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ON THE GENERALIZATION OF THE RANDOM PROJECTION
METHOD FOR PROBLEMS OF THE RECOVERY OF OBJECT
SIGNAL DESCRIBED BY MODELS OF CONVOLUTION TYPE

We considered the problem of object signals recovery in the systems where an input-output transformation is described by
models of convolution type. To find a solution for such problem we built a generalization of the random projection method for two-
dimensional signals case. For the signal of the object which is described by the model based on convolution the stable method for

its recovery has been developed.
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Introduction

In technical systems there is a common situation
when transformation input-output is described by
integral equation of convolution type. This situa-
tion accurse if object signal is recovered by the
results of remote measurements. For example, in
spectrometric tasks, for an image deblurring etc.
Matrices of the discrete representation for output
signal and the kernel of convolution are known. We
need to find a matrix of the discrete representation
of a signal of the object. The well known approach
for solving this problem includes next steps. First,
the kernel matrix has to be represented as the Kro-
neker product. Second, input-output transforma-
tion has to be presented with usage of Kroneker
product matrices. Third, the matrix of the discrete
representation of the object has to be found.

The object signal matrix estimation obtained
with the help of pseudo inverting of Kroneker de-
composition matrices is unstable. The instability
of the object signal estimation in the case of usage
of Kroneker decomposition matrices is caused by
their discrete ill-posed matrix properties (condition
number is big and the series of the singular numbers
smoothly decrease to the zero). To find solutions of
discrete ill-posed problems we developed methods
based on the random projection and the random
projection with an averaging by the random matri-
ces. These methods provide stable solution with a
small computational complexity.

We consider the problem of object signals re-
covering in the systems where an input-output
transformation is described by the integral equa-
tion of a convolution. To find a solution for these
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problems we need to build a generalization for two-
dimensional signals case of the random projection
method.

The purpose of this work is to develop a stable
method for signal reconstruction for the case when
the input-output transformation is described by
convolution.

Random Projection-based
Regularization Approach

In problems of statistics, machine learning and
inverse problems theory, a situation often arises
when the solution by existing methods is unsta-
ble, i.e. small changes in the input data (condi-
tions of the problem) lead to a large change in
the solution. Such unstable solutions are inac-
curate and cannot be used in practice. To remove
the instability of the solution, the regularization
approach is use.

We developed anapproach and different methods
of the regularization based on the random pro-
jection. Our studies of the regularizing proper-
ties of random projection began in 2009 [1, 2].
Later other researchers began to explore the
regularizing properties of random projection,
for example, for classification problems [3] and
machine learning [4], and, more recently, for
solving inverse problems [5—7].

Sincetheapproachofrandomprojection,along
with improving the accuracy of the solution by regu-
larization, reduces the computational comple-
xity of the solution. We developed algorithms
that provide an accurate and fast solution for
discrete inverse problems.

Let us consider in more detail the regulariza-
tion of the inverse problem based on random
projection.

In many practical applications, signal transfor-
mation is described by a linear model of the form,
y = Ax + €, where the matrix Ae R"" and the
measurement vector yeR"(y=y,+€,y, = Ax)
are known. The components of the noise vector
ge R are realizations of independent Gaussian
random variables with zero mean and variance c°.
The signal vector xe R" has to be estimated.

The matrix A can be formed, for example, as
a result of transformation of integral equation

b
J. K(t,s)o(s)ds= f(f)kerneltothe discrete form.

In the case when y contains noise and the se-
ries of singular numbers of the matrix A smoothly
drops to zero (with A having a high conditionality
number), the problem of estimating x is called the
discrete ill-posed problem (DIP) [8, 9]. For DIP,
the solution (estimate of signal x) obtained on the
basis of a pseudo-inversion as x *= A"y, where A*
is a pseudoinverse is unstable and inaccurate. To
overcome the instability and improve the accuracy
of the solution, a regularization approach is used.

One of the approaches to ensuring the stability
of solving ill-posed problems is the use of an inte-
ger regularization parameter, which is the number
of summands in the model (linear with respect to
parameters) approximating the original data.

