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FRECHET SIMILARITY BETWEEN TWO AMBIGIOUSLY DEFINED
POLYGONAL LINES

The paper considers the problem of comparing two polygonal lines that are not strictly defined. Instead, two sets of polygonal lines
are given as sets of paths on two acyclic directed graphs. The problem is to determinewhether there exists a pair of lines each from
its respective set such that the Frechet distance between them is not greater than a given number. An algorithm is given that solves

the problem in O(|E||R|) time, where E and R are the sets of edges in each graph respectively.
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Introduction

In pattern recognition practice the problem of
comparing pairs of images is often reduced to com-
paring certain subsets of fields of view of images.
Perhaps the most common example of such subsets
are image contours [1—5], which are curves on the
image without self-intersections. A natural prob-
lem of comparing such curves occurs and a typi-
cal and widely accepted metric for measuring the
distance between curves is the Frechet metric [6].
There are quite a few publications regarding com-
puting the exact or approximated Frechet distance
between polygonal curves [6—8].

Unfortunately, the procedure of contour detec-
tion is not uniquely defined [1] and instead of one
curve, the image may be represented by a set of
curves (see Fig. 1). One of the curves from the set is
the curve that gives the best description of the ima-
ge. However, the selection of such curve is at least
not obvious or even impossible without additional
context.
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Fig. 1. An example of ambiguous detection of contours on a
grayscale image with six possible contour curves

Problem definition

Let R¥bealinear space with kdimensionsand a met-
ric d: R* x R* — R where d(x,x,) is the distance

between points Xj and Xy, d(x;,x) =~/ (x; = x)* .
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Definition 1. A polygonal line with m ver-
tices Vi,Vva,...V,, €R", is a continuous func-
tion X :[0,m—1]— R* such that for any integer
ie{l...,m-1} and any A e[0,1] the equality
X(@+A)=(1-X)v; + v, holds.

For any polygonal line X :[0,m —1]— R¥ denote
R, a set of such monotone nondecreasing func-
tions r:[0,1]— [0,m —1] that (0)=0, r(1)=m—1.
Functions ry € Ry are called reparametrizations
of polygonal line X :[0,m—1]— R*, because both
functions X and the composition X (ry(...)) define
the same set of points in R*:

X|re[0,m=17={X(ry ()|t e [0.1]}

Definition 2. Frechet distance [6] between poly-
gonal lines X, :[0,m —1]— R and X, :[0,n-1]>
—> R¥ is the number:

B(X,, X,) inf = max d(X, (1, (1), X(rfD) -
rX,€Ry,

For the sake of simplifying notation, X will also
denote the set of points defined by the polygonal
line X. In other words for a polygonal line X with
m vertices

xeX <o Jdae [0,m—1]:x=X(0c).

Let V'be a finite set of points from a linear space

R¥, such that ve R* for ve V. Let points ¥ be ver-

Fig. 2. A graph with one of the possible polygonal
lines (V1 sV, V3,Vy4, V5 )

tices of some directed acyclic graph with edges
E cVxV. Moreover, suppose that two subsets
S cVand T cV of vertices are given. We will name
vertices .S starting vertices and vertices 7 terminals.

The four sets G =(V,S,T,E) define a set of po-
lygonal lines in the following way.

Definition 3. A sequence of vertices
(Vovaseesvyy )EV™ is called a path on the
graph G=(V,S.T,E) if weS,v,el and
(v,»,viﬂ)e E,i=1,m-1.

Every path (vl,vz,...,vm)e V™ defines a polygo-
nal line with respect to Definition 1. Thus, every
graph G defines a set of polygonal lines that we de-
note =(G) (see Figure 1). The set of polygonal lines
E(G) is the set of lines that are formed by paths on
the graph G that start at some starting vertex from ,§
and end at some terminal from 7. Since the graph
G is acyclic, the length of each path is limited and
therefore, the number of vertices in each polygonal
line is also limited by the number of vertices in the
graph. Moreover, the points from polygonal lines
are partially ordered by =< such that for a pair of
points x; € Rfand Xy € R¥ the relation X< X, holds
ifand only if there is a path from x, to x,.

Definition 4. Frechet distance between two sets of
polygonal lines that are defined by graphs Gj and G,
is a number
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3(G,Gy) min = min 3(X,,X),
where 6 (X;,X,) is the Frechet distance between
lines X, and X,.

The paper solves the problem of determining
whether for two given graphs G;,G, and a num-
ber €, the Frechet distance 6 (Gj,G,) between said
graphs is not greater than the number e.

In other words, the problem for a pair of graphs
is to determine whether there is a pair of polygonal
lines, each one from its respected graph, such that
the Frechet distance between them is not greater
than a given number.

