DOI https://doi.org/10.15407/csc.2021.05-06.055
UDC 004.4

H.V. KHODIAKOVA, PhD (Educ.), Associate Professor at the Department of
Computer Science of the V. O. Sukhomlynsky Mykolaiv National University,
Shneerson ave., 11, Mykolaiv, 54001, Ukraine,
khodiakovagalina@gmail.com

N.V. KHODIAKOVA, Senior Software Developer at Ray Sono AQG,
Bruderhofstrabe 3, Munich, 81371, Germany,

nathalie.mk.ua@gmail.com

Y.A. POZDEEYV, Doctor of Physical and Mathematical Sciences, Professor,
of the V. O. Sukhomlynsky Mykolaiv National University,

str. Nikolskaya, 24, Nikolaev, 54030, Ukraine,
valer.al.pozdeev@gmail.com

FULL-TEXT SEARCH SETUP ON A WEBSITE

A method for implementing full-text search using Elasticsearch is described. The advantage of the new approach is the asynchro-
nous sending of the page content and its address to a specific service responsible for communication with Elasticsearch. This allows
you not to block the normal work with the CM.S and not depend on the availability of the indexing service. The approach described
in the article is flexible and adaptable for various website architectures. Asynchronous processing of indexing requests ensures high
query execution speed and system fault tolerance.

The article discusses various approaches to implementing full-text search on a website, their advantages and disadvantages.
Based on the analysis, a more flexible and universal approach to the implementation of a full-text search system has been devel-

oped. A solution is proposed with a step-by-step implementation and setup of advanced full-text search using Elasticsearch.

Keywords: Full-text search, algorithm, natural language processing, search robot, website, text indexing, search engine.

Introduction

Full-text search is the search for words or phrases
in textual data. For websites, the term “full-text
search” is used when a user needs to find a word
or phrase in the whole text available on the web-
site. The developer cannot always successfully fulfil
this task, because it is quite multifaceted [1]. At the
same time, the task of full-text search is now very
popular and relevant. Constant on-going search for
new methods of solving this problem shows that.
There are many publications about this problem on
the Internet. The articles [1—4], and other ones are
dedicated to the general concepts and examples of
specific solutions for full-text data search. We did

not find any researches dedicated to this problem
in the printed editions.

Problem Setting

Modern requirements for website development
include a full-text search function. Approaches of
different complexity and productivity are used in
the implementation of the search function. There
is also a sequence of related tasks: selecting the
option of indexing text, sending text for indexing,
selecting texts for indexing directly from the CMS
(Content Management System) database, select-
ing a search engine and others.

The purpose of this study is to analyse existing
solutions for full-text search on the website, to

ISSN 2706-8145, Control systems and computers, 2021, N2 5—6 55



H.V. Khodiakova, N.V. Khodiakova, V.A. Pozdeev

choose the most universal, stable and scalable ap-
proach, as well as to find a solution for customizing
full-text search with Elasticsearch.

An Overview of Approaches
to Implementing a Full-text Search
on a Website

An independent implementation of the search al-
gorithm can be considered as the simplest and most
primitive solution from the developer’s point of
view. If the website is presented entirely as a source
string, and the user’s query is shown as the search
data, then the task is to find the substring in the
string. This is one of the basic problems of algorith-
mization, which is solved by fairly common algo-
rithms. Article [2] mentions a whole class of algo-
rithms of the substring search in a string.

Simplicity of implementation is the main advan-
tage of this approach, but its disadvantages are also
obvious:

° As the website grows, the output string
where the search takes place grows.

° Repeated search queries for the same
words take as long time as the original query. Lack
of optimization will lead to an increasing load on
the site with agrowing number of users.

° The search assumes the exact match of the
search query to the given text. Even if a number of
characters differ (Hamming distance search), this
search will ignore more complex typos or synonyms
in the search query.

° By presenting the whole site as a source
line for search, we do not distinguish between the
logical parts of web pages — the title, the body of
the page and the footer. If a user query is found, for
example, in the site menu, and the menu is on each
page, then absolutely all pages will meet the search
criteria. However, when searching for words, the
user is more interested in the content of the page
than the content of the menu.