Examples of method for obtaining a stable solu-
tion (estimation x*) are the next. First is truncated
singular value decomposition [11—13]. Second is
truncated QR decomposition [13].

Method developed by us is based on random pro-
jection [14—17]. This method also uses a number of
summands of linear model as an integer regulariza-
tion parameter [18].

To obtain solution based on random projection
[19], both sides of the original equation are multi-
plied by the matrix R, € R**" resulting in the equa-
tion

R, Ax=R)y,
where (R,A)e R, (R,y)e R". The vector of the
recovered signal is obtained as

x, =(R,A) Ry.
As a random matrix R we use:

» the matrix G, € R"" whose elements are reali-
zations of a random variable with a Gaussian distri-
bution, zero mean and unit variance;

» the matrix Q, € R"" obtained by QR decom-
position of GA matrix (GA = QR);

= the matrix Qe R obtained by SVD decom-
position of G matrix (G =QXW¥").

Experimental investigation showed the existence
of the optimal number & (k < N') of the random
matrix rows which minimize the error of the true
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signal recovery: ¢’ = || x —x,*|". The error of the in-
put vector recovery and the output vector recovery
(for RP) can be represented as a sum of two com-
ponents (deterministic and stochastic):

e =E, {e;}zu((RkA)* R.A —l)x‘ 4
+o’trace (R," (R,A) " (R,A) R,),

e,=E {e/}= (AR, A)'R, Dy, "+
+o ‘trace(R," (R,A) "ATA(R,A)'R)).

The deterministic component decrease with the
increasing k and the stochastic component increase
[19].

Error components are represented as recursive
expressions by the number of model components.
Such representation (of input recovery error)
helped to show analytically that stochastic com-
ponent increases and deterministic component de-
creases when k increase.

Experimental investigation of the dependency
of input (and output) recovery error on the rows
number in cases of different noise levels showed the
minimum existence at k < N.

With noise levels’ increasing the error minimum
position is shifted to the smaller values of k. Stu-
dies have shown that the position (%, ) of the input
recovery error minimum and the output recovery
error minimum are close.

We propose a criterion for choosing a model
based on the approximation of the output reco-
very error. This criterion allows us to determine the
complexity of the model close to optimal.

Computational complexity of a random pro-
jection solution O(nkz) versus SVD complexity
O(n3 ) Note that k <n. Computational comple-
xity of the incremental SVD algorithm realization
O(n’k) is greater then O(n’k). Thus computatio-
nal complexity of the random projecting O(nzk) it
the smallest of these three methods.

We improved the accuracy of the basic random
projection method using analytical averaging by
random matrices [20, 21].

Averaging over the realizations of matrices (in
the experimental investigation) leads to a smoo-
thing of the error dependence on k and a decrease in
the number of local minima. This makes it easier to

find the optimal value of k and increases the accu-
racy of the solution. Therefore, we did an analytical
averaging over random matrices.
The following expression was averaged
ER {Es {e;}}:ER {exd} + ER {exs}:XTX -
X'A'E, (R, (R,AA'R,") R, }JAx+
+c’trace(E, {R,” (R,AA'R,") R, }).
The expression for the error after averaging over
random matrices is the next
E, {e. }=x"x —x"A"UD,U"Ax+
+o *trace (UD,U™).
Further we obtained the explicit form of error
components which arises after averaging over ran-
dom matrices. That is, the bias and variance of the

error that arising from averaging over random ma-
trices:

E, {e/} =B, {llx —x*| "} =||x x|+
+E {l[x —=(R,A) Ryy|'}=e"+e",
where x =E, {(R,A)'R,y} and
= x-A"UD, Uy |}, e’ =
=y'UD,U'y —|[A'UD, Uy |.

The expression for the error of the random projec-
tion method obtained after analytical averaging
over matrices is as follows
E{E {e/}}=E, {¢" }+E {e' }=
= E {[x-A"UD, Uy |I'} +
+E {y'UD,U'y - |[A'UD Uy '},

where error components are the bias and the va-
riance. Note that the expression for the variance
includes only known values: the output vector and
matrix factorizations associated with the original
matrix. Therefore, the error can be reduced by the
variance component value.

