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SIMPLE AND VISUAL ALGORITHM FOR FACTORIZING

INTEGER NUMBERS

An iterative algorithm for decomposing an integer composite number C into prime factors X, and X, is proposed in which the pro-

perties of Vieta's theorem are used for the reduced quadratic equations X°+B-X-C = 0, when the first approximation in iterative
computation is taken equal to the square root of the composite number C, then is~\C, and B is equal to the rounded up to a larger

integer from the number~ C, that is, B=~/C. In this case, the calculations are carried out by linearly increasing the approxima-

tions by one.
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Introduction

As you know, factorization of a natural number is
called its decomposition into a product of prime
factors [1, 2]. The existence and uniqueness (up
to the order of the factors) of such a decomposi-
tion follows from the main theorem of arithmetic.
The problem of finding effective ways to factorize
integers into factors has been of interest to mathe-
maticians for a long time, especially specialists in
the field of number theory. Many areas of mathe-
matics and computer science find application in
solving this problem. Among them: elliptic curves,
algebraic number theory and quantum computing.
The assumption that the factorization problem is
computationally difficult for large numbers under-
lies widely used algorithms (for example, RSA),
which are practically used in the field of encryp-
tion. The RSA algorithm is based on the idea of

public key cryptography, where a number must be
decomposed into prime factors to break a system.

Previous research

Shor's algorithm is widely known among specialists
for factorizing numbers with polynomial complexi-
ty, but it can only be implemented on a quantum
computer [3]. This prompted specialists to create
a quantum computer. The leading countries of the
world (USA, China, etc.) are allocating serious
funds for this today. At the same time, the question
of the existence of a factorization algorithm with
polynomial complexity on a classical computer re-
mains one of the important open problems in mo-
dern number theory. In [4], an analytical method
for the factorization of composite numbers is pro-
posed, where, using a residue ring modulo m, the
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problem is reduced to solving a quadratic equation
on a classical computer. The disadvantage of this
method, in my opinion, is the problem of choosing
the module m for calculations.

The Main Idea of the Proposal

A simple and intuitive iterative algorithm for de-
composing integers into factors is proposed. It is
based on the use of Vieta's theorem for quadratic
equations. First, it is known [5] that if the reduced
quadratic equation X?—-2B X +C= 0 has real
roots, then their sum X, + X, = 2B, and the pro-
duct X,-X, =C. It is tempting to use the last fact.
Secondly, it is known from the theory of numbers
[2] that the smallest divisor of a composite integer
C, different from one, is greater than one, there is a
prime number and it does not exceed Je.

Example 1. At Fig. 1 shows a graphical illustra-
tion before decomposing the number 21 into factors
3-7 = 21. Here the dotted line is a vertical straight
line X =+/C=+21 = 4,582... and the letter “B”
marks the values of the coefficient in the quadratic
equation corresponding to each parabola.

If the integer is not prime, but composite, then it
has at least two factors that are not equal to one, cor-
responding to the two roots of the quadratic equation.

Let us construct parabolas corresponding to the
quadratic equation X°—2-B-X+ C =0, fora specific
value of C, in this case C = 21, and several values of B
near the values of ~/C (see Fig. 1). For B=A+/C
we get a parabola with intersection with the
abscissa axis at one point X = JC = 4,582. In this
case, the determinant of the quadratic equation

D= /((\/5)2 —21): 0.

For B=4, we obtain the upper parabola in Fig. 1.
In this case, the determinant of the quadratic equa-

tion D= [((4)2—21) :\/FS) = jJ/5 is not an

integer and complex number. There are no inter-

sections of the parabola with the abscissa at all.
And if we take B= 5, then we get the lower parab-

ola X>-2-5+21=0 with intersections at two points

with the abscissa at the points with coordinates

X, =\/Ei,/((5)2 721) = 5+2. The determi-
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Fig. 1. An illustration of the decomposition of a composite
number 21 into prime factors

nant is integer and positive. We get X, = 7, X, = 3.
We check, 7-3 = 21 =C. Lucky, but this does not
mean that it will always be so.

From the above it follows that in the search for
decomposition into prime factors, one should con-
sider parabolas located not higher than the abscissa
axis or equations with a coefficient B greater than
or equal to Jc.