Free-Space Diagram

The free-space diagram for a pair of graphs is a
generalization of the free-space diagram for a pair
of polygonal lines [6, 8, 9]. The free-space is a sub-
set of pairs of close points on two graphs:
={(x.y)reX,ye¥,X eE(G)),
Y € 5(G,y),d(x,y) <t }

Each point on the diagram corresponds to a pair
of points from two graphs, such that the distance d
between them is not greater than «.

If graphs G and G, define a single polygonal line
each, the free-space diagram D® would just be a
subset of a rectangle in R>. Unfortunately, for a pair
of arbitrary graphs G; and G, the free-space is not
so simple and demonstrative. However, analyses of
the free-space D° is greatly simplified by dividing it
to cells that correspond to pairs of edges on each
graph. For each pair of edges ¢ € E, r € R from two
graphs (V,8,,7},E) and (U,S,,T,,R) a cell from
free-space is defined as

D, = {(x,y)|x ee,yer,d(x,y)<e }

D* U ecE D
reR

Points from the free-space are also partially or-

dered:
(x1,%2)=(V1, ¥2) & X209, 1=y

Definition 5. A point (x,y) € D is called reac-
hableifthe existsa monotone (intermsofrelation <)
path from some starting point (v,,u,) € S;x S, to
(x,y) on DE.

Now the question whether two graphs are
¢ -similar is reduced to the question of existence of
a pair of reachable terminal points (v.,u.) € T} xT.

To formulate the algorithm we define sets of free
points and sets of reachable points on the cell edges.
For each vertex v of the first graph and each edge r
of the second graph we define a set of free points on
the left edge of the cell:

L, ={o e[0.1]|d(v,((1 )y +oury)) <& up,uy =r}.

For each edge e of the first graph and each vertex
u of the second graph we define a set of free points
on the bottom edge of the cell:

B, ={ae[0.1]ld.(1 —a)v; +0oy)) <& v, =et.

The next lemma is a generalization of a corres-
ponding lemma for a pair of polygonal lines[6].

Lemma 1. The sets L, for v e V/, r € R and the set
B,, for ee E,u €U are closed convex sets.

Proof. Indeed, the set L,, defines a subset of
points from linear segment uju, that are closer to a
given point vthan €. In other words, it is a subset of
such a,that (v —((1—o)v + ow))2 < & By opening
the brackets we obtain a quadratic inequality with
non-negative coefficient near the term o 2. There-
fore, the subset of a, that satisfy this inequality is a
linear segment (convex and closed).

Subsets Lzr c L, and B:u c B,, are subsets of
reachable points in terms of Definition 5 on the
free-space. The subsets of reachable points are also
linear segments, as the following lemma states.

Lemma 2. Subsets L* forvelV,r e R and B* for

" forecE.ueU are closed and convex subsets

Proof Suppose that L,, < [0,1] is not convex. It
means that there exists a trlple o <ay< oy such
that o, o3 eLV,, but o, eL Since o,,05 € LW,
it is also valid that o, 05 € LW.. But since L,, is
convex, then [Otl, 0L3]C L ... Therefore, since the
point o is reachable, the point o, is also reachab-
le because for the point o, there exists a monotone
path that consists from two parts: a path to o and
a path from o, to o, (which isa straight line from
free-space). Therefore, o, €L,

The main idea of the algorithm is to sequentially
compute reachable subsets on cell edges based on
the already computed reachable subsets on other
cell edges.
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Fig. 3. Construction of R:, for a pair of edges e =vv, and ¥ = uju,

Let us introduce additional notation. For a pair
of edges e =vv, € E and r =uju, € R we define two
sets:

R, B,,, is a set of points on the right side of
the cell D,,, that are reachable by a path that goes
through edges e and r;

7;*, c var is a set of points on top side of the cell
D,,, that are reachable by a path that goes through
edges eand r.

Algorithm Description

Computations that are performed for each cell of
the diagram are similar to the computations that
are done on each cell for a pair of polygonal lines
[6]. Nevertheless, we provide these computations
in detail. For each cell it is necessary to compute
the subset of reachable points on the top and right
edges of the cell based on the reachable subsets on
the bottom and left edges of the cell. We show how
for each cell D,,.,e =vv,,r =uju, one can compute
R; and T:r bafed on Lilr and B:ul.
Intervals R, are computed in the following way:

%

B:ul £0 =R, =R,, (Fig. 3, a);
B, =9,
Lilr =[a.b].t = R",, =[max {a,c},d:l, (Fig. 3, b);

(Fig. 3, ¢);

*

=R, =9,

R, =0 or (Fig. 3, d);

The intervals T, ;. are computed similarly:

LT’I” #J = T;’ = Ter;
L’Clr =,
B:ul = [a,b], = T:, = [max {a,c},d};
7, =[e.d]
L, #2, \
v = T, =@,
By, = [a,b],
T,, =2 =T, =D.