If we recover the input vector as x =A"UD,U'y
then error of the output vector recovery decreases
by the variance value (which arises after averaging
over random matrices).

The solution method for DIP in which solution
obtained as follows x ., =A"UD,U"y we call “de-
terministic random projection method” or shortly
DRP. The DRP method error is smaller than the
error of original random projection method RP.
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Fig. 2. The scheme of actions for P, P,, K, K, R, P

R1? PRZ
Also we should note that the DRP method error
dependency on number of random matrix rows is
smooth. On the contrary singular decomposition
TSVD method error has local minima. Therefore,
finding the optimal DRP solution is made easier.

Random Projection Approach Gene-
ralization to the Case when Input-
Output Transformation is Described
by Convolution

Consider the situation when input-output transfor-
mation is described by integral equation of convo-
lution type. This situation occurs if object signal is

recovered by the results of remote measurements.
For example, it arises in spectrometric tasks and in
image deblurring tasks.

Let output matrix W be formed as follows

W = conv(S,K),
where conv is a convolution operation, S is a ma-
trix of discrete representation for two-dimensional
input signal ©(x,y), K is a matrix of discrete rep-
resentation of the convolution kernel K(x,y). An
example of Kis at the figure 1.

Matrices of discrete representation for output
signal and for convolution kernel (point spread
function) are known. We need to find a matrix of
discrete representation of object signal S.

Matrix of kernel discrete representation can be
represented as follows K= K; ® K, , where ® is a
Kroneker product. Using this matrix K representa-
tion we can write the convolution of S and K in a
form of the product of matrices:

W=K_SK ', K eR" K, eR"".

If estimation S is obtained as $*=K." W(K,")"
then solution is unstable. That is why very big error
in estimation S arises. Instability of the estimation
S obtained with usage of pseudo inverting of matri-
ces K and K" it caused by DIP properties of these
matrices.

To obtain a stable solution the singu-
lar decomposition of matrices K, and K,
(K.=UZX V', K =UZXV")is used. To get a close
to optimal estimation of the matrix S the k& com-
ponents of singular decomposition are used as fol-

lows
S

We will obtain a stable solution based on random
projections.
To get such solution we project matrices K, K,
(Fig. 1)
K. = RK., K, = K.R;, K.e R*" K,eR""
and project the output matrix W
B=R, WR,", BeR"
Convolution equation after projecting turn into
the next
R,WR,"=R,K_S (KR,)",
Estimation S can be obtained based on random
projection as follows
See ¥ = (RK))" RkWRkT(KrTRkTY

* =V, 3 U, WU,E, 'V,

SVD ck T ck k= rk rk
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a) Input image b) Blurred image

Fig. 3. Test input image a) and the result of its blurring b)

a) random projection

b) Ay
- -
B i

c) GCV d) L-curve

Fig. 4. Recovery results
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Table 1. Recovery error of a two-dimensional signal

Random projection Ridge regression
DRP Ko GCV L-curve DSC
18,34 15,7 23,19 23,2 19,56
and based on random projection with averaging Similarly
as follows P, =UE {R/(RZR,/)'RIJUUIV =
S ¥ = E, {RK) R JWE (R (K,'R,")}. ~UDZV .

For the method of two-dimensional signal reco-
very based on truncated singular value decomposi-
tion we write operators P, and P, which transform
Wto S* as follows

P] = VCA'chilUckT > PZ = Urkzrk?lVrkT'

For the method of two-dimensional signal re-
covery based on the random projection we write
operators P, and P, which transform B to S* as

follows
P, = (R/:Kc ) R, P, = RkT (KrTRkT )
and for the random projection with averaging
P, =E; {(Rch )'R, }’
PER2 = ER {RkT (KrTRkT )+ } .
Let's transform the expression for estimation

S xp based on the random projection with avera-

ging as follows

Sow * = E.{R,K)'R, }K SK,E {R,"(KR,)}.