Proposition 1. An algorithm
for decomposition of

is proposed
composite  integers

into prime factors using the formula

Xl,z=\/_5i,/(\/5)2—c:3i,/(32—c). (*).

Here C is a composite number and a free term

of the quadratic equation Jc , is the nearest inte-
ger greater than the fractional value of the square
root, B is the coefficient of the quadratic equation
at variable X. Let us check this assumption with a
typical example that requires several iterations for
computations in comparison with the first example.

Example 2. Let us also illustrate numerically and
graphically the execution of the algorithm by the
example of the decomposition of an integer C = 51
into integer factors 51 = 17-3. -

1. Calculate~/51 = 7,14. Round up to JC=B=
= 8.
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Fig. 2. An illustration of the decomposition of a composite
number 51 into prime factors

Fig. 3. An illustration of the decomposition of a composite
number 29 into prime factors

2. Determinant D = \/((\/75)2 -C) = \/((3)2 - c) =
(64-51) = 3,6 —
and if integer, then go to item 4.

non-integer — go to item 3,

3. Replace v/C with (+/C +1), (or Bwith (B+1)),
and go to step 2.

4. Calculate by the formula (*). We check: if
XX, = C, then we print X,=3 and X,=17, other-
wise — a failure.

In this case (see Fig. 3), the process will stop at

JCc=B=10 (after three iterations).

Example 3. Let us consider the operation of the
algorithm for the extreme case, when an "indecom-
posable" number, that is, a prime number, arrives
at its input. Fig. 3 shows a graphical illustration of
the algorithm for calculating the components of
the number 29. In this case, it will be a quadratic

equation X> —2-429- X +29 = 0. _
1. Calculate V29 = 5,385. Round up to JC =

2. Caiculate the determinant D = \/((\/_6)2 -C) =
= J((6y -29) =7

3, and if it is an integer, then go to item 4.

3. Replace JC with/C +1 and go to step 2.

4. Check: if X "X, = C, then we print X, = 1 and
X,=29.

In this case (see Fig. 4), the process will stop at
B=15.

— non-integer — go to item

On the computation time

It can be seen that, in general, the time for compu-
ting two factors is approximately equal to the time
for computing two square roots (in fact, the time
for computing one factor is approximately equal to
the time for computing one square root). An un-
pleasant exception is the decomposition of "non-
decomposable”, that is, prime numbers (see Fig. 3).
In the latter case, you have to pay more — the com-
putation time increases to 10 iterations.

Proposition 2 (updated). Based on the consi-de-
ration of the above particular examples, we write
in general form the algorithm for decomposing the
composite number C in the form of the following
sequence of actions. Fig. 4 shows a graph-diagram
of the algorithm.

So, we enter the original composite number C
into the shift register and proceed to the calcula-
tions (see Fig. 4).
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1. Calculate \/E and round the result to the nea-
rest larger integer \/_E

Calculate the determinant D=

1@ o

3. Compare: if D is a fractional number, then go
to step 4, otherwise go to step 5.

4. Replace \/7 with \/E +1 (increase by 1) and

go to step 2. (@ )2 - c].

5. Calculate X,, =

6. Compare: if X, = 1, then we write into memo-
ry the result X, — a prime number, otherwise we
enter into the shift register two numbers X, and X,
and alternately serve them according to clause 2 in-
stead of the original number C.

7. The computation process stops when the
numbers in the shift register are exhausted.

To prove the correctness of the proposed algo-
rithm, consider the following example.

Example 4. Let us demonstrate the implementa-
tion of the proposed algorithm by the example of
decomposing a composite number 135 into factors
up to prime (factors) 135 = 159 = (5-3)-(3:(3-1))
(see Fig. 5 and 6) Let's write down the algorithm
step by step.

1.C=135.4/C = 11,619. Round to ~/C = B=12.
Equation X>-2-12-X+135 = 0. The determi-

nant of the equation D= «/((12)2 —-135) =
=,/(144-135 =\9=3. We calculate according
to the formula (*). X, = 1243 =15. X, = 12-3=09.
We continue the expansion of the obtained factors.
2.C=15.4/15 = 3,872. Round up to/C = B=
= 4. Equation X>—2-4-X+15=0. Determinant D =
=Ja6-15) = 1. X,= 4+1 =5 X,=4-1-=
=3. L
3.C=9.4/9=3. “Round” to VC =B= 3. De-
terminant D =,/(9-9) = 0.X, =X, = 3.