So, there are a lot of problems that appear with
this approach. The search algorithm used is quickly
becoming more complex, and at some point there
is a need to use another solution.

Existing search engines can be used to increase
productivity and reduce search time. These systems

implement already known algorithms of the sub-
string search in a string, but for this purpose they
use pre-processing, pre-indexing the text [5].

The text that enters the search engine is filtered.
All conjunctions and prepositions are removed
from it as irrelevant for the search. Then the system
saves words or phrases from the text in the index.
We should note that the words are not saved in their
original form. They are converted in order to ease
the search. Verbs, for example, are stored in the
form of an infinitive, and only the root of a word
can remain from nouns. It automatically takes into
account all possible forms of verbs and noun cases,
which significantly improves the search quality.
The search engine also takes into account syno-
nyms which are the words that are close in mean-
ing. A text analyser in natural language can be used
for this purpose.

Use of Different Options
of Indexing Text

One of the possible implementations of the index
may be the carrying out through the structure of an
orderly tree. Searching in a sorted (for example,
alphabetically) tree takes not a linear time, but a
logarithm of the number of tree elements.

Along with this, it is necessary to decide how to
transfer text from a website to a search engine and
index it.

A search engine uses a program that checks
Internet pages one by one in order to enter infor-
mation about them into a search system database.
It’s called a search engine. It performs indexing of
texts [6—7].

Indexing of texts can be external or internal.

1. External Indexing

There are search engines, also known as web
spiders or crawlers. According to the principle of
operation, the crawler resembles a normal browser;
it goes to the page, reads its contents and follows all
the links it finds on the page.

Search engine owners often limit the depth of
crawler penetration into the site and the maxi-
mum size of scanned text. That is why excessi-
vely large sites may not be fully indexed by the
search engine.

56 ISSN 2706-8145, CucreMHn KepyBaHHA Ta KoMm'totepH, 2021, N° 5—6



Full-Text Search Setup on a Website

The operation of the crawleron the site can be
configured using sitemap.xml and robots.txt files.

Sitemap.xml contains a sitemap, a list of links
to all pages that must be indexed. Sometimes links
to multimedia (pictures on the site) are added in
sitemap.xml. Crawlers do indexing by replacing the
text of these pictures (alt text).

Robots.txt may contain a list of addresses ex-
cluded from the index, restrictions on the frequen-
cy and timing of requests to the site.

The web page itself may also contain elements
that the crawler should not index. Such parts are
placed in the meta-tag <noindex> and the crawler
ignores the contents of this tag [8].

2. Internal Indexing

Internal indexing assumes that site content is ac-
tively sent to the search engine, rather than waiting
for the crawler to index the page.

Such indexing gives even more control over the
indexed content, but also requires specific imple-
mentation.

Ifthe search engine provides an API (Application
Programming Interface), the indexing of the page
is reduced to a simple indexing request. The text
for indexing is sent in the body of this request. The
address of the page where the text belongs to is also
sent there.

Sending Text for Indexing

The time the text is sent for indexing can also vary.

CMS stores site content in a database. If we have
a static site generator, the text for indexing can be
sent by automated request at the time of publica-
tion of the site. In this case, the programmer should
make changes to the site code, start the process of
generating the final static files (html, js, css), copy
the static files to the hosting server to send the
contents of html files to the search engine using
the API. Sending for indexing can take place on a
timer (for example, once an hour).

For more complex sites, the process of sending
text for indexing can become more complicated
consequently. A special command (script) gives
a possibility to connect to the CMS database, se-
lect the tables in which the content of the pages is
stored, and send this content to the search engine.

Selection of Texts for Indexing
Directly from the CMS Database

Connecting to the database and retrieving the
required records is not a simple task by itself.
Its implementation will already require the abi-
lity to program and deploy small autonomous
programs.

Many CMS, such as WordPress, Magnolia
CMS, store more than one version of the page. It
is common practice to display the published ver-
sion of the page and a draft of the latest changes. As
soon as the webmaster considers the new changes
ready to publish, the draft will be published and this
version will be available to everyone. Then it should
be included in the search index.