Present P, and P, as follows
PRI = (Rch)+ Rk = KCTRkT (RchKcTRkT )71 Rk >
PR2 = RkT (KITRkT )+ = RkT (RkKrKrTRkT)_] RkKr :
Further we average
PER] = ER {PRI} = ER {(RchyRk} =
= KCTER {RI\’T (RchKCTRkT )71 Rk } *

SinceK, =UZX V" and K K =U_Z’U "we get

the next
PERI = KCTER {RkT (RkUcZzUcTRkT )71 Rk} =
= KCTUCER {RkT (RkZszT )7] Rk }UCT *

Since we obtained a singular value decom-
position of K and taking into account that
E.{R/(R,Z°'R,)"'R,} =D, we get:

PERI = VCZCTD/(UCT'

After substitution P_,, and P_,, in S we get

the next
SDRP * = VchchT S\]rDrerT’

where D°, =X 'D,X D", =S D,S' are diagonal
matrices.

We calculate two-dimensional signal recovery
error as follows

DRP*

e = [[Sy* _SHFZ'
e = [[S*[l" +IISI" —2<8, %S>,

RP >
e = trace(S,, *' S,,*)+ trace(S'S) —
— 2 trace(S,, *' S).

Example of Use in Technical Tasks

We consider an example of solving the recovery of
blurred image task [22, 23]. Here we implement the
approach of the inverse task regularization based
on random projections generalized for the two-
dimensional input signal case.

The test input image and the result of its blur are
shown in Fig. 3. The task is to recover the origi-
nal image as accurately as possible on the basis of
blurred image data.

For the image recovery task we did next experi-
ments. We studied dependency of signal recovery
error value on the regularization parameter by
methods based on random projections (with regu-
larization parameter k) and based on singular value
decomposition (ridge regression with regulariza-
tion parameter A ).

Regularization parameter for ridge regression
was calculated by methods of generalized discrep-
ancy, L-curve and generalized cross validation. Re-
sults obtained by generalized discrepancy method

30 ISSN 2706-8145, CncremMn KepyBaHHA Ta KOMI'lotepy, 2021, N° 5-6



On the Generalization of the Random Projection Method for Problems of the Recovery of Object Signal...

Fig. 5. Object signal (left) output signal (centre)
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Table 2. The error of a two-dimensional signal recovery by DRP and TSVD methods

1 Decays

0 == .."--._..-‘-;_-"-'.I

Count
———

—r—

_

Coordinate

TSVD DRP
) 10~ 103 10 10 2 103 10 4
M(e} 0,072 0,018 0,005 0,072 0,027 0,008
Std{e} 0,0106 0,006 0,0004 0,007 0,004 0,001
Mk} 6,46 11,37 19,27 6,4 13 23,1
Std{k} 1,10 1,04 1,82 0,52 0,82 0,32

should be considered as ideal because information
about noise vectors is used.

Optimal values of regularization parameters
(k,,) for random projections and A, for ridge re-
gression) were calculated by search. Values of re-
covery error of a two-dimensional signal for ran-
dom projection and ridge regression methods are
presented in the table 1.

The table shows that a two-dimensional signal re-
covery by random projection method is the most accu-
rate at the level of ideal values for ridge regression.

Further we consider another example of the
problem in which input-output transformation
is described by convolution. This is a problem of
object signal recovery by the results of remote gam-
ma spectrometric measurements.

Connection between a signal radiated by object
(input signal) and measuring system output signal
is described by convolution of the function and the
point spread function

K (x.y.x",y") =sq(x',y".x,y) exp(-pp) / 4 np,
p= ((h" —h(x,y)" + (x' =x)" + (' = »)")",
q(x",y",x, )= (h' = h(x,»)/ p,
where A’ is a parameter, s is a calibration multiplier.

A two-dimensional output signal does not reflect
detailed object radiated signal. In the other words
the image of output signal is distorted changed
towards smoothing. The larger the parameter
hd, the more the true object signal is smoothed
(Fig. 5).