4.C=5.5 = 2,23 Round up to JC=B=13,

Determinant D =/(9-5)=2. X, =3+2=5,X,=

=3-2=1.
5.0=3.4/3 = 1,73, Round up to /C =B = 2.
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Fig. 4. Graph-diagram of the proposed algorithm for facto-
rizing composite numbers
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Fig. 5. Graph-illustration of obtaining the results of facto-
rization of the number 135
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Fig. 6. Graph-illustration of obtaining the results of facto-
rization of the number 135

Determinant
X,=2-1=1

(4-3) = 1.X,=2+1 = 3,
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Fig. 7. An illustration of the accelerated decomposition of
the number 29 into prime factors

6.C=1.41 = 1. “Round off” to /C =B = 1.

Determinant D=,/(1-1) = 0. X, =X, = 1.

At the same time, the following numbers were
received from the output of the shift register: 135,
15,9, 5, 3, 3, 3. From the output of block 6, prime
numbers will come out — factors 5, 3, 1. Fig. 5
shows a graph-illustration of obtaining the results
of factorization of the number 135.

In Fig.6. an illustration of the decomposition of
the composite number 135 into simple integer fac-
tors in the form of parabolic graphs is given. Here,

the vertical dotted lines correspond to the \/E va-

lues, and the parabolas are arranged from right
to left as the C numbers decrease (135, 15, 9, 3).
Fig. 5 and 6 clearly show that the proposed algo-
rithm is a convergent process. So in Fig.6 it can
be seen that the smaller of the two divisors of the

original number C is always less than JC and in the
process of iterative calculations, the left branches

of the parabola are gradually shifted from right to
left towards one.

Example 5. After we are convinced of the suc-
cessful completion of iterative calculations for de-
composing various integers into prime factors, we
can think about improving the proposed algorithm
(now there is something to improve). As can be seen
from Fig. 3, one of the reasons for the large number
of iterations, in the case of the number 29, is the
minimum (equal to 1) value of the "partner” in the
pair (1,29). Let's try to replace it. In the equality
XX, = C, we multiply both sides of the equality by
the value of a previously known prime number less
than 29.

For example, if 129 = 29, then, multiplying by
3, we get 3-29 = 87 (see in Fig. 7 the transition from
arrow C =29 to arrow C = 87). Now we will expand
the number 87 = 3-29. Let's compare the number of
iterations: 10—7 = 3. It looks like we are heading in
the right direction. Let's take an even larger prime
number 5. We get C = 5-29 = 145. Let's expand the
number 145. See the transition to the arrow C =
=145 in Fig. 7. Let's compare the number of itera-
tions in comparison with the previous case 7—5 =
=2. It's good. The iterations will stop completely
for the pair C = 17-29 = 493.

But an even more decisive step can be taken. We
have multiplied before, by an almost random prime
number. But if we knew the previous prime number
before the decomposed, then no iterations would
be required at all, and the result would be obtained
by calculating only two square roots.

Indeed, for the number 29, the previous prime
is the number 23. We know that X, +X, = 2:B. In
this example, 23+29 = 52, from which we get
B = 26. Calculate C = 29-23 = 667, X,, =26+
+./((26):2-667) = 26+3.X, = 23,X, = 29. See
the parabola in Fig. 7. in the upper right corner. We
also see that the sign of the completion of calcula-
tions in this case is that the determinant is equal
to an integer /((26) 2-667) = 3 and X, = 23.

Note that in this case, the comparison of the
smaller of the two roots X, = 1 in item 6 should be
replaced by X, = 23 in the block diagram in Fig. 4.
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Conclusion exists between direct and iterative methods for
solving systems of linear algebraic equations. The

After considering the examples, it can be seen that, ~ use of one or the other depends on the specific cir-
by alternately decomposing any composite number ~ cumstances (the advantages and disadvantages of
into two factors, we find all integer factors, includ-  iterative algorithms are known for computing on a

ing both prime and multiple for a given integer. ~ computer). The article proposes one of the options
This confirms the validity of formula (*). for eliminating the reduction in the number of