In the case of such architecture, a publication
request is the most logical action when the content
of the page should be sent to a search engine. By the
way, when a de-publication (removal of a page from
public access) is requested, a request should be sent
to remove its content from the search index.

Choosing a Search Engine

The same web page can be indexed by different
search engines. Thus, a site created with the help
of a CMS can be externally indexed by Google’s
crawler, and internally — by its own search en-
gine. Google will then use its own index and dis-
play links to pages of this site that are found by
the crawler. The site itself can provide a form to
search in the site, and use its own index of its own
search engine.

A Google search form can also be embedded in
the site. In this case, its own search engine on the
site is not required. The display style of Google can
be changed; so that the user of the site will not even
guess that the search within the site is implemented
using the Google index.

Google will use its own index and display search
results only within the current site. This approach
is fast and relatively easy to implement. It is only
necessary to take into account the cost of con-
necting Google Search Engine (GSE) and the es-
timated number of search queries on the site. As
the number of requests increases, so will the cost
of using GSE.

ISSN 2706-8145, Control systems and computers, 2021, N2 5—6 57



H.V. Khodiakova, N.V. Khodiakova, V.A. Pozdeev

The above stated solution cannot be used if the
site contains confidential information, which for
legal reasons should not be stored on third-party
servers. In this case, all pages of the site should
be excluded from the crawler index (using robots.
txt), and the implementation of the search should
be completely passed onto its own search engine,
hosted on legally protected servers.

Consider the most common and popular com-
plex search system Elasticsearch by Elastic [9].

Among the major sites that use Elasticsearch are
Wikimedia, StumbleUpon, Quora, Foursquare,
SoundCloud, GitHub and Netflix.

Amazon, IBM, Qbox and Elastic offer
Elasticsearch to their subscribers as a manageable
service. The system is hosted on the servers of these
companies, but it is available to customers through
the program interface (API).

In addition to full-text search, Elasticsearch
is often used to search for and analyse event logs.
For the convenience of compiling logs and send-
ing them to the search engine, Elastic offers the
Logstash product, and the Kibana platform gives
a possibility to visualize and analyse data in the
search index.

Elasticsearch, Logstash and Kibana are designed to
be used as an integrated solution called Elastic Stack.

The Elasticsearch search engine is free, abso-
lutely every user can installation his own servers
[3, 4]. There is a docker image of Elasticsearch of
different versions. For local development, this sys-
tem can simply be run in docker. But on the server
it can be deployed either by native installation on
the server (usually a Linux machine), or the same
docker image as for local development can be de-
ployed in the Kubernetes cluster.

Implementing a Full-text Search
with Elasticsearch

The given above analysis gives a possibility to
choose the tools for the most effective implemen-
tation of full-text search. But many search engines
that are implemented in Google, are inappropriate
in the case of working with confidential informa-
tion. The Elasticsearch system was chosen because
it can be deployed on our own servers. In addition,

it is extremely convenient and versatile and will
ensure stable and reliable operation of the search
algorithm. Google crawler data indexing is inap-
propriate in this solution because the crawler does
not work together with Elasticsearch. Therefore,
indexing is done internally.

So, let’s describe the algorithm for implement-
ing a full-text search in a full-fledged CMS using
Elasticsearch.

1. One more step is added to the process of pub-
lishing or de-publishing a page in the CMS. This is
the asynchronous sending of page content and its
address to a specific service that is responsible for
communicating with Elasticsearch. The process is
marked as asynchronous in order not to block the
normal operation of the CMS and not to be depen-
dant on the availability of the indexing service. If
the service does not respond and the page cannot
be indexed, the page should be published anyway,
and indexing may take place later.

2. Such an asynchronous interaction between
the CMS and the indexing service can be provid-
ed by any Message Queue (solutions for process-
ing the message queue) [10]. RabbitMQ, Apache
Kafka, Amazon SQS (Simple Queue Service)
belong to the most common and used by brokers
messages.