The figure 5 (right) shows a section of a two-
dimensional signal (matrix row) for output signal
y, true object signal x and recovered signal x*.

We did an experimental study of the accuracy
of object signal recovery by the results of remote
measurements using TSVD and DRP methods.
Numerical modeling was made for the problem of
"doublet recovery"” [24].

We calculated average value of solution error,
mean value of k£ and their standard deviation for
three levels of self noise. Modeling results are
shown in the table 2.

For the model with the optimal complexity the
two-dimensional recovery error obtained by DRP
method is close to the TSVD method especially
at the noise level 10—2. This indicates that the
proposed generalization of the random projection
method to the case of a two-dimensional signal is
very promising.
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Fig. 6. a — Dependency of the solution error by kK when
2 -3
o =10~
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Fig. 7. The recovered signal shape at the point k =k_, +3

At the Fig. 6,a we show the dependency of the
two-dimensional function o (x, y) recovery error
on the number of rows in the random matrix. This
dependency is obtained in the result of numerical
modelling. We modelled it for /#, =100 at the noise
o’ =10". At the Fig. 6,b we show the true object
signal (the matrix S row) and the signal recovered
by DRP method (matrix S,.* row) at k=k_, .
The signal form recovery accuracy is high in this
case. Dependency e (k) grow fast on the right side

ex
7.E+04

6.E+04 |

5.E+04

4.E+04

3.E+04

2.E+04

1.E+04

0.E+00 - = f =

17 13 19 25 31 37 43 49

b — The form of the recovered signal at k = k

opt

from the optimum point. That is why at the point
k =k, +3 the error value increases by almost an
order of magnitude compared to the optimal. Thus
the shape of the recovered signal is significantly
changed compared to the shape of the true signal
(Fig.7).

This example clearly demonstrates how the
accuracy of determining the regularization para-
meter kopt affects the accuracy of signal recovery.
Development and research of an approach to de-
termining the regularization parameter is a direc-
tion for further research.

Conclusions

We developed the method of a stable recovery of
object signal for the case in which an input-output
transformation is described by the integral equation
of a convolution. The stable estimation of the ob-
ject signal is provided by Kroneker decomposition
of the kernel matrix of convolution, computation
of random projections for Kroneker factorization
matrices and a selection of the optimal dimension
of a projector matrix. The method is illustrated by
its application in technical problems.

The direction of further research is the develop-
ment of methods for selection of the optimal di-
mension of the projector matrix.
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Y3ATAJIbHEHHS METOY BUTIAAKOBUX MPOEKIIN AJ15 3AJIAUY BITHOBJIEHHSA CUTHAJIIB,
O OIMNCYIOTBCA MOJEJIAMU HA OCHOBI 3TOPTKH

Beryn. ¥ TexHiuYHMX cucTeMax yacTo 3yCTpivyaeThbCsl CUTYallisl, KOJU TEPETBOPEHHST BXil-BUXill OMUCYETHCS iHTErPaTbHUM
PIBHSTHHSIM THUITy 3TOPTKU (OMUCYEThCS 3ropTKolo). Taka cuTyallis BUHMKA€E TMPW BiTHOBJIEHHI CUTHaly 00'€KTa 3a
pe3yJibTaTaMu TUCTaHLiHHUX BUMipIOBaHb: HAMIPUKJIIAM, Y 33Ja4ax CIeKTPOMETPii, MPU YCYHEHHi PO3MUTTS 300pakeHHS
Tou0. MaTpulli IMCKPETHOTO MOJAHHSI CUTHALY BUXOJY i siApa 3ropTku ((DyHKIii CHOTBOPEHHS TOYKU) BiTOMi, TOTPiOHO
3HAUTU MaTPUIIIO TUCKPETHOTO MOIaHHS CUTHAITY 00'ekTa. BimoMuii minxin 1o po3B’si3aHHs 11i€l 3amavi BKITIOUa€ HACTYITHI
KPOKM: TTOJAaHHS MaTPULIi SApa 3ropTKY Y BUTIsAAi TBopy KpoHekepa, 3amuc epeTBOPEHHS BXil-BUXill 3 BUKOPUCTaHHSIM
maTpullb TBopy KpoHekepa, BiflllyKaHHSI MaTPULIi AUCKPETHOTO YSIBJIEHHSI CUTHAJTy 00'€KTa.

