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A MODIFICATION OF THE FRECHET DISTANCE  
FOR NONISOMORPHIC TREES

The paper presents a modification of the Frechet distance for nonisomorphic trees. While the classical Frechet distance between 
nonisomorphic trees is undefined, a new measure called similarity of a tree to a reference tree is given that is defined for a wider 
class of trees. A polynomial time algorithm is given for determining whether similarity of one tree to another is less than a given 
number.
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Introduction

Many image processing methods involve selecting 
contours on the image and processing those con-
tours with various algorithms such as computing 
the Frechet distance between the selected contour 
and the reference contour. Another common ap-
proach is to perform a so-called image skeletoniza-
tion [6, 8] instead of contour selection. Computing 
the Frechet distance between curves, both open 
and closed, is a relatively well researched prob-
lem [1, 3, 5, 7]. Since an image contour is always 
some sort of a curve, comparing contours with the 
Frechet metric does not impose much difficulty. 
The skeleton of a simply connected binary image 
is in some sense an acyclic set of points (a tree). 
Computing the Frechet distance between trees [4] 
can be problematic since the metric is either unde-
fined or equals infinity for non-isomorphic trees, 
depending on the point of view. An alternative for 
the Frechet metric is known [2], which is essen-
tially a mixture of the Frechet distance between 
polygonal lines and Hausdorff distance. With this 
approach the distance between any pair of trees is 

defined and finite. We propose another variation on 
the Frechet distance that is also defined for noniso-
morphic pairs of trees and is ideologically closer to 
the original Frechet metric, although the proposed 
distance is not symmetric and is therefore not a 
metric.

Problem formulation

Let Г = (V, E) be an acyclic connected graph  
(a tree) with a finite number of vertices V ⊂ Rk, 
which are points in a k-dimensional linear space, 
and a set of edges E ⊂ V × V. Each edge (u,v) ∈ V  
defines a linear segment λ(u, v) = {α u + (1 - α) 
v | α ∈ [0, 1]}, and the whole tree Г defines a 

subset of points in Rk,  the union of all linear seg- 

ments ( )
( ),

λ ,
u v E

X u v
∈

= ∪  , which are called points of 

the tree Г.

Definition 1. The Frechet distance between trees 
Г

1  
and Г

2
 with their corresponding sets of points  

X
1
 and X

2
 is 

	
1 2( , ) inf max ( , ( ))

x X
f X X d x x

ϕ
ϕ

∈Φ ∈
=
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where Ф is the set of all continuous bijections 
between X

1
 and X

2
.

Definition 2. The Hausdorff distance between 
sets X and Y is the number 

( ) ( ) ( ), max[max min , ,max min , ].
y Y x Xx X y Y

h X Y d x y d x y
∈ ∈∈ ∈

= (1)

The problem of the Frechet distance between 
trees is immediately apparent from the definition, 
since the value f(X

1
,X

2
) is only defined when the set 

of continuous bijectionsΦФ is not empty. The set 
ΦФ is never empty when Г

1
 and Г

2
 are polygonal 

lines. The same, however, can not be said for non-
isomorphic pairs of trees.

Examples of trees that have at least one 
continuous bijection is given on Fig. 2, while 

Fig. 2 gives an example of a pair of trees with no 
continuous bijection.

The Frechet metric needs to be weakened in 
order to be used on non-isomorphic trees. We do 
so by not limiting ϕ to continuous bijections.

For any function  ϕ: X
1
 → X

2
 and a point  

x
2
∈∈ X

2
  denote ϕ-1(x

2
) = {x

1
∈∈ X

1 
|
 
ϕ(x

1
)}   the 

preimage of x
2
∈∈ X

2
. Note that ϕ-1(x

2
) in no way 

implies that ϕ is an invertible function.
For any continuous function ϕ: X

1
 → X

2
 an image 

( )2 1φX X∗ ∗=   of any connected subset 1 1X X∗ ⊂   is 
also connected.

Definition 3. A function ϕ: X
1
 → X

2
 is called 

monotone if preimage ϕ-1(x
2
) of any point  x

2 
∈∈X

2
 

is a connected set. 