The proposed algorithm has distinctive features  iterations (disadvantage). In this case, one should
from that indicated in the literature [4]. The rela-  point out such advantages of the proposed algo-
tionship between the proposed algorithm and the  rithmassimplicity and a visual representation of its
one known from the literature [4] is the same that ~ implementation.
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[MPOCTU HAOUHUI AITOPUTM ®PAKTOPUBALIIL LIUIMX YUCET

Beryn. [oiyk edekTUBHUX cOCOOiB pO3KIalaHHsI LiIUMX YMCET HAa MPOCTi MHOXKHUKU 1[iKaBUTb CHELialicTiB HE TiTbK1
B o0OusacTi Teopii uncen, ane i iHpopmaTuku. [1pobiema y ckiianHocTi (LIBUAKOCTI ) OOUMCIIEHbD.

Hinb crarTi. [IporoHyeThCs AIBTEPHATUBHIN BapiaHT aJITOPUTMY 3 MMOKPAILIEHUMU XapaKTepUCTUKAMMU.

MeTtomu. 3amicTb BiToMUX TIepeOOPHUX aJITOPUTMIB 3aITPOTTIOHOBAHO CITOCIO Ha iHIIIi (iTepalliiiHiii) OCHOBI.

PesyabraTi. 3amporoHoOBaHO MPOCTUI HAOUHUI AJITOPUTM PO3KJIaJaHHS IJIMX YKCeJT Ha CITiIBMHOXHUKU, 3aCHOBaHU I
Ha BUKOpHUCTaHHiI Teopemu Biera mis KBampaTHux piBHSIHB. [lo-Tiepile BigoMo, IO SKIIO KBaapaTHE PiBHSIHHS
X?-2-B-X +C = 0 Mae IiiicHi KopeHi, To ixHs cyma X, + X, =2-B,anobyrok X, - X, = C. Buxopucraemo Leii (axr.

[To-apyre, 3 Teopii yncea BigoMo, 110 HaWMEHIUWI, BIAMIHHUI Big OMMHMI, TIIBHUK LIJIOro ckjiajaeHoro yucia C
He nepepuiiye / C. Bukopucraemo Te, 1o \/E =1/ 2-(X X 2) + A, To6T0. \/E 3HAXOMUTBCA MiXK ABOMA LUIMMU
YyCIaMU.
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PosristHeMo 3anpornoHoBaHM aITOPUTM Ha MPUKIIAIi po3KJIadaHHs LiJioro ckiaaeHoro yuciaa C = 51 Ha fioro npocri
1Tl CIIiBMHOXHUKU.

1. O6uncmoemo V31 = 7,14, Oxpyrmimo 10 HAGMKYOTO GLIBLIOTO LiIOTO JC=B=38

2. JleTepMiHaHT BiAIOBiIHOIO KBaApaTHOIO PiBHAHHA D = 1[(B2 -C ) =1/(64 - 51) =3,6 — Heuine yuco,

TIePEeXOAMMO 10 1.3, a SIKIIO AeTePMiHAaHT — I1ijie 200 HyJIb, TO ITEPEXOANMO 10 T1.4.

3. 3amiHoemo B Ha B + 1 i mepexomumo 1o 1m.2.

4. Mepesipsiemo: sikio X, - X, = C, 10 ApyKyeMO B IAHOMY BUIIALIKY, X, =3uX, =17. Inakume — 36iii.

Y BUMajKy, 1110 po3rJIsiIa€EThCs, iTepalliiHuit TTpoliec 3yMMHUTLCS Ha TpeTilt itepauii mpu B = 10.

B cTaTTi po3risiHyTo BapiaHTU CKOPOYEHHSI YMCIIa iTepalliil, ax 10 OQHi€l.

BucHoBOK. 3anpornoHOBaHO MPOCTUI i HAOUHMIT Oe3repedipHUil iTepalliiHUil AITOPUTM PO3KJIAJAHHS LIJIMX YMCe
Ha CIiBMHOXHUWKH, 32CHOBaHUI Ha BUKOPUCTaHHI TeopeMi BieTa g KBanpaTHUX PiBHSIHb, SKUI MOXe KOHKYPYBAaTH 3
BiJOMMMU aJITOPUTMAMU.

Karouogi caosa: pakmopu3zayis uucen, npocmi ma ckaadeni yucaa.
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