3. The indexing service subscribes to messages
from the Message Queue. The message contains the
content of the page, its address and the command
either include or exclude the page from the index.

4. The service generates a request to Elasticsearch
to add or remove content from the index. If
Elasticsearch is not available, the message in the
queue is not marked as successfully processed, and
after some time, the indexing request is retried.

If the service itself does not respond, the mes-
sage is not read from the queue and it will remain
there until the service is available again and will not
process the message.

5. Once the page is added to the Elasticsearch
index, the indexing or de-indexing process is
complete.

6. A CMS front-end component is being devel-
oped, which is responsible for full-text search. This

58 ISSN 2706-8145, CucreMHn KepyBaHHA Ta KoMm'totepH, 2021, N° 5—6



Full-Text Search Setup on a Website

component usually represents a form with a text
box and a submit button. The component accepts
the search query entered by the user, generates a
query to Elasticsearch and reads the result.

7. Elasticsearch returns a list of pages that meet
the search criteria, sorted by relevance. The CMS
component, which reads the Elasticsearch re-
sponse, displays a list of pages and links to them in
a user-friendly form.

The advantages of this approach are obvious.
The approach chosen is flexible and adapted to
different website architectures. Asynchronous
processing of indexing requests ensures the speed
of performance and fault tolerance of the system.
The system is divided into components flexibly
enough to scale each individual component and
the system as a whole.

There are also some disadvantages here, of
course:

° the software implementation of the search
service is necessary;

° additional costs for hosting Message
Queue, indexing service and Elasticsearch itself;

REFERENCES

° unavailability of the search function on
the site in case of interruptions in the work of
Elasticsearch, Message Queue or indexing service.

Conclusions

The article considers different approaches to the
implementation of full-text search on the website,
their advantages and disadvantages. Based on the
results of the analysis, the most flexible and univer-
sal approach to the implementation of a full-text
search system hasbeen developed. The algorithm for
implementing a full-text search using Elasticsearch
is described. The advantage of the new approach is
the asynchronous sending of page content and its
address to a specific service that is responsible for
communicating with Elasticsearch. It gives a possi-
bility to unblock the normal operation of the CMS
and beindependent on the availability of the index-
ing service. Queries to Elasticsearch are queued,
and after a while there is another attempt made
to process the indexing request. After searching is
complete, Elasticsearch returns a list of pages that
match the search criteria, sorted by relevance.

1. “Polnotekstovyy poisk po saytu — bich sovremennogo interneta”, Habr. [online| Available at: <https://habr.com/ru/

post/60551/> (Last accessed: 26.05.2021). (In Russian).

2. “Poisk podstroki v stroke”, Universitet ITMO. [online] Available at: <https://neerc.ifmo.ru/wiki/index.php?title=
Poisk_podstroki_v_stroke> (Last accessed: 27.05.2021). (In Russian).
3. “Osnovy Elasticsearch”, Habr. [online] Available at: <https://habr.com/ru/post/280488/> (Last accessed:

18.11.2020). (In Russian).

4. “Stroim prodvinutyy poisk s ElasticSearch”, DOI. [online| Available at: <https://dou.ua/lenta/columns/building-
advanced-search-with-elasticsearch/> (Last accessed: 18.12.2020). (In Russian).

5. “Obrabotka yestestvennogo yazyka”, Wikipedia. [online] Available at: <https://ru.wikipedia.org/wiki/Obrabotka_yest-
estvennogo_yezyka> (Last accessed: 8.12.2020). (In Russian).

6. “Poiskovyy robot”, Wikipedia. [online] Available at: <https://ru.wikipedia.org/wiki/ Poiskovyy robot> (Last accessed:

19.10.2020). (In Russian).

7. “Standart ysklyuchenyy dlya robotov”, Wikipedia. [online| Available at: <https://ru.wikipedia.org/wiki/Standart iskly-
uchenij dlya robotov> (Last accessed: 23.04.2021). (In Russian).
8. “Noindex”, Wikipedia. [online] Available at: <https://ru.wikipedia.org/wiki/Noindex> (Last accessed: 02.10.2020).