Fig. 2. A pair of trees with no continuous bijection and undefined 
Frechet distance

Fig. 1. An example of trees with non-empty Ф. For any of given pair of trees 
the Frechet distance is defined and is finite
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Definition 4. For a given number ε the set 
X

1
 is called ε–similar to the reference set X

2
, if a 

continuous monotone function ϕ: X
1
 → X

2 
exists 

such that ϕ(X
1
)=X

2
 and d(x

1
, ϕ (x

1
)) ≤ ε for all x

1
∈ 

X
1
.
Definition 5. Similarity δ(X

1
,X

2
) of the set X

1
 to 

the reference set X
2
 is the exact lower bound on 

such values  ε that X
1
 is ε–similar to X

2
.

The problem is to determine for given trees Г
1
, 

Г
2
 and a number ε whether X

1
 is ε-similar to  X

2
, 

where X
1
 and X

2
 are the sets of points of Г

1
 and Г

2
 

respectively.

General Properties of Set Similarity

The relation of  ε-similarity of X
1
 to X

2
 as well as 

the function δ(X
1
,X

2
) of similarity is not symmetric 

with respect to its arguments. Therefore, δ(X
1
,X

2
) is 

not a metric. Nevertheless, it is ideologically close 
to the Hausdorff and Frechet metrics and lies in 
the middle of them in the sense of the following  
theorem. 

Theorem 1. Let h(X
1
,X

2
) be the Hausdorff 

distance between X
1
 and X

2
, let f(X

1
,X

2
) be the 

Frechet distance between X
1
 and X

2
.

For all X
1
 and X

2
 the following inequalities are 

valid 
h(X

1
,X

2
) ≤ δ (X

1
,X

2
) ≤ f (X

1
,X

2
).                   (2)

The equality δ(X
1
,X

2
) = 0 holds if and only if  

X
1
=X

2
 .

Proof. We first prove that when f (X
1
,X

2
) =  

= f *, the inequality δ(X
1
,X

2
) ≤ f * holds. Indeed, 

the expression f(X
1
,X

2
) = f * means that for any  

ε* > f * a continuous bijection ϕ*: X
1
 ↔ X

2
 

exists, such that for any x ∈ X
1
 the inequality  

d(x
1
, ϕ (x

1
)) ≤ ε* holds. Since ϕ*is continuous 

and invertible, then according to Definition 3 it 
is monotone and according to Definition 4 the 
set X

1
 is ε*–similar to X

2
 for all ε*  > f *. Therefore,  

δ (X
1
,X

2
) ≤ f * ccording to Definition 5.

We now prove that if δ(X
1
,X

2
) ≤ δ* then  

h(X
1
,X

2
) ≤ δ*. The equality δ(X

1
,X

2
) = δ* means that 

for any ε* < δ* there exists a monotone continuous 
functions ϕ: X

1
 → X

2 
 such that for any x ∈ X

1 
the 

inequality d(x
1
, ϕ* (x

1
)) ≤ ε* holds. For a function  

ϕ* there exists a function ψ*: X
1
 → X

2  
such that 

ψ*(x
2
) ∈ ϕ* (x

2
) and  

d(x
1
, ϕ* (x

1
)) ≤ ε* for all x

1
 ∈ X

1
,

d(ψ*(x
2
), x

2
) ≤ ε* for all x

2
 ∈ X

2
.

From the inequalities it obviously follows that 

min d(x
1
, x

2
) ≤ ε* for all x

1
 ∈ X

1
,

                             

x
2
 ∈ X

2

min d(x
1
, x

2
) ≤ ε* for all x

2
 ∈ X

2
,

                             

x
1
 ∈ X

1

max  min  d(x
1
, x

2
) ≤ ε* ,

                                    

x
1
 ∈ X

1  
x

2
 ∈ X

2

max  min  d(x
1
, x

2
) ≤ ε* ,

                                    

x
2
 ∈ X

2   
x

1
 ∈ X

1

and finally 

max {max  min  d(x
1
, x

2
), max  min  d(x

1
, x

2
)} ≤ ε* .

