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A MODIFICATION OF THE FRECHET DISTANCE

FOR NONISOMORFPHIC TREES

The paper presents a modification of the Frechet distance for nonisomorphic trees. While the classical Frechet distance between
nonisomorphic trees is undefined, a new measure called similarity of a tree to a reference tree is given that is defined for a wider
class of trees. A polynomial time algorithm is given for determining whether similarity of one tree to another is less than a given

number.
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Introduction

Many image processing methods involve selecting
contours on the image and processing those con-
tours with various algorithms such as computing
the Frechet distance between the selected contour
and the reference contour. Another common ap-
proach is to perform a so-called image skeletoniza-
tion [6, 8] instead of contour selection. Computing
the Frechet distance between curves, both open
and closed, is a relatively well researched prob-
lem [1, 3, 5, 7]. Since an image contour is always
some sort of a curve, comparing contours with the
Frechet metric does not impose much difficulty.
The skeleton of a simply connected binary image
is in some sense an acyclic set of points (a tree).
Computing the Frechet distance between trees [4]
can be problematic since the metric is either unde-
fined or equals infinity for non-isomorphic trees,
depending on the point of view. An alternative for
the Frechet metric is known [2], which is essen-
tially a mixture of the Frechet distance between
polygonal lines and Hausdorff distance. With this
approach the distance between any pair of trees is

defined and finite. We propose another variation on
the Frechet distance that is also defined for noniso-
morphic pairs of trees and is ideologically closer to
the original Frechet metric, although the proposed
distance is not symmetric and is therefore not a
metric.

Problem formulation

Let ' = (V, E) be an acyclic connected graph
(a tree) with a finite number of vertices V' < R,
which are points in a k-dimensional linear space,
and a set of edges £ — V'x V. Each edge (u,v) € V
defines a linear segment A(u, v) = {a u + (1 - o)
v | a € [0, 1]}, and the whole tree T' defines a
subset of points in R, the union of all linear seg-

ments X = U x(u,v) , which are called points of
the tree T. %"

Definition 1. The Frechet distance between trees
I', and T, with their corresponding sets of points
X, and X, is

f(X,,X,)=inf max d(x,p(x))
ped xeX
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Fig. 1. An example of trees with non-empty ®. For any of given pair of trees
the Frechet distance is defined and is finite

Pt

Pt

Fig. 2. A pair of trees with no continuous bijection and undefined

Frechet distance

where @ is the set of all continuous bijections
between X, and X,.

Definition 2. The Hausdorff distance between
sets X and Yis the number
h(X,Y)= max[n)}g(x I}E?d(x,y),r?gx rgl}pd(x,y)].(l)

The problem of the Frechet distance between
trees is immediately apparent from the definition,
since the value f{X,X)) is only defined when the set
of continuous bijections @ is not empty. The set
@ is never empty when I', and I, are polygonal
lines. The same, however, can not be said for non-
isomorphic pairs of trees.

Examples of trees that have at least one
continuous bijection is given on Fig. 2, while
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Fig. 2 gives an example of a pair of trees with no
continuous bijection.

The Frechet metric needs to be weakened in
order to be used on non-isomorphic trees. We do
so by not limiting ¢ to continuous bijections.

For any function ¢: X, - X, and a point
x,€ X, denote ¢'(x,) = {x, € X, |o(x)} the
preimage of x, € X,. Note that ¢'(x,) in no way
implies that ¢ is an invertible function.

For any continuous function ¢: X, — X, an image
X, = (p(X 1*) of any connected subset X, < X, is
also connected.

Definition 3. A function ¢: X, — X, is called
monotone if preimage ¢'(x,) of any point x, € X,

is a connected set.
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Definition 4. For a given number & the set
X, is called e—similar to the reference set X, if a
continuous monotone function ¢: X, — X, exists
such that o(X)=X, and d(x,, ¢ (x,)) < ¢ forall x e
X.

Definition 5. Similarity 3(X,,X)) of the set X, to
the reference set X, is the exact lower bound on
such values ¢ that X is e—similar to X,.

The problem is to determine for given trees I,
I', and a number & whether X, is e-similar to X,
where X, and X, are the sets of points of I', and T,
respectively.

General Properties of Set Similarity

The relation of e-similarity of X, to X, as well as
the function 8(X,X) of similarity is not symmetric
with respect to its arguments. Therefore, 5(X,X)) is
not a metric. Nevertheless, it is ideologically close
to the Hausdorff and Frechet metrics and lies in
the middle of them in the sense of the following
theorem.