(In Russian).

9. “Elasticsearch”, Wikipedia. [online] Available at: <https://ru.wikipedia.org/wiki/Elasticsearch> (Last accessed:

11.09.2020). (In Russian).

10. “Ochered soobshcheniy”, Wikipedia. [online]| Available at: <https://ru.wikipedia.org/wiki/ Ochered’ soobshcheniy>

(Last accessed: 30.01.2021). (In Russian).

Received 16.11.2021

ISSN 2706-8145, Control systems and computers, 2021, N2 5—6 59



H.V. Khodiakova, N.V. Khodiakova, V.A. Pozdeev

JIITEPATYPA

1. TlonHOTEKCTOBBIN MOKMCK MO caiiTy — 614 coBpeMeHHOro nurepHera. Habr. URL: https://habr.com/ru/post/60551/
(Last accessed: 26.05.2021).

2. Tlouck mnoactpoku B cTpoke. Universitet ITMO. URL: https://neerc.ifmo.ru/wiki/index.php?title=ITouck
noactpoku_B_ctpoke (Last accessed: 27.05.2021).

3. Elasticsearch. Wikipedia. URL: https://ru.wikipedia.org/wiki/Elasticsearch (Last accessed: 11.09.2020).

4. Ocnosnl Elasticsearch. Habr. URL: https://habr.com/ru/post/280488/ (Last accessed: 18.11.2020).

5. O6paboTka ectecTBeHHOTO si3bIKa. Wikipedia. URL: https://ru.wikipedia.org/wiki/O0paboTKka ecTeCTBEHHOTO_sI3bIKa
(Last accessed: 8.12.2020).

6. Tlouckossiii po6ot. Wikipedia. URL: https://ru.wikipedia.org/wiki/TTouckosbiii_po6ort (Last accessed: 19.10.2020).

7. CranmapT uckimodeHuii wist po6oros. Wikipedia. URL: https://ru.wikipedia.org/wiki/CtaHmapT MCKIIOUSHUNA IS
po6otoB (Last accessed: 23.04.2021).

8. Noindex. Wikipedia. URL: https://ru.wikipedia.org/wiki/Noindex (Last accessed: 02.10.2020).

9. Crpoum npoasunyThiii mouck ¢ ElasticSearch. DOI. URL: https://dou.ua/lenta/columns/building-advanced-search-
with-elasticsearch/ (Last accessed: 18.12.2020).

10. Ouepenp coo6ueHuii. Wikipedia. URL: https://ru.wikipedia.org/wiki/Ouepenn_coobiieHuii (Last accessed:
30.01.2021).

Hapniiiua 16.11.2021

I'.B. Xooskoea, KanauaaT MeaaroriyHux Hayk, JoUeHT, MUKoJ1aiBChbKUit
HauioHaJlbHUi yHiBepcuTeT iMeHi B.O. CyXxoMJIMHCBKOTO,

54001, m. Muxkonais, ByJ. llIHeepcoHa, 11, YkpaiHa,
khodiakovagalina@gmail.com

H.B. Xoosaxosa, npoBigHuii po3podHUK, Ray Sono AG,
Bpynepxodmrpace 3, MionxeH, 81371, HimeuuunHa,
nathalie.mk.ua@gmail.com

B.O. Ilo30ees, noxTop PizMKo-MaTeMaTUIHUX HayK, TIpodecop,
MukonaiBcbKMil HallioHaIbHM yHiBepcuTeT iMeHi B.O. CyXoMJIMHCBKOTO,
54030, m. MukoumnaiB, Bys1. Hikonbscbka, 24, YkpaiHa,
valer.al.pozdeev@gmail.com

OPTAHI3ALIA TOBHOTEKCTOBOTO ITOIIYKY HA BEB-CAUTI

Beryn. [pu peanizalii moiryky TeKCTOBUX (DparMeHTIB Ha caliTi BUKOPUCTOBYIOTHCS MiIXOAM Pi3Hi 3a CKJIAIHICTIO Ta
MPOAYKTUBHICTIO. BUHMKA€E TaKOX MOCTiIOBHICTh CYIyTHIX 3aBlaHb; BUOIp BapiaHTa iHAeKCallil TEKCTY, BiAlpaBKU TEKCTY
Ha iHJIeKcallito, BUOip TeKCTiB 15 iHAeKcallil 6e3nocepeHbo 3 6a3u faHux CMS, Bubip noiykoBoi cuctemu Ta iHue. LLi
MiIXOAM 3aBXIU 3a0€3IMeUyIOTh 3aI0BiJIbHI pe3yIbTaTH MOIIYKY.

