4. Harris D. Harris S. “Hardware Description Languages”. Digital Design and Computer Architecture, 2013, 2, pp. 172-237.

5. Bonér J., Klang V. “Reactive programming vs. Reactive systems”, [online]. Available at: https://www.oreilly.com/radar/
reactive-programming-vs-reactive-systems/ [Accessed 03 Sept. 2019].

6. ReactiveX — Introduction. ReactiveX.io., [online]. Available at: http://reactivex.io/ [Accessed 15 Apr. 2019].

7. The database for modern applications, [online]. Available at: https://www.mongodb.com/ [Accessed 25 Apr. 2019].

0.C. Byneakoga, KaH]l. TeXH. HayK, TOIICHT,

Received 17.11.2019

MuxkonaiBCbKUIi HallioHaNbHUI YHiBepcuTeT iMeHi B.O. CyXoMJIMHCBKOTO,

ByJ1. Hikonbcbka, 24, Mukonais, 54000, YkpaiHa,
sashabulgakova2@gmail.com

B.B. 3ocimoé, KaHII. TeXH. HayK, 3aBimyBau Kadeapu,

MukonaiBcbkuil HallioHaTbHUI yHiBepcuTeT iMeHi B.O. CyXoMJIMHCBKOTO,

Bya. Hikonbebka, 24, Muxkodaais, 54000, YkpaiHa,
zosimovvv@gmail.com

638 ISSN 2706-8145, CHCcTeMH KepyBaHHA Ta KoMN'toTepH, 2019, N° 5

Reactive Programming Paradigm for Development User Interfaces

BUKOPHUCTAHHS TAPAIVITMU PEAKTUBHOTI'O ITPOT'PAMYBAHHS
JUIA PO3POBKU KJIIEHTCHKUX IHTEP®ENCIB

Beryn. [Tapagurma peakTHBHOTO IPOrpaMyBaHHS Iepefdadae JIerkicTb BUPaKeHHsI TOTOKIB IaHMX, a TAKOXK MOLIMPEHHS 3MiH
3aBIISIKH [[M TTOTOKaM. B iMIepaTHBHOMY MpOrpaMyBaHHI orepallis PUCBOIOBAHHS O3HAYAE KiHIIIBKY PE3y/bTary, TOJi SIK B
pPEeaKkTHBHOMY — 3HaueHHsI Oyjie IepepaxoBaHo IIPH OTPUMaHHI HOBHUX BXIHHUX JaHUX. Y IIEHTP MPOIPaMHU CTABUTHCS MOHSTTS
noToky. [ToTik 3HaueHb IPOXOIUTH B CHCTEMI psit TpaHchopMalliif, siki HeoOXiiHI Ui BUpimeHHs neBHoi 3a1adi. OnepyBaHHs
MOTOKAMH JI03BOJISIE CHCTEMi OyTH pPO3IIMPIOBAHOIO Ta ACHHXPOHHOIO, a TPAaBWIIbHA PEaKIlis Ha BHHHUKAIOYl ITOMIJIKH —
BIJIMOBOCTINKOIO.

Mera crartTi. JlocnianTy akTyanbHICTh BUKOPUCTAHHS MApaAuTMH PEaKTUBHOTO IPOTPAMyBaHHS, SIK OCHOBHU JUIS PO3POOKH
KITIEHTCHKHX iHTEp(EHiciB.

Pesyabrarn. B poGoTi po3nisiHyTO HapaaMrMy pPeakTHBHOTO IPOrpamMyBaHHs, 11 BiIMIHHOCTI BiJ IMIIEPaTUBHOTO Ta
(yHKLIOHAJIIBHOTO MporpaMyBaHHs. JlocimipkeHa OCHOBHA TEXHOJIOTIS, SIKA BMKOPUCTOBYETHCS CHOTOIHI JUISL CTBOPEHHS
JIOJIaTKIB Ha OCHOBI PEaKTUBHOTO IpOorpamMyBaHHs. Ha mpukiazi moka3aHo BUKOPHCTAHHS PEaKTHBHOI MapaurMHy, sKa JO3BOJISE
3HU3UTH TPYIOBUTPATH HA MOOYIOBY BATiJHUX MOAENEH, MiHIMi3yBaTH MOMMIIKH, JO3BOJISTIOYH BHPIIIyBaTH MTOCTABICHY 3a1ady
e(EKTHBHO 1 IBUAKO.

BucHoBku. Ha chOrojHiIlIHIH A€Hb IHCTPYMEHTH PEAKTHBHOTO IMPOrPaMyBaHHS JO3BOJISIOTH TMOJIMIINTH CTBOPEHHS i
I ITPUMKY iICHYIOUHX ITPOEKTIB, 0COOINBO, OPIEHTOBAHKUX Ha IHTEHCHBHY B3a€MOIiI0 KOPHCTyBaua 3 cucTeMoro. [IpeacrapieHuit
B CTaTTi MPOCKT, PO3polIcHHI 3a T0omoMoror TexHomnorii ReactiveX, ASPNET i WPF moxe OyTH BUKOPUCTaHUH SIK HAOYHE
3aCTOCYBaHHSI JAHOT TEXHOJIOTII.