          

x
1
 ∈ X

1  
x

2
 ∈ X

2                                  

  

x
2
 ∈ X

2  
x

1
 ∈ X

1	

According to Definition 2 the left-hand side 
of the last inequality is the Hausdorff distance 
h(X

1
,X

2
). Since h(X

1
,X

2
) ≤ ε* for all ε* > δ*, then 

h(X
1
,X

2
) ≤ δ*  = δ(X

1
,X

2
).

The last statement of the theorem 

[δ(X
1
,X

2
) = 0] ⇔ [X

1
 = X

2
]

directly follows from the proved inequalities (2) 
and the fact that both h and f are metrics. 

Properties of Tree Similarity

Let ,V EΓ = 〉 be a tree that defines a set of points  X.

Definition 6. Denote P(u,v)⊆ X the minimal 
connected subset of X that contains u and v.

Definition 7. A point u ∈ V ⊂ Rk is called a bran-
ching point of X if u has strictly more than two adja-
cent vertices. A point u ∈ V ⊂ Rk  is called a terminal 
point of X if u has exactly one adjacent vertex. All 
other points from X are called ordinary points.
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A path P(u,v) can either go through branching 
points of X or not. If all points r ∈ P(u,v)\{u,v} 
are not branching points the path is called an 
unbranched section (see Fig. 4).

Definition 8. For any unbranched section 
P(u,v) denote S(u,v) the set of such points t that  
P(t,u)∩ P(u,v) = {u} and call it a sector (see  
Fig. 4). 

Any terminal vertex is a special case of a sector.

Definition 9. For any pair of r ∈ V and s ∈ V 
such that each r and s are either branching points 
or terminals denote the set Z(r,s)=(X

 
\

 
S(r,u))

 
\

  

\ S(s,v) ∪ {r,s}, where u and v are branching points 
on P(r,s) (see Figure 4) and call it a subtree of X.

Obviously P(r,s) ⊆ Z(r,s) is part of the subtree 
Z(r,s) without all the branches. 

Definition 10. A flower F(u,v) is the union of the 
corresponding unbranched path and the sector. 

F(u,v)=S(u,v) ∪P(u,v).

The provided definitions result in a number of 
properties.

Let r be a terminal point and let s be a branching 
point such that P(r,s) is an unbranched section. 
Then S(r,s) = {r} and S(s,r) ∪ P(r,s) = X. Or even 
more general. 

Property 1. If P(u,v) is an unbranched section 
(see Fig. 4), then 

X=S(u,v)∪P(u,v)∪S(v,u).

Any sector that is not a terminal vertex is a union 
of flowers as the following property states. 

Property 2.  Let S(u,v) be a sector and let {t
1
,  

t
2
, ..., t

n-1
, t

n
} be the set of all branching t

i 
∈ S(u,v) 

such that P(t
i
,u) is an unbranched section. In this 

case (Fig. 4) sector S(u,v) can be expressed as 

                                                                                    

Fig. 4. An example of sector S(u,v), which is a union of 
sectors S(t

1
,u), S(t

2
,u), S(t

3
,u) and unbranched sections 

P(t
1
,u), P(t

2
,u), P(t

3
,u). Also F(t

1
,u) = S(t

1
,u) ∪ P(t

1
,u), 

F(t
2
,u) = S(t

2
,u) ∪ P(t

2
,u) and F(t

3
,u) = S(t

3
,u) ∪ P(t

3
,u)

Fig. 3. An example of an unbranched 
section P(u,v) and two sectors S(u,v) and 
S(v,u) that together form the whole set X 

1

1

( , ) [ ( , ) ( , )]

[ ( , )]

n
i

n
i

S u v S t u P t u
F t u

=

=

= =

=

∪ ∪
∪
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So to sum up, a sector is a union of flowers while 
each flower is a union of a sector and an unbran-
ched path.

For any sector S a single set of flowers F
1
, F

2
,… 

…, F
n
 exist that satisfy Property 2. We may say that 

secto S consists of flowers F
1
, F

2
,…, F

n
.

The main idea of the algorithm presented 
further is that for certain subsets X

1
* ⊆ X

1
  and 

X
2

* ⊆ X
2
  it is determined whether a continuo- 

us monotone mapping ϕ : X
1

* →  X
2

*  exists, such 
that 

max d(x
1
, ϕ (x

1
)) ≤ ε. 

x∈X
1

*

Whenever such mapping exists we would say that 
X

1
* maps onto X

2
* and denote this as G(X

1
*, X

2
*) = 1. 