Merta. Onuc icHYIOUMX pillleHb ISl TOBHOTEKCTOBOTO TIOIIYKY Ha BeO-caiiTi, IXHiX mepeBar Ta HemosikiB. Po3pobka
aJITOPUTMY MTOBHOTEKCTOBOTO TIOIIYKY 3a IOTIOMOTOI0 cuicteMu Elasticsearch.

Metoau. AHami3 pi3HMX 3a CKJIQIHICTIO Ta MPOAYKTUBHICTIO IMiAXOMiB IO peaiisallii TOBHOTEKCTOBOIO TOIIYKY Ha
BeO-caiiTi. BusiBieHHsI HEIOJIIKiB Ta Bpa3JIMBOCTEN Y OUIbILI NMPUMITHUBHMX IMiIX0JaxX Ta po3poOKa OiJIbII JOCKOHAIUX
Ta CKJAaJHMX aJlTOPUTMIB, 1110 YCYBaloTh BUSsIBJIEHI Hemosiku. ITokpokoBa peastizalliss MOBHOTEKCTOBOIO IOUIYKY 3
BUKOPUCTAHHSM CTOPOHHIX CUCTEM.

Pesyabratu. Omricano MeToJI peatizallii TOBHOTEKCTOBOTO MONIYKY 3 BUKopuctaHHsaM Elasticsearch. [lepeBaroro HOBOro
MiIXOy € aCUHXPOHHE HaJCUJIaHHS BMICTY CTOPIHKM Ta 1i afpecu y NeBHUM CepBic, IKWI BiMOBIIa€ 3a KOMYHiKallilo 3
Elasticsearch. 1le no3Bosisie He 6;I0KyBaTH HOpMaIbHYy poooTy 3 CM.S Ta He 3a1eKaT Bijl JOCTYITHOCTI CepBicy iHaeKcallii.
OnucaHuii y cTaTTi MiAXiJ € THYYKUM Ta agarTOBaHUM ITiJ Pi3Hi apXiTeKTypu BeO-caiiTiB. ACMHXpOHHA 00poOKa 3aIuTiB
Ha iHJeKcallito 3a0e3Ieuy€e BUCOKY IIBUAKICTh BAKOHAHHS 3aITUTY Ta BiIMOBOCTINKICTh CUCTEMU.

BucHoBKu. Y cTaTTi pO3MISIHYTO Pi3Hi MiAXOAU 10 peasizallii TOBHOTEKCTOBOTO MOIIYKY Ha BeO-CaiiTi, iXHi epeBaru tTa
Henosiku. Ha miacraBi mpoBeneHOro aHatizy po3po0seHo Oifibll THYYKHUIA Ta yHiBepcalbHUIA MiaXij 0 peasizallii cuCTeMu
TIOBHOTEKCTOBOTO TIOIIYKY. 3alpoIIOHOBAHO PIllIeHHST 3 MOKPOKOBOIO pealli3alli€lo Ta HaJAIlITyBaHHSIM TMPOCYHYTOTO
MOBHOTEKCTOBOTO MOIIYKY 3 BUKOPUCTaHHSIM Elasticsearch.

Karouoei caoea: nosnomexcmosuii noutyx, areopumm, 00pooxa npupooHoi Mosu, NOuLyKo8uii pobom, caiim, inoekcauis mexcmy,
noutykoea cucmema.

60 ISSN 2706-8145, CucTteMH KepyBaHH:A Ta KOMITIOTepH, 2021, N2 5—6