Knruoei cnosa: peaxmusne npoepamysanns, pospooka GUI, 6azu oanux NoSQL, MongoDB, mexuonocia ReactiveX, mooens
MVC.

A.C. Byaeakoséa, KaHj1. TeXH. HayK, JOLIEHT Kadeapbl ”HHOPMALIMOHHBIX TEXHOJIOTUA,
HukonaeBckuii HAMOHAIBbHBIN yHUBEpcUTET UMeHU B.A. CyxomiinHCcKoTO,

yi. Hukomnbckast, 24, Hukomnaes 54000, YkpanHa,

sashabulgakova2@gmail.com

B.B. 3ocumoe, KaHl. TEXH. HayK, 3aBenyoliuil Kadeapoit MHGOPMaMOHHBIX TEXHOJIOTHUI,
HuxkonaeBckuit HalmoHabHBIN yHUBepcuTeT MeHn B.A. CyxoMJIMHCKOTO,

yi. Hukomnbckas, 24, Hukomnaes 54000, YkpanHa,

zosimovvv@gmail.com

HCIIOJB30BAHUE ITAPAJIMT'MBI PEAKTUBHOI'O
MPOTPAMMMPOBAHUS JJIS1 PA3PABOTKU KJIMEHTCKAX UHTEP®ENICOB

BBenenne. [lapamurma peakTUBHOTO ITPOTrPaMMUPOBAHMS TIPEIYCMATPUBACT JIETKOCTh BBIPAKECHMS TTOTOKOB JTaHHBIX, a
TaKXXe pacIpoCTpaHeHUe U3MEHEHUI O1arogapst 5TUM IOTOKaM. B MMIepaTMBHOM IIPOrpaMMUPOBAHUK OIEPALIMsI TP -
CBaMBaHMsI 03HAYAET KOHEYHOCTD Pe3y/IbTaTa, TOrIa Kak B peaKTUBHOM — 3HaYeHue OyIeT MepecunTaHo MPU MOTydeHUN
HOBBIX BXOIHBIX JaHHBIX. B IIEeHTp MporpaMmbl CTaBUTCS MOHITHE MOTOKA. [TOTOK 3HaYEHWIA TIPOXOIUT B CUCTEME PSIJT
TpaHchOopMaIHil, KOTOpble HEOOXOMUMBI TSI PEIIeHUS OTIpeie/IeHHOM 3anaun. OnieprpoBaHUe TOTOKAMU TTO3BOJISIET CHU -
cTeMe OBITh paciIMpsieMOU U aCHHXPOHHOM, a MpaBWIbHAST PeaKIvsl Ha BOSHUKAIOIINE OIIIMOKK — OTKa30yCTOMYMBOA.

Ileab ctaTeu. MccaemoBaTh akTyadbHOCTD UCITOB30BaHUS MapaIurMbl peaKTUBHOTO ITPOTpaMMHUPOBAaHNS, KaK OCHO-
BBI U151 pa3pabOTKK KIIMEHTCKUX MHTEP(ENCOB.

Pesyabratel 1 BbIBOABI. B paboTe paccMoTpeHa mapaarrMa peakTHBHOIO IIPOrpaMMUPOBAHUS U €€ OTIMYUS OT M-
MepaTUBHOIO U (PYHKIIMOHAJIBHOTO ITporpaMMupoBaHust. MccienoBaHa OCHOBHAsI TeXHOJIOTHSI, UCITOJIb3yeMasT CeTrOIHST
IIJIST CO3IaHMsI PUJIOXKEHUI Ha OCHOBE PeaKTUBHOTO MporpaMMupoBaHus. Ha mpuMepe rmokasaHo MCIOJIb30BaHME peak-
TUBHOM MapaJnTMbl, KOTOPast TO3BOJIIET CHU3UTh TPYA03aTpaThl Ha MTIOCTPOSHUE BAIMIHBIX MOJE/ICH, MUHUMU3UPOBATh
OIIMOKU, TIO3BOJISISI PEILIaTh IOCTABICHHYIO 3a1a4y 9 (OEKTUBHO U OBICTPO.

Ha ceromsiHuii [eHb UHCTPYMEHTBI PEAKTUBHOTO IIPOrPAMMMUPOBAHIS IT03BOJISIIOT YIYUILIUTh CO30aHUE U ITOAAEPXK-
KY CYILIECTBYIOIIMX IMPOEKTOB, B OCOOCHHOCTH, OPUEHTUPOBAHHBIX HA MHTEHCUBHOE B3aMMOICICTBUE IOJIb30BATEIsI C
cucteMoii. [IpeacraBieHHBIN B CTaThe MPOEKT, pa3pabOTaHHBIN ¢ moMolIbio TexHojoruit ReactiveX, ASP.NET w WPF
MOKET OBITh UCITOTH30BaH KaK HaTJISIAHOE MPUMEHEHNE pacCMaTPUBAEMOM TEXHOIOTUH.

Kniouesvie cnosa: peaxmusnoe npocpammuposanue, paspabomxa GUI, 6azer dannvix NoSQL, MongoDB, mexuonocus
ReactiveX, mooerv MVC.

ISSN 2706-8145, Control systems and computers, 2019, N2 5 69