Theorem 1. Let A(X,X,) be the Hausdorff
distance between X, and X, let f{X,X)) be the
Frechet distance between X, and X,.

For all X, and X, the following inequalities are
valid

h(X,.X) <8 (X,.X) <f(X,.X,). e)

The equality 6(X,,X,) = 0 holds if and only if
X=X, .

Proof. We first prove that when [ (X,X,) =
= [, the inequality 5(X,X,) < /" holds. Indeed,
the expression f{iX,X,) = f “means that for any
g" > f 7 a continuous bijection ¢ X, <> X,
exists, such that for any x € X, the inequality
d(x,, ¢ (x,)) < ¢ holds. Since ¢is continuous
and invertible, then according to Definition 3 it
is monotone and according to Definition 4 the
set X, is g*—similar to X for all &* > /. Therefore,
3 (X,,X)) <f" ccording to Definition 5.

We now prove that if 8(X,X)) < & then
h(X,,X,) <&". The equality 5(X,X,) = & means that
for any £* < & there exists a monotone continuous
functions ¢: X, — X, such that for any x € X, the

inequality d(x,, ¢* (x,)) < & holds. For a function
¢" there exists a function y*: X, — X, such that

v'(x,) € 0" (x,) and
dx, ¢ (x)) <eforallx, € X,
d(y*(x,), x,) <e'forall x, € X,
From the inequalities it obviously follows that

min d(x, x,) <¢ forall x, € X,
X, € X,

2

n)}ng ?(l(xl, x,)) <¢'forallx, € X,
1

1

max min d(x,x,) <e",

x eX x, ek

max minXd(xl, X)) <e,
1

XZE lee

and finally

X))} <¢g*.

max {max min d(x,, x,), max min d(x, x,

x, eX x, ek, x, e X,x X

According to Definition 2 the left-hand side
of the last inequality is the Hausdorff distance
h(X,,X,). Since h(X,X)) < ¢ for all &> &, then
h(X,X)) <8 =08(X,X).

The last statement of the theorem

[8(X,.X,) = 0] & X, = X}]

directly follows from the proved inequalities (2)
and the fact that both /4 and fare metrics.

Properties of Tree Similarity

LetI" =(V,E) be atree that defines a set of points X.

Definition 6. Denote P(u,v)c X the minimal
connected subset of X that contains v and v.

Definition 7. A point u € V< R is called a bran-
ching point of X if u has strictly more than two adja-
cent vertices. Apointu € V< R is called a terminal
point of X if u has exactly one adjacent vertex. All
other points from X are called ordinary points.
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S(v,u)

Fig. 3. An example of an unbranched
section P(u,v) and two sectors S(u,v) and
S(v,u) that together form the whole set X

A path P(u,v) can either go through branching
points of X or not. If all points € P(u,v)\{u,v}
are not branching points the path is called an
unbranched section (see Fig. 4).

Definition 8. For any unbranched section
P(u,v) denote S(u,v) the set of such points ¢ that
P(t,u)n P(u,v) = {u} and call it a sector (see
Fig. 4).

Any terminal vertex is a special case of a sector.

Definition 9. For any pair of r € Vand s € V
such that each r and s are either branching points
or terminals denote the set Z(r,s)=(X\ S(r,u)) \
\ S(s,v) U {r,s}, where u and v are branching points
on P(r,s) (see Figure 4) and call it a subtree of X.

Obviously P(r,s) < Z(r,s) is part of the subtree
Z(r,s) without all the branches.

Definition 10. A flower F(u,v) is the union of the
corresponding unbranched path and the sector.

Fig. 4. An example of sector S(u,v), which is a union of
sectors S(7,u), S(t,,u), S(¢,,u) and unbranched sections
P(t,u), P(t,u), P(t,u). Also F(t,u) = S(t,u) v P(t,u),
F(t,,u) = S(t,,u) U P(t,,u) and F(t,,u) = S(t,,u) U P(t,,u)

Fu,v)=S(u,v) UP(u,v).

The provided definitions result in a number of
properties.

Let rbe a terminal point and let s be a branching
point such that P(r,s) is an unbranched section.
Then S(r,s) = {r} and S(s,r) U P(r,s) = X. Or even
more general.

Property 1. If P(u,v) is an unbranched section
(see Fig. 4), then

X=S5u,v)OP(u,v)uS(v,u).