OwiHka MaTpuli CUTHaJy 00'€KTa, OTpMMaHa 3 BUKOPUCTAaHHAM OOCpHEHMX MaTpHIlb po3KiagaHHs KpoHekepa, €
HecTilikoro. HecTiiiKicTh olliHIOBaHHST MaTPHIli CUTHAITY 00'€KTa 3 BAKOPUCTAHHSAM MaTpUIlb po3KiagaHHs KpoHekepa
MOB'sI3aHa 3 TUM, 1110 BOHU MAIOTh BJIACTUBOCTI MaTPUILIb IMCKPETHOI HEKOPEKTHOT 3a1a4i (Y1CII0 0OYMOBJICHOCTI BEIUKE,
PSAI CUHTYJISIPHUX 3HAUYEHb IJIABHO CITafa€e 0 HyJIS).

J17151 po3B’sI3aHHS IUCKPETHUX HEKOPEKTHUX 3aBAaHb HAMU PO3POOJIEHO METOAM Ha OCHOBI BUMAIKOBOI'O MPOEKTYBaH-
HS$1, Ta BUMTAJKOBOTO MPOEKTYBAHHS 3 YCEPEIHEHHSIM 32 BUITAIKOBUMU MaTPULISIMU, 1110 3a0€3IMeUYIOTh CTiKUIT pO3B’ 130K
3 MJIOIO OOYMCITIOBATILHOIO CKIIAHICTIO.

st po3B’si3aHHsT 3amay BiMHOBJIEHHSI CUTHAJIIB O0'€KTa B CUCTEMax, Jieé TEPEeTBOPEHHS BXill-BUXill OMMCYETHCS
IHTErpaJlbHUM DPIiBHSIHHSIM TUITy 3TOPTKM, MOTPiOHO y3araJbHUTU TiAXiA peryispu3allii 3BOPOTHOI 3aadyi Ha OCHOBIi
BUMAAKOBUX MPOEKIIIN Ha BUTIAJOK IBOBUMIPHUX BXiIIHUX CUTHAIB.

ins. Po3poOka cTilikoro MeToay BiIHOBJEHHS CUTHaly O0'€KTa I BUIAAKY, KOJU TEePEeTBOPEHHS BXiJ-BUXil
OIKMCYETHCS iIHTErPATbHUM PiBHSIHHSIM TUITY 3TOPTKU.

PesyabraTi T2 BUCHOBKH. PO3p0GIIEHO METOI CTIITKOTO BiTHOBJIEHHSI CUTHAJTY 00'€KTa JUTsSI BUTIAIKY, KOJIU TIEPETBOPEHHSI
BXiJI-BUXil OIMCYETHCSI IHTETPALHUM DPIiBHAHHSM TUITy 3ropTKW. OTpUMaHHS CTiliKOi OIIiIHKW CUTHAy O0'€KTa
3a0€e3IeYyeThCS 32 PAXyHOK po3KiamaHHS KpoHekepa MaTpuili simpa 3rOpTKM, OOYMCIICHHSI BUIAIKOBUX ITPOEKIIii
111 MaTpullb (akTopu3alii KpoHekepa Ta BUOOpY ONTUMalbHOI pO3MIpHOCTI MaTpulli mpoekropa. Pobora Meromy
MPOLTIOCTPOBAaHA 3aCTOCYBAHHAM Y TEXHIYHUX CHCTEMaX.

IlepcnekTuBu. HanpsiMoM mofaibIinx JOCHiIXKEHb € PO3BUTOK METO/iB BUOOPY ONTUMAIbHOI PO3MipHOCTI MaTpulli
MPOEKTOPA.

Karouogi caosa: ouckpemna Hekopekmua 3adaua, 320pmKa, pecyasipuzayis, 6Unadkoge NPOEKMy8aHHs.
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