Otherwise, G(X
1

*, X
2

*) = 0 denotes that such map-
ping does not exist.

Algorithm Description

When X
1
 and X

2
 are points of trees Г

1
 and  Г

2
 the 

concept of monotone and continuous function  
ϕ: X

1
 →  X

2
  has a very demonstrative interpretation 

expressed in the following three lemmas.

Lemma 1. For a monotone continuous func- 
tion  ϕ : X

1
 →  X

2 
and any three points u,v,w ∈ X

1
 

such that w ∈ P(u,v) the relation ϕ(w) ∈ P(ϕ(u),  
ϕ(v)) holds. 

Proof. Let us show that when the function  ϕ: 
X

1
 →  X

2
 is continuous then either ϕ(w) ∈ P(ϕ(u),  

ϕ(v)) or ϕ is not monotone. Denote r = med(ϕ(w), 
ϕ(u), ϕ(v)) a median of points ϕ (w), ϕ(u), ϕ(v), 
that is a point of intersection of paths P(ϕ(u),  
ϕ(v)), P(ϕ(w), ϕ(v)) and P(ϕ(w),ϕ(u)). Either the 
equality r = ϕ (w) holds or inequality r ≠ ϕ(w) holds. 
If r = ϕ (w) then ϕ(w)∈ P(ϕ(u), ϕ(v)).

Suppose that r≠ ϕ(w). Since the restriction of 
function ϕ to P(u,w) is a continuous function,  
the point w

1
 ∈ P(w,v), w

1 
≠ w, exists such that  

ϕ(w
1
) = r. The restriction of ϕ to P(w,v) is also a 

continuous function, and therefore, there exists 
a point w

2
∈ P(w,v), w

2 
≠ w, such that ϕ(w

2
) = r. 

Therefore,  w
1

-1 ∈ ϕ(r), w
2

-1 ∈ ϕ(r), and the point 
w, that belongs to P(w

1
,w

2
) does not belong 

to ϕ-1(r), since ϕ(w) ≠ r. This means that the 
preimage ϕ-1(r) is not connected and ϕ is not 
monotone. 

Lemma 2. If ϕ: X
1

 →  X
2
  is a monotone continuous 

function then for any three points  u,v,w ∈ X
1
 the 

equality  ϕ(med(u,v,w))=med(ϕ(u), ϕ(v), ϕ(w)) 
holds.

Proof. Median r of the triple u,v,w ∈ X
1
 belongs 

to paths P(u,v), P(u,w) and P(v,w). Therefore, 
according to Lemma 1, the point ϕ(r) belongs to 
paths P((u), (v)), P(ϕ(u), ϕ(w)) and  P(ϕ(v), ϕ(w)), 
or in other words is a median of three points ϕ(u), 
ϕ(v), ϕ(w) ∈ X

2
.

The algorithm works by determining whether 
certain subsets X

1
* ⊆ X

1
 of tree X

1
 can be mapped 

onto certain subsets X
2

* ⊆ X
2
 of tree X

2
. Recall that 

when such mapping exists it is denoted by  G(X
1

*, 
X

2
*). Computing   G(X

1
*, X

2
*) can be divided into 

these important special cases.

Fig. 5. A subtree Z(r,s) (shown in bold) is 
a part of the whole tree X that is enclosed 
between two sectors S(r,u) and S(s,v) such that  
X = S(r, u) ∪ Z(r, s) ∪ S(r, v)
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1.Can a sector S(u,v) be mapped onto a sector 
S(r,s) such that ϕ ϕ(u) = r.