Any sector that is not a terminal vertex is a union
of flowers as the following property states.

Property 2. Let S(u,v) be a sector and let {7,
t), ..., I, 1} be the set of all branching 7. € S(u,v)
such that P(#,u) is an unbranched section. In this
case (Fig. 4) sector S(u,v) can be expressed as

S, v) =UL[S@Eu)U P(1,u)] =
=ULF )]
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Fig. 5. A subtree Z(r,s) (shown in bold) is
a part of the whole tree X that is enclosed
between two sectors S(r,u) and S(s,v) such that
X=S8(r, u) v Zr, s) U S(r, v)

So to sum up, a sector is a union of flowers while
each flower is a union of a sector and an unbran-
ched path.

For any sector § a single set of flowers F, F,,...
..., F exist that satisfy Property 2. We may say that
secto S consists of flowers F,, F,..., F.

The main idea of the algorithm presented
further is that for certain subsets X"c X, and
X, c X, it is determined whether a continuo-
us monotone mapping ¢ : X;"— X, exists, such

1
that

max d(x,, ¢ (x,)) <e.
Xe |
Whenever such mapping exists we would say that
X" maps onto X, and denote this as G(X ", X,") = 1.
Otherwise, G(X,", X,") = 0 denotes that such map-
ping does not exist.

Algorithm Description

When X, and X, are points of trees I' and T, the
concept of monotone and continuous function
¢: X, — X, has a very demonstrative interpretation
expressed in the following three lemmas.

Lemma 1. For a monotone continuous func-
tion ¢ : X, —> X, and any three points u,v,w € X
such that w € P(u,v) the relation o(w) € P(o(u),
¢(v)) holds.

Proof. Let us show that when the function ¢:
X, — X, is continuous then either o(w) € P(¢(u),
¢(v)) or ¢ is not monotone. Denote r = med(p(w),
o(u), (v)) a median of points ¢ (w), (u), e(v),
that is a point of intersection of paths P(¢(u),
o)), P((w), 9(v)) and P(¢(w),(u)). Either the
equality = ¢ (w) holds or inequality 7+ ¢(w) holds.
Ifr=¢ (w) then o(w)e P(o(u), (v)).

Suppose that r= ¢(w). Since the restriction of
function ¢ to P(u,w) is a continuous function,
the point w, e P(w,v), w, # w, exists such that
¢(w,) = r. The restriction of ¢ to P(w,v) is also a
continuous function, and therefore, there exists
a point w,e P(w,v), w,# w, such that ¢(w,) = r.
Therefore, w ' € @(r), w," € ¢(r), and the point
w, that belongs to P(w,w,) does not belong
to @’!(r), since @(w) # r. This means that the
preimage ¢'(r) is not connected and ¢ is not
monotone.

Lemma 2. If : X, — X, isamonotone continuous
function then for any three points u,v,w € X, the
equality  @(med(u,v,w))=med(e(u), ¢(v), ¢(w))
holds.

Proof. Median r of the triple u,v,w € X, belongs
to paths P(u,v), P(u,w) and P(v,w). Therefore,
according to Lemma 1, the point @(r) belongs to
paths P((u), (v)), P(e(u), (w)) and P(e(v), p(w)),
or in other words is a median of three points @(u),
o(v), p(w) € X,.

The algorithm works by determining whether
certain subsets X" < X, of tree X, can be mapped
onto certain subsets Xz* c X, of tree X,. Recall that
when such mapping exists it is denoted by G(X|",
X)). Computing  G(X,", X]") can be divided into
these important special cases.
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1.Can a sector S(#,v) be mapped onto a sector
S(r,s) such that o(u) =r.

2. Can a flower F(u,v) be mapped onto a flower
F(r,s) such that @(v) =s.

3. Can a flower F(u,v) be mapped onto a single
point {r}.

4. Can a subtree Z(u,v) be mapped onto an
unbranched path P(r,s) such that ¢(u) = r and

o(v) =s.

Mapping a flower on a flower

A flower F(u,v) can be mapped onto a flower F(r,s)
if there exists a sector S(p,f) < F(u,v) that can be
mapped onto a sector S(7,s) such that the subtree
Z(p,v) can be mapped onto the unbranched section
P(r,s) (see Fig. 6). This can be written as

G(F(u,v),F(r,s)) =
G(Z(p,v),P(r,s)) & G(S(p,1),S(r,s)).