After computing R, for all edges e, that enter

vertex v, the subsets L, . are computed.
LVZV = Ueer{v2 NE Ry

Similarly, after computing 7, for all edges » that

enter u,, the subsets IB’W2 are computed.
Beuz = UreUx{uz NR T

It takes constant time to perform computations
for each cell. Since the diagram consists of |E||R|
cells the following theorem is valid.

Theorem 1. Determining e-similarity of two
graphs can be computed in O(|E]|R|) time, where E
is the set of edges of one graph and R is the set of
edges of the other.

Conclusions

The provided algorithm determines whether
there is a pair of polygonal lines in the given
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graphs such that the Frechet distance between  complexity for a pair of polygonal lines is pro-
them is less than a given number. The time com-  portional to the product of the number of linear
plexity of the algorithm is proportional to the  segments in the given lines. In a sense, the pre-
product of the number of linear segments of two  sented algorithm is a generalization of the known
graphs. Note that the known algorithm’s [6]  algorithm to graphs.
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PO3MISHABAHHA CXO>KOCTI HEOAHO3HAYHO 3AJAHUX
JIAMAHUX JITHIW Y METPUIII ®PEIIE

Beryn. ¥ npakTulli po3nizHaBaHHsI 00pasiB MpooGyieMy ITOPiBHSIHHS ITapy 300paXKeHb YacTO 3BOJSITH 10 MOIIYKY KOHTYPiB
Ha 300pakeHHsIX, 10 € KPUBUMU 63 CaMOTIEpEeTHHIB, Ta TIOPIBHIHHIO ITUX KpuBUX. OIHIEI0 3 HAUTIOTIMPEHITITNX METPUK
IIJIST aHAJIi3Y CXOXOCTI TAKUX KPUBUX € MeTpruKa Dpeliie, 06YMCIeHHIO SKOI IJIs1 TTapy JIAMaHUX JIiHil TPUCBSIYEHO 6araTo
my6utikaniii. Ha xainp, y 6L1pII0CTI BUTIAAKIB BUAIEHHS KOHTYPiB Ha 300paXeHHi He € 0MHO3HaYHUM. OTXe IPY PO3TJISIi
Mapy 300pakeHb 3aMiCTh MOPIiBHSAHHS Mapy KPUBUX HEOOXiMHO aHaJTi3yBaTH Mapy CYKYMHOCTENH KPUBUX.

Merta crarti. Heo0XinHO po3poOuTH alropuT™, SIKUil OU 32 TBOMa MHOXWHAMU JIaMaHUX JIiHill Ta 3aaHOMY YMCITy
BM3HAYaB, UM iCHYE B IIMX MHOXMHAX TaKa I1apa JaMaHuX (110 OHiif i3 KOXXHOT MHOXWHM), 1110 BizctaHb Dpelire Mixk HUMU
He MEePeBUIIYE 33JaHOTO YKUCIIA.

Pesyabratu. Y cTaTTi HaBENEHO aNTOPUTM, IO K BXilHi JaHi OTPUMYE Tapy OPIEHTOBAHUX ALUKIIYHUX Tpadis,
BEPIIMHAMU SIKMX € TOYKM METPUYHOTO MPOCTOPY, a pedpaMy — MPSIMOJIiHINHI Bipi3ku, 110 3’€AHYIOTh BEPIIUHU, Ta
JIoJaTHE yucio. TakuM YMHOM, KOXXHUI IUisix Ha rpadi 3aaae namaHy JiHilo, a Tpad y LiToMy 3a1ae MHOKUHY JJaAMaHUX
JIiHi. Ha BUXOi airoprT™ A€ BiaITOBiAb, YU iCHYE Y IBOX Ipadax Taka mapa JJaMaHuXx, 110 BincTaHb Ppeliie MixkK HIUMU He
MepPEBUIILYE 33JaHOT0 yrciia. Yac poboTH aaropuT™My NponopLiitHui 100yTKyY KijbKOCTi pedep omHoro rpaca Ha KiJIbKiCTh
pedep Ipyroro.

BucnoBku. Binomi anroputMu, 1o 3a maporo JaMaHUX BU3HAYAIOTh, YU TEPEBUIIYE BincTanb Ppelre MixX JaMaHUMUI
3a[laHe JOJATHE YMCIIO, MTOTPEOYIOTh Yacy, SIKWi € MPONOpLiiHUM T00YTKY KiIBKOCTI NPSIMOJIIHIHHUX BiIpi3KiB OIHI€T
JTaMaHOT Ha KiJIbKiCTb MPSIMOiHIHHUX Bilpi3KiB iHII0T JaMaHoi. OTXe OTpUMaHU i pe3yJbTaT € y3aralbHEeHHSIM BilOMOTO
aJITOPUTMY.

Karouosi caoea: obuucarosansia ceomempis, mempurxa Ppewe, areopummivna cKAAOHICMb.
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