2.  Can a flower F(u,v) be mapped onto a flower  
F(r,s) such that ϕ ϕ(v) = s. 

3.  Can a flower F(u,v) be mapped onto a single 
point {r}. 

4.  Can a subtree Z(u,v) be mapped onto an 
unbranched path P(r,s) such that ϕ(u) = r and ϕ 
ϕ(v) = s.

Mapping a flower on a flower

A flower F(u,v) can be mapped onto a flower F(r,s) 
if there exists a sector S(p,t) ⊂ F(u,v)  that can be 
mapped onto a sector S(r,s) such that the subtree 
Z(p,v) can be mapped onto the unbranched section 
P(r,s) (see Fig. 6). This can be written as 

( , )
( , ) ( , )
( , )

( ( , ), ( , ))
( ( , ), ( , )) & ( ( , ), ( , )).

S p t
S p t F u v
t P p v

G F u v F r s
G Z p v P r s G S p t S r s

⊂
∈

=
= ∨

Mapping a sector on a sector

If a sector 
1

( , )          )
m

i
S u v F  t   u

=
= ∪ i( ,  is mapped onto a 

sector  
1

( , ) ( , )
n

i
i

S u v F p r
=

= ∪  via a function ϕ then 
ϕ(u) = r and each flower F(t

i
, u), i = 1,..., m must 

either map onto some flower F(p
i
, r) or map onto 

the vertex r. Moreover, no two flowers can map on 
the same flower, but multiple flowers can map onto 
the vertex r. Whether such a correspondence exists 
can be determined by solving a maximum matching 
problem on a bipartite graph (see Fig. 7).

Mapping a flower on a point

Testing whether G(F(t, u), r) = 1 is straightforward. 
Indeed, 

G(F(t, u), r) = 1 ⇔ ∀ x ∈ F(t, u) ∩ V
1
: d(x,r) ≤ ε,  

so the algorithm needs to check the proximity of 
finite number of points to r.

Mapping a subtree on an unbranched path

Testing G(Z(p, v), P(r, s)) = 1 may seem tricky. 
However, it is not much different from testing 

G(P(p, v), P(r, s)) = 1, which is the problem solved 
by Alt and Godau [1] for testing whether the 
Frechet distance between polygonal curves does 
not exceed.

Fig. 6. A flower F(u,v)=S(p,t)∪∪ Z(p,v) (on the left)  

being mapped onto a flower F(r,s)= S(r,s)∪∪ P(r,s)  

(on the right). The subtree Z(p,v) and the unbranched 

section P(r,s) are shown in bold

Fig. 7. A maximum bipartite matching problem for com-

puting G(S(u,v),S(r,s)), when  
1

( , )          )
m

i
S u v F  t   u

=
= ∪ i( ,   

and  
1

( , ) ( , )
n

i
i

S u v F p r
=

= ∪
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Conclusions

We have presented a measure of similarity of one 
tree to another reference tree. This measure of 
similarity is not a metric, however, it is weaker 
than the Frechet metric, which allows it to be fi-
nite on nonisomorphic trees, but stronger than the 
Hausdorff metric.

The presented algorithm for determining if the 
similarity between to trees is less than a given num-
ber ε takes polynomial time and works by reducing 
the problem of comparing two trees into smaller 
problems of comparing subsets of these trees (called 
flowers and sectors), which in turn are reduced to 
smaller and smaller problems and so on.
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МОДИФІКАЦІЯ МЕТРИКИ ФРЕШЕ ДЛЯ НЕІЗОМОРФНИХ ДЕРЕВ

Вступ. Скелетизація зображень для подальшого порівняння пар скелетів — поширена практика в розпізнаванні 
зображень. У більшості випадків скелет зображення — ациклічна підмножина поля зору. Поширеною метрикою 
для порівняння підмножин є метрика Фреше. Однак, відстань Фреше визначено лише для пар ізоморфних дерев, 
що зводить нанівець можливість практично застосовувати таку метрику на деревах.

Ціль статті. Необхідно розробити метод порівняння дерев, ідеологічно близький до метрики Фреше, але виз-
начений для пар неізоморфних дерев.

Результати. У статті запропоновано модифікацію метрики Фреше для неізоморфних дерев. Нова числова ха-
рактеристика названа близькістю дерева до еталону і визначена в тому числі для деяких класів пар неізоморфних 
дерев. Запропоновано поліноміальний алгоритм розпізнавання того, що одне дерево є близьким до іншого з 
точністю до заданого числа.

Ключові слова: обчислювальна геометрія, метрика Фреше, дерева.