= \4
S(p.t)
S(p,t)CF(u,v)
teP(p,v)

Mapping a sector on a sector

If a sector S(u,v) = .L_J,F (¢, u) is mapped onto a

sector S(u,v)=UF(p,,r) via a function ¢ then
¢(u) = rand each flower F(z, u), i = 1,..., m must
either map onto some flower F(p, r) or map onto
the vertex . Moreover, no two flowers can map on
the same flower, but multiple flowers can map onto
the vertex ». Whether such a correspondence exists
can be determined by solving a maximum matching
problem on a bipartite graph (see Fig. 7).

Mapping a flower on a point

Testing whether G(F(¢, u), r) = 1 is straightforward.
Indeed,

GF(t,u),r) =1 Vxe Ft,u) nV:dxr) <k,
so the algorithm needs to check the proximity of
finite number of points to r.

Mapping a subtree on an unbranched path

Testing G(Z(p, v), P(r, s)) = 1 may seem tricky.
However, it is not much different from testing
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Fig. 6. A flower F(u,v)=S(p,t) U Z(p,v) (on the left)
being mapped onto a flower F(r,s)= S(r,s) U P(r,s)
(on the right). The subtree Z(p,v) and the unbranched
section P(r,s) are shown in bold

S(u,v) S(r, s)
F(t1,u) G(F,) Koy ) OF(pu.7)
F(ts.u) @ OF(p2r)

F(ts “).
@ 0 Heer) —SOR
F(ts,u) , @ r

“(rg, o
F(t . u) @— G{FG: r

Fig. 7. Amaximum bipartite matching problem for com-
puting G(S(u,v),5(r,5)), when  S(u,v) = L)lF (4, u)
and S(u,v)=UF(p,,r)

i=1

G(P(p, v), P(r, s5)) = 1, which is the problem solved
by Alt and Godau [1] for testing whether the
Frechet distance between polygonal curves does
not exceed.
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Conclusions

We have presented a measure of similarity of one

tree to another reference tree. This measure of
similarity is not a metric, however, it is weaker
than the Frechet metric, which allows it to be fi-
nite on nonisomorphic trees, but stronger than the
Hausdorff metric.

The presented algorithm for determining if the
similarity between to trees is less than a given num-
ber ¢ takes polynomial time and works by reducing
the problem of comparing two trees into smaller
problems of comparing subsets of these trees (called
flowers and sectors), which in turn are reduced to
smaller and smaller problems and so on.
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MOAUDIKALIA METPUKHW ®PELIE JJISI HEI3OMOP®HUX NEPEB

Beryn. Ckenerusartist 300paxkeHb UTsl TOJATBIIOTO TIOPIBHSHHS Tap CKeJIETiB — IMONIMpPeHa MpaKThKa B po3Ii3HaBaHHI
300pakeHb. Y OUIBIIOCTI BUMAAKIB CKEIET 300paXkeHHsI — allMKJIivYHa MiIMHOXKWHA 1oJist 30py. [TompeHon MeTpuKoIo
IIJISI IOPiBHSTHHSI MIAMHOXUH € MeTpruKa @perne. OgHak, Bincranb @peliie BUBHAYECHO JIMIIIE IS TIap i30MOp(HUX 1epeB,
1110 3BOAAUTDH HaHiBELlb MOXJIMBICTh MPAKTUYHO 3aCTOCOBYBATH TaKy METPUKY Ha JAepeBax.

Iinb crarTi. HeoOXinHO po3poOUTH METOM MOPIBHSIHHS A€PEB, iIe0JOTiYHO OIM3bKMii 10 MeTprku Pperiie, ajne BU3-
HavyeHM I 1J1s1 map Hei3oMOP(pHUX IEPEB.

Pesyabratu. Y cratti 3anporioHoBaHo Moaudikanito Mmetpuku @perne 1151 HeisoMmopdHUx nepeB. Hosa unciosa xa-
pakTepuCTUKa Ha3BaHa OJIU3BKICTIO AepeBa A0 eTATOHY i BU3HAYeHa B TOMY YMCII IS IESIKUX KJ1aciB Mmap Hei3oMophHUX
nepeB. 3armpoIllOHOBAHO TMOJIHOMIaJIbHUM aJITOPUTM PO3IMi3HABaHHS TOTO, IO OAHE NEPEBO € OJIM3BKMM A0 iHIIOTO 3
TOYHICTIO 710 33/IaHOTO YUCIIa.

Karouosi caosa: obuucaiosanvha eeomempis, mempuxa Opeute, oepesa